Technical Notes for Discussion of Eggertsson, What Fiscal Policy Is Effective at Zero Interest Rates? Lawrence J. Christiano

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Technical Notes for Discussion of Eggertsson, What Fiscal Policy Is Effective at Zero Interest Rates? Lawrence J. Christiano"

Transcript

1 Tecnical Noes for Discussion of Eggersson Wa Fiscal Policy Is Effecive a Zero Ineres Raes? Larence J Crisiano Te model a as simulaed for e discussion is presened in e firs secion Te simulaion sraegy is described in e nex secion Houseold Te uiliy funcion of e j ouseold is: Tebudgeconsrainis: U (C j )logc A φ j φ P C B R B W j j Π j ere Π j denoes lump sum profis and lump sum axes Ineremporal Condiion Te discoun rae from o as e folloing represenaion: or β r µ βˆβ dr r ˆβ βdr Te firs order condiion associaed i bonds is: β C ( R ) C π Linearizing around a zero inflaion seady sae: Ĉ C βdr \ ( R ) ˆπ or Ĉ C βdr βdr ˆπ Ĉ Ĉ β (R r )ˆπ

2 Houseold Wage/Employmen Decision Te ouseold selecs e age rae o opimize: " # E ( ) i υ i W ji ji A φ ji φ ere υ i denoes e muliplier on e ouseold budge consrain in e Lagrangian represenaion of is problem Te ouseold reas is objec as an exogenous consan Eac ouseold a opimizes is age cooses e same age rae W : " E ( ) i φ # υ i W i A i ( φ) υ i ere i denoes e level of employmen in period i of a ouseold a opimizes is age in period : Ã! λ W λ i H i W i and H i denoes aggregae employmen Also W denoes e aggregae age rae Imposing e requiremen a e ouseold is alays on e labor demand curve implies: Ã! ³ λ λ W λ (φ) E ( ) i υ i W λ W W i H φ i H i A W i ( φ) υ i Differeniae i respec o W : µ E ( ) i υ i λ λ E µ ( ) i υ i λ λ µ W λ λ λ λ Hi λ A W i λ W λ λ λ λ (φ) µ W i W λ λ (φ) λ λ Hi λ A λ ³ ³ λ λ (φ) W i H φ i υ i λ λ (φ) W i H φ i υ i E ( ) i υ i W λ λ φ µ W i λ λ Hi λ A ³ λ W i λ (φ) H φ i υ i

3 E ( ) i υ i W λ λ φ Ã W λ λ W W i! λ λ H i λ A W λ λ (φ) ³ W W i λ υ i λ (φ) H φ i E Ã ( ) i υ i W W W i! ³ λ λ W λ W i H i λ A λ (φ) H φ i υ i or or E E " ( ) i φ # υ i W i λ A i υ i " W ( ) i υ i φ # ip i λ A i P i P i υ i " W E ( ) i φ # υ i ip i λ A i P i P i υ i Given our uiliy funcion e ave υ i U ci P i P i C i Noe a φ MRSi A i AC i φ P i υ i i ere MRSi denoes e marginal rae of subsiuion beeen consumpion and leisure in period i for a person a reopimizes in period and does no reopimize beeen and i Subsiue is ino e firs order condiion: " # E ( ) i i W λ MRSi C i P i No consider e folloing scaling: W W ½ π i π i i W P i Noe a i is definiion i P P i all i 3

4 Ten e firs order condiion reduces o: E ( ) i i i λ MRSi C i Noe ˆ i ˆπ ˆπ i We are ineresed in e case ere β is ime varying Aloug in e end e ime varying β as no impac on e reduced form age equaion i is useful o esablis is Tus β βˆβ r µ dr r β dr ˆβ βdr We rie ou e firs order condiion like is: β λ MRS C β β ξ λ MRS C β β β ξ λ MRS C β β β β 3 ξ λ MRS3 C 3 Log-linearly expanding is expression and aking ino accoun a e objec in square brackes is zero in seady sae: β b ŵ (λ MRS) \MRS i C β ³ ³ ξ b ŵ ˆ λ MRS MRS \ i C ³ ³ b ŵ ˆ MRS \ i β 3 ξ C β 4 ξ 3 C λ MRS ³ b ŵ 3 ˆ ³ λ MRS MRS \ 3 i 4

