A Baseline DSGE Model

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "A Baseline DSGE Model"

Transcript

1 A Baseline DSGE Moel Jesús Fernánez-Villavere Duke Universiy, NBER, an CEPR Juan F. Rubio-Ramírez Duke Universiy an Feeral Reserve Bank of Alana Ocober 10,

2 1. Inroucion In hese noes, we presen a baseline sicky prices-sicky wages moel. The basic srucure of he economy is as follows. A represenaive househol consumes, saves, hols money, supplies labor, an ses is own wages subjec o a eman curve an Calvo s pricing. The final oupu is manufacure by a final goo proucer, which uses as inpus a coninuum of inermeiae goos manufacure by monopolisic compeiors. The inermeiae goo proucers ren capial an labor o manufacure heir goo. Also, hese inermeiae goo proucers face he consrain ha hey can only change prices following a Calvo s rule. Finally, here is a moneary auhoriy ha fixes he one-perio nominal ineres rae hrough open marke operaions wih public eb Househols There is a coninuum of househols in he economy inexe by j. The househols maximizes he following lifeime uiliy funcion, which is separable in consumpion, c j,realmoney balances, m j /p (where p is he price level), an hours worke, l j : E 0 X =0 β (log (c j hc j 1 )+υ log mj p ) ϕ ψ l1+γ j 1+γ where β is he iscoun facor, h is he parameer ha conrols habi persisence, γ is he inverse of Frisch labor supply elasiciy, is an ineremporal preference shock wih law of moion: log = ρ log 1 + σ ε, where ε, N (0, 1), an ϕ is a labor supply shock wih law of moion: log ϕ = ρ ϕ log ϕ 1 + σ ϕ ε ϕ, where ε ϕ, N (0, 1). Noe ha he preference shifers are common for all househols. Also, we have selece a uiliy funcion (log uiliy in consumpion) whose marginal relaion of subsiuion beween consumpion an leisure is linear in consumpion o ensure he presence of a balance growh pah wih consan hours. Househols can rae on he whole se of possible Arrow-Debreu commoiies, inexe boh by he househol j (since he househol faces iiosyncracic wage-ajusmen risk ha we will escribe below) an by ime (o capure aggregae risk). Our noaion a j+1 inicaes he amoun of hose securiies ha pay one uni of consumpion in even ω j,+1, purchase 2

3 by househol j a ime a (real) price q j+1,. To save on noaion, we rop he explici epenence of q j+1, an a j+1 on he even when no ambiguiy arises. Summing over ifferen iniviual asses we can price securiies coningen only on aggregae saes. Househols also hol an amoun b j of governmen bons ha pay a nominal gross ineres rae of R. Then, he j h househol s buge consrain is given by: c j + x j + m j p + b Z j+1 + p q j+1, a j+1 ω j,+1, = w j l j + r u j μ 1 a [u j ] k j 1 + m j 1 b j + R 1 + a j + T + z p p where w j is he real wage, r he real renal price of capial, u j > 0 he inensiy of use of capial, μ 1 a [u j ] is he physical cos of use of capial in resource erms, μ is an invesmenspecific echnological shock o be escribe momenarily,, T is a lump-sum ransfer, an z are he profis of he firms in he economy. We assume ha a [1] = 0, a 0 an a 00 > 0. Invesmen x j inuces a law of moion for capial k j =(1 δ) k j 1 + μ 1 S xj x j 1 x j where δ isheepreciaionraeans [ ] is an ajusmen cos funcion such ha S [Λ x ]=0, S 0 [Λ x ]=0, an S 00 [ ] > 0 where Λ x ishegrowhraeofinvesmenalonghebalance growh pah. We will eermine ha growh rae below. Noe our capial iming: we inex capial by he ime is level is ecie. The invesmen-specific echnological shock follows an auoregressive process: μ = μ 1 exp (Λ μ + z μ, ) where z μ, = σ μ ε μ, an ε μ, N (0, 1) The value of μ is also he inverse of he relaive price of new capial in consumpion erms. Given our escripion of he househol s problem, he lagrangian funcion associae wih i is: ¾ mj ½log (c j hc j 1 )+υlog ϕ ψ l1+γ j p 1+γ E 0 X β =0 ( λ j c j + x j + m j p w j l j r u j μ n 1 Q j + b j p + R q j+1, a j+1 ω j,+1, a [u j ] k j 1 m j 1 b p R j 1 1 p a j T z h i o xj k j (1 δ) k j 1 μ 1 S x j 1 x j where hey maximize over c j, b j, u j, k j, x j, w j, l j an a j+1 (maximizaion wih respec o ) 3

4 money holings comes from he buge consrain), λ j is he lagrangian muliplier associae wih he buge consrain an Q j he lagrangian muliplier associae wih insalle capial. The firs orer coniions wih respec o c j, b j, u j, k j,anx j are: (c j hc j 1 ) 1 hβe +1 (c j+1 hc j ) 1 = λ j λ j = βe {λ j+1 } Π +1 r = μ 1 a 0 [u j ] Q j = βe (1 δ) Qj+1 + λ j+1 r+1 u j+1 μ 1 +1a [u j+1 ] ª xj λ j + Q j μ 1 S S 0 xj xj + βe Q j+1 μ x j 1 x j 1 x +1 S 0 xj+1 j 1 x j R xj+1 x j 2 =0. We o no ake firs orer coniions wih respec o Arrow-Debreau securiies since, in our environmen wih complee markes an separable uiliy in labor, heir equilibrium price will be such ha heir eman ensures ha consumpion oes no epen on iiosyncracic shocks (see Erceg e. al., 2000). If we efinehe(marginal)tobin sqasq j = Q j λ j, (he raio of he wo lagrangian mulipliers, or more loosely he value of insalle capial in erms of is replacemen cos) we ge: (c j hc j 1 ) 1 hβe +1 (c j+1 hc j ) 1 = λ j λ j = βe {λ j+1 } Π +1 r = μ 1 a 0 [u j ] ½ λj+1 q j = βe (1 δ) qj+1 + r +1 u j+1 μ 1 λ +1a [u j+1 ] ¾ j xj 1=q j μ 1 S S 0 xj xj λ j+1 + βe q j+1 μ x j 1 x j 1 x +1 S 0 j 1 λ j x j R xj+1 xj+1 The las equaion is imporan. If S [ ] =0(i.e., here are no ajusmen coss), we ge: x j 2. q j = 1 μ i.e., he marginal Tobin s Q is equal o he replacemen cos of capial (he relaive price of capial). Furhermore, if μ =1, as in he sanar neoclassical growh moel, q j =1. The firs orer coniion wih respec o labor an wages is more involve. The labor use by inermeiae goo proucers o be escribe below is supplie by a represenaive, 4

5 compeiive firm ha hires he labor supplie by each househol j. The labor supplier aggregaes he iffereniae labor of househols wih he following proucion funcion: Z 1 l = 0 1 l j 1 j (1) where 0 < is he elasiciy of subsiuion among ifferen ypes of labor an l is he aggregae labor eman. 1 The labor packer maximizes profis subjec o he proucion funcion (1), aking as given all iffereniae labor wages w j an he wage w. Consequenly, is maximizaion problem is: Z 1 max w l w j l j j l j 0 whose firs orer coniions are: w Z l j j lj w j =0 j Diviing he firs orer coniions for wo ypes of labor i an j, wege: w i w j = li l j 1 or: Hence: w j = li l j w j l j = w i l 1 1 wi 1 i l j an inegraing ou: Z 1 0 w j l j j = w i l 1 i Z l j j = w i l 1 1 i l Now, by he zero profis coniion implie by perfec compeiion w l = R 1 0 w jl j j,wege: w l = w i l 1 1 i l w = w i l 1 i l 1 1 Ofen, papers wrie θ = 1 an 1 θ = 1. For ha reparamerizaion, < θ 1, whereasθ (i.e., as 0), we go o a Leonieff proucion funcion, θ =0(i.e., =1), we have a Cobb-Douglas, an θ =1(i.e., ), a linear proucion funcion. 5

6 an, consequenly, he inpu eman funcions associae wih his problem are: l j = wj w l j (2) This funcional form shows he effec of elasiciy, on he eman for j h ype of labor. To fin he aggregae wage, we use again he zero profi coniionw l = R 1 0 w jl j j an plug-in he inpu eman funcions: o eliver: w l = Z 1 0 wj w j l j w 1 = w Z 1 w = 0 1 w 1 1 j j. Z 1 0 w 1 j j Iiosyncraic risks come abou because househols se heir wages following a Calvo s seing. In each perio, a fracion 1 θ w of househols can change heir wages. All oher househols can only parially inex heir wages by pas inflaion. Inexaion is conrolle by he parameer χ w [0, 1]. This implies ha if he househol canno change her wage for τ τy Π perios her normalize wage afer τ perios is χ w +s 1 Π +s w j. Therefore, he relevan par of he lagrangian for he househol is hen: max E w j ( X (βθ w ) τ ϕ ψ l1+γ j+τ 1+γ + λ j+τ τ=0 τy Π χ w +s 1 Π +s w j l j+τ ) subjec o à τy l j+τ = Π χ w +s 1 Π +s w j w +τ or, subsiuing he eman funcion (2), we ge: max E w j X (βθ w ) τ τ=0 λ j+τ τy +τ ϕ +τ ψ Π χ w +s 1 Π +s w j τy! l +τ à τy Π χ w +s 1 Π +s Π χ w +s 1 Π +s w j w +τ 1+γ j w j w +τ (1+γ)! l +τ l +τ 1+γ 6

