PZMAP Residue rastavljanje na parcijalne razlomke

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PZMAP Residue rastavljanje na parcijalne razlomke"

Transcript

1 AUTOMATIZACIJA Laboratorijske vježbe MatLab/Simulink (Octave, Scilab) 1. Uvod u MatLab (Octave, Scilab) 2. Matematičko modeliranje komponenti sustava 3. Matlab (Octave, Scilab) u analizi automatskih sustava pomoću prijenosne funkcije 4. Modeliranje i simulacija sustava pomoću Simulink-a (Scilab/Xcos) 5. Vremenski odzivi sustava za različite koeficijente prigušenja (Po, P1, P2) 6. Utjecaj parametara PID regulatora i vremenskog kašnjenja na odziv i amplitudno fazno frekvencijsku karakteristiku sustava (P, PI, PID). 7. Kolokvij ODREĐIVANJE POLOVA, NULA SUSTAVA: NAREDBE : PZMAP, RESIDUE PZMAP (G) služi za računanje i crtanje polova i nula prijenosne funkcije u kompleksnoj ravnini [P,Z]=pzmap(G) računanje polova i nula prijenosne funkcije, P: matrica polova a Z: matrica nula pzmap(g) crtanje polova i nula prijenosne funkcije, pole (G) računanje polova prijenosne funkcije zero (G) računanje nula prijenosne funkcije Izračunaj i nacrtaj polove i nule prijenosne funkcije koristeći naredbu pzmap : PZMAP Izračunaj i nacrtaj polove i nule prijenosne funkcije : (s 2 +s+1)/(s 3-5s 2 +8s-4) br=[1 1 1]; naz=[ ]; G=tf(br,naz) [P,Z]=pzmap(G) % računanje pzmap(g) (s 2 +s+1) (s 3-5s 2 +8s-4) Residue rastavljanje na parcijalne razlomke Kvocijent dvaju polinoma može se rastaviti na parcijalne razlomke gdje je M broj polova (duljina R, P i E), k vektor je polinom reda N-1 koji predstavlja izravni doprinos, a e vektor određuje mnoštvo m-t ostatka pola. [br, naz] = residue (r, p, k, e) ODREĐIVANJE VREMENSKOG ODZIVA SUSTAVA NAREDBE: STEP, IMPULSE, LSIM STEP računanje i crtanje vremenskog odziva na step pobudu IMPULSE računanje i crtanje vremenskog odziva sustava na Dirac-ov impuls, y=step(g) računanje odziva sustava, y(t), pri čemu je t vremenski vektor za kojega računamo odziv; opcijski argument (ako nije zadan, Matlab ga automatski određuje) y: izračunati odziv sustava step(g, t) crtanje y=impulse(g, t) računanje odziva sustava, y(t), impulse(g, t) crtanje vremenskog odziva LSIM (G) računanje i crtanje vremenskog odziva sustava na proizvoljno zadanu ulaznu funkciju y=lsim(g,u,t); računanje lsim(g,u,t) crtanje P2rez.m 1

2 Primjeri Izračunati i nacrtati vremenski odziv zadane prijenosne funkcije G(s) =1/(s 2 +s+1) na jediničnu skokovitu, impulsnu i proizvoljno zadanu ulaznu funkciju u=5t u vremenskom intervalu od 0 do 3 sekunde sa korakom 0,01. OCTAVE br=[1]; naz=[1 1 1]; G=tf(br,naz) Ys=step(G); step(g,2); step(g,12) MatLab br=[1]; naz=[1 1 1]; step(br,naz); Promjena trajanja odziva % crtanje odziva OCTAVE ( tko želi više ) T1 = 0.4; % vremenska konstanta P = tf([1], [T1 1]); % kreiranje modela transfer funkcije step(p, 2) % plot step odziv (trajanje 2 s) % dodaci markera za tangente koje presijecaju linije lim(n->inf) f(t) pri t=t1 hold on plot ([0 T1], [0 1], "g") plot ([T1 T1], [0 1], "k") plot ([0 T1], [1-1/e 1-1/e], "m") hold off Primjeri Izračunati i nacrtati vremenski odziv zadane prijenosne funkcije G(s) =1/(s 2 +s+1) na jediničnu skokovitu, impulsnu i proizvoljno zadanu ulaznu funkciju u=5t u vremenskom intervalu od 0 do 3 sekunde sa korakom 0,01. br=[1]; naz=[1 1 1]; G=tf(br,naz) ys=step(g); step(g) figure % crtanje odziva yi=impulse(g); impulse(g) t=0:0.01:3; u=5*t; % crtanje odziva y=lsim(g,u,t); % računanje odziva plot(t,u,t,y) % crtanje pobude i odziva Ili lsim(g,u,t) % crtanje y(t) p2odzivstep2 Potrebno je izračunati i nacrtati vremenski odziv sustava y(t) na proizvoljno zadanu ulaznu funkciju: u=5t 2 u vremenskom intervalu od 0 do 3 sekunde sa korakom 0,01 za prijenosnu funkciju G(s)= 25/(s 2 + 5s+25). br=[25]; naz=[1 5 25]; G=tf(br,naz); t=0:0.01:3; u=5*t.^2; y=lsim(g,u,t); plot(t,u,t,y) Ili >>lsim(g,u,t) % definiranje vremenskog vektora % definiranje ulazne funkcije % računanje odziva % crtanje pobude i odziva % samo crtanje u(t) i y(t) OCTAVE(P2_odzivslf) Analiza - vremenski kontinuirani sustavi koje opisujemo pomoću diferencijalnih jednadžbi sa stalnim koeficijentima br = [0 0 1]; % definiramo koeficijente brojnika naz= [1 2 3]; % definiramo koeficijente nazivnika G = tf(br, naz) % definiramo sustav Transfer funkcija: 1 /( s^2 + 2 s + 3) impulse(g); % crtamo impulsni odziv mirnog sustava step(g); % crtamo odziv na jedinični skok pzmap(g); % crtamo položaj polova i nula t = 0:0.001:10; u = t > 0.5; % definiramo pobudu kao skok u 0.5 y = lsim(g, u, t); % računamo odziv mirnog sustava na pobudu plot(t, y); % crtamo odziv Zadatak Za zadanu prijenosnu funkciju 1 /( s s + 3) nacrtati a) odziv na impulsnu pobudu b) odziv na jediničnu odskočnu funkciju c) polove i nule funkcije d) odziv na funkciju prema slici ako je zadano t od 0 do 10 sa korakom 0,001. e) Sve prethodno nacrtati u jednom prozoru pomoću naredbi subplot 2

3 ZADATAK (samostalni) Zadan je mehanički sustav s oprugom prikazan na slici. Odrediti i nacrtati pomak mase M ako na nju djelujemo: a) konstantnom silom od 5N b) silom oblika f(t)=3sin(t) Zadano je: M=10 kg; k=1 N/m; b=0,5 Ns/m (t je od 1 do 200 sa korakom 0,1) Prijenosnu funkciju odredit ćemo kao omjer pomaka i narinute sile: Mx (t) = f(t) kx(t) bx'(t) s 2 MX(s)=F(s)-kX(s)-bs(s) X(s)[ s 2 MX(s)+bs+k]=F(s) tj. Za određivanje odziva sustava (pomaka x(t) ) koristit ćemo naredbu lsim(): x=lsim(g,u,t) % za OCTAVE; x=lsim(br,naz,u,t) % za Matlab; pri čemu su : u=f(t) narinuta sila, a x=x(t) pomak mase P2_zad2.m Prijenosna funkcija (transfer function) povezuje ulaz i izlaz sustava predstavljajući dinamičko ponašanje Ocjena kvalitete ponašanja u vremenskoj domeni za ocjenu točnosti sustava u stacionarnom ili prijelaznom procesu, koriste se standardne pobudne (ulazne) funkcije, tako da se na osnovi odziva sustava mogu dobiti poznati pokazatelji točnosti (nadvišenje, vrijeme smirivanja, frekvencija oscilacija i sl.). T r - vrijeme porasta (eng. RiseTtime ) vrijeme od 10% na 90% vrijednosti ustaljenog stanja ukoliko je na ulazu dovedena jedinična odskočna pobuda. T x - vrijeme smirivanja na x % vrijednost (eng. x% Settling Time) vrijeme za koje odziv sustava uđe u ±x % konačne vrijednosti odziva. T p - period prigušenih oscilacija i s njim povezana frekvencija prigušenih oscilacija f p = 1/ T p i kružna frekvencija prigušenih oscilacija ω P = 2π f p T m - vrijeme prvog, maksimalnog prebačaja u odzivu sustava (eng. Peak Time) i M iznos prvog, maksimalnog prebačaja (eng. Maximal Overshoot) koji se često definira i u postocima konačne vrijednosti odziva i naziva maksimalni postotni prebačaj (eng. Maximal Percent Overshoot). Razlomljenu racionalnu prijenosnu funkciju G(s) prikladno je faktorizirati (npr. u analizi stabilnosti sustava) gdje su: S Ni nule od G(s) S pj polovi od G(s) Octave -Matlab Za prijenosnu funkciju potrebno je odrediti: a)raspored nula i polova pomoću faktoriziranja funkcije, [z, p, k] = tf2zp (brojnik,nazivnik) b)bodeov dijagram c)nyquistov dijagram S Ni i S pj mogu biti: realni i konjugirano-kompleksni O položaju polova i nula prijenosne funkcije (matrice) u kompleksnoj s-ravnini ovisi vladanje sustava. 3

4 Octave-Matlab Za prijenosnu funkciju potrebno je odrediti: a)raspored nula i polova b)bodeov dijagram c)nyquistov dijagram b)bodeov dijagram. bode(w) Octave -Matlab c) Nyquistov dijagram dobiva se naredbom: nyquist(w) Raspored nula i polova brojnik = [.3 1]; p1 = [1 1]; p2 = [1.5]; nazivnik = conv(p1, p2); W = tf (brojnik, nazivnik); pzmap(w) MatLab zpk(w) Zero/pole/gain: kreiranje funkcije prijenosa iz nula polova i pojačanja 0.3 (s+3.333) (s+1) (s+0.5) [z, p, k] = tf2zp (brojnik,nazivnik) Zadatatak (samostalni) Za prijenosnu funkciju izračunati nule, polove i pojačanje te nacrtaj zero-pole mapu. Prijenosna funkcija Octave p3_zad_zpk.m G= tf( [1 5 6], [ ] ); pzmap(g) [z,p,k] =tf2zp(g) pzmap(g) br = [1 5 6] naz = [ ] G= tf( br, naz ) pzmap(g) zpk(g) Grafičko prikazivanje frekvencijskih karakteristika. Najčešće korišteni grafički prikazi su: Nyquist-ov dijagram Bode-ovi dijagrami, Nichols-ov dijagram. Metode za promatranje frekvencijskog odziva sustava baziraju se na promatranju odziva u ustaljenom stanju na sinusnu pobudu. Ako na ulaz sustava s prijenosnom funkcijom W(s) dovedemo sinusnu pobudu oblika x(t)=asin(ωt), izlaz u ustaljenom stanju imat će oblik: y(t)=amsin(ωt + φ). Pri čemu su M(ω) i φ(ω) amplituda i faza prijenosne funkcije W(s), s=jω Nyquist-ov dijagram - je polarni dijagram prijenosne funkcije W(jω) za frekvencijski opseg - <ω<+. - polarni dijagram predstavlja prikaz prijenosne funkcije sustava W(jω) u kompleksnoj ravnini. - PF otvorene petlje - PF zatvorene petlje Sustav sa zatvorenom povratnom vezom W(s) je stabilan samo onda ako Nyquistov dijagram prijenosne funkcije otvorene petlje W 0 (s) obilazi točku 1+0j u smjeru obrnutom kazaljci na satu onoliko puta koliko funkcija otvorene petlje W 0 (s) ima polova s pozitivnim realnim dijelom (tj. u desnoj poluravnini). 4

5 Broj polova u desnoj poluravnini, P Broj obilazaka dijagrama oko točke 1+0j = N (predznak od N '+ obilazak u smjeru kazaljke na satu; predznak od N '-' za obilaske suprotno smjeru kns) Da bi sustav bio stabilan, treba biti zadovoljeno: P = -N OCTAVE, MATLAB NAREDBE Kriterij stabilnosti ili kritična točka stabilnosti je : W0(jω)= -1 odnosno (-1, j0) Nyquistov kriterij stabilnosti Wo=tf(br,naz) nyquist(wo) % Crta Nyquistov dijagram nyquist(wo, w) % crta Nyquistov dijagram za zadane frekvencije [Re, Im, W]=nyquist(Wo) % Vraća vektore re. i imag. dijela nyquist (br,naz) % Crta Nyquistov dijagram nyquist (br,naz,w) % u ovisnosti o frekvenciji w [Re,Im,w] = nyquist (br,naz) % Vraća vektore re. i imag. dijela Z1. Za sustav s negativnom jediničnom povratnom vezom zadana je prijenosna funkcija otvorene petlje: Rješenje: a)nacrtati Nyquist-ov dijagram te zaključiti o stabilnosti sustava. b)odrediti prijenosnu funkciju zatvorene petlje (W(s)=Y(s)/X(s)) te naći vremenski odziv sustava na jediničnu pobudu. Polarni dijagram se crta za 0 w +. Zato uvijek treba uzeti ω = 0 i ω =, one ω za koje je Re = 0 i Im = 0, te još poneku točku između. Wo=tf(br,naz) nyquist(wo) % Crta Nyquistov dijagram nyquist(wo,w) % crta Nyquistov dijagram za zadane frekvencije [Re, Im, W]=nyquist(Wo) % Vraća vektore re. i imag. dijela Slika prikazuje skicirani polarni dijagram (puna crvena linija) i nadopunu do Nyquistovog dijagrama (isprekidana plava linija). Z1. Za sustav s negativnom jediničnom povratnom vezom zadana je prijenosna funkcija otvorene petlje: a) Nacrtati Nyquist-ov dijagram te zaključiti o stabilnosti sustava. b) Odrediti prijenosnu funkciju zatvorene petlje (W(s)=Y(s)/X(s)) te naći vremenski odziv sustava na jediničnu pobudu. Wo(s)=5/(s 2 +5s) z1.m br=[5]; naz=[1 5 0]; Wo=tf(br,naz) nyquist(wo) [Re, Im, W]=nyquist(Wo, 1) br_wo=[5]; naz_wo=[1 5 0]; nyquist(br_wo, naz_wo) [Re, Im]=nyquist(br_Wo, naz_wo, 1) Re = Im = Sustav je asimptotski stabilan samo onda kada svi korijeni karakteristične jednadžbe sadrže negativne realne korijene. >> [Re, Im]=nyquist(Wo, 5) Re = Im = >> [Re, Im]=nyquist(Wo, inf) Re = -0 Im = 0 >> [Re, Im]=nyquist(Wo, 0) Warning: 5

6 Zadatak (samostalni) Pronađimo prijenosnu funkciju sustava i vremenski odziv na jediničnu odskočnu pobudu, te se na temelju odziva uvjerimo o stabilnosti sustava: >> [Re, Im]=nyquist(br_Wo, naz_wo, ) Re = Im = e+004 Polovi=pole(Wo) Polovi = Nyquistov dijagram nijednom ne obilazi točku 1+0j, a prijenosna funkcija otvorene petlje nema polova u desnoj poluravnini, zaključujemo da je sustav W(s) stabilan (P=N=0) Pronađimo prijenosnu funkciju sustava i vremenski odziv na jediničnu odskočnu pobudu, te se na temelju odziva uvjerimo o stabilnosti sustava: Pronađimo prijenosnu funkciju sustava i vremenski odziv na jediničnu pobudu, sustava sa negativnom jediničnom povratnom vezom te se na temelju odziva uvjerimo o stabilnosti sustava: OCTAVE p3_zodzivn.m brw =[0 0 5 ]; nazw = [1 5 5] ; W=tf(brW,nazW) W1=feedback(W,1) step(w1) Vremenski odziv (konačna pobuda, konačni odziv) potvrđuje stabilnosti do koje smo došli na temelju Nyquistovog dijagrama. brw =[0 0 5 ]; nazw = [1 5 5] ; [br_w,naz_w]=cloop(br_wo,naz_wo) step(br_w, naz_w) Vremenski odziv (konačna pobuda, konačni odziv) potvrđuje stabilnosti do koje smo došli na temelju Nyquistovog dijagrama. Bode-ovi dijagrami - ovisnost amplitude prijenosne funkcije (u decibelima) i faze φ (u stupnjevima) o frekvenciji ω, crtano u semilogaritamskom mjerilu. Graf ovisnosti amplitude M o frekvenciji naziva se amplitudna frekvencijska karakteristika. Graf ovisnosti faze φ o frekvenciji naziva se fazna frekvencijska karakteristika. Bode-ove dijagrame obično crtamo za prijenosne funkcije otvorene petlje Wo(s). Sintaksa za računanje i crtanje frekvencijskih odziva (Octave, MatLab) bode(g) // bode(br,naz) % crta amplitudni i fazni bodeov dijagram bode(g,{w min,w max }) // bode(br,naz,{w min,w max }) % crta bodeove dijagrame za frekvencije između wmin i wmax bode(g,w) // bode(br,naz,w) % crta za frekv. Zadane vektorom w koji najčešće prethodno zadajemo, logspace(): bode(tf([3],[1])) // bode([3],[1]) % kreira Bode-ove dijagrame proporcionalnog elementa K=3. 6

7 Metode za promatranje frekvencijskog odziva sustava baziraju se na promatranju odziva u ustaljenom stanju na sinusnu pobudu. M(ω) - amplituda φ(ω) - faza prijenosne funkcije W(s) s=jω Prikazujemo kao vektor dužine M(ω) i faznog zakreta φ(ω) - za pozitivan smjer faze φ(ω) uzet je smjer obrnut od kazaljke na satu. Pravilo za utvrđivanje stabilnosti sustava po Bode-ovom kriteriju: [AP,FP,w_pi, w_i] =margin(wo) MATLAB NAREDBE (Octave,Matlab) Za računanje vrijednosti ω I, ω П te AP i FP koristi se slijedeća Matlabova naredba: Sustav sa zatvorenom povratnom vezom W(s) biti će stabilan ako amplitudni Bodeov dijagram prijenosne funkcije otvorene petlje W o (s) siječe frekvencijsku os prije nego fazni Bodeov dijagram siječe pravac 180 o (tj. ako je ω I < ω П ). Tada će AP(pričuva) i FP imati pozitivne vrijednosti. >> margin(wo) % crta BD i označava AP i FP margin(br, naz) >> [AP,FP,w_pi, w_i] =margin(wo) [AP, FP, w_pi, w_i]=margin(br, naz) Za prethodni zadatak >> margin(wo) % Octave >> margin(brwo, nazwo) % Matlab ZADATAK: Na temelju Bodeovih dijagrama odrediti ω I, ω П, AP i FP te zaključiti da li je regulacijski sustav stabilan. Dok smo sa slike približno mogli očitati željene parametre, Octave // Matlab će nam precizno izračunati njihove vrijednosti: III >> [AP, FP, w_pi, w_i]=margin(tf([20],[ ]) ) %Octave >> [AP, FP, w_pi, w_i]=margin([20],[ ]) %MatLab AP= FP = w_pi = w_i = >>AP_dB=20*log10(AP) % pretvaranje u db AP_dB = >> margin(tf([20],[ ])) >>margin([20],[ ]) 7

8 8

Napisat demo program koji generira funkciju prijenosa G(s)=(2s+4)/(s2+4s+3) s=tf('s'); Br=2*s+4;Naz=s^2+4*s+3; G=Br/Naz

Napisat demo program koji generira funkciju prijenosa G(s)=(2s+4)/(s2+4s+3) s=tf('s'); Br=2*s+4;Naz=s^2+4*s+3; G=Br/Naz LV3 Napisat demo program koji generira funkciju prijenosa G(s)=(2s+4)/(s2+4s+3) s=tf('s'); Br=2*s+4;Naz=s^2+4*s+3; G=Br/Naz s=tf('s'); Br=2*(s+2);Naz=(s+1)*(s+3); G=Br/Naz s=tf('s'); Br=[2 4];Naz=[1 4

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu I Definisanje frekventnih karakteristika Dinamički modeli sistema se definišu u vremenskom, Laplace-ovom

Διαβάστε περισσότερα

Funkcija prenosa. Funkcija prenosa se definiše kao količnik z transformacija odziva i pobude. Za LTI sistem: y n h k x n k.

Funkcija prenosa. Funkcija prenosa se definiše kao količnik z transformacija odziva i pobude. Za LTI sistem: y n h k x n k. OT3OS1 7.11.217. Definicije Funkcija prenosa Funkcija prenosa se definiše kao količnik z transformacija odziva i pobude. Za LTI sistem: y n h k x n k Y z X z k Z y n Z h n Z x n Y z H z X z H z H z n h

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Prikaz sustava u prostoru stanja

Prikaz sustava u prostoru stanja Prikaz sustava u prostoru stanja Prikaz sustava u prostoru stanja je jedan od načina prikaza matematičkog modela sustava (uz diferencijalnu jednadžbu, prijenosnu funkciju itd). Promatramo linearne sustave

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

PREDMET: Upravljanje sistemima. Frekvencijske karakteristike

PREDMET: Upravljanje sistemima. Frekvencijske karakteristike Osnovne akademske studije PREDMET: Upravljanje sistemima TEMA: Frekvencijske karakteristike Predmetni nastavnik: Prof. dr Milorad Stanojević Asistent: mr Marko Đogatović Kompleksna funkcija prenosa Ukoliko

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Upravljanje u mehatroničkim sustavima

Upravljanje u mehatroničkim sustavima Upravljanje u mehatroničkim sustavima Fetah Kolonić Jadranko Matuško Fakultet elektrotehnike i računarstva 27. listopada 2009 Upravljanje u mehatroničkim sustavima Upravljanje predstavlja integralni dio

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

BIPOLARNI TRANZISTOR Auditorne vježbe

BIPOLARNI TRANZISTOR Auditorne vježbe BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova

, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

Karakterizacija kontinualnih sistema u prelaznom režimu

Karakterizacija kontinualnih sistema u prelaznom režimu Karakterizacija kontinualnih sistema u prelaznom režimu Postoji veći broj parametara koji karakterišu ponašanje sistema u prelaznom režimu. Ovi parametri pripadaju različitim prostorima u kojima se sistemi

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Automatsko upravljanje 2016/2017

Automatsko upravljanje 2016/2017 Automatsko upravljanje 2016/2017 Prof.dr.sc. Nedjeljko Perić, Prof.dr.sc. Zoran Vukić Prof.dr.sc. Mato Baotić, Izv.prof.dr.sc. Nikola Mišković Zavod za automatiku i računalno inženjerstvo Fakultet elektrotehnike

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 4: Formiranje blok dijagrama sistema u SIMULINKu

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 4: Formiranje blok dijagrama sistema u SIMULINKu OSNOVI UTOMTSKOG UPRVLJNJ PROCESIM Vežba br. : ormiranje blok dijagrama sistema u SIMULINKu I ormiranje blok dijagrama u Simulinku Linearni dinamički sistemi u Laplace-ovom domenu se mogu prikazati i grafički

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

F (t) F (t) F (t) OGLEDNI PRIMJER SVEUČILIŠTE J.J.STROSSMAYERA U OSIJEKU ZADATAK

F (t) F (t) F (t) OGLEDNI PRIMJER SVEUČILIŠTE J.J.STROSSMAYERA U OSIJEKU ZADATAK OGLEDNI PRIMJER ZADAAK Odredte dnamčke karakterstke odzv armranobetonskog okvra C-C prkazanog na slc s prpadajućom tlorsnom površnom, na zadanu uzbudu tjekom prve tr sekunde, ako je konstrukcja prje djelovanja

Διαβάστε περισσότερα

1.1. Pripreme za vježbu. Slijedni sustavi upute za laboratorijske vježbe

1.1. Pripreme za vježbu. Slijedni sustavi upute za laboratorijske vježbe Vježba 1. Simuliranje, analiza i sinteza kontinuiranog i digitalnog sustava regulacije brzine vrtnje istosmjernog elektromotornog pogona, te eksperimentalna provjera digitalnog proporcionalno-integralnog

Διαβάστε περισσότερα

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 3: Dinamički modeli sistema u MATLABu

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 3: Dinamički modeli sistema u MATLABu OSNOVI AUTOMATSKO UPAVLJANJA POCESIMA Vežba br. : Dinamički modeli itema u MATLABu I Prenone funkcije Dinamički itemi e mogu prikazati u tri domena: vremenkom, Laplace-ovom i frekentnom. U vremenkom domenu

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

Signali i sustavi - Zadaci za vježbu II. tjedan

Signali i sustavi - Zadaci za vježbu II. tjedan Signali i sustavi - Zadaci za vježbu II tjedan Periodičnost signala Koji su od sljedećih kontinuiranih signala periodički? Za one koji jesu, izračunajte temeljni period a cos ( t ), b cos( π μ(, c j t

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 2

BETONSKE KONSTRUKCIJE 2 BETONSE ONSTRUCIJE 2 vježbe, 31.10.2017. 31.10.2017. DATUM SATI TEMATSA CJELINA 10.- 11.10.2017. 2 17.-18.10.2017. 2 24.-25.10.2017. 2 31.10.- 1.11.2017. uvod ponljanje poznatih postupaka dimenzioniranja

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

( t) u( t) ( t) STABILNOST POJAČAVAČA SA POVRATNOM SPREGOM STABILNOST POJAČAVAČA SA POVRATNOM SPREGOM STABILNOST POJAČAVAČA SA POVRATNOM SPREGOM

( t) u( t) ( t) STABILNOST POJAČAVAČA SA POVRATNOM SPREGOM STABILNOST POJAČAVAČA SA POVRATNOM SPREGOM STABILNOST POJAČAVAČA SA POVRATNOM SPREGOM Ponašanje pojačavača u vremenskom domenu zavisi od frekvencijske karakteristike, odnosno položaja nula i polova prenosne funkcije. ( N r ( D( B( Pogodan način da se ustanovi stabilnost pojačavača je da

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA

Διαβάστε περισσότερα

4. poglavlje (korigirano) LIMESI FUNKCIJA

4. poglavlje (korigirano) LIMESI FUNKCIJA . Limesi funkcija (sa svim korekcijama) 69. poglavlje (korigirano) LIMESI FUNKCIJA U ovom poglavlju: Neodređeni oblik Neodređeni oblik Neodređeni oblik Kose asimptote Neka je a konačan realan broj ili

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Tranzistori s efektom polja. Postupak. Spoj zajedničkog uvoda. Shema pokusa

Tranzistori s efektom polja. Postupak. Spoj zajedničkog uvoda. Shema pokusa Tranzistori s efektom polja Spoj zajedničkog uvoda U ovoj vježbi ispitujemo pojačanje signala uz pomoć FET-a u spoju zajedničkog uvoda. Shema pokusa Postupak Popis spojeva 1. Spojite pokusni uređaj na

Διαβάστε περισσότερα

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske Algebra Vektora 1 Algebra vektora 1.1 Definicija vektora pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske veličine za opis skalarne veličine trebamo zadati samo njezin iznos (npr.

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα