arxiv: v1 [math.nt] 17 Sep 2016

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "arxiv: v1 [math.nt] 17 Sep 2016"

Transcript

1 arxiv: v [math.nt] 7 Sep 06 Covolutio idetities for Tetraacci umbers Ruse Li School of Mathematics ad Statistics Wuha Uiversity Wuha Chia limajiashe@whu.edu.c Abstract We give covolutio idetities without biomial coefficiets for Tetraacci umbers ad covolutio idetities with biomial coefficiets for Tetraacci ad Tetraacci-type umbers. Itroductio Covolutio idetities for various types of umbers or polyomials have bee studied, with or without biomial coefficiets, icludig Beroulli, Euler, Geocchi, Catala, Cauchy, Stirlig, Fiboacci ad Triboacci umbers [,, 3, 4, 5, 6, 7, 8, 9, 0, ].Tetraacci sequece has bee studied i [, 3, 4]. Tetraacci umbers T are defied by the recurrece relatio T = T +T +T 3 +T 4 4 with T 0 = 0, T = T =, T 3 = ad their sequece is give by {T } 0 = 0,,,,4,8,5,9,56,08,08,... [5, A000078]. The geeratig fuctio without factorials is give by x Tx := x x x 3 x 4 = T x =0 because of the recurrece relatio. O the other had, the geeratig fuctio with biomial coefficiets is give by tx := c e αx +c e βx +c 3 e γx +c 4 e δx x = T!, 3 =0

2 where α, β, γ ad δ are the roots of x 4 x 3 x x = 0 ad Notice that β +γ +δ+βγ +γδ +δβ c : = α βα γα δ = α 3 +6α, α+γ +δ+αγ +γδ +δα c : = β αβ γβ δ = β 3 +6β, α+β +δ+αβ +βδ +δα c 3 : = γ αγ βγ δ = γ 3 +6γ, α+β +γ+αβ +βγ +γα c 4 : = δ αδ βδ γ = δ 3 +6δ. because t has a Biet-type formula: c +c +c 3 +c 4 = 0, c α+c β +c 3 γ +c 4 δ =, c α +c β +c 3 γ +c 4 δ =, c α 3 +c β 3 +c 3 γ 3 +c 4 δ 3 =, T = c α +c β +c 3 γ +c 4 γ 0. I this paper, we give covolutio idetities without biomial coefficiets for Tetraacci umbers ad covolutio idetities with biomial coefficiets for Tetraacci ad Tetraacci-type umbers. Covolutio idetities without biomial coefficiets By, we have Hece, T x = +x +x 3 +3x 4 x x x 3 x 4. +x +x 3 +3x 4 Tx = x T x. 4

3 The left-had side of 4 is +x +x 3 +3x 4 T T x =0 =0 = T T x + T T x = = T T 3 x +3 T T 4 x =3 =4 4 t T +T +T 3 +3T 4 x =4 + T +T +3T 3 x +x +x 3. =4 The right-had side of 4 is x +T + x = T x. =0 = Therefore, we get the followig result. Theorem. For 4, we have 4 T T +T +T 3 +3T 4 = T T 3T 3. The idetity 4 ca be writte as Sice Tx = x +x +x 3 +3x 4T x. 5 +x +x 3 +3x 4 = l x l +x+3x l = = l=0 l x l l=0 m=0 3j+ m j+4 m j, i+j+=l i,j, 0 m j l i x j 3x i,j, + m j m j m j j 3 x m, j,j, 3

4 ad T x = +T + x, =0 the right-had side of 5 is x A l+t l+ x l = x where A = B = C = m=0 3j+ m j+4 m j, 3j+ l j+4 l j, 3j+ l j+4 l j, l=0 m j l j l j Sice the left-had side of 5 is = =0 l=0 Bl+T l+ x Cl+T l+ x, = l=0 + m j + l j + l j =0 T T x, m j m j j 3 x m, j,j, l j l 3j 4 j 3,,j, l j l 3j 4 j 3.,j, comparig the coefficiets o both sides, we obtai the followig result without biomial coefficiet. Theorem. For, where D = 3j+ l j+4 l j, T T = l+t l+ D, l j l=0 + l j 3 Some prelimiary lemmas l j l 3j 4 j 3.,j, For coveiece, we shall itroduce modified Tetraacci umbers T s0,s,s,s3, satisfyig the recurrece relatio T s0,s,s,s3 = T s0,s,s,s3 +T s0,s,s,s3 +T s0,s,s,s3 3 +T s0,s,s,s

5 with give iitial values T s0,s,s,s3 0 = s 0, T s0,s,s,s3 = s, T s0,s,s,s3 s,ad T s0,s,s,s3 3 = s 3. Hece, T = T 0,,, are ordiary Tetraacci umbers. First, we shall prove the followig four lemmata. Lemma. We have c e αx +c e βx +c 3e γx +c 4e δx = =0 = T 40,64,5,344 x!. Proof. For Tetraacci-type umbers s, satisfyig the recurrece relatio s = s +s +s 3 +s 4 4 with give iitial values s 0, s, s ad s 3, we have d e αx +d e βx +d 3 e γx +d 4 e δx x = s!. 6 =0 Sice d, d, d 3 ad d 4 satisfy the system of the equatios d +d +d 3 +d 4 = s 0, d α+d β +d 3 γ +d 4 γ = s, d α +d β +d 3 γ +d 4 γ = s, d α 3 +d β 3 +d 3 γ 3 +d 4 γ 3 = s 3, we have s 0 s β γ δ s β γ δ s 3 β 3 γ 3 δ 3 d = α β γ δ α β γ δ α 3 β 3 γ 3 δ 3 d = s 0 α s γ δ α s γ δ α 3 s 3 γ 3 δ 3 α β γ δ α β γ δ α 3 β 3 γ 3 δ 3 = s 0βγδ +s β +γ +δ s 3 s βγ +βδ +γδ β αγ αδ α = s 0γδα+s γ +δ +α s 3 s γδ +γα+δα γ βδ βα β,, 5