7 which simplifies o max E w j X (βθ w ) τ τ=0 à τy λ j+τ τy +τ ϕ +τ ψ Π χ w +s 1 Π +s Π χ w +s 1 Π +s w j w +τ w j w +τ 1+γ! 1 w +τl +τ (1+γ) l +τ 1+γ All househols se he same wage because complee markes allow hem o hege he risk of he iming of wage change. Hence, we can rop he jh from he choice of wages an λ j. The firs orer coniion of his problem is: or an E X τ=0 E (βθ w ) τ 1 w E X τ=0 Now, if we efine: à τy (1 ) λ +τ à τy + w +τ ϕ +τ ψ X τ=0 à τy (βθ w ) τ λ +τ à τy (βθ w ) τ +τ ϕ +τ ψ f 1 = 1 w E τ=0 X τ=0 Π χ w +s 1 Π +s Π χ w +s 1 Π +s! 1 w w +τ l +τ w w +τ! Π χ 1 w +s 1 w Π +s Π χ w +s 1 Π +s (βθ w ) τ λ +τ à τy w w +τ! (1+γ) l 1+γ +τ w +τ =0 l +τ =! (1+γ) l 1+γ +τ! Π χ 1 w +s 1 w+τ l Π +s w +τ à X τy! f 2 = E (βθ w ) τ Π χ (1+γ) w (1+γ) +τ ϕ +τ ψ +s w+τ l 1+γ Π +s 1 w +τ we have ha he equaliy f 1 = f 2 is jus he previous firs orer coniion. Noe ha for hosesumsobewellefine (an, more generally for he maximizaion problem o have a à τy! 1 soluion), we nee o assume ha (βθ w ) τ λ +τ goes o zero faser han Π χ w +s /Π +s 1 goes o infiniy in expecaion. 7

8 an: One can express f 1 an f 2 recursively as: f 2 f 1 = 1 = ψ ϕ w w χ Π w (w ) 1 λ w l + βθ w E Π +1 (1+γ) χ l 1+γ Π w + βθw E Π +1 Now, since f 1 = f 2,wecanefine f = f 1 = f 2, such ha: an: f = 1 f = ψ ϕ w w 1 w +1 w χ Π w 1 (w ) 1 λ w l + βθ w E w +1 Π +1 (1+γ) χ l 1+γ Π w + βθw E Π +1 1 f 1 +1 (1+γ) w (1+γ) +1 f w w 1 f +1 (1+γ) w (1+γ) +1 f +1. w Since we assume complee markes an separable uiliy in labor (see Erceg e. al., 2000), we consier a symmeric equilibrium where c j = c, u j = u, k j 1 = k, x j = x, λ j = λ, q j = q,anwj = w. Therefore, he firs orer coniions associae o he consumer s problems are: (c hc 1 ) 1 hβe +1 (c hc ) 1 = λ λ = βe {λ +1 } Π +1 r = μ 1 a 0 [u ] ½ λ+1 q = βe (1 δ) q+1 + r +1 u +1 μ 1 λ +1a [u +1 ] ¾ x 1=q μ 1 S S 0 x x λ +1 + βe q μ x 1 x 1 x +1 S 0 x+1 1 λ x he buge consrain: c j + x j + m j p + b Z j+1 + p R q j+1, a j+1 ω j,+1, x+1 = w j l j + r u j μ 1 a [u j ] k j 1 + m j 1 b j + R 1 + a j + T + z p p an he laws of moion for f : f = 1 χ Π w 1 (w ) 1 λ w l + βθ w E w +1 Π +1 8 w 1 f +1 x 2.

9 an: f = ψ ϕ w w (1+γ) χ l 1+γ Π w + βθw E Π +1 (1+γ) w (1+γ) +1 f +1. w We nee boh laws of moion o be able, laer, o solve for all he relevan enogenous variables. Noe ha using he zero profis coniion for he labor supplier, w l = R 1 w 0 jl j j an he ne zero supply of all securiies, we have ha he aggregae buge consrain can be wrien as: c + x + R 1 0 m jj w l + r u μ 1 a [u ] k 1 + R 1 0 b j+1j + = p p R 1 m 0 j 1j + R 1 p R 1 b 0 jj + T + z p Thus, in a symmeric equilibrium, in every perio, a fracion 1 θ w of househols se w as heir wage, while he remaining fracion θ w parially inex heir price by pas inflaion. Consequenly, he real wage inex evolves: w 1 1 Π = θ w Π χ w 1 w 1 1 +(1 θ w ) w 1. i.e., as a geomeric average of pas real wage an he new opimal wage. This srucure is a irec consequence of he memoryless characerisic of Calvo pricing The Final Goo Proucer There is one final goo is prouce using inermeiae goos wih he following proucion funcion: Z 1 ε y = y ε 1 ε 1 ε i i. (3) 0 where ε is he elasiciy of subsiuion. Final goo proucers are perfecly compeiive an maximize profis subjec o he proucion funcion (3), aking as given all inermeiae goos prices p i an he final goo price p. As a consequence heir maximizaion problem is: max p y y i Z 1 0 p i y i i Following he same seps han for he wages,we fin he inpu eman funcions associ- 9

10 ae wih his problem are: y i = pi p ε y where y is he aggregae eman an he zero profi coniionp y = R 1 0 p iy i i o eliver: 1.3. Inermeiae Goo Proucers Z 1 p = 0 i, 1 p 1 ε 1 ε i i. There is a coninuum of inermeiae goos proucers. Each inermeiae goo proucer i has access o a echnology represene by a proucion funcion y i = A k α i 1 l i 1 α φz where k i 1 is he capial rene by he firm, li is he amoun of he packe labor inpu rene by he firm, an where A follows he following process: A = A 1 exp (Λ A + z A, ) where z A, = σ A ε A, an ε A, N (0, 1) The parameer φ, which correspons o he fixe cos of proucion, an z = A 1 1 α μ α 1 α guaranee ha economic profis are roughly equal o zero in he seay sae. We rule ou he enry an exi of inermeiae goo proucers. Since z = A 1 1 α μ α 1 α,wehaveha z = z 1 exp (Λ z + z z, ) where z z, = z A, + αz μ, 1 α an Λ z = Λ A + αλ μ 1 α. Inermeiaegoos proucerssolveawo-sages problem. Inhefirs sage, aken he inpu prices w an r as given, firms ren li an k i 1 in perfecly compeiive facor markes in orer o minimize real cos: min w l li,k i + r k i 1 i 1 subjec o heir supply curve: y i = ( A k α i 1 l i 1 α φz if A k α i 1 l i 1 α φz 0 oherwise 10

11 Assuming an inerior soluion, he firs orer coniions for his problem are: where % is he Lagrangian muliplier or: Therealcosishen: w = % (1 α) A ki 1 α l α i r = %αa ki 1 α 1 l 1 α i k i 1 = w l i + α w li 1 α r α 1 α w l i or: 1 w li 1 α Given ha he firm has consan reurns o scale, we can fin he real marginal cos mc by seing he level of labor an capial equal o he requiremens of proucing one uni of goo A ki 1 α l 1 α i =1or: A k α i 1 ha implies ha: Then: ha simplifies o: l 1 α α w i = A li 1 α r mc = mc = l i = α l i α α w 1 α r A 1 w 1 α 1 1 α α 1 α α w = A li =1 1 α r 1 α 1 α α α w 1 α r A α w 1 α r α A Noe ha he marginal cos oes no epen on i: all firmsreceivehesameechnology shocks an all firms ren inpus a he same price. In he secon sage, inermeiae goo proucers choose he price ha maximizes iscoune real profis. To o so, hey consier ha are uner he same pricing scheme han househols. In each perio, a fracion 1 θ p of firms can change heir prices. All oher firms can only inex heir prices by pas inflaion. Inexaion is conrolle by he parameer χ [0, 1], whereχ =0is no inexaion an χ =1is oal inexaion. 11

12 The problem of he firmsishen: max E p i X τ=0 (βθ p ) τ λ +τ λ (à τy Π χ +s 1 p i p +τ mc +τ! y i+τ ) subjec o τ=0 à τy y i+τ = Π χ p i +s 1 p +τ Π χ p i +s 1 p +τ! ε y +τ, where he marginal value of a ollar o he househol, is reae as exogenous by he firm. Since we have complee markes in securiies an uiliy separable in consumpion, his marginal value is consan across househols an, consequenly, λ +τ /λ is he correc valuaion on fuure profis. Subsiuing he eman curve in he objecive funcion an he previous expression, we ge: à X max E (βθ p ) τ λ τy! 1 ε à τy! ε +τ mc p i λ +τ y+τ Π χ p i +s 1 p +τ or max E p i X τ=0 (βθ p ) τ λ +τ λ à τy Π χ +s 1 Π +s p i p! 1 ε à τy Π χ +s 1 Π +s p i p! ε mc +τ y+τ E whose soluion p i implies he firs orer coniion: X τ=0 or (βθ p ) τ λ +τ λ E X τ=0 à τy (1 ε) Π χ +s 1 Π +s à τy (βθ p ) τ λ +τ (1 ε) p i p Π χ +s 1 Π +s! 1 ε p 1 i + ε! 1 ε p i p + ε à τy à τy Π χ +s 1 Π +s Π χ +s 1 Π +s p i p! ε p 1 i mc +τ y+τ =0! ε mc +τ y+τ =0 where, in he secon sep, we have roppe irrelevan consans an we have use he fac ha we are in a symmeric equilibrium. Noe how his expression ness he usual resul in he fully flexible prices case θ p =0: p i = ε ε 1 p mc +τ 12

13 i.e., he price is equal o a mark-up over he nominal marginal cos. Since we only consier a symmeric equilibrium, we can wrie ha p i = p an: X à τy à τy! ε E (βθ p ) τ λ +τ (1 ε) mc +τ y+τ =0 an τ=0 Π χ +s 1 Π +s! 1 ε p p + ε Π χ +s 1 Π +s To express he previous firs orer coniion recursively, we efine: g 1 = E g 2 = E X τ=0 X τ=0 (βθ p ) τ λ +τ à τy (βθ p ) τ λ +τ à τy Π χ +s 1 Π +s Π χ +s 1 Π +s! ε mc +τy +τ! 1 ε p p y +τ an hen he firs orer coniion is εg 1 =(ε 1)g 2. As i was he case for f s ha we foun in he househol problem, we nee (βθ p ) τ λ +τ o go o zero sufficienly fas in relaion wih he rae of inflaion for g 1 an g 2 o be well efine an saionary. Then, we can wrie he g s recursively: Π χ ε g 1 = λ mc y + βθ p E g+1 1 Π +1 an Π χ 1 ε g 2 = λ Π y Π + βθ p E g Π +1 Π where: Π = p. p Given Calvo s pricing, he price inex evolves: p 1 ε = θ p Π χ 1 ε 1 p 1 ε 1 +(1 θ p ) p 1 ε or, iviing by p 1 ε, 1 Π 1=θ p Π χ 1 ε +(1 θ p ) Π 1 ε 13

14 1.4. The Governmen Problem The governmen ses he nominal ineres raes accoring o he Taylor rule: R R = R 1 R γr γπ Π Π y y 1 Λ y γ y 1 γr exp (m ) hrough open marke operaions ha are finance hrough lump-sum ransfers T. Those ransfers insure ha he efici are equal o zero: T = R 1 m R 1 0 jj m R 1 0 j 1j + b R 1 0 j+1j R b 0 jj 1 p p p p The variables Π represens he arge level of inflaion (equal o inflaioninheseaysae), R seay sae nominal gross reurn of capial, an Λ y he seay sae gross growh rae of y.theermm is a ranom shock o moneary policy ha follows m = σ m ε m where ε m is isribue accoring o N (0, 1). The presence of he previous perio ineres rae, R 1,is jusifie because we wan o mach he smooh profile ofheineresraeoverimeobserve in U.S. aa. Noe ha R is beyon he conrol of he moneary auhoriy, since i is equal o he seay sae real gross reurns of capial plus he arge level of inflaion. Applying he efiniion of ransfers above, he aggregae buge consrain of househols is equal o: c + x = w l + r u μ 1 a [u ] k 1 + z Aggregaion Firs, we erive an expression for aggregae eman: y = c + x + μ 1 a [u ] k 1 Wih his value, he eman for each inermeiae goo proucer is y i = c + x + μ 1 an using he proucion funcion is: A k α i 1 l i 1 α φz = c + x + μ 1 ε p i a [u ] k 1 i, p a [u ] k 1 p i p ε 14

15 Since all he firms have he same opimal capial-labor raio: k i 1 l i = α w 1 α r an by marke clearing Z 1 0 l ii = l an Z 1 k i 1 i = u k 1. imusbehecaseha: Then: A k α i 1 0 k i 1 l i l i 1 α = A ki 1 l i = u k 1. l α l i = A u k 1 l α l i Inegraing ou Z 1 α α Z u k 1 A l u k l ii = A l l ii = A (u k 1 ) α l 0 an we have Define v p = R 1 0 we ge: A (u k 1 ) α l 1 α φz = c + x + μ 1 a [u ] k 1 Z 1 0 pi p 1 α ε i pi p ε i. By he properies of he inex uner Calvo s pricing 1 Π v p = θ p Π χ c + x + μ 1 ε v p 1 +(1 θ p ) Π ε. a [u ] k 1 = A (u k 1 ) α l 1 α φz Now, we erive an expression for aggregae labor eman. We know ha v p l j = wj w l 15

16 If we inegrae over all househols j, we ge Z 1 0 l j j = l = Z 1 wj where l is he aggregae labor supply of househols. Define Z 1 v w wj = j. Hence Also, as before: 2. Equilibrium v w = θ w w 1 w Π χw 1 Π 0 0 w l = 1 v w l. w jl v w 1 +(1 θ w )(Π w ). Aefiniion of equilibrium in his economy is sanar an he symmeric equilibrium policy funcions are eermine by he following equaions: The firs orer coniions of he househol (c hc 1 ) 1 hβe +1 (c +1 hc ) 1 = λ λ = βe {λ +1 } Π +1 r = μ 1 a 0 [u ] ½ λ+1 q = βe (1 δ) q+1 + r +1 u +1 μ 1 λ +1a [u +1 ] ¾ x 1=q μ 1 S S 0 x x λ +1 + βe q +1 μ x 1 x 1 x +1 S 0 x+1 1 λ x f = 1 χ Π w 1 (w ) 1 λ w l + βθ w E w 1 +1 f +1 R Π +1 f = ψ ϕ (Π w ) (1+γ) χ l 1+γ Π w + βθw E Π +1 w (1+γ) w +1 w 2 x+1 x (1+γ) f +1 16

17 The firms ha can change prices se hem o saisfy: Π χ g 1 = λ mc y + βθ p E Π χ g 2 = λ Π y + βθ p E Π +1 εg 1 =(ε 1)g 2 Π +1 ε g+1 1 g ε Π Π +1 where hey ren inpus o saisfy heir saic minimizaion problem: The wages evolve as: mc = 1 Π 1=θ w Π χ w an he price level evolves: u k 1 l 1 1 α 1=θ p Π χ Governmen follow is Taylor rule R R = R 1 R 1 w 1 1 Π = α 1 α 1 α 1 α w γr γπ Π Π w r α w 1 α r α A 1 +(1 θ w )(Π w ) 1 1 ε +(1 θ p ) Π 1 ε y y 1 Λ y γ y 1 γr exp (m ) Markes clear: y = A (u k 1 ) α l 1 α φz v p y = c + x + μ 1 a [u ] k 1 17

18 where l = v w l v p = θ p Π χ 1 Π v w = θ w w 1 w ε v p 1 +(1 θ p ) Π ε Π χw 1 v w Π 1 +(1 θ w )(Π w ) an k (1 δ) k 1 μ 1 S x x 1 x =0. 3. Saionary Equilibrium Sincewehavegrowhinhismoelinucebyechnological change, mos of he variables are growing in average. To solve he moel, we nee o make variables saionary Manipulaing Equilibrium Coniions Firs, we work on he firs orer coniions of he househol c h c 1 1 z 1 c+1 hβe +1 z z 1 z q μ = βe ½ λ+1 z +1 λ z f = 1 1=q μ Ã1 S λ z = βe {λ +1 z +1 μ r = a 0 [u ] z +1 z +1 z z +1 z R Π +1 } h c 1 = λ z z z μ (1 δ) q+1 μ z +1 μ +1 + μ +1 r +1 u +1 a (u +1 ) " +1 x # " x # x! z z x 1 S 0 z z z z x z 1 z 1 x 1 z 1 z 1 1 z 1 z 1 +βe q +1 μ +1 λ +1 λ S 0 " x+1 x z z z +1 z +1 w 1 χ w Π w λ z l + βθ w E z z #Ã x+1 z +1 z +1 x z z 1 Π +1 f = ψ ϕ (Π w ) (1+γ) χ l 1+γ Π w (1+γ) + βθw E Π +1! 2 w +1 z +1 z +1 w z z w +1 z +1 z +1 w z z 1 (1+γ) ¾ f +1 f +1 18

19 The firms ha can change prices se hem o saisfy: g 1 y = λ z mc + βθ p E z g 2 = λ z Π y z + βθ p E Π χ Π +1 εg 1 =(ε 1)g 2 Π χ Π +1 ε g+1 1 g ε Π Π +1 where hey ren inpus o saisfy heir saic minimizaion problem: The wages evolve as: mc = u l 1=θ w Π χ w an he price level evolves: k 1 z 1 μ 1 = α w 1 1 α z r μ z μ z 1 μ 1 1 α 1 α α w 1 1 (r z μ ) α z1 α μ α 1 α α A 1 Π 1 Ã w 1 z 1 w z 1 Π 1=θ p Π χ Governmen follow is Taylor rule R R = R 1 R γr Π z 1 z! 1 +(1 θ w )(Π w ) 1 1 ε +(1 θ p ) Π 1 ε γπ Π y z y 1 z 1 Λ y z z 1 γ y 1 γ R exp (m ) Markes clear: y μ α 1z 1 α A z = z bu since μ α 1z α 1 = z 1 A 1,wehave y z = z 1 A A 1 z u u k 1 z 1 μ 1 α l 1 α φ k 1 v p z 1 μ 1 α l 1 α φ 19 v p

20 where y = c + x + z 1 μ 1 a [u ] z z z z μ k 1 z 1 μ 1 l = v w l v p = θ p Π χ 1 Π v w = θ w à w 1 z 1 z 1 w z z ε v p 1 +(1 θ p ) Π ε! v w χ Π w 1 Π 1 +(1 θ w )(Π w ) an k z μ z μ k 1 (1 δ) z 1 μ 1 z 1 μ 1 μ z μ 1 z 1 à 1 S " x #! z z x x 1 =0. z 1 z 1 z 3.2. Change of Variables We now reefine ha variables o obain a sysem on saionary variables ha we can easily manipulae. Hence, we efine ec = c z, λ e = λ z, er = r μ, eq = q μ, ex = x z, ew = w z, ew = w z, e k = k z,aney μ = y z. Then, he se of equilibrium coniions are: The firs orer coniions of he househol: 1 1 z 1 z +1 ec hec 1 hβe +1 ec +1 hec = λ e z eλ = βe { λ e z R +1 } z +1 Π +1 er = a 0 [u ] ( ) eλ+1 z μ eq = βe ((1 δ) eq +1 + er +1 u +1 a (u +1 )) eλ z +1 μ +1 ex z 1=eq 1 S S 0 ex z ex z f = 1 +βe eq +1 e λ+1 eλ ex 1 z 1 z z +1 S 0 ex+1 ex z +1 z χ ( ew ) 1 λ e Π w ( ew ) l + βθ w E z ex 1 z 1 ex 1 z 1 2 ex+1 Π +1 f = ψ ϕ (Π w ) (1+γ) χ l 1+γ Π w + βθw E Π +1 z +1 ex z 1 ew +1 ew (1+γ) ew +1 ew 1 z +1 f +1 z z +1 z (1+γ) f +1 20

21 The firms ha can change prices se hem o saisfy: g 1 = λ e Π χ mc ey + βθ p E g 2 = λ e Π χ Π ey + βθ p E Π +1 εg 1 =(ε 1)g 2 Π +1 ε g+1 1 g ε Π Π +1 where hey ren inpus o saisfy heir saic minimizaion problem: The wages evolve as: mc = 1 Π 1=θ w Π χ w an he price level evolves: u e k 1 l 1 1 α 1 ew 1 1=θ p Π χ Governmen follow is Taylor rule: R R = R 1 R = α ew 1 α er 1 α 1 α ew 1 Π z 1 z γr γπ Π Π z μ z 1 μ 1 α ( ew ) 1 α er α 1 +(1 θ w )(Π w ) 1 1 ε +(1 θ p ) Π 1 ε ey ey 1 z z 1 Λ y γ y 1 γr exp (m ) Markes clear: ey = ec + ex + z 1 z ey = μ 1 a [u ] μ e k 1 A A 1 z 1 z u e k 1 α l 1 α φ v p 21

22 where l = v w l v p = θ p Π χ 1 Π v w = θ w ew 1 ew ε v p 1 +(1 θ p ) Π ε Π χw 1 v w z 1 z Π 1 +(1 θ w )(Π w ) an e z k z 1 μ μ 1 (1 δ) e k 1 z μ z 1 μ 1 ex 1 S ex 1 z z 1 ex =0. 4. Solving he Moel We will solve he moel by loglinearizing he equilibrium coniions an applying sanar echniques. Before loglinearizing, we nee o fin he seay-sae of he moel. We will solve he normalize moel efine in he las secion. Noe ha laer, when we bring he moel o he aa, we will nee o uno he normalizaion The Seay-Sae Now, we will finheeerminisicseay-saeofhemoel. Firs,leez = exp(λ z ), eμ =exp(λ μ ),an ea =exp(λ A ). Also, given he efiniion of ec, ex, ew, ew,aney,wehave ha Λ c = Λ x = Λ w = Λ w = Λ y = Λ z. Then, in seay-sae, he firs orer coniions of he househol can be wrien as: 1 ec hec hβ 1 ecez hec = λ e ez 1=β 1 R ez Π er = a 0 [1] eq = β 1 ((1 δ) eq + eru a [1]) ezeμ 1=eq (1 S [ez] S 0 [ez] ez)+β eq ez S0 [ez] ez 2 f = 1 ( ew ) 1 λ e Π ew l χ w 1 + βθ w ez 1 f Π f = ψϕ (1+γ) Π w l 1+γ Π χ w (1+γ) + βθw ez (1+γ) f Π 22

23 he firs orer coniions of he firm as: g 1 = λmcey e Π χ ε + βθ p g 1 Π g 2 = λπ e Π ey χ 1 ε + βθ p g 2 Π mc = he law of moion for wages an prices as: εg 1 =(ε 1)g 2 u e k l = α ew 1 α er ezeμ 1 α α 1 1 ew 1 α er α 1 α α an he marke clearing coniions as: Π χ w 1 1=θ w ez (1 ) +(1 θ w ) 1 Π w Π Π χ 1 ε 1=θ p +(1 θ p ) Π 1 ε Π ec + ex = ey v p ey = A z (ue k) α (l ) 1 α φ l = v w l Π v p χ ε = θ p v p +(1 θ p ) Π ε Π Π v w χ w = θ w ez v w +(1 θ w )(Π w ) Π e kezeμ (1 δ) e k ezeμ (1 S [z]) ex =0. To fin he seay-sae, we nee o choose funcional forms for a [ ] an S [ ]. Fora [u] we pick: a [u] =γ 1 (u 1)+ γ 2 2 (u 1) 2. Since in he seay sae weh havei u =1,hener = a 0 [1] = x γ 1 an a [1] = 0. The invesmen ajusmen cos funcion is S x 1 = κ( x 2 x 1 Λ x ) 2. Then, along he balance growh pah, S [Λ x ]=S 0 [Λ x ]=0. Using his wo expressions, we can 23

24 rearrange he sysem of equaions ha eermine he seay-sae as: 1 (1 hβez) 1 h ez R = Πez β 1 ec = e λ er = γ 1 er = 1 βezeμ (1 δ) / β ezeμ 1 βθw ez ( 1) Π (1 χ )(1 ) w f = 1 w λ(π e w ) l 1 βθw ez (1+γ) Π (1 χ )(1+γ) w f = ψ (1+γ) Π w l 1+γ 1 βθp Π (1 χ)ε g 1 = e λmcey 1 βθp Π (1 χ)(1 ε) g 2 = e λπ ey mc = εg 1 =(ε 1)g 2 e k l = α ew 1 α er ezeμ 1 α α 1 1 ew 1 α er α 1 α α 1 θ w Π (1 χ w )(1 ) ez (1 ) 1 θ w = Π w 1 1 θ p Π (1 χ)(1 ε) 1 θ p = Π 1 ε ec + ex = ey v p ey A = e ez (e k) α (l ) 1 α φ l = v w l 1 θ p Π (1 χ)ε v p = Π ε 1 θ p 1 θw ez Π (1 χ ) w v w =(Π w ) 1 θ w e k = ezeμ ezeμ (1 δ) ex. Firs, noice ha here is some resricions on γ 1 r = 1 β (1 δ) ezeμ = γ β 1 ezeμ 24

25 an ha he nominal ineres rae is: R = Πez β The relaionship beween inflaion an opimal relaive prices is: 1 Π θp Π (1 ε)(1 χ) = 1 θ p expression from which we obain he following wo resuls: 1. Ifhereiszeropriceinflaion (Π =1), hen Π =1. 2. Ifhereisfullpriceinexaion(χ =1), hen Π = ε From he opimal price seing equaions, we ge ha he marginal cos is: mc = ε 1 ε 1 βθ p Π (1 χ)ε Π 1 βθ p Π (1 χ)(1 ε) The relaionship beween inflaion an opimal relaive wage is: 1 θw Π (1 χ Π w w )(1 ) ez (1 ) 1 1 =. 1 θ w Then we fin ha: an he opimal wage evolves: α α 1 1 α ew =(1 α) mc er ew = ewπ w Again, we can noe he following: 1. Ifhereiszeropriceinflaion (Π =1) an zero growh rae (ez =1), hen Π w =1. 2. Ifhereisfullwageinexaion(χ w =1) an zero growh rae (ez =1), hen Π w =1. We have he wo following equaions for he wage househol ecision: 1 βθw ez 1 Π (1 χ )(1 ) w f = 1 w Π w λl e an 1 βθw ez (1+γ) Π (1 χ w )(1+γ) f = ψ Π w (1+γ) l 1+γ. 25

26 Diviing he secon by he firs elivers: 1 βθ w ez (1+γ) Π (1 χ w )(1+γ) 1 βθ w ez ( 1) Π = ψ Π w γ l γ (1 χ w )(1 ) 1 w λ which efines l as a funcion of λ. e Now, we will look for anoher relaionship beween l an eλ o have wo equaions wih wo unknowns. Before oing so, we highligh ha, again, here are wo ineresing cases: 1. If here is zero price inflaion (Π =1) an zero growh rae (ez =1), hen we ge he saic coniion ha real wages are a markup over he marginal rae of subsiuion 1 beween consumpion an leisure. 2. Ifhereisfullwageinexaion(χ w =1) an zero growh rae (ez =1), hen we ge he saic coniion ha real wages are a markup over he marginal rae of subsiuion 1 beween consumpion an leisure. The expression for he ispersion of prices is given by: v p = 1 θ p Π ε 1 θ p Π (1 χ)ε where no price inflaion or full price inexaion elivers no price ispersion in seay-sae. Using he expression for Π w we fin ha he wage ispersion in seay-sae is: v w = 1 θ w 1 θ w Π (1 χ w ) ez (Πw ) where no price inflaion or full wage inexaion combine wih zero growh elivers no wage ispersion in in seay-sae. The relaionship beween labor eman an labor supply is: l = v w l. Noe now ha ey = ea ez (e k) α (l ) 1 α φ v p. Bu, since in seay-sae e k = ezeμ ex, i is he case ha: ezeμ (1 δ) ec + ezeμ (1 δ) e k = ey = ezeμ ea ez (e k) α (l ) 1 α φ v p 26

27 ha allows us o fin e k as funcion of l : Then: e k l = Ω = α ew 1 α er ezeμ e k = Ωl. ec = = ea ez Ωα l φ v à p A e ez (vp ) 1 Ω α ezeμ (1 δ) Ωl ezeμ ezeμ (1 δ) Ω ezeμ! l (v p ) 1 φ Now, we can express he marginal uiliy of consumpion in erms of hours, an ge anoher relaionship beween l as a funcion of λ: e (1 hβ)ez 1 h Ãà 1 A e ez ez (vp ) 1 Ω α Usingbohrelaionshipwecansolveforl an ge: 1 βθ w ez (1+γ) Π (1 χ w )(1+γ) 1 βθ w ez ( 1) Π = (1 χ w )(1 ) ψ γ Π w l γ 1 w (1 hβ)ez 1 h 1 ea ez ez (vp ) 1 Ω α ezeμ (1 δ) Ω ezeμ! 1 ezeμ (1 δ) Ω l (v p ) φ! 1 = λ ezeμ e l (v p ) 1 1. φ Noe ha his is nonlinear equaion. Therefore we will use a roo finer o fin l. Once we have l, we can solve for capial, invesmen, oupu, an consumpion as follows: e k = Ωl ex = ey = ec = 4.2. Loglinear approximaions ezeμ (1 δ) e k ezeμ ea (e k) α (l ) 1 α φ ez v p à e A ez (vp ) 1 Ω α! ezeμ (1 δ) Ω l (v p ) 1 φ ezeμ For each variable var,weefine var =logvar log var, wherevar is he seay-sae value for he variable var. Then, we can wrie var = var exp var. 27

28 We sar by log linearizing he marginal uiliy of consumpion: 1 1 z 1 z +1 ec hec 1 hβe +1 ec +1 hec = λ z z e. (4) 1. z I is helpful o efine he auxiliary variable aux = ec hec 1 1 z Then, we have ha: aux hβe ez +1 aux +1 = e λ where ez +1 = z +1 z. Then, (4) can be wrien as: aux exp aux hβzauxe exp aux +1+ b ez +1 = e λe b e λ which can be loglinearize as: aux aux hβze (aux +1 + b ez +1 ) = λ eb λ e. (5) Using he following wo seay sae relaionship ha aux(1 hβez) = λ e an ha E b ez+1 =0, we can wrie: aux hβze aux +1 =(1 hβz) b λ e. Nex, we loglinearize he auxiliary variable: auxe aux = exp b ec exp b ec h ez ec expb ec 1 b ez 1. The loglinear approximaion is: auxaux = ec h 1 ez ec b ec h 2 ez ec ec b ec + ec h 2 ez ec hec bec 1 ez b ez. Making use of he fac ha aux = ec h ez ec 1,wefin: auxaux = aux à b ec h 1 ez ec ec b ec + ec h 1 ez ec hec bec 1 ez b ez!, 28

29 ha simplifies o: auxaux = aux à b 1 h 1 bec + 1 h 1 h bec 1 ez ez ez b ez! aux = b Puing he (5) an (6) ogeher: 1 h Ã! 1 b ec hb ec 1 + hb ez. (6) ez ez ez b 1 h à 1 b ec hb ec 1 + hb ez ez ez ez (1 hβz) b λ e =! ( hβze b +1 Afer some algebra, we arrive o he final expression: 1 h Ã!) 1 b ec+1 hb ec ez ez + hb ez +1. ez (1 hβz) b λ e = b hβze +1 b 1+h2 β b ec + 1 h ez h ez b ec 1 + βhz E 1 h ez 1 h b ec+1 ez h ez 1 h ez b ez This expression helps o unersan he role of he habi persisence parameer h. If we se h =0(i.e., no habi), we woul ge: beλ = b b ec where he lags an forwar erms rop. Now, we loglinearize he Euler equaion: To o so, we wrie he expression as eλ = βe { e λ +1 z z +1 R Π +1 }. eλe b λ e = βe { λe e b R λ+1 e 1 Re b } eze z z, ΠeΠ b +1 By using he fac ha we simplify o: R = Πez β e b λ e = E {e b R λ+1 e 1 e b } e z z, eπ b +1 29

30 Now, i is easy o show ha: beλ = E { b e λ+1 + b R b Π +1 }. (9) Le us now consier: Firs, we wrie: er = a 0 [u ]. ere b er = a 0 u exp bu, where he loglinear approximaion elivers: er b er = a 00 [u] ubu. Since er = a 0 [u], hen: b er = a00 [u] u bu a 0, [u] or b er = γ 2 û. (10) γ 1 The nex equaion o consier relaes he shaow price of capial o he reurn on invesmen: ( ) eλ eq = βe ((1 δ) eq +1 + er +1 u +1 a [u +1 ]) eλ ez +1 eμ +1 where eμ +1 = μ +1. We can we wrie his expression as μ ( eqe b eq β = ezeμ E exp beλ +1 b ez +1 b eμ +1 (1 δ) eqe b eq +1+ eru exp b er +1 +bu +1 a u exp bu +1 ). Loglinearizaion elivers: eq b eq = β ezeμ E + β ezeμ 4 b e λ+1 b ez +1 b eμ +1 ((1 δ) eq + eru a [u]) E (1 δ) eq b eq +1 + eru ber+1 + bu +1 a [u] ubu +1. Making use of he following seay-sae relaionships: u =1,a[u] =0, er = a 0 [u], eq =1 30

31 an 1= β er + β (1 δ), ane ezeμ ezeμ b ez +1 b eμ +1 =0, he previous expression simplifies o: ha implies: b eq = ((1 δ)+er) β ezeμ E b e λ+1 + b eq = E b e λ+1 + The nex equaion o loglinearize is: ex 1=eq 1 S z ex 1 z 1 S 0 ex ex 1 which can be rearrange as: β (1 δ) E b eq ezeμ z z 1 ex z ex 1 z 1 β (1 δ) E b eq+1 + β ezeμ ezeμ erue b er +1, +βe eq +1 e λ+1 eλ β(1 δ) E b er+1. (11) ezeμ 2 z S 0 ex+1 z +1 ex+1 z +1 z +1 ex z ex z i i 1 = eq exp b eq 1 S hez exp b ex + b ez S hez 0 exp b ex + b ez ez exp b ex + b ez + +β q ez E exp b eq b ez b h i λ+1 e S 00 ez exp b ex +1 + b ez +1 ez 2 exp 2( b ex +1 + b ez +1). Taking he loglinear approximaion (an using he fac ha eq =1)wege: 0= b eq S 00 [ez] ez 2 b ex + b ez + β [ez] ez 3 E z S00 b ex +1 + b ez +1. Reorganizing: κez 2 b ex + b ez = b eq + βκez 2 E b ex +1 (12) where κ comes from he ajusmen cos funcion. We move now ino loglinearizing he equaions ha escribe he law of moion of f an f = 1 χ ( ew ) 1 λ e Π w 1 ( ew ) l + βθ w E ew +1 Π +1 ew f = ψ ϕ (Π w ) (1+γ) χ l 1+γ Π w (1+γ) + βθw E ew +1 Π +1 ew 1 z +1 f +1 z (1+γ) z +1 f +1. z 31

32 The firs equaion can be wrien as: f f exp b = 1 ( ew ) 1 λ e ew l exp (1 )b ew + b λ e + b ew + b l + βθ w Π (1 )(1 χ w ) ez 1 f fe exp b (1 )( Π b +1 χ w bπ + b ew +1+ b ez +1). Since E b ez+1 =0, we can loglinearize he previous expression as: ff b = 1 ( ew ) 1 λ e ew l (1 ) b ew + b λ e + b ew + b l + βθ w Π (1 )(1 χ w ) ez 1 fe bf+1 (1 ) (bπ +1 χ w bπ )+ b ew +1. Since in he seay-sae we have ha 1 βθ w ez 1 Π (1 )(1 χ w ) = 1 (w ) 1 λw l, f we can wrie ha: bf = 1 βθ w ez 1 Π (1 )(1 χ ) w (1 ) b ew + b λ e + b ew + b l + βθ w Π (1 )(1 χ w ) ez 1 E bf+1 (1 ) Π b+1 χ w bπ + b ew +1 (13) Le us know consier he secon equaion escribing he behavior of f. Firswecanwriei as: f f exp b = ψϕ(l ) 1+γ exp b +bϕ +(1+γ)( b ew b ew )+(1+γ) b l + +βθ w ez (1+γ) Π (1+γ)(1 χ w ) f fe exp b +1 +(1+γ)( Π b +1 χ w bπ + b ew +1 +b ez +1). I can be shown ha in seay-sae: 1 βθ w ez (1+γ) Π (1+γ)(1 χ w ) = ψϕ(l ) 1+γ f an since E b ez+1 =0, ha implies bf = 1 βθ w ez (1+γ) Π (1+γ)(1 χ ) w b + bϕ + (1 + γ) bew b ew +(1+γ) b l +βθ w ez (1+γ) Π (1+γ)(1 χ w ) E bf+1 + (1 + γ) Π b +1 χ w bπ + b ew. (14) +1 32

33 Le us loglinearize he law of moion for g 1 an g 2. Firs consier ha can be rewrien as: g 1 = λ e Π χ ε mc ey + βθ p E g+1 1 Π +1 g 1 exp bg1 = e λmcey exp b e λ + cmc + b ey +βθp g 1 Π ε(1 χ) E exp ε( bπ +1 χbπ )+bg If we loglinearize ha las expression, we ge: g 1 bg 1 = λmcey e beλ + cmc + b ey + βθ p g 1 Π ε(1 χ) E ε( Π b +1 χπ b )+bg I can shown ha in seay sae herefore, bg 1 = 1 βθ p Π ε(1 χ) b eλ + cmc + b ey 1 βθ p Π ε(1 χ) = e λmcey g 1 + βθ p Π ε(1 χ) E ε(bπ +1 χbπ )+bg (15) Le us now consier: g 2 = λ e Π χ 1 ε Π ey Π + βθ p E g Π +1 Π +1, 2 +1 ha can rewrien as: g 2 exp bg2 = e λπ ey exp b e λ +bπ +b ey +βθp Π (1 ε)(1 χ) g 2 E exp (1 ε) ( b Π +1 χbπ ) ( b Π +1 bπ )+bg If we loglinearize ha las expression, we ge: g 2 bg 2 = λπ e ey beλ + Π b + b ey +βθ p Π (1 ε)(1 χ) g 2 E (1 ε) bπ+1 χπ b bπ +1 Π b + bg I can be shown ha: 1 βθ p Π (1 ε)(1 χ) = e λπ ey g 2, 33

34 herefore: bg 2 = 1 βθ p Π (1 ε)(1 χ) b eλ + Π b + b ey +βθ p Π (1 ε)(1 χ) E (1 ε) bπ+1 χπ b Noe ha is easy o show ha εg 1 =(ε 1)g 2 loglinearizes o: bπ +1 Π b + bg (16) bg 1 = bg 2. (17) Now, le us loglinearize he relaionship beween he capial-labor raio an he real wagereal ineres rae u e k 1 = α ew z μ. l 1 α er z 1 μ 1 I is easy o show ha bu + b e k 1 b l = b ew b er + b ez + b eμ. (18) Le us loglinearize he marginal cos mc = 1 α α 1 1 ( ew ) 1 α er α 1 α α o ge cmc =(1 α) b ew + α b er. (19) Leusnowconcenraeonheaggregaewagelawofmoion: 1 Π 1=θ w Π χ w 1 w 1 he above expression can be rewrien as: w z 1 z 1 +(1 θ w ) 1 Π w 1=θ w Π (1 χ w )(1 ) ez (1 ) exp (1 )( bπ χ w bπ 1 +bπ w +ez ) +(1 θ w )(Π w ) 1 exp (1 ) bπ w, an loglinearize o: θ w Π (1 χ w )(1 ) ez (1 ) ( b Π χ w b Π 1 + b Π w + ez )=(1 θ w )(Π w ) 1 b Π w, 34

35 ha we can wrie as: θ w Π (1 χ w )(1 ) ez (1 ) (1 θ w )(Π w ) 1 (bπ χ w bπ 1 + bπ w + ez )= b ew b ew. (20) Now we concenrae on he aggregae price law of moion: ha can be rewrien as: 1 Π 1=θ p Π χ 1 ε +(1 θ p ) Π 1 ε 1=θ p Π (1 ε)(1 χ) exp (1 ε)(b Π χ b Π 1 ) +(1 θ p )(Π ) (1 ε) exp (1 ε)b Π ha loglinearizes o: θ p Π (1 ε)(1 χ) (1 θ p )(Π ) ( bπ (1 ε) χbπ 1 )=bπ. (21) The Taylor rule loglinnearizes o: br = γ R br 1 +(1 γ R ) γ Π bπ + γ y (4 b ey + b ez ) + bm. (22) The marke clearing coniions: an can be wrien as: an v p ey exp bvp +b ey ea = ez respecively, where A e +1 = A +1 A. l = v w l, ec + ex + a [u ] e k 1 eμ ez = ey, v p ey = e A ez u e k 1 α l 1 α φ l exp b l = v w l exp bvw +b l, h i a eu exp b eu ek b ek 1 exp ec exp b ec +ex exp b ex + ezeμ exp b eμ + b ez = ey exp b ey, u e α b ea k el 1 α b ez +α bu b + e k 1 +(1 α) e l exp φ 35

36 Loglinearizing we ge: b l = bv w + b l, (23) an c b ec + x b ex + γ 1 e k ezeμ bu =ỹ b ey, (24) (ỹ v p ) bv p + b ey A = e u ez e α 1 α k el be A b ez + α bu + b e k 1 +(1 α) e l. (25) Le us consier now 1 Π v p = θ p Π χ ε v p 1 +(1 θ p ) Π ε ha can be wrien as v p exp bvp = θp Π ε(1 χ) v p exp ε(b Π χ b Π 1 )+bv p 1 +(1 θp ) Π ε exp εb Π. Using 1 θp Π ε(1 χ) v p =(1 θ p ) Π ε we ge: bv p = θ p Π ε( ε(1 χ) Π b χπ b 1 )+bv p 1 1 θ p Π ε(1 χ) επ b. (26) Le us know consier he law of moion of he wage ispersion: v w χ Π w = θ 1 1 w 1 w v 1 w +(1 θ w )(Π w ). Π ez w ha can be wrien v w e bvw = θ w Π (1 χ w ) ez v w e (b Π χ w b Π 1 + b ew b ew 1 + b ez )+bv w 1 +(1 θw )(Π w ) e (b ew b ew ). Using 1 θw Π (1 χ w ) ez v w =(1 θ w )(Π w ) we ge: bv w = θ w Π (1 χ w ) ez Π b χ w bπ 1 + b ew b ew 1 + b ez + bv 1 w 1 θ w Π (1 χ w ) ez ( b ew b ew ). (27) Finally, le us loglinearize he law of moion of capial 36

37 k ez eμ =(1 δ) k x 1 + eμ ez 1 S ez x. x 1 If we rearrange erms, we ge: i kezeμ exp b k + b ez + b eμ =(1 δ) k exp b k 1 +ezeμ exp b ez + b eμ 1 S hze b ez +4 b ex x exp b ex. Loglinearizing: kezeμ b k + b ez + b eμ =(1 δ) k b k 1 + ezeμ x( b ez + b eμ + b ex ). Noe ha, using k = ezeμ x, we can rearrange he previous expression o ge: ezeμ (1 δ) b k + b ez + b eμ = (1 δ) b k 1 + ezeμ ezeμ (1 δ) ( ezeμ b ez + b eμ + b ex ) or b k = (1 δ) b k 1 + ezeμ ezeμ (1 δ) b ex 1 δ bez + ezeμ ezeμ b eμ. (28) 4.3. Sysem of Linear Sochasic Difference Equaions We now presen he equaions in he sysem as orere in Uhlig algorihm moel2fun.m Equaion 1 The firs equaion is θ w Π (1 χ w (1 ) )(1 ) z (1 θ w )(Π w ) 1 (bπ χ w bπ 1 + bπ w + ez )= b ew b ew We make use of he fac ha bπ w = b ew b ew 1,anefine he auxiliary parameer a 1 = )(1 ) z (1 ) θ wπ (1 χ w θwπ (1 χw)(1 ) z (1 ). In he Uhlig coe his expression appears as a (1 θ w )(Π w ) 1 1 =, (1 θ w ){exp[log(π w )]} 1 because when we solve for he seay sae of Π w, we express i in log-levels. Then, he equaion boils own o: a 1 bπ χ w a 1 bπ 1 + a 1 b ew a 1 b ew 1 + a 1 ez = b ew b ew an rearranging: a 1 bπ χ w a 1 bπ 1 +(1+a 1 ) b ew a 1 b ew 1 + a 1 ez b ew =0 (29) 37

38 Equaion 2 The secon equaion is: θ p Π (1 ε)(1 χ) (1 θ p )(Π ) (1 ε) (b Π χ b Π 1 )= b Π In orer o make noaion for compac, efine a 2 = θ pπ (1 ε)(1 χ) (1 θ p. Noehainhefile his )(Π ) (1 ε) θ expression appears as a 2 = p Π (1 ε)(1 χ), because when we solve for he seay sae (1 θ p){exp[log(π )]} (1 ε) value Π, we express i in log-levels. Subsiuing for a 2 : a 2 (bπ χbπ 1 )=bπ Rearranging: a 2 bπ a 2 χbπ 1 bπ =0 (30) Equaion 3 The hir equaion is b er = φ u û, where φ u = γ 2 /γ 1.Then, b er + φ u û =0 (31) Equaion 4 The fourh equaion is bg 1 = bg 2 Rearranging: bg 1 bg 2 =0 (32) Equaion 5 The fifh equaion is: bu + b e k 1 b l = b ew b er + b ez + b eμ Rearranging: Equaion 6 The sixh equaion is: bu + b er + b e k 1 b l b ew b ez b eμ (33) cmc =(1 α) b ew + α b er Rearranging: (1 α) b ew + α b er cmc =0 (34) 38

39 Equaion 7 The sevenh equaion is: br = γ RR 1 b +(1 γ R ) γ ΠΠ b + γ y (4 b ey + b ez ) + bm Rearranging: b R + γ R b R 1 +(1 γ R )γ Π b Π +(1 γ R )γ y b ez +(1 γ R )γ y b ey (1 γ R )γ y b ey 1 + bm =0 (35) Equaion 8 The eighh equaion is: c b ec + x b ex + γ e 1k ezeμ bu =ỹ b ey Noe ha in he coe, because we have solve for he log-seay sae, consans ener as follows: c = exp [log ( c)], x = exp[log( x)], k h i = exp log k, ỹ = exp log ỹ. Rearranging: c b ec + x b ex + γ e 1k ezeμ bu ỹ b ey =0 (36) Equaion 9 The ninh equaion is: (ỹ v p ) bv p + b ey A = e u ez e α 1 α k el bea b ez + α bu + b e k 1 +(1 α) e l A Define he parameer prouc = e u e k α el 1 α. ez Noe ha in erms of Uhlig noaion, his n h A is efine as prouc = e exp [log(u)] exp log( e io α n h 1 α. k) exp log( e l )io ez Also noe ha in erms of he coe, we have ha ỹ =exp log ỹ, v p = exp [log (v p )]. Subsiuing: (ỹ v p ) bv p + b ey be = prouc A b ez + α bu + b e k 1 +(1 α) e l Rearranging: (ỹ v p )bv p +(ỹ v p ) b ey (prouc) b e A +(prouc) b ez (α)(prouc)bu (α)(prouc) b e k 1 (1 α)(prouc) e l =0 (37) 39

40 Equaion 10 The enh equaion is: bv p = θ p Π ε( ε(1 χ) Π b χπ b 1 )+bv p 1 1 θ p Π ε(1 χ) επ b Define a 3 = βθ p Π ε(1 χ). Then, θ p Π ε(1 χ) = a 3 β. This ype of parameer efiniion will become clearer when we analyze he price seing equaions. Then, subsiuing: bv p = a 3 β ε bπ χε a 3 Π β b 1 + a 3 β bvp 1 1 a 3 β εbπ An rearranging: a 3 ε Π β b a 3εχ Π β b 1 + a 3 β bvp 1 1 a 3 β ε b Π bv p =0 (38) Equaion 11 The elevenh equaion is: bv w = θ w Π (1 χ w ) ez bπ χ wπ 1 b + b ew b ew 1 + b ez + bv 1 w 1 θ w Π (1 χ w ) ez ( b ew b ew ) Firs, le s efine a 4 = θ w Π (1 χ w ) ez. Subsiuing: bv w = a 4 Π b χ w bπ 1 + b ew b ew 1 + b ez + bv 1 w (1 a 4 ) ( b ew b ew ) Rearranging: bv w = a 4 bπ χ w a 4 bπ 1 + a 4 b ew a 4 b ew 1 + a 4 b ez + a 4 bv w 1 (1 a 4 ) b ew +(1 a 4 ) b ew Then, a 4 bπ χ w a 4 bπ 1 + b ew a 4 b ew 1 + a 4 b ez + a 4 bv w 1 (1 a 4 ) b ew bv w =0 (39) Equaion 12 The welfh equaion is: b l = bv w + b l Whichwerearrangeinhecoeoappearas: b l bv w b l =0 (40) 40

41 Equaion 13 The hireenh equaion is: b k = (1 δ) b k 1 + ezeμ ezeμ (1 δ) b ex 1 δ bez + ezeμ ezeμ b eμ whichwerearrangeo: (1 δ) b k ezeμ (1 δ) b ex 1 δ bez + ezeμ ezeμ b eμ b k =0 (41) Equaion 14 The foureenh equaion is: b ez = b e A + α b eμ 1 α whichwerearrangeo: 1 b A e + α 1 α 1 α b eμ b ez =0 (42) Equaion 15 The fifeenh equaion is: (1 bβez) b λ e = b bβeze +1 b 1+b2 β b ec + 1 b ez Rearranging: b ez b ec 1 + βb z E 1 b ez 1 b b ec+1 ez b ez 1 b ez b ez b bβeze +1 b 1+b2 β b b ec + 1 b ez b ec 1 + βb z E 1 b ez ez 1 b b b ec+1 ez b ez (1 bβez) b λ e =0 (43) 1 b ez ez Equaion 16 The sixeenh equaion is: beλ = E { b e λ+1 + b R b Π +1 } whichwerearrangeo: E { b e λ+1 b e λ + b R b Π +1 } =0 (44) Equaion 17 The seveneenh equaion is: b eq = E b e λ+1 + β (1 δ) E b eq ezeμ β(1 δ) E b er+1 ezeμ 41

42 whichwerearrangeo: E b eλ+1 b e λ + β (1 δ) E b eq ezeμ β(1 δ) E b er+1 ezeμ b eq =0 (45) Equaion 18 The eigheenh equaion is: κez 2 b ex + b ez = b eq + βκez 2 E b ex +1 which we rearrange by unoing he firs-ifference operaor: b eq + βκez 2 E b ex+1 (1 + β)κez 2 b ex + κez 2 b ex 1 κez 2 b ez =0 (46) Equaion 19 The nineeenh equaion is: bf = 1 βθ w ez 1 Π (1 )(1 χ ) w (1 ) b ew + b λ e + b ew + b l + βθ w Π (1 )(1 χ w ) ez 1 E bf+1 (1 ) bπ+1 χ wπ b + b ew +1 efine a 5 = βθ w ez 1 Π (1 )(1 χ w ). Subsiuing: bf =(1 a 5 ) (1 ) b ew + b λ e + b ew + b h l + a 5 E bf+1 (1 ) Π b+1 χ w bπ + b i ew +1 Rearranging: (1 ) b ew +(1 a 5 ) b e λ +(1 a 5 ) b ew +(1 a 5 ) b l + a 5 E b f+1 +( 1)a 5 E bπ +1 ( 1)a 5 χ w bπ (1 )a 5 E b ew +1 b f =0 (47) Equaion 20 The wenieh equaion is: bf = 1 βθ w ez (1+γ) Π (1+γ)(1 χ ) w b + bϕ + (1 + γ) bew b ew +(1+γ) b l +βθ w ez (1+γ) Π (1+γ)(1 χ w ) E bf+1 + (1 + γ) bπ+1 χ wπ b + b ew Define a 6 = βθ w ez (1+γ) Π (1+γ)(1 χ w ). Then, bf = (1 a 6 ) b + bϕ + (1 + γ) bew b ew +(1+γ) b l +a 6 E bf+1 + (1 + γ) Π b+1 χ w bπ + b ew

43 Rearranging, (1 a 6 ) b +(1 a 6 ) bϕ + (1 + γ)(1 a 6 ) b ew (1 + γ) b ew +(1+γ)(1 a 6 ) b l b f +a 6 E b f+1 + a 6 (1 + γ) E b Π+1 a 6 (1 + γ) χ w b Π + a 6 (1 + γ) E b ew +1 =0 (48) Equaion 21 The weny firs equaion is bg 1 = 1 βθ p Π ε(1 χ) b eλ + cmc + b ey + βθ p Π ε(1 χ) E ε( Π b +1 χπ b )+bg +1 1 As before, efine a 3 = βθ p Π ε(1 χ). Then: (1 a 3 ) b e λ +(1 a 3 ) cmc +(1 a 3 ) b ey + εa 3 E b Π+1 χεa 3 b Π + a 3 E bg 1 +1 bg 1 =0 (49) Equaion 22 The weny secon equaion is bg 2 = 1 βθ p Π (1 ε)(1 χ) b eλ + Π b + b ey +βθ p Π (1 ε)(1 χ) E (1 ε) Π b+1 χbπ Define: a 7 = βθ p Π (1 ε)(1 χ). Subsiuing: Π b +1 bπ + bg +1 2 (1 a 7 ) b e λ + b Π +(1 a 7 ) b ey +(ε 1)a 7 E b Π+1 χ(ε 1)a 7 b Π a 7 E b Π +1 + a 7 E bg 2 +1 bg 2 =0 Shocks Thepreferenceshockshashefollowingsrucure: b = ρ b 1 + ε, bϕ = ρ ϕ bϕ 1 + ε ϕ, Noe ha Uhlig oes no allow o wrie somehing like b = ρ b 1 + σ ε,. Weeclarehe variance-covariance marix laer. The following shocks are no efine because of heir i.i.. naure. beμ = z μ, b e A = z A, m = σ m ε m, 43

44 4.4. Solving he Moel Now, le sae = bπ, b ew, bg 1, bg 2, b e k, b R, b ey, b ec, bv p, bv w, b eq, b e f, b ex, b e λ, b ez 0, nsae = ber, bu, bπ, b l, cmc, b l, b ew 0, exo = z μ,, b, bϕ,z A,,m 0, an ε =(ε μ,, ε,, ε ϕ,, ε A,, ε m, ) 0. Then, we nee o wrie he sysem efine above in Uhlig s forma, i.e.: an 0=AA sae + BB sae 1 + CC nsae + DD exo, Ã FF sae +1 + GG sae + HH sae 1 0=E +JJ nsae +1 + KK nsae + LL exo +1 + MM exo exo +1 = NN exo + Σ 1/2 ε +1 wih E ε +1 =0.!, Wriing he Moel in Uhlig s Form Firs, noe ha from his secion on, an in he coes, we efine he variables in erms of heir loglinear eviaion from seay-sae. The marices in Uhlig s noaion are as following 44

45 AA = a 1 1+a a 1 a α (1 γ R )γ Π (1 γ R )γ y (1 γ R )γ y ỹ c x ỹ v p 0 ỹ v p prouc a 3 ε/β a a (1 δ) 0 (1 δ) z μ z μ χ w a 1 a χa γ BB = R (1 γ R )γ y α(prouc) a 3 εχ a 3 β β χ w a 4 a a δ z μ

46 CC = φ u α γ 0 1 k z μ 0 α(prouc) 0 (1 α)(prouc) (1 a 3 β )ε (1 a 4 ) DD = prouc δ z μ α α 1 α 46

47 FF = βb z 1 b z β(1 δ) z μ βκ z a 5 ( 1) a a 6 (1 + γ) a a 3 ε 0 a a 7 (ε 1) 0 0 a GG = GG 1, (1 bβ z) GG 1, GG 4,13 0 κ z 2 a 5 χ w ( 1) (1 a 5 ) a 5 0 a 6 χ w (1 + γ) GG 6, a 3 εχ a a 3 0 a 7 (ε 1)χ a a 7 0 where GG 1,8 = 1+βb2 1 b z GG 1,15 = b z(1 b z ) GG 6,2 = (1 a 6 )(1 + γ) GG 4,13 = (1 + β)κ z 2 b z(1 b z ) HH = κ z

48 β(1 δ) z μ JJ = a 5 (1 ) a 6 (1 + γ) a KK = a (1 a 6 )(1 + γ) 0 0 (1 + γ) a βb z LL = MM = a 6 1 a

49 ρ NN = 0 0 ρ ϕ σ 2 μ σ Σ = 0 0 σ 2 ϕ σ 2 A σ 2 m Wriing he Likelihoo funcion Uhlig s soluion meho gives us he following soluion: sae = PP sae 1 + QQ exo an nsae = RR sae 1 + SS exo. We observe obs =(logπ, log R, 4 log w, 4 log y ) 0. Therefore, o wrie he likelihoo funcion, we nee o wrie he moel in he following sae space form: S = A S 1 + B ε obs = C S 1 + D ε where S 1 =(1, sae,sae 1,exo 1 ) Builing he A an B marices Hence, A = PP 0 QQ NN 0 I NN 49

50 an B = 0 QQ 0 I Σ1/ Builing he C an D marices Define he observables vecor: obs =(logπ, log R, 4 log w, 4 log y ) 0. Noe ha: bπ = PP (1, :) sae 1 + QQ (1, :) exo = PP (1, :) sae 1 + QQ (1, :) NN exo 1 + QQ (1, :) Σ 1/2 ε, br = PP (6, :) sae 1 + QQ (6, :) exo = PP (6, :) sae 1 + QQ (6, :) NN exo 1 + QQ (6, :) Σ 1/2 ε, b ew b ew 1 = PP (2, :) sae 1 + QQ (2, :) exo PP (2, :) sae 2 QQ (2, :) exo 1 = PP (2, :) sae 1 PP (2, :) sae 2 +QQ (2, :) NN exo 1 QQ (2, :) exo 1 + QQ (2, :) Σ 1/2 ε, an b ey b ey 1 = PP (7, :) sae 1 + QQ (7, :) exo PP (7, :) sae 2 QQ (7, :) exo 1 = PP (7, :) sae 1 PP (7, :) sae 2 +QQ (7, :) NN exo 1 QQ (7, :) exo 1 + QQ (7, :) Σ 1/2 ε, Also, remember ha bπ =logπ log Π ss, br =logr log R ss, b ew b ew 1 = 4 log ew = 4 log w 4 log z,an b ey b ey 1 = 4 log ey = 4 log y 4 log z. Since 4 log z = αλμ+λ A + 1 α αz μ, +z A,,wehave: 1 α obs = C S 1 + D ε. 50

51 where an C = log Π ss PP (1, :) 0 QQ (1, :) NN log R ss PP (6, :) 0 QQ (6, :) NN αλ μ +Λ A 1 α PP (2, :) PP (2, :) QQ (2, :) (NN I) αλ μ +Λ A 1 α PP (7, :) PP (7, :) QQ (7, :) (NN I) QQ (1, :) QQ (6, :) D = α QQ (2, :) + 1 α α QQ (7, :) + 1 α Σ 1/2 51

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

A Suite of Models for Dynare Description of Models

A Suite of Models for Dynare Description of Models A Suie of Models for Dynare Descripion of Models F. Collard, H. Dellas and B. Diba Version. Deparmen of Economics Universiy of Bern A REAL BUSINESS CYCLE MODEL A real Business Cycle Model The problem of

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

is the home less foreign interest rate differential (expressed as it

is the home less foreign interest rate differential (expressed as it The model is solved algebraically, excep for a cubic roo which is solved numerically The mehod of soluion is undeermined coefficiens The noaion in his noe corresponds o he noaion in he program The model

Διαβάστε περισσότερα

Notes on New-Keynesian Models

Notes on New-Keynesian Models Noes on New-Keynesian Models Marco Del Negro, Frank Schorfheide, FRBNY DSGE Group Sepember 4, 202 Please do no circulae Smes & Wouers Chrisiano, Eichenbaum, & Evans. Define he problem, FOCs, and equilibrium

Διαβάστε περισσότερα

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t). Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

A Simple Version of the Lucas Model

A Simple Version of the Lucas Model Aricle non publié May 11, 2007 A Simple Version of he Lucas Model Mazamba Tédie Absrac This discree-ime version of he Lucas model do no include he physical capial. We inregrae in he uiliy funcion he leisure

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Managing Production-Inventory Systems with Scarce Resources

Managing Production-Inventory Systems with Scarce Resources Managing Producion-Invenory Sysems wih Scarce Resources Online Supplemen Proof of Lemma 1: Consider he following dynamic program: where ḡ (x, z) = max { cy + E f (y, z, D)}, (7) x y min(x+u,z) f (y, z,

Διαβάστε περισσότερα

A note on deriving the New Keynesian Phillips Curve under positive steady state inflation

A note on deriving the New Keynesian Phillips Curve under positive steady state inflation A noe on deriving he New Keynesian Phillips Curve under posiive seady sae inflaion Hashma Khan Carleon Univerisiy Barbara Rudolf Swiss Naional Bank Firs version: February 2005 This version: July 2005 Absrac

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion

Διαβάστε περισσότερα

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10 Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Lecture 12 Modulation and Sampling

Lecture 12 Modulation and Sampling EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v. hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ

Διαβάστε περισσότερα

ω = radians per sec, t = 3 sec

ω = radians per sec, t = 3 sec Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,

Διαβάστε περισσότερα

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat Fracional Calculu Suen: Manal AL-Ali Dr. Aballa Obeia Deignaion Deignaion mean inegraion an iffereniaion of arbirary orer, In oher ereion i mean ealing wih oeraor like,, i arbirary real or Comle value.

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl EHNIA APPENDIX AMPANY SIMPE S SHARIN NRAS Proof of emma. he choice of an opimal SR conrac involves he choice of an such ha he supplier chooses he S opion hen and he R opion hen >. When he selecs he S opion

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0) Cornell University Department of Economics Econ 60 - Spring 004 Instructor: Prof. Kiefer Solution to Problem set # 5. Autocorrelation function is defined as ρ h = γ h γ 0 where γ h =Cov X t,x t h =E[X

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Technical Notes for Discussion of Eggertsson, What Fiscal Policy Is Effective at Zero Interest Rates? Lawrence J. Christiano

Technical Notes for Discussion of Eggertsson, What Fiscal Policy Is Effective at Zero Interest Rates? Lawrence J. Christiano Tecnical Noes for Discussion of Eggersson Wa Fiscal Policy Is Effecive a Zero Ineres Raes? Larence J Crisiano Te model a as simulaed for e discussion is presened in e firs secion Te simulaion sraegy is

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations J. Mah. Anal. Appl. 321 (2006) 553 568 www.elsevier.com/locae/jmaa Necessary sufficien condiions for oscillaion of firs order nonlinear neural differenial equaions X.H. ang a,, Xiaoyan Lin b a School of

Διαβάστε περισσότερα

Product Innovation and Optimal Capital Investment under Uncertainty. by Chia-Yu Liao Advisor Ching-Tang Wu

Product Innovation and Optimal Capital Investment under Uncertainty. by Chia-Yu Liao Advisor Ching-Tang Wu Produc Innovaion and Opimal Capial Invesmen under Uncerainy by Chia-Yu Liao Advisor Ching-Tang Wu Insiue of Saisics, Naional Universiy of Kaohsiung Kaohsiung, Taiwan 8 R.O.C. July 2006 Conens Z`Š zz`š

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

Mark-up Fluctuations and Fiscal Policy Stabilization in a Monetary Union: Technical appendices not for publication

Mark-up Fluctuations and Fiscal Policy Stabilization in a Monetary Union: Technical appendices not for publication Mark-up lucuaions and iscal Policy Sabilizaion in a Moneary Union: Technical appendices no for publicaion M. W. J. B Universiy of Amserdam and CEP J Universiy of Copenhagen, CEP and EPU July, 003 Mailing

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

SUPPLEMENT TO TEMPTATION AND TAXATION (Econometrica, Vol. 78, No. 6, November 2010, )

SUPPLEMENT TO TEMPTATION AND TAXATION (Econometrica, Vol. 78, No. 6, November 2010, ) Econometrica Supplementary Material SUPPLEMENT TO TEMPTATION AND TAXATION (Econometrica, Vol. 78, No. 6, November 00, 063 084) BY PER KRUSELL, BURHANETTINKURUŞÇU, ANDANTHONYA. SMITH, JR. GENERAL FRAMEWORK

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Technical Appendix for DSGE Models for Monetary Policy Analysis

Technical Appendix for DSGE Models for Monetary Policy Analysis Technical Appendix for DSGE Models for Moneary Policy Analysis by Larence J Chrisiano, Mahias Traband, Karl Walenin A Daa Appendix A Daa Sources FRED2: Daabase of he Federal Reserve Bank of S Louis available

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

6.003: Signals and Systems. Modulation

6.003: Signals and Systems. Modulation 6.3: Signals and Sysems Modulaion December 6, 2 Subjec Evaluaions Your feedback is imporan o us! Please give feedback o he saff and fuure 6.3 sudens: hp://web.mi.edu/subjecevaluaion Evaluaions are open

Διαβάστε περισσότερα

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions An Introduction to Signal Detection Estimation - Second Edition Chapter II: Selected Solutions H V Poor Princeton University March 16, 5 Exercise : The likelihood ratio is given by L(y) (y +1), y 1 a With

Διαβάστε περισσότερα

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution i Eleconic Copanion o Supply Chain Dynaics and Channel Efficiency in Duable Poduc Picing and Disibuion Wei-yu Kevin Chiang College of Business Ciy Univesiy of Hong Kong wchiang@ciyueduh I Poof of Poposiion

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Firm Behavior GOAL: Firms choose the maximum possible output (technological

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9. 9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7

Διαβάστε περισσότερα

1) Formulation of the Problem as a Linear Programming Model

1) Formulation of the Problem as a Linear Programming Model 1) Formulation of the Problem as a Linear Programming Model Let xi = the amount of money invested in each of the potential investments in, where (i=1,2, ) x1 = the amount of money invested in Savings Account

Διαβάστε περισσότερα

On Strong Product of Two Fuzzy Graphs

On Strong Product of Two Fuzzy Graphs Inernaional Journal of Scienific and Research Publicaions, Volume 4, Issue 10, Ocober 014 1 ISSN 50-3153 On Srong Produc of Two Fuzzy Graphs Dr. K. Radha* Mr.S. Arumugam** * P.G & Research Deparmen of

Διαβάστε περισσότερα

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales Oscillaion Crieria for Nonlinear Damped Dynamic Equaions on ime Scales Lynn Erbe, aher S Hassan, and Allan Peerson Absrac We presen new oscillaion crieria for he second order nonlinear damped delay dynamic

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

The Student s t and F Distributions Page 1

The Student s t and F Distributions Page 1 The Suden s and F Disribuions Page The Fundamenal Transformaion formula for wo random variables: Consider wo random variables wih join probabiliy disribuion funcion f (, ) simulaneously ake on values in

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

Analiza reakcji wybranych modeli

Analiza reakcji wybranych modeli Bank i Kredy 43 (4), 202, 85 8 www.bankikredy.nbp.pl www.bankandcredi.nbp.pl Analiza reakcji wybranych modeli 86 - - - srice - - - per capia research and developmen dynamic sochasic general equilibrium

Διαβάστε περισσότερα