5 (noeoeimevaryingβ disappeared) noing λ MRS β b C ŵ \MRS i β ξ C b ŵ ˆ \MRS i β 3 ξ C b ŵ ˆ \MRS i β 4 ξ 3 C b ŵ ˆ 3 \MRS i 3 dividing roug by β : C Ten b ŵ \MRS b ŵ ˆ \MRS β ξ b ŵ ˆ \MRS i β 3 ξ 3 b ŵ ˆ 3 \MRS i i 3 b ŵ \MRS b ŵ ˆπ \MRS β ξ b ŵ ˆπ ˆπ \MRS i β 3 ξ 3 b ŵ ˆπ ˆπ ˆπ 3 \MRS i 3 i and b ŵ \MRS ˆπ \MRS i β ξ ˆπ ˆπ \MRS i β 3 ξ 3 ˆπ ˆπ ˆπ 3 \MRS i 3 5

6 b ŵ ˆπ ( ) ˆπ () MRS \ \MRS ( ) \MRS i Noe \MRS i Ĉ i φĥ i Ĉ i φĥ i φ ³ĥ i Ĥ i Recall i à µ µ µ W W i W W i W! λ λ H i λ λ Hi W W Wi W W i π π i λ λ Hi λ λ Hi for i : so a Ten Subsiuing Ã! λ λ W H ( ) λ λ H i H i ½ ĥ i Ĥi W ³ λ λ π π i i> ( ) λ λ i λ λ (ŵ ˆπ ˆπ i ) i> λ \MRS i Ĉi φĥi φ ³ĥ i Ĥi λ ŵ i Ĉi φĥi φ λ λ (ŵ ˆπ ˆπ i ) 6

7 for i> Ten \MRS \MRS ( ) \MRS Ĉ φĥ φ λ ŵ λ Ĉ φĥ φ λ (ŵ ˆπ ) λ ( ) Ĉ φĥ φ λ (ŵ ˆπ ˆπ ) λ ( ) 3 Ĉ 3 φĥ3 φ λ (ŵ ˆπ ˆπ ˆπ 3 ) λ \MRS \MRS ( ) \MRS i ( ) i Ĉ i φĥ i φ λ ŵ φ λ λ λ ( ) i ˆπ i i Subsiuing e previous expression ino () e conclude a e firs order condiion for ages looks as follos: b ŵ ( ) i ³ Ĉ i φĥ i ( ) i ˆπ i () i φ λ λ ŵ φ λ λ We no deduce e implicaions of e aggregae resricions across ages: ³ λ W ( ξ ) W λ ξ (W ) λ Divide by W and use e scaling noaion: µ ( ξ )( ) λ ξ π λ Log-linearize is abou seady sae: ( ξ ) () λ ŵ ξ λ λ (π ) λ π ˆπ aking ino accoun π : ŵ ξ ξ ˆπ 7 ( ) i ˆπ i i

8 Subsiuing is ino (): ξ ξ ˆπ b ³ ( ) i Ĉ i φĥi ( ) i ˆπ i i φ λ λ ξ ξ ˆπ φ λ λ ( ) i ˆπ i i Muliply by κ ( )( ξ ) ξ κ ξ ξ b ˆπ ξ ξ ( ) i ˆπ i i ³ ( ) i Ĉ i φĥi φ λ λ ˆπ ξ ξ φ λ λ ( ) i ˆπ i i Noe S ( ) i ˆπ i (3) i ˆπ ( ) ˆπ ( ) 3 ˆπ 3 ˆπ ˆπ ( ) ˆπ 3 ˆπ S S ( ) i ˆπ i ˆπ S S o i ³ ( ) i Ĉ i φĥi Ĉ φĥ S o So e expression for e age can be rien Lead and muliply by : ξ ξ b ˆπ ξ S ξ κs o φ λ λ ˆπ ξ ξ φ λ λ S ξ ξ b ˆπ ξ ξ S κ S o φ λ λ ˆπ ξ ξ φ λ λ S 8

9 Subrac e second from e firs and make use of (3) Collecing erms: ξ b ξ Noe ξ ξ b ξ ξ b ˆπ ˆπ ξ ξ ˆπ κ ³Ĉ φĥ φ λ ˆπ φ λ λ λ ˆπ ξ ξ φ λ λ ˆπ ξ ξ b ξ ξ b ˆπ ˆπ ξ ξ ˆπ κ ³Ĉ φĥ φ λ ˆπ φ λ λ ξ λ ˆπ κ ³Ĉ φĥ φ λ λ ˆπ ξ ξ ˆπ b b b ˆπ ˆπ b b ˆπ ˆπ λ φ λ ξ ˆπ so a en ξ b ξ κ ³Ĉ φĥ φ λ λ κb φ λ λ κ ³Ĉ φĥ φ λ ˆπ λ ³ κ b Ĉ φĥ ˆπ ξ ξ b ˆπ ˆπ ξ ξ ˆπ λ φ λ ξ ˆπ λ φ λ ξ ˆπ ξ ξ ˆπ φ λ λ ξ ˆπ 9

10 or No divide by e erm on ˆπ : φ λ ˆπ λ ³ µ κ b Ĉ φĥ φ λ ξ λ φ λ ˆπ λ ³ κ b Ĉ φĥ ˆπ κ φ λ λ 3 Goods Producion and Price Seing ξ ˆπ µ φ λ βˆπ λ ³ b Ĉ φĥ βˆπ Suppose a a final good Y is produced using a coninuum of inpus as follos: Z λ Y Y f diλf i λ f < (4) Te good is produced by a compeiive represenaive firm ic akes e price of oupu P and e price of inpus P i as given Te firs order necessary condiion associaed i opimizaion is: µ λ f P λ f Y Y i (5) A useful resul is obained by subsiuing ou for Y i in (4) from (5): P i Z P (λ f ) (P i ) λ f di (6) Eac inermediae good is produced by a monopolis using e folloing producion funcion: Y i A i Te equilibrium condiion associaed i price seing is afer log-linearizing abou seady sae: p ξp ˆπ βˆπ ŝ ξ p Marginal cos in is model is s W P

11 so a ŝ b Te resource consrain is: C p H ere p denoes e Tak Yun disorion ic is uniy o a firs order approximaion 4 Equilibrium Condiions Te sysem as 6 unknons: ˆπ b Ĥ ˆπ R Z and e folloing equaions Te equaions a caracerize e privae economy are: b b ˆπ ˆπ p ξp ˆπ βˆπ b ξ p κ ˆπ b φ λ λ dτ τ Ĥ Ĥ β (dz dr )ˆπ ( φ) Ĥ βˆπ and moneary policy: dz ρ R dr ( ρ R ) i r πˆπ r y Ĥ β ³ dz dz β dr zero bound no binding ³ oerise zero bound binding β Te laer capures e fac a R ic means R R /β We rie is in marix form as follos Supppose e zero bound is no binding so a dr dz (7)

12 Tisgivesussixequaionsinesixunknons: dr β ˆπ ( p)( ξ p ) ξ p β Ĥ b κ(φ) κ φ λ φ λ λ λ ˆπ β β ( ρ dz R ) r β y ( ρ R ) r β π dr ˆπ µ Ĥ b dr κ φ λ τ λ dτ ρ R ˆπ β dz α z α z α z β s β s ere e definiions of e marices are obvious and Le dr ˆπ µ z Ĥ dr b s dτ ˆπ dz ere Te linearized sysem en e zero bound is binding is as follos: d α z α z α z β s β s d β and α is α i is 6 6 elemen replaced by zero Tis sysem is simply e previous one i (7) replaced by: µ dr β

13 Simulaing e Model Te general algorim appears in e ird subsecion belo I capures e feaure of our seing a e equaions a caracerize equilibrium cange during e simulaion Before e discuss e algorim in is full generaliy e provide o examples o illusrae feaures of e algorim no relaed o e equaion sicing Simple Example We use a slig perurbaion on a sandard sooing algorim Te perurbaion is designed so a e algorim is required o i a specific argeaaspecific dae as opposed o e usual sooing in ic a arge is reaced asympoically Because e general algorim involves oer complicaions i is useful o poin ou e perurbaion a e use in isolaion from e oer complicaions Suppose a e sysem obeys e folloing scalar difference equaion: α z α z α z d for T Here z is given For T Wriing e equaions ou explicily: z Az α z α z α z d α z T α z T α z T d T Given α 6 and given an arbirary z R e can use ese equaions o compue z z T Bu i as o be e case a z T Az T So e algorim is o adjus z unil e above equaion is saisfied Algorim Based on QZ Decomposiion Te problem e ave o confron in applying e simple algorim in e previous secion is a α is no inverible One ay o adap e algorim applies e QZ decomposiion Tus le Muliply (??) byq : Qα Z H Q α Z H Z z γ Qα ZZ z Q α ZZ z Qα ZZ z Qd Qβ s Qβ s 3