6 d 3 = s 0 α β s δ α β s δ α 3 β 3 s 3 δ 3 α β γ δ α β γ δ α 3 β 3 γ 3 δ 3 = s 0δαβ +s δ +α+β s 3 s δα+δβ +αβ δ γα γβ γ, d 4 = s 0 α β γ s α β γ s α 3 β 3 γ 3 s 3 α β γ δ α β γ δ α 3 β 3 γ 3 δ 3 = s 0αβγ +s α+β +γ s 3 s αβ +αγ +βγ α δβ δγ δ. Whe s 0 = 40, s = 64, s = 5 ad s 3 = 344, by α + β + γ + δ =, βγ+βδ+γδ = αβ+αγ+αδ = α α,αβγδ = adα 4 = α 3 +α +α+, we have d = 40βγδ +5β +γ +δ βγ +βδ +γδ β αγ αδ α. Similarly, we have d = c, d 3 = c 3 ad d 4 = c 4. Lemma. We have =0 t x! = c c e α+βx +c c 3 e α+γx +c c 4 e α+δx +c c 3 e β+γx +c c 4 e β+δx +c 3 c 4 e γ+δx, = c. where Proof. Sice t = T T T40,64,5,344. c e αx +c e βx +c 3 e γx +c 4 e δx = c eαx +c eβx +c 3 eγx +c 4 eδx +c c e α+βx +c c 3 e α+γx +c c 4 e α+δx +c c 3 e β+γx +c c 4 e β+δx +c 3 c 4 e γ+δx, 6

7 we ca obtai the followig idetity: =0 x T =! =0 = =0 x T T! T 40,64,5,344 x! + =0 t x!. Comparig the coefficiets o both sides, we get the desired result. Lemma 3. We have c c 3 c 4 e αx +c 3 c 4 c e βx +c 4 c c e γx +c c c 3 e δx = =0 T 5,,3,3 x!. Proof. I the proof of Lemma, we put s 0 = 5, s =, s = 3 ad s 3 = 3, istead. We have d = 5βγδ+3β +γ +δ 3 βγ +βδ +γδ β αγ αδ α = c c 3 c 4.. Similarly, we have d = c 3 c 4 c, d 3 = c 4 c c ad d 4 = c c c 3. Lemma 4. We have c c c 3 c 4 =. Proof. By α+β+γ+δ =, βγ+βδ+γδ = αβ+αγ+αδ = α α, αβγδ = ad α 4 = α 3 +α +α+, we have c c c 3 c 4 α = α βα γα δ β αβ γβ δ γ γ αγ βγ δ δ αδ βδ γ α β γ δ = α β α γ α δ β γ γ β β δ = 4α 3 3α α 39α 3 58α 3α 3 =. β δ 7

8 4 Covolutio idetities for three ad four Tetraacci umbers Before givig more covolutio idetities,we shall give some elemetary algebraic idetities i symmetric form.it is ot so difficult to determie the relatios amog coefficiets. Lemma 5. The followig equality holds: a+b+c+d 3 = Aa 3 +b 3 +c 3 +d 3 +Babc+abd+acd+bcd +Ca +b +c +d a+b+c+d +Dab+ac+ad+bc+bd+cda+b+c+d, where A = D, B = 3D+6, C = D+3. Lemma 6. The followig equality holds: a+b+c+d 4 = Aa 4 +b 4 +c 4 +d 4 +Babcd+Ca 3 +b 3 +c 3 +d 4 a+b+c+d +Da +b +c +d +Ea +b +c +d ab+ac+ad+bc+bd+cd +Fab+ac+ad+bc+bd+cd +Ga +b +c +d a+b+c+d +Hab+ac+ad+bc+bd+cda+b+c +Iabca+b+c+abda+b+d+bcdb+c+d+acda+c+d +Jabc+abd+bcd+acda+b+c+d, where A = D+E +G+H 3, B = D+G 4J, C = E G H+4, F = D G H+6, I = 4D E+G H J. Lemma 7. The followig equality holds: a+b+c+d 5 = Aa 5 +b 5 +c 5 +d 5 +Babcab+bc+ca+abdab+bd+ad+acdac+ad+cd+bcdbc+bd+cd +Cabca +b +c +abdb +c +d +acda +c +d +bcdb +c +d +Dabca+b+c +abda+b+d +acda+c+d +bcdb+c+d +Ea 4 +b 4 +c 4 +d 4 a+b+c+d+fa+b+c+dabcd +Ga+b+c+d abca+b+c+abda+b+d+bcdb+c+d+acda+c+d +Ha 3 +b 3 +c 3 +d 3 a +b +c +d 8