14 Summarizing for T Wrie H G H H D Q [d α z ] z } { H γ H γ Qα Zγ Q[d β s β s ] H H γ H γ D G H H d γ µ γ γ Z z µ L z L z ere H and H are upper riangular and e diagonal elemens of G are non-zero ile e l diagonal elemens of H are all zero I is necessary o verify numerically a all e elemens of H are zero We assume a e diagonal elemens of H are all non-zero Also d d β s β s Ten e sysem is rien G H γ γ G H γ 3 γ 3 G H γ T γ T G H γ T γ T G H H G H H G H H G H H γ γ γ γ γ T γ T γ T γ T D D D D D T D T D T D T ereeaveimposedh We ave found a numerically is is a propery of our model To simulae is sysem forard noe firs a D is deermined because γ Fix avalueforγ and compue: γ H D For : For T : D Q (d Qα Zγ ) γ H D γ G H γ G γ H γ D D Q (d α Zγ ) γ H D γ G H γ G γ H γ D 4

15 We no ave γ T γ T D T Recall a in period T so a afer muliplying by Z : z T Az T γ T Ãγ T Ã Z AZ µ γ T γ T Ã Ã γ T We mus sill saisfy e T equilibrium condiions: G H γ T G H γ γ T T H γ T D T D T Noe oever a e boom se of equaions are saisfied because of e ay γ T as cosen and because γ T does no ener ese equaions Te firs se of equaions need no be saisfied oever and so e use e requiremen a ese be saisfied o pin don γ In paricular e adjus γ unil e folloing expression is saisfied: G γ T H γ T G γ T H γ T D T Noe a is is a number of equaions equal o e dimension of γ 3 Exending e Algorim We no address e possibiliy a and T Ta is e loer bound sars o bind in some period afer e discoun rae goes negaive and before i urns posiive again Tus e loer bound is no binding for i is binding for and i is no binding for > Because e assume T e can apply a sraigforard adapaion of e algorim in e previous secion Firs e d sequence needs o be adjused so a e consan vec d in (??) is only urned on for Second e require e QZ decomposiion of e sysem bo for e ime en e loer bound is binding and e ime en i is binding: Qα Z H Qα Z H Qα Z H Q α Z H γ Z z γ Z z 3Te Iniial Non-Binding Regime For : α z α z [α z β s β s ] 5

16 To solve ese equaions proceed as before Afer applying e QZ decomposiion: G H γ G H γ γ D H γ D G H γ 3 G H γ γ D 3 H γ D G H γ G H γ γ H D γ D G H γ G H γ γ H D γ D Te basic idea of e simulaion is a e sar a given period i (γ γ ) and use e period equaion o solve forard o obain γ γ Tis ould be compleely sraigforard and sandard ifeleadmarixineqzdecomposiion ofedynamic equaion ere inverible I is no So o do e simulaion e compue γ using e equaion Ten ere is only γ o compue using e period equaion Tis compuaion is possible because e relevan block in e lead marix is inverible To begin e simulaion noe firs a D is deermined because z Fix a value for γ and compue: For : γ H D D Q (d α Zγ ) (consan erm in period equaion) γ H D (solving period equaion for γ ) γ G H γ G γ H γ D (using period equaion o find γ ) Weproceedinisayineacperiod : D Q (d α Zγ ) γ H D γ G H γ G γ H γ D Period requires special reamen because e subsequen period s equaion belongs o a differen regime We firs solve for γ using e equaion Te consan erm in e equaion is: µ µ γ D Q d α Z γ Noe a e Q ere belongs o e binding regime ile Z belongs o e non-binding regime We require e Z from e non-binding regime because a is needed o consruc e consan erm is z andaeacuallyaveinandaispoinisγ Z z Wi D in and e compue γ : ³ γ H D 6

17 We no reurn o e equaion o seek γ Te equaion is: α z α z [α z β s β s ] α Z γ α z [α z β s β s ] No apply e QZ decomposiion relevan for e non-binding regime: Qα ZZ Z γ Qα ZZ z D D [α z β s β s ] Le H Z Z γ H γ D Z Z M M {z} (m l) (m l) M {z} l (m l) M {z} (m l) l M {z} l l ere m denoes e leng of z and m l is e rank of α Ten e previous sysem can be rien: G H {z} M {z} M {z} γ {z} (m l) (m l) (m l) l (m l) (m l) (m l) l {z} (m l) {z} {z} M {z} M {z} γ {z} G H γ H D γ D l (m l) l l l (m l) l l l G M H M G M H M γ γ G H H γ γ D D We are no in a posiion o solve for γ Wriing ou e firs of e above equaions: G M H M γ G M H M γ G γ H γ D so a γ G M H M G M H M γ G γ H γ D 3Te Binding Regime We no urn o e period en e loer bound consrain on e ineres rae is binding Teequaionobesolvedis: α z α z [α z d β s β s ] Muliply by Q H γ H γ D 7