9 +Ia 3 +b 3 +c 3 +d 3 ab+ac+ad+bc+bd+cd +Jabc+abd+acd+bcda +b +c +d +Kabc+abd+acd+bcdab+ac+ad+bc+bd+cd +La 3 +b 3 +c 3 +d 3 a+b+c+d +Mabc+abd+acd+bcda+b+c+d +Na +b +c +d a+b+c+d +Pab+ac+ad+bc+bd+cd a+b+c+d +Qa +b +c +d ab+ac+ad+bc+bd+cda+b+c+d +Ra +b +c +d a+b+c+d 3 +Sab+ac+ad+bc+bd+cda+b+c+d 3, where A = I +L+N +P +Q+6R+4S 4, B = D G K M N 5P Q 6R S +30, C = D G I J L M P 3Q 6R 7S +0, E = I L N Q 3R S +5, F = 3G J 3K 7M P 3Q 6R 7S +60, H = L N P Q 4R 3S +0. Now, let us cosider the sum of three products with triomial coefficiets. Lemma 8. We have c 3 e αx +c 3 e βx +c 3 3e γx +c 3 4e δx = =0 T 5,7,48,07 x!. Proof. I the proof of Lemma, we put s 0 = 5, s = 7, s = 48 ad s 3 = 07, istead. We ca obtai that d = 5βγδ +48β +γ +δ 07 7βγ +βδ +γδ β αγ αδ α. Similarly, we have d = c 3, d 3 = c 3 3 ad d 4 = c 3 4. By usig Lemmata,, 3, 5 ad 8, we get the followig result. = c 3. 9

10 Theorem 3. For 0, T T T 3,, =,, 3 0 = A 3 T 5,7,48,07 B + C T 40,64,5,344 T +D T 5,,3,3 T t. where A = D, B = 3D+6, C = D+3, t = T T T40,64,5,344. Remar. If we tae D = 0, we have for 0, T T T 3,, =,, 3 0 = 3 T 5,7,48, T 40,64,5,344 T. Proof. First, by Lemmata,, 3, 5 ad 8, we have c e αx +c e βx +c 3 e γx +c 4 e δx 3 = Ac 3 e 3αx +c 3 e 3βx +c 3 3e 3γx +c 3 4e 3δx T 5,,3,3 +Bc c c 3 e α+β+γx +c c 3 c 4 e β+γ+δx +c c c 4 e α+β+δx +c c 3 c 4 e α+γ+δx +Cc e αx +c e βx +c 3e γx +c 4e δx c e αx +c e βx +c 3 e γx +c 4 e δx +Dc c e α+βx +c c 3 e α+γx +c c 4 e α+δx +c c 3 e β+γx +c c 4 e β+δx +c 3 c 4 e γ+δx c e αx +c e βx +c 3 e γx +c 4 e δx = A T 5,7,48,07 3x B! =0 + C =0 O the other had, 3 x T =! =0 =0 T 40,64,5,344 x T =,, 3 0! +D T 5,,3,3 x! =0 x T t!. x T T T 3,, 3!. 0

11 Comparig the coefficiets o both sides, we get the desired result. Next, we shall cosider the sum of the products of four tetraacci umbers. We eed the followig supplemetary result. The proof is similar to that of Lemma 8 ad omitted. Lemma 9. We have c 4 e αx +c 4 e βx +c 4 3e γx +c 4 4e δx = =0 T 305,4658,8804,645 x!. By usig Lemmata,, 3, 6, 8, ad 9,lettig I = 0 i Lemma 6, comparig the coefficiets o both sides, we ca get the followig theorem. Theorem 4. For 0, T T T 3 T 4,, 3, =,, 3, 4 0 = A 4 T 305,4658,8804,645 B + C + D + E + G +H J T 40,64,5,344 T 40,64,5,344 T 40,64,5,344 t +F =,, =,, =,, 3 0,, 3,, 3 3 T 5,7,48,07 T t t T 40,64,5,344 T T 3 t T T 3 T 5,,3,3,, T, 3 where A = D + E + G + H 3, B = 4D + 4E + 4G + 4H, C = E G H +4,F = D G H +6, J = 4D E +G H, t = T T T40,64,5,344. Remar. If D = E = G = H = 0, the by A = 3, B =, C = 4, F = 6

12 ad J = 0, we have for 0, T T T 3 T 4,, 3, =,, 3, 4 0 = 3 4 T 305,4658,8804, t t, =0 Let t x! 3 T 5,7,48,07 T = c c c 3 e α+β+γx c e αx +c e βx +c 3 e γx +c c 3 c 4 e β+γ+δx c e βx +c 3 e γx +c 4 e δx +c c c 4 e α+β+δx c e αx +c e βx +c 4 e δx +c c 3 c 4 e α+γ+δx c e αx +c 3 e γx +c 4 e δx. By usig Lemmata,, 3, 6, 8, ad 9, comparig the coefficiets o both sides, we ca get the followig theorem. Theorem 5. For 0,I 0 It =,, 3, =,, 3, 4 0 T T T 3 T 4 A 4 T 305,4658,8804,645 + B C D E G H + J =,, =,, 3 0 T 40,64,5,344 T 40,64,5,344 T 40,64,5,344 t F =,, 3 0,, 3,, 3 3 T 5,7,48,07 T t t T 40,64,5,344 T T 3 t T T 3 T 5,,3,3,, T, 3 where A = D+E +G+H 3, B = D+G 4J,

13 C = E G H+4, F = D G H+6, I = 4D E+G H J, t = T T T40,64,5,344. Remar. If D = E = G = H = 0, J =, the by A = 3, B = 8, C = 4, F = 6 ad I =, we have for 0, t = T T T 3 T 4,, 3, =,, 3, T 305,4658,8804, T 5,7,48,07 T 6 t t T 5,,3,3,, T =,, Covolutio idetities for five Tetraacci umbers We shall cosider the sum of the products of five tetraacci umbers. We eed the followig supplemetary result. The proof is similar to that of Lemma 8 ad omitted. Lemma 0. c 5 eαx +c 5 eβx +c 5 3 eγx +c 5 4 eδx = =0 T 500,43,598,4986 x!. By usig Lemmata,, 3, 7, 8, 9 ad 0, comparig the coefficiets o both sides, we ca get the followig theorems. 5. Let B = C = D = 0, we ca obtai the followig theorem. Theorem 6. For 0, T T 5,..., =,..., 5 0 = A 5 T 500,43,598, E F T +G t T + H 4 T 305,4658,8804,645 T 3 T 5,7,48,07 T 40,64,5,344 3

14 + I J K + L M =,, =,, =,, T 5,7,48,07 t =,, 3, N +P + Q + R +S =,, =,, =,, 3 0,, 3,, 3,, 3 T 5,,3,3 T 40,64,5,344 T 5,,3,3 t 3 T 5,7,48,07 T T 3 T 5,,3,3,, 3, T T 3 4,, 3,, =,, 3, =,, 3, 4 0,, 3 T 40,64,5,344 T 40,64,5,344 t t T 3 T 40,64,5,344 t T 3 T 40,64,5,344,, 3, T T 3 T 4 4,, 3, 4 t T T 3 T 4, T 3 where A = I +L+N +P +Q+6R+4S 4, E = I L N Q 3R S +5, F = 4G+I +L+6N +5P +6Q+8R+6S 50, H = L N P Q 4R 3S +0, J = G I L M P 3Q 6R 7S +0, K = G M N 5P Q 6R S +30, t ad t are same as those i theorem ad theorem 5, respectively. Remar. If G = I = L = M = N = P = Q = R = S = 0, the by A = 4, 4

15 E = 5, F = 50, H = 0, J = 0 ad K = 30, we have for 0, T T 5,..., =,..., 5 0 = 4 5 T 500,43,598, T =,, =,, 3 0,, 3 4 T 305,4658,8804,645 T 3 T 5,7,48,07 T 40,64,5,344 T 5,,3,3 T 40,64,5,344 T 5,,3,3,, t. 3 Let B 0, C = D = 0, we ca obtai the followig theorem. Let t x! =0 = c c c 3 e α+β+γx c c e α+βx +c c 3 e β+γx +c 3 c e γ+αx + +c c 3 c 4 e β+γ+δx c c 3 e β+γx +c 3 c 4 e γ+δx +c 4 c e δ+βx. Theorem 7. For 0, Bt =,..., 5 where =,..., 5 0 S =,, 3, 4 0 T T 5 A 5 T 500,43,598,4986 t T T 3 T 4,,, 3, 4 A = G J M +N P Q 3S +6, B = G K M N 5P Q 6R S +30, E = G+J +M N +P +Q+3R+6S 5, F = 3G J 3K 7M P 3Q 6R 7S +60, H = L N P Q 4R 3S +0, I = G J L M P 3Q 6R 7S +0, t ad t are same as those i theorem ad theorem 5, respectively. 5

16 Remar. If G = J = K = L = M = N = P = Q = R = S = 0, the by A = 6, B = 30, E = 5, F = 60, H = 0 ad I = 0, we have for 0, 30t = T T 5 6,..., 5 5 T 500,43,598, =,..., T 305,4658,8804,645 T T 5,7,48,07 T 40,64,5,344 0 Let C 0, B = D = 0, we ca obtai the followig theorem. Let =0 t 3 x! = c c c 3 e α+β+γx c e αx +c e βx +c 3e γx + Theorem 8. For 0, Ct 3 =,..., 5 where =,..., 5 0 S +c c 3 c 4 e β+γ+δx c e βx +c 3e γx +c 4e δx =,, 3, 4 0 T T T 5 A 5 T 500,43,598,4986 t T T 3 T 4,,, 3, 4 A = I +L+N +P +Q+6R+4S 4, C = G I J L M P 3Q 6R 7S +0, E = I L N Q 3R S +5, F = 3G J M +6N +3P +3Q+R+9S 30, H = L N P Q 4R 3S +0, K = G M N 5P Q 6R S +30, 3 T 5,7,48,07 t. t ad t are same as those i theorem ad theorem 5, respectively. Remar. If G = I = J = L = M = N = P = Q = R = S = 0, the by 6

17 A = 4, C = 0, E = 5, F = 30, H = 0 ad K = 30, we have for 0, 0t 3 = T T 5 + 4,..., 5 5 T 500,43,598, =,..., =,, T 305,4658,8804,645 T T 5,7,48,07 T 40,64,5,344,, 3 T 5,,3,3 t. Let D 0, B = C = 0, we ca obtai the followig theorem. Let =0 t 4 x! = c c c 3 e α+β+γx c e αx +c e βx +c 3 e γx + Theorem 9. For 0, Dt 4 =,..., 5 where =,..., 5 0 S +c c 3 c 4 e β+γ+δx c e βx +c 3 e γx +c 4 e δx =,, 3, 4 0 T T T 5 A 5 T 500,43,598,4986 t T T 3 T 4,,, 3, 4 A = I +L+N +P +Q+6R+4S 4, D = G I J L M P 3Q 6R 7S +0, E = I L N Q 3R S +5, F = 3G 6I 7J 7M +6N L 9P 5Q 4R 33S +90, H = L N P Q 4R 3S +0, K = I +J N +4L P +4Q+6R+S 0, t ad t are same as those i theorem ad theorem 5, respectively. 7

18 Remar. If G = I = J = L = M = N = P = Q = R = S = 0, the by A = 4, D = 0, E = 5, F = 90, H = 0 ad K = 0, we have for 0, 0t 4 = T T 5 + 4,..., 5 5 T 500,43,598, =,..., =,, T 305,4658,8804,645 T T 5,7,48,07 T 40,64,5,344,, 3 6 More geeral results T 5,,3,3 t. T We shall cosider the geeralcase of Lemmata, 8 ad 9. Similarly to the proof of Lemma, for tetraacci-type umbers s,, satisfyig the recurrece relatio s, = s, + s, + s, 3 + s, 4 4 with give iitial values s,0, s,, s, ad s,3, we have the form d eαx +d eβx +d 3 eγx +d 4 eδx = Theorem 0. For, we have c e αx +c e βx +c 3e γx +c 4e δx = A s x,!. T s,0,s,,s,,s,3, where s,0, s,, s,, s,3 ad A satisfy the recurrece relatios: x!, s,0 = ±lcmb,b,b 3, s, = Ms,0, s, = Ns,0, s,3 = Ps,0, A = A s, 4s,3 3s, s, s,0, b, b, b 3, M, N ad P are determied i the proof. 8

19 Proof. By d = A c, d = A c, d = s,0 c = βγδ +s, β +γ +δ s,3 s, βγ +βδ +γδ, β αγ αδ α β +γ +δ+βγ +γδ +δβ α βα γα δ α = α βα γα δ = α 3 +6α, we ca obtai the followig recurrece relatio: A = 3s, s, +s,3, B = 5s, +5s, 5s,3, C = 5s, s, +s,3, D = 5s, s, +s,3, E = s,0 s,, F = 5s,0, G = s,0 +6s,, H = s,0 s,, I = 4s, +6s,, J = 3s, 5s,, K = s, +s,, L = s, +s,, M = LA DIFA BE HA DEJA BI GA CEJA BI KA CIFA BE, N = MKA CI+LA DI, P = BN +CM +D, BI JA A M = a, N = a, P = a 3, with gcda i,b i =, b b b 3 s,0 = ±lcmb,b,b 3, s, = Ms,0, s, = Ns,0, s,3 = Ps,0, A = A s, 4s,3 3s, s, s,0. We choose the symbol of s,0 such that for some 0, 0, T s, is positive.,0,s,,s,,s,3 Next we shall cosider the geeral case of Lemma 3. Similarly to the proof of Lemma 3, for tetraacci-type umbers s,, satisfyig the recurrece relatio s, = s, + s, + s, 3 + s, 4 s,, s,, we have the form ad s,3 r eαx +r eβx +r 3 e γx +r 4 e δx = 9 4 with give iitial values s,0, s x,!,

20 where r, r, r 3 ad r 4 are determied by solvig the system of the equatios. Theorem. c c 3 c 4 eαx +c c 3 c 4 eβx +c c c 4 eγx +c c c 3 eδx = A T s,0,s,,s,,s,3, where s,0, s,, s,, s,3 ad A satisfy the recurrece relatios: s,0 = ±lcmb,b,b 3, s, = Ms,0, s, = Ns,0, s,3 = Ps,0, A = A s, s,3 6s,3 +03s, 57s, 0s,0, b,b, b 3, M, N ad P are determied i the proof. Proof. By r = A c c 3c 4, we ca obtai the followig recurrece relatio: A = 6s,0 6s, +58s, 7s,3, B = 03s,0 +03s, 43s, +70s,3, C = 57s,0 57s, 09s, +83s,3, D = 0s,0 0s, 4s, +6s,3, E = 3s,0 +6s, 330s, +57s,3, F = 06s,0 03s, +365s, 3s,3, G = 34s,0 +57s, +35s, 54s,3, H = 0s,0 +0s, +6s, 3s,3, I = 3s, 36s, +0s,3, J = 06s, +9s, +6s,3, K = 34s, +69s, 3s,3, L = 0s, 304s, +47s,3, M = LA DIFA BE HA DEJA BI GA CEJA BI KA CIFA BE, N = MGA CE+HA DE, P = BN +CM +D, BE FA A M = a, N = a, P = a 3, gcda i,b i =, b b b 3 s,0 = ±lcmb,b,b 3, s, = Ms,0, s, = Ns,0, s,3 = Ps,0, A = A s, s,3 6s,3 +03s, 57s, 0s,0. We choose the symbol of s,0 such that for some 0, 0, T s, is positive.,0,s,,s,,s,3 x!, 0

21 As applicatio, we compute some values of s,0, s,, s,, A for some. For =, we have A = 70, B = 8, C = 360, D = 36, E = 606, F = 377, G = 48, H = 888, I = 84, J = 963, K = 09, L = 79, M = 34, N = 6, P = , s,0 = 5, s, = 34, s, = 90, s,3 = 44, A =, c c 3 c 4 eαx +c c 3 c 4 eβx +c c c 4 eγx +c c c 3 eδx = T 5,34,90,44 x,!. For = 3, we have A = 079, B = 6833, C = 374, D = 86, E = 78, F = 6674, G = 04, H = 4508, I = 7, J = 450, K = 94, L = 0, M = , N = 5, P = 38 5, s 3,0 = 75, s3, = 353, s3, = 47, s3,3 = 66, A3 = 3, c 3 c3 3 c3 4 eαx +c 3 c3 3 c3 4 eβx +c 3 c3 c3 4 eγx +c 3 c3 c3 3 eδx = 3 T 75,353, 47,66 x,!. We ca obtai more covolutio idetities for ay fixed, but we oly some of the results.the proof of ext eight theorems are similar to the proofs of theorem lemma, 3, 4, 5, 6, 7, 8 ad 9, ad omitted. Let c c e α+βx + +c 3c 4e γ+δx = t x,!, the by previous algebraic idetities,we ca obtai the followig theorems. Theorem. For m 0,, where t,m = A c c eα+βx + +c 3 c 4 eγ+δx = m m T s,0,s,,s,,s,3, T s,m t x m,m m!,,0,s,,s,,s,3 m A T s,0,s,,s,,s,3,m.

22 Theorem 3. For m 0,, m,, 3 A 3 = A A 3 + where =m,, m T s3,0,s3,,s3,,s3,3,m + B C m A A + D A m m T s,0,s,,s,,s,3, T s,0,s,,s,,s,3, T s, 3 A m m T s,0,s,,s,,s,3, m T s T s,0,s,,s,,s,3, t t,m is determied i theorem.,m, m T s,0,s,,s,,s,3,,0,s,,s,,s,3,m A = D, B = 3D+6, C = D+3, Theorem 4. For m 0,, m,, 3, 4 A 4 = A A =m,, 3, 4 0 A + E A + 4 m T s4,0,,s4,3,m +B + D m m m T s,0,,s,3 m m m T s,0,,s,3,m G A A + H A + J A A =m,, =m,, =m,, 3 0 T s,0,s,,s,,s,3, T s C A 3 A m, T s,0,,s,3,m m m,, 3 m,, 3,, 3 t t,m +F m,0,s,,s,,s,3, 4 m 3 m T s3,m m t, t,m T s,0,,s,3, T s, T s,0,,s,3, T s,0,,s,3, 3 T s,0,,s,3, T s,0,,s,3,,,0,s,,s,,s,3,0,,s3,3 T s,0,,s,3,,0,,s,3, T s,0,,s,3, 3 where A = D+E +G+H 3, B = 4D+4E +4G+4H, C = E G H +4, F = D G H +6, J = 4D E +G H, is determied i theorem. t,m

23 Let t x,! = c c c 3 eα+β+γx c eαx +c eβx +c 3 eγx + +c c 3c 4e α+γ+δx c e αx +c 3e γx +c 4e δx. Theorem 5. For m 0,,I 0, It,m = m A 4,, 3, 4 A A 4 J A A =m,, 3, m T s4,m,0,,s4, =m,, 3 0 m,, 3 T s,0,,s,3, T s T s,0,,s,3,0,,s,3, 4, T s,0,,s,3,, where A = D+E +G+H 3,B = D+G 4J, C = E G H+4, F = D G H+6, I = 4D E+G H J, is determied i theorem. t,m Lemma 7 will be discussed i four cases. Case : B = C = D = 0. Theorem 6. For m 0,, m T s,0,,s,3,,, T s, 5 5 A 5 = A A =m,, m T s5 +F + H,0,,s5,3,m + m m m A 3 A m + I A 3 J + A A m E A 4 A T s,0,,s,3 m m, + G,0,,s,3 m 4 m T s4,m m m t A 3 m T s3,0,,s3,3 3 T s3,0,,s3, =m,, 3 0,m, t,m,0,,s4,3 T s,0,,s,3, Ts,0,,s,3,,m T s,0,,s,3, m T s,0,,s,3,,, T s, 3,0,,s,3 3

24 + K A =m,, 3 0 L A 3 A M A A N A A + P A where Q A A =m,, 3 0 R A A 3 S A 3 m,, =m,, =m,, 3, =m,, 3 0 m =m,, 3 0 T s m,, 3 m,, 3 m,, 3, 4,, 3 m =m,, 3, =m,, 3, 4 0 t, t,, 3,0,,s,3, t, 3 T s3,0,,s3,3, T s,0,,s,3, T s,0,,s,3, 3 T s T s,0,,s,3, T s, T s,0,,s,3, 3 T s,0,,s,3 m,, 3, 4 m,, 3, 4, t t,0,,s,3, T s,0,,s,3, T s,0,,s,3, 3,0,,s,3, T s,0,,s,3, 3, T s,0,,s,3, 3 T s,0,,s,3 A = I +L+N +P +Q+6R+4S 4, E = I L N Q 3R S +5,, T s,0,,s,3, T s,0,,s,3, 3 T s,0,,s,3, 4, T s,0,,s,3, T s,0,,s,3, 3 T s,0,,s,3, 4, F = 4G+I +L+6N +5P +6Q+8R+6S 50, H = L N P Q 4R 3S +0, J = G I L M P 3Q 6R 7S +0, K = G M N 5P Q 6R S +30, t,m ad t,m are determied i theorem ad 5, respectively. Case : B 0, C = D = 0. Let t x 3,! = c c c 3 eα+β+γx c c eα+βx +c c 3 eβ+γx +c 3 c eγ+αx + +c c 3 c 4 eβ+γ+δx c c 3 eβ+γx +c 3 c 4 eγ+δx +c 4 c eδ+βx. 4

25 Theorem 7. For m 0,, Bt 3,m = m A 5,, 5 A where A 5 S A =m,, m T s5,m,0,,s5, =m,, 3, 4 0 m,, 3, 4 T s,0,,s,3, T s t A = G J M +N P Q 3S +6,,0,,s,3, 5, T s,0,,s,3, T s,0,,s,3, 3 T s,0,,s,3, 4, B = G K M N 5P Q 6R S +30, E = G+J +M N +P +Q+3R+6S 5, F = 3G J 3K 7M P 3Q 6R 7S +60, H = L N P Q 4R 3S +0, I = G J L M P 3Q 6R 7S +0, t,m ad t,m are determied i theorem ad 5, respectively. Case 3: C 0, B = D = 0. Let t x 4,! = c c c 3 eα+β+γx c eαx +c eβx +c 3 eγx + +c c 3 c 4 eβ+γ+δx c eβx +c 3 eγx +c 4 eδx. Theorem 8. For m 0,, Ct 4,m = m A 5,, 5 A A 5 S A =m,, m T s5,m,0,,s5, =m,, 3, 4 0 m,, 3, 4 T s,0,,s,3, T s t,0,,s,3, 5, T s,0,,s,3, T s,0,,s,3, 3 T s,0,,s,3, 4, 5

26 where A = I +L+N +P +Q+6R+4S 4, C = G I J L M P 3Q 6R 7S +0, E = I L N Q 3R S +5, F = 3G J M +6N +3P +3Q+R+9S 30, H = L N P Q 4R 3S +0, K = G M N 5P Q 6R S +30, t,m ad t,m are determied i theorem ad 5, respectively. Case 4: D 0, B = C = 0. Let t x 5,! = c c c 3 eα+β+γx c eαx +c eβx +c 3 eγx + +c c 3 c 4 eβ+γ+δx c eβx +c 3 eγx +c 4 eδx. Theorem 9. For m 0,, Dt 5,m = m A 5,, 5 A where A 5 S A =m,, m T s5,m,0,,s5, =m,, 3, 4 0 m,, 3, 4 T s,0,,s,3, T s t A = I +L+N +P +Q+6R+4S 4, D = G I J L M P 3Q 6R 7S +0, E = I L N Q 3R S +5,,0,,s,3, 5, T s,0,,s,3, T s,0,,s,3, 3 T s,0,,s,3, 4, F = 3G 6I 7J 7M +6N L 9P 5Q 4R 33S +90, H = L N P Q 4R 3S +0, K = I +J N +4L P +4Q+6R+S 0, t,m ad t,m are determied i theorem ad 5, respectively. 6

27 7 Some more iterestig geeral expressios We shall give some more iterestig geeral expressios. Lemma. For, we have Theorem 0. c c 3 +c 3 c 4 +c 4 c e αx +c 3 c 4 +c 4 c +c c 3 e βx +c c +c c 4 +c 4 c e γx +c c +c c 3 +c c 3 e δx = T 46,46,58,080 x!. c c 3 +c 3 c 4 +c 4 c e αx +c 3 c 4 +c 4 c +c c 3 e βx +c c +c c 4 +c 4 c e γx +c c +c c 3 +c c 3 e δx = A T s 3,0,s 3,,s 3,,s 3,3 x 3, 3!, where s 3,0, s 3,, s 3,, s 3,3 ad A 3 satisfy the recurrece relatios: s 3,0 = ±lcmb,b,b 3, s 3, = Ms 3,0, s 3, = Ns 3,0, s 3,3 = Ps 3,0, A 3 = A 6s 3,3 +03s 3, 57s 3, 0s 3 8s 3,3 +0s 3, +7s 3, 6s 3,0 b,b, b 3, M, N ad P are determied i the proof. 3,0 Proof. Similarly to the proof of Theorem, we cosider the form h eαx +h eβx +h 3 eγx +h 4 eδx =. s x 3,!. By h = A 3 c c 3 + c 3 c 4 + c 4 c, we ca obtai the followig recurrece relatio: A = 650s 3,0 +385s 3, +854s 3, 664s 3,3, B = 86s 3,0 +3s 3, 67s 3, +78s 3,3, C = 00s 3,0 380s 3, 47s 3, +5s 3,3, D = 6s 3,0 5s 3, 70s 3, +48s 3,3, E = 98s 3,0 083s 3, 906s 3, +368s 3,3, F = 434s 3,0 +84s 3, +3473s 3, 769s 3,3, 7

28 G = 988s 3,0 +935s 3, 757s 3, 933s 3,3, H = 58s 3,0 +80s 3, +90s 3, 834s 3,3, I = 68s 3,0 +86s 3, 3s 3, 6s 3,3, J = 303s 3,0 690s 3, +46s 3, +666s 3,3, K = 3980s 3,0 373s 3, +638s 3, +60s 3,3, L = 0s 3,0 869s 3, 490s 3, +6s 3,3, M = LA DIFA BE HA DEJA BI GA CEJA BI KA CIFA BE, N = MGA CE+HA DE, P = BN +CM +D, BE FA A M = a b, N = a b, P = a 3 b 3, gcda i,b i =, s 3,0 = ±lcmb,b,b 3, s 3, = Ms 3,0, s 3, = Ns 3,0, s 3,3 = Ps 3,0, A 3 = A 6s 3,3 +03s 3, 57s 3, 0s 3 8s 3,3 +0s 3, +7s 3, 6s 3,0 3,0 We choose the symbol of s 3,0 such that for some 0, 0, T s 3, is positive.. 3,0,s 3,,s 3,,s 3,3 Refereces [] T. Agoh ad K. Dilcher, Covolutio idetities ad lacuary recurreces for Beroulli umbers, J. Number Theory , 05. [] T. Agoh ad K. Dilcher, Higher-order recurreces for Beroulli umbers, J. Number Theory , [3] T. Agoh ad K. Dilcher, Higher-order covolutios for Beroulli ad Euler polyomials, J. Math. Aal. Appl , [4] K. Dae Sa ad K. Taeyu Some idetities ivolvig Geocchi polyomials ad umbers, Ars Combi. 05, [5] Su, ZhiWei, Biomial coefficiets, Catala umbers ad Lucas quotiets, Sci. Chia Math.53 00, [6] T. Komatsu, Higher-order covolutio idetities for Cauchy umbers of the secod id, Proc. Jagjeo Math. Soc. 8 05,

29 [7] T. Komatsu, Higher-order covolutio idetities for Cauchy umbers, Toyo J. Math [8] T. Komatsu ad Y. Simse, Third ad higher order covolutio idetities for Cauchy umbers, Filomat , [9] K. Doha ad Lee, Eu Gu Relatioship amog biomial coefficiets, Beroulli umbers ad Stirlig umbers, Ars Combi. 5 06, [0] T. Komatsu, Z. Masaova ad E. Pelatova, Higher-order idetities for Fiboacci umbers, Fiboacci Quart. 5, 04, o.5, [] E. Kili, Triboacci sequeces with certai idices ad their sums, Ars Comb. 86, 008, 3. [] W. Marcellus E, The Tetraacci sequece ad geeralizatios, Fiboacci Quart , o., 9 0. [3] W. Marcellus E, Some properties of the Tetraacci sequece modulo m, Fiboacci Quart , o.3, 3C-38. [4] G. Carlos Alexis ad L. Floria Power of two-classes i -geeralized Fiboacci sequeces, Rev. Colombiaa Mat , o., 9C-34. [5] N. J. A. Sloae, The O-Lie Ecyclopedia of Iteger Sequeces, available olie at 9

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators Tamsui Oxford Joural of Mathematical Scieces 20(2) (2004) 175-186 Aletheia Uiversity A New Class of Aalytic -Valet Fuctios with Negative Coefficiets ad Fractioal Calculus Oerators S. P. Goyal Deartmet

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Hcettepe Jourl of Mthemtics d Sttistics Volume 4 4 013, 331 338 SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Nuretti IRMAK, Murt ALP Received 14 : 06 : 01 : Accepted 18 : 0 : 013 Keywords:

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Certain Sequences Involving Product of k-bessel Function

Certain Sequences Involving Product of k-bessel Function It. J. Appl. Coput. Math 018 4:101 https://doi.org/10.1007/s40819-018-053-8 ORIGINAL PAPER Certai Sequeces Ivolvig Product of k-bessel Fuctio M. Chad 1 P. Agarwal Z. Haouch 3 Spriger Idia Private Ltd.

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique. Further Conepts for Avne Mthemtis - FP1 Unit Ientities n Roots of Equtions Cui, Qurti n Quinti Equtions Cui Equtions The three roots of the ui eqution x + x + x + 0 re lle α, β n γ (lph, et n gmm). The

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points Applied Mathematical Sciences, Vol. 2, 2008, no. 35, 1739-1748 Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points S. M. Khairnar and

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Gauss Radau formulae for Jacobi and Laguerre weight functions

Gauss Radau formulae for Jacobi and Laguerre weight functions Mathematics ad Computers i Simulatio 54 () 43 41 Gauss Radau formulae for Jacobi ad Laguerre weight fuctios Walter Gautschi Departmet of Computer Scieces, Purdue Uiversity, West Lafayette, IN 4797-1398,

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1. Vol. 35 ( 205 ) No. 4 J. of Math. (PRC), (, 243002) : a.s. Marov Borel-Catelli. : Marov ; Borel-Catelli ; ; ; MR(200) : 60F5 : O2.4; O236 : A : 0255-7797(205)04-0969-08 Shao-McMilla,. Shao 948 [],, McMilla

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1 Bulleti of the Trasilvaia Uiversity of Braşov Vol 5) - 00 Series III: Mathematics, Iformatics, Physics, -4 ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY Gabriel STAN Abstract A extesio ad a refiemet

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

δ β β γ δ ββ γ α β α α α α α α α α δ δ γ γ δ δ δ δ β β α α α α α α α α β γδ α β γ δ α βγδ αβγδ δγ βα α β γ δ O α β γ δ αγ α γ α γ δ αγδ α αγ γ γ δ γ α γ β β β β β β β α γ β β β β β μ μ β β

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS ESTIMATES FO WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS V F Babeo a S A Sector Let ψ D be orthogoal Daubechies wavelets that have zero oets a let W { } = f L ( ): ( i ) f ˆ( ) N We rove that li

Διαβάστε περισσότερα

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Identities of Generalized Fibonacci-Like Sequence

Identities of Generalized Fibonacci-Like Sequence Tuish Joual of Aalysis ad Numbe Theoy, 4, Vol., No. 5, 7-75 Available olie at http://pubs.sciepub.com/tjat//5/ Sciece ad Educatio Publishig DOI:.69/tjat--5- Idetities of Geealized Fiboacci-Lie Sequece

Διαβάστε περισσότερα

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..

Διαβάστε περισσότερα