18 G H γ γ G H γ γ G H γ γ G H γ γ G H H G H H G H H G H H γ γ γ γ γ 3 γ 3 γ γ D D D D D 3 D 3 D D We ave γ in and Consider firs Asbeforeemuscompue γ using e period equaion Tus D Q ³d α Z γ γ ³ H D Ten using e period equaion: γ G H γ G γ H γ D i We proceed in is ay in eac period : D Q ³d α Z γ γ γ ³ H G D H γ G γ H γ D i Te equaion requires special adjusmens analogous o e ones used a e end of e non-binding regime because solving e equaion requires orking i e equaion firs Te consan erm in e equaion is: µ µ γ D Q d α Z γ As before Q is par of e QZ decomposiion relevan o e non-binding regime bu Z belongs o e binding regime because e ave γ in and and is mus be convered o z Wi D in and e compue γ as follos: γ H D We no reurn o e equaion: α z α Z γ α Z γ d β s β s i 8

19 afer muliplying by Q : H Z Zγ H γ D ere D is available from e previous compuaions Wriing is ou more carefully G H M M γ G M M γ H γ D H γ D ere M M M Z M Z ( M ) M Wriing ou e firs of e above equaions: G M H M i γ G M H M i γ G γ H γ D γ G M H M i ³ G M H M γ G γ H γ D i 33Te Final Non-Binding Regime Given γ γ e no solve e equaions in e non-binding regime T Consider period firs: α z α z [α z β s β s ] Muliplying by Q and applying e QZ decomposiion: Qα ZZ z Qα ZZ z Q [α z β s β s ] H γ H γ D G H γ γ G H H γ γ D D To solve for γ γ e firs obain γ using e equaion: D Q d α Zγ (consan erm in period equaion) γ H D (solving period equaion for γ ) Ten γ G H γ G γ H γ D For T : D Q (d α Zγ ) γ H D γ G H γ G γ H γ D 9

20 We no ave γ T γ T D T Recall a s for T so a afer muliplying by Z : z T Az T γ T Ãγ T Ã Z AZ µ γ T γ T Ã Ã γ T We mus sill saisfy e T equilibrium condiions: G H γ T G H γ γ T T H γ T D T D T Noe oever a e boom se of equaions are saisfied because of e ay γ T as cosen and because γ T does no ener ese equaions Te firs se of equaions need nobesaisfied oever and so e use e requiremen a ese be saisfied o pin don γ T In paricular e adjus γ unil e folloing expression is saisfied: G γ T H γ T G γ T H γ T D T Noe a is is a number of equaions equal o e dimension of γ

Technical Appendix for DSGE Models for Monetary Policy Analysis

Technical Appendix for DSGE Models for Monetary Policy Analysis Technical Appendix for DSGE Models for Moneary Policy Analysis by Larence J Chrisiano, Mahias Traband, Karl Walenin A Daa Appendix A Daa Sources FRED2: Daabase of he Federal Reserve Bank of S Louis available

Διαβάστε περισσότερα

A note on deriving the New Keynesian Phillips Curve under positive steady state inflation

A note on deriving the New Keynesian Phillips Curve under positive steady state inflation A noe on deriving he New Keynesian Phillips Curve under posiive seady sae inflaion Hashma Khan Carleon Univerisiy Barbara Rudolf Swiss Naional Bank Firs version: February 2005 This version: July 2005 Absrac

Διαβάστε περισσότερα

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10 Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)

Διαβάστε περισσότερα

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t). Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

A Suite of Models for Dynare Description of Models

A Suite of Models for Dynare Description of Models A Suie of Models for Dynare Descripion of Models F. Collard, H. Dellas and B. Diba Version. Deparmen of Economics Universiy of Bern A REAL BUSINESS CYCLE MODEL A real Business Cycle Model The problem of

Διαβάστε περισσότερα

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl EHNIA APPENDIX AMPANY SIMPE S SHARIN NRAS Proof of emma. he choice of an opimal SR conrac involves he choice of an such ha he supplier chooses he S opion hen and he R opion hen >. When he selecs he S opion

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

A Simple Version of the Lucas Model

A Simple Version of the Lucas Model Aricle non publié May 11, 2007 A Simple Version of he Lucas Model Mazamba Tédie Absrac This discree-ime version of he Lucas model do no include he physical capial. We inregrae in he uiliy funcion he leisure

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v. hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1 Lecue 6 Goals: Deemine e opimal esold, file, signals fo a binay communicaions poblem VI- Minimum Aveage Eo Pobabiliy Poblem: Find e opimum file, esold and signals o minimize e aveage eo pobabiliy. s s

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Lecture 12 Modulation and Sampling

Lecture 12 Modulation and Sampling EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,

Διαβάστε περισσότερα

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion

Διαβάστε περισσότερα

Mark-up Fluctuations and Fiscal Policy Stabilization in a Monetary Union: Technical appendices not for publication

Mark-up Fluctuations and Fiscal Policy Stabilization in a Monetary Union: Technical appendices not for publication Mark-up lucuaions and iscal Policy Sabilizaion in a Moneary Union: Technical appendices no for publicaion M. W. J. B Universiy of Amserdam and CEP J Universiy of Copenhagen, CEP and EPU July, 003 Mailing

Διαβάστε περισσότερα

ω = radians per sec, t = 3 sec

ω = radians per sec, t = 3 sec Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

is the home less foreign interest rate differential (expressed as it

is the home less foreign interest rate differential (expressed as it The model is solved algebraically, excep for a cubic roo which is solved numerically The mehod of soluion is undeermined coefficiens The noaion in his noe corresponds o he noaion in he program The model

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Notes on New-Keynesian Models

Notes on New-Keynesian Models Noes on New-Keynesian Models Marco Del Negro, Frank Schorfheide, FRBNY DSGE Group Sepember 4, 202 Please do no circulae Smes & Wouers Chrisiano, Eichenbaum, & Evans. Define he problem, FOCs, and equilibrium

Διαβάστε περισσότερα

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales Oscillaion Crieria for Nonlinear Damped Dynamic Equaions on ime Scales Lynn Erbe, aher S Hassan, and Allan Peerson Absrac We presen new oscillaion crieria for he second order nonlinear damped delay dynamic

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Monetary Policy Design in the Basic New Keynesian Model

Monetary Policy Design in the Basic New Keynesian Model Monetary Policy Design in the Basic New Keynesian Model Jordi Galí CREI, UPF and Barcelona GSE June 216 Jordi Galí (CREI, UPF and Barcelona GSE) Monetary Policy Design June 216 1 / 12 The Basic New Keynesian

Διαβάστε περισσότερα

Product Innovation and Optimal Capital Investment under Uncertainty. by Chia-Yu Liao Advisor Ching-Tang Wu

Product Innovation and Optimal Capital Investment under Uncertainty. by Chia-Yu Liao Advisor Ching-Tang Wu Produc Innovaion and Opimal Capial Invesmen under Uncerainy by Chia-Yu Liao Advisor Ching-Tang Wu Insiue of Saisics, Naional Universiy of Kaohsiung Kaohsiung, Taiwan 8 R.O.C. July 2006 Conens Z`Š zz`š

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

ECON 381 SC ASSIGNMENT 2

ECON 381 SC ASSIGNMENT 2 ECON 8 SC ASSIGNMENT 2 JOHN HILLAS UNIVERSITY OF AUCKLAND Problem Consider a consmer with wealth w who consmes two goods which we shall call goods and 2 Let the amont of good l that the consmer consmes

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

The canonical 2nd order transfer function is expressed as. (ω n

The canonical 2nd order transfer function is expressed as. (ω n Second order ransfer funcions nd Order ransfer funcion - Summary of resuls The canonical nd order ransfer funcion is expressed as H(s) s + ζ s + is he naural frequency; ζ is he damping coefficien. The

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Démographie spatiale/spatial Demography

Démographie spatiale/spatial Demography ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Internet Appendix for Uncertainty about Government Policy and Stock Prices

Internet Appendix for Uncertainty about Government Policy and Stock Prices Inerne Appendix for Uncerainy abou Governmen Policy and Sock Prices ĽUBOŠ PÁSTOR and PIETRO VERONESI This Inerne Appendix provides proofs and addiional heoreical resuls in suppor of he analysis presened

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα