Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
|
|
- Νέφθυς Παπακώστας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα ΔΕΝΔΡΑ Σταύρος Δ. Νικολόπουλος
2 Εισαγωγή Ένα γράφημα G είναι δένδρο αν: 1. Είναι συνδεδεμένο και δεν έχει κύκλους. 2. Είναι συνδεδεμένο και έχει n-1 ακμές. 3. Δεν έχει κύκλους και έχει n-1 ακμές.. Είναι συνδεδεμένος κατά ελάχιστο τρόπο. 5. Αν υπάρχει ένα μόνο μονοπάτι μεταξύ δύο οποιονδήποτε κόμβων. 2
3 Εισαγωγή Εκκεντρικότητα: μέγιστη απόσταση ενός κόμβου από τον πλέον απομακρυσμένο κόμβο του γραφήματος. Κέντρο: υπογράφημα που επάγεται από κόμβους με την μικρότερη εκκεντρικότητα. Ακτίνα: η εκκεντρικότητα του κέντρου. Διάμετρος: το μήκος του μακριότερου (μεγαλύτερου) μονοπατιού. Ακτίνα Διάμετρος 3
4 Εισαγωγή Πόρισμα: Ένα δάσος (δένδρων) με n κόμβους και k συνιστώσες δένδρα, έχει n-k ακμές. Θεώρημα: Ένα δένδρο έχει κέντρο που αποτελείται από 1 ή 2 κόμβους.
5 Ποσοτικά Στοιχεία Μη αύξουσα ακολουθία S: d 1, d 2, d 3,, d n ανήκει σε ένα Τ, μόνο εάν d i θετικός αριθμός και ισχύει: Σ i=1..n d i = 2(n-1) Αναγκαία συνθήκη, όχι ικανή! Σε κάθε δένδρο υπάρχουν τουλάχιστον 2 εκκρεμείς ακμές. Ισχύει: 2m = 2(n-1) 5
6 Δένδρο n κόμβων n-1 ακμές 6
7 1857 Cayley C k H 2k+2, # ισομερών Θεώρημα: Ο αριθμός των διακριτών δένδρων με επιγραφές που έχουν n κόμβους είναι n n-2 (10 αποδείξεις). (K n πλήθος των σκελετικών δένδρων = n n-2 ) 7
8 Θεώρημα: Ο αριθμός των διακριτών δένδρων με επιγραφές που έχουν n κόμβους είναι n n-2 (10 αποδείξεις). 8
9 Επιγράφουμε τους κόμβους του δένδρου με 1, 2,..., n. Βρίσκουμε τον εκκρεμή κόμβο με τη μικρότερη επιγραφή, έστω a 1. Τον διαγράφουμε και έστω b 1 ο γειτονικός της κόμβος. Επαναλαμβάνουμε την διαδικασία στο υπογράφημα που μένει. Έτσι, μετά από n-2 διαγραφές, το δένδρο εκφυλίζεται σε μία ακμή, και έχουμε δημιουργήσει S: (b 1, b 2,..., b n-2 ) S = (, 1, 5, 3,, 5) 9
10 Επιγράφουμε τους κόμβους του δένδρου με 1, 2,..., n. Βρίσκουμε τον εκκρεμή κόμβο με τη μικρότερη επιγραφή, έστω a 1. Τον διαγράφουμε και έστω b 1 ο γειτονικός της κόμβος. Επαναλαμβάνουμε την διαδικασία στο υπογράφημα που μένει. Έτσι, μετά από n-2 διαγραφές, το δένδρο εκφυλίζεται σε μία ακμή, και έχουμε δημιουργήσει S: (b 1, b 2,..., b n-2 ) S = () 10
11 Επιγράφουμε τους κόμβους του δένδρου με 1, 2,..., n. Βρίσκουμε τον εκκρεμή κόμβο με τη μικρότερη επιγραφή, έστω a 1. Τον διαγράφουμε και έστω b 1 ο γειτονικός της κόμβος. Επαναλαμβάνουμε την διαδικασία στο υπογράφημα που μένει. Έτσι, μετά από n-2 διαγραφές, το δένδρο εκφυλίζεται σε μία ακμή, και έχουμε δημιουργήσει S: (b 1, b 2,..., b n-2 ) S = () 11
12 Επιγράφουμε τους κόμβους του δένδρου με 1, 2,..., n. Βρίσκουμε τον εκκρεμή κόμβο με τη μικρότερη επιγραφή, έστω a 1. Τον διαγράφουμε και έστω b 1 ο γειτονικός της κόμβος. Επαναλαμβάνουμε την διαδικασία στο υπογράφημα που μένει. Έτσι, μετά από n-2 διαγραφές, το δένδρο εκφυλίζεται σε μία ακμή, και έχουμε δημιουργήσει S: (b 1, b 2,..., b n-2 ) S = (, 1) 12
13 Επιγράφουμε τους κόμβους του δένδρου με 1, 2,..., n. Βρίσκουμε τον εκκρεμή κόμβο με τη μικρότερη επιγραφή, έστω a 1. Τον διαγράφουμε και έστω b 1 ο γειτονικός της κόμβος. Επαναλαμβάνουμε την διαδικασία στο υπογράφημα που μένει. Έτσι, μετά από n-2 διαγραφές, το δένδρο εκφυλίζεται σε μία ακμή, και έχουμε δημιουργήσει S: (b 1, b 2,..., b n-2 ) S = (, 1, 5) 13
14 Επιγράφουμε τους κόμβους του δένδρου με 1, 2,..., n. Βρίσκουμε τον εκκρεμή κόμβο με τη μικρότερη επιγραφή, έστω a 1. Τον διαγράφουμε και έστω b 1 ο γειτονικός της κόμβος. Επαναλαμβάνουμε την διαδικασία στο υπογράφημα που μένει. Έτσι, μετά από n-2 διαγραφές, το δένδρο εκφυλίζεται σε μία ακμή, και έχουμε δημιουργήσει S: (b 1, b 2,..., b n-2 ) S = (, 1, 5, 1) 1
15 Επιγράφουμε τους κόμβους του δένδρου με 1, 2,..., n. Βρίσκουμε τον εκκρεμή κόμβο με τη μικρότερη επιγραφή, έστω a 1. Τον διαγράφουμε και έστω b 1 ο γειτονικός της κόμβος. Επαναλαμβάνουμε την διαδικασία στο υπογράφημα που μένει. Έτσι, μετά από n-2 διαγραφές, το δένδρο εκφυλίζεται σε μία ακμή, και έχουμε δημιουργήσει S: (b 1, b 2,..., b n-2 ). 5 8 S = (, 1, 5, 1, ) 15
16 Επιγράφουμε τους κόμβους του δένδρου με 1, 2,..., n. Βρίσκουμε τον εκκρεμή κόμβο με τη μικρότερη επιγραφή, έστω a 1. Τον διαγράφουμε και έστω b 1 ο γειτονικός της κόμβος. Επαναλαμβάνουμε την διαδικασία στο υπογράφημα που μένει. Έτσι, μετά από n-2 διαγραφές, το δένδρο εκφυλίζεται σε μία ακμή, και έχουμε δημιουργήσει S: (b 1, b 2,..., b n-2 ). 5 S = (, 1, 5, 1,, 5) 8 16
17 Μπορούμε να κατασκευάσουμε ένα δένδρο Τ κατά μοναδικό τρόπο από την S = (b 1, b 2,..., b n-2 ) που περιέχει μη-εκκρεμείς κόμβους. 2 (Prüfer, 1918) S = (, 1, 5, 1,, 5) Τ Κάθε στοιχείο της ακολουθία S = (b 1, b 2,..., b n-2 ) μπορεί να πάρει τιμές 1 b i n (όπου 1 i n-2) n n-2. 17
18 Μπορούμε να κατασκευάσουμε ένα δένδρο Τ κατά μοναδικό τρόπο από την S = (b 1, b 2,..., b n-2 ) που περιέχει μη-εκκρεμείς κόμβους. Έστω, L = (1, 2,, n). Επιλέγουμε από την L την μικρότερη επιγραφή, έστω l 1, που δεν ανήκει στην S. Η ακμή (l 1, s 1 ) ανήκει στο Τ. Διαγράφουμε l 1 από L και s1 από S. Επαναλαμβάνουμε με τις νέας ακολουθίες L και S. (Prüfer, 1918) 18
19 L = (1, 2, 3,, 5, 6, 7, 8) S = (, 1, 5, 1,, 5) (2, ) (3, 1) (6, 5) (7, 1) (1, ) (, 5) (5, 8) Επιλέγουμε από την L την μικρότερη επιγραφή, έστω l 1, που δεν ανήκει στην S. Η ακμή (l 1, s 1 ) ανήκει στο Τ. Διαγράφουμε l 1 από L και s1 από S. Επαναλαμβάνουμε με τις νέας ακολουθίες L και S. 19
20 L = (1, 2, 3,, 5, 6, 7, 8) S = (, 1, 5, 1,, 5) Επιλέγουμε από την L την μικρότερη επιγραφή, έστω l 1, που δεν ανήκει στην S. Η ακμή (l 1, s 1 ) ανήκει στο Τ. Διαγράφουμε l 1 από L και s1 από S. Επαναλαμβάνουμε με τις νέας ακολουθίες L και S. 20
21 L = (1, 2, 3,, 5, 6, 7, 8) S = (, 1, 5, 1,, 5) Επιλέγουμε από την L την μικρότερη επιγραφή, έστω l 1, που δεν ανήκει στην S. Η ακμή (l 1, s 1 ) ανήκει στο Τ. Διαγράφουμε l 1 από L και s1 από S. Επαναλαμβάνουμε με τις νέας ακολουθίες L και S. 21
22 L = (1, 2, 3,, 5, 6, 7, 8) S = (, 1, 5, 1,, 5) 2 (2, ) Επιλέγουμε από την L την μικρότερη επιγραφή, έστω l 1, που δεν ανήκει στην S. Η ακμή (l 1, s 1 ) ανήκει στο Τ. Διαγράφουμε l 1 από L και s1 από S. Επαναλαμβάνουμε με τις νέας ακολουθίες L και S. 22
23 L = (1, 2, 3,, 5, 6, 7, 8) S = (, 1, 5, 1,, 5) 2 (2, ) Επιλέγουμε από την L την μικρότερη επιγραφή, έστω l 1, που δεν ανήκει στην S. Η ακμή (l 1, s 1 ) ανήκει στο Τ. Διαγράφουμε l 1 από L και s1 από S. Επαναλαμβάνουμε με τις νέας ακολουθίες L και S. 23
24 L = (1, 2, 3,, 5, 6, 7, 8) S = (, 1, 5, 1,, 5) 2 (2, ) Επιλέγουμε από την L την μικρότερη επιγραφή, έστω l 1, που δεν ανήκει στην S. Η ακμή (l 1, s 1 ) ανήκει στο Τ. Διαγράφουμε l 1 από L και s1 από S. Επαναλαμβάνουμε με τις νέας ακολουθίες L και S. 2
25 L = (1, 2, 3,, 5, 6, 7, 8) S = (, 1, 5, 1,, 5) (2, ) (3, 1) Επιλέγουμε από την L την μικρότερη επιγραφή, έστω l 1, που δεν ανήκει στην S. Η ακμή (l 1, s 1 ) ανήκει στο Τ. Διαγράφουμε l 1 από L και s1 από S. Επαναλαμβάνουμε με τις νέας ακολουθίες L και S. 25
26 2 L = (1, 2, 3,, 5, 6, 7, 8) S = (, 1, 5, 1,, 5) 1 3 (2, ) (3, 1) Επιλέγουμε από την L την μικρότερη επιγραφή, έστω l 1, που δεν ανήκει στην S. Η ακμή (l 1, s 1 ) ανήκει στο Τ. Διαγράφουμε l 1 από L και s1 από S. Επαναλαμβάνουμε με τις νέας ακολουθίες L και S. 26
27 2 L = (1, 2, 3,, 5, 6, 7, 8) S = (, 1, 5, 1,, 5) 1 3 (2, ) (3, 1) Επιλέγουμε από την L την μικρότερη επιγραφή, έστω l 1, που δεν ανήκει στην S. Η ακμή (l 1, s 1 ) ανήκει στο Τ. Διαγράφουμε l 1 από L και s1 από S. Επαναλαμβάνουμε με τις νέας ακολουθίες L και S. 27
28 L = (1, 2, 3,, 5, 6, 7, 8) S = (, 1, 5, 1,, 5) (2, ) (3, 1) (6, 5) Επιλέγουμε από την L την μικρότερη επιγραφή, έστω l 1, που δεν ανήκει στην S. Η ακμή (l 1, s 1 ) ανήκει στο Τ. Διαγράφουμε l 1 από L και s1 από S. Επαναλαμβάνουμε με τις νέας ακολουθίες L και S. 28
29 L = (1, 2, 3,, 5, 6, 7, 8) S = (, 1, 5, 1,, 5) (2, ) (3, 1) (6, 5) Επιλέγουμε από την L την μικρότερη επιγραφή, έστω l 1, που δεν ανήκει στην S. Η ακμή (l 1, s 1 ) ανήκει στο Τ. Διαγράφουμε l 1 από L και s1 από S. Επαναλαμβάνουμε με τις νέας ακολουθίες L και S. 29
30 L = (1, 2, 3,, 5, 6, 7, 8) S = (, 1, 5, 1,, 5) (2, ) (3, 1) (6, 5) (7, 1) Επιλέγουμε από την L την μικρότερη επιγραφή, έστω l 1, που δεν ανήκει στην S. Η ακμή (l 1, s 1 ) ανήκει στο Τ. Διαγράφουμε l 1 από L και s1 από S. Επαναλαμβάνουμε με τις νέας ακολουθίες L και S. 30
31 L = (1, 2, 3,, 5, 6, 7, 8) S = (, 1, 5, 1,, 5) (2, ) (3, 1) (6, 5) (7, 1) Επιλέγουμε από την L την μικρότερη επιγραφή, έστω l 1, που δεν ανήκει στην S. Η ακμή (l 1, s 1 ) ανήκει στο Τ. Διαγράφουμε l 1 από L και s1 από S. Επαναλαμβάνουμε με τις νέας ακολουθίες L και S. 31
32 L = (1, 2, 3,, 5, 6, 7, 8) S = (, 1, 5, 1,, 5) (2, ) (3, 1) (6, 5) (7, 1) (1, ) Επιλέγουμε από την L την μικρότερη επιγραφή, έστω l 1, που δεν ανήκει στην S. Η ακμή (l 1, s 1 ) ανήκει στο Τ. Διαγράφουμε l 1 από L και s1 από S. Επαναλαμβάνουμε με τις νέας ακολουθίες L και S. 32
33 L = (1, 2, 3,, 5, 6, 7, 8) S = (, 1, 5, 1,, 5) (2, ) (3, 1) (6, 5) (7, 1) (1, ) Επιλέγουμε από την L την μικρότερη επιγραφή, έστω l 1, που δεν ανήκει στην S. Η ακμή (l 1, s 1 ) ανήκει στο Τ. Διαγράφουμε l 1 από L και s1 από S. Επαναλαμβάνουμε με τις νέας ακολουθίες L και S. 33
34 L = (1, 2, 3,, 5, 6, 7, 8) S = (, 1, 5, 1,, 5) (2, ) (3, 1) (6, 5) (7, 1) (1, ) (, 5) Επιλέγουμε από την L την μικρότερη επιγραφή, έστω l 1, που δεν ανήκει στην S. Η ακμή (l 1, s 1 ) ανήκει στο Τ. Διαγράφουμε l 1 από L και s1 από S. Επαναλαμβάνουμε με τις νέας ακολουθίες L και S. 3
35 L = (1, 2, 3,, 5, 6, 7, 8) S = (, 1, 5, 1,, 5) (2, ) (3, 1) (6, 5) (7, 1) (1, ) (, 5) Επιλέγουμε από την L την μικρότερη επιγραφή, έστω l 1, που δεν ανήκει στην S. Η ακμή (l 1, s 1 ) ανήκει στο Τ. Διαγράφουμε l 1 από L και s1 από S. Επαναλαμβάνουμε με τις νέας ακολουθίες L και S. 35
36 2 L = (1, 2, 3,, 5, 6, 7, 8) S = (, 1, 5, 1,, 5) (2, ) (3, 1) (6, 5) (7, 1) (1, ) (, 5) (5, 8) Επιλέγουμε από την L την μικρότερη επιγραφή, έστω l 1, που δεν ανήκει στην S. Η ακμή (l 1, s 1 ) ανήκει στο Τ. Διαγράφουμε l 1 από L και s1 από S. Επαναλαμβάνουμε με τις νέας ακολουθίες L και S. 36
37 : Κάθε στοιχείο της ακολουθία b 1, b 2,..., b n-2, μπορεί να πάρει τιμές 1 b i n (όπου 1 i n-2) n n-2. Θεώρημα: Το πλήθος των διακριτών ένριζων δένδρων (rooted trees) με n κόμβους είναι n n
38 Γενετικά Δένδρα Θεώρημα: Κάθε συνδεδεμένο γράφημα έχει τουλάχιστον ένα γενετικό δένδρο. (i) G = T, οεδ. (ii) G T, διαγράφουμε ακμές που συμμετέχουν σε κύκλους, έως ότου απομείνουν μόνο γέφυρες. Ερώτηση: Πόσα γενετικά δένδρα έχει ένα γράφημα; Θεώρημα: Σε πλήρες γράφημα K n υπάρχουν n n-2 διακριτά γενετικά δένδρα. 38
39 Γενετικά Δένδρα Θεώρημα: Στο διμερές γράφημα Κ m,n το πλήθος των διακριτών γενετικών δένδρων είναι m n-1 n m-1. Θεώρημα: K 2,n n 2 n-1 39
40 Γενετικά Δένδρα Θεώρημα: K 3,n n 2 3 n-1 Μονοπάτια μήκους 2 a b c a b c Μονοπάτια μήκους (α): n 3 n-1 (β): 6 n(n-1)/2 3 n-2 Από (α) + (β) = n(n-1) 3 n-1 x y z (α) (β) 0
41 Γενετικά Δένδρα Θεώρημα: (Matrix-tree theorem) Kirchoff Α: πίνακας γειτνίασης C: πίνακας βαθμών C-A: διαφορά πινάκων B ij =(C-A) ij : ελάσσων πίνακας (-1) i+j B ij : συμπαράγοντας Το πλήθος των γενετικών δένδρων ισούται με συμπαράγοντα. 1
42 Γενετικά Δένδρα Θεμελιώδες Κύκλωμα: Ένας κύκλος που δημιουργείται από ένα γενετικό δένδρο και μια χορδή. Σύνολο χορδών: m-n+1 G G = T U T Αριθμός θεμελιωδών κυκλωμάτων: m-n+1 Κυκλικές εναλλαγές παράγουμε όλα τα γενετικά δένδρα. 2
43 Γενετικά Δένδρα Επιλέγουμε ένα σκελετικό δέντρο Τ Εισάγουμε μια ακμή C i θεμελιώδεις κύκλωμα Διαγράφοντας μια-μια ακμή του C i παράγονται Τ 1, Τ 2, Τ Κ σκελετικά δέντρα Εισάγουμε νέα ακμή C i+1 G T Τυχαία επιλογή του Τ παράγονται όλα τα σκελετικά δέντρα του G 3
44 Γενετικά Δένδρα Απόσταση γενετικών δένδρων είναι το πλήθος ακμών που ανήκουν στο ένα δένδρο αλλά όχι στο άλλο. dist(t i, T j ) = dist(t j, T i ) dist(t i, T j ) 0, εκτός εάν dist(t i, T i ) = 0 dist(t i, T j ) dist(t i, T u ) + dist(t u, T j ) Κεντρικό λέγεται ένα γενετικό δένδρο T 0 αν max(dist(t 0, T j )) max(dist(t, T j )) για κάθε γενετικό δένδρο T του G. Ζυγισμένα δένδρα: Εύρεση ελάχιστου γενετικού δένδρου (αλγόριθμοι Prim & Kruskal).
Θεωρία και Αλγόριθμοι Γράφων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 6: Δένδρα Ιωάννης Μανωλόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΔΕΝΔΡΙΚΑ ΓΡΑΦΗΜΑΤΑ ΚΕΦΑΛΑΙΟ 3
Δενδρικά Γραφήματα 93 ΚΕΦΑΛΑΙΟ 3 ΔΕΝΔΡΙΚΑ ΓΡΑΦΗΜΑΤΑ 3.1 Εισαγωγή 3.2 Βασικές Ιδιότητες Δένδρων 3.3 Απαρίθμηση Δένδρων 3.4 Γενετικά Δένδρα 3.5 Ελάχιστα Γενετικά Δένδρα Προαπαιτούμενη Γνώση Πολύ καλή γνώση
Πλήθος ισομερών του C k H 2k+2
ΘΕΩΡΙΑ ΓΡΑΦΩΝ η Διάλεξη Δέντρα Βασικές έννοιες και ιδιότητες Απαρίθμηση δένδρων γραφήματος Δυαδικά Δέντρα Ελάχιστα Γεννητορικά Δένδρα (Spanning Trees) Αποστάσεις Γεννητορικών (Γενετικών) Δένδρων Δένδρα
Θεωρία Γραφημάτων 5η Διάλεξη
Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη
Θεωρία Γραφημάτων 5η Διάλεξη
Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 5 ΣΥΝΕΚΤΙΚΟΤΗΤΑ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Συνεκτικότητα Έννοια της συνδεσμικότητας: «Ποσότητα συνδεσμικότητας»...
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ
Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ 3 η Διάλεξη Μονοπάτια και Κύκλοι Μήκη και αποστάσεις Κέντρο και μέσο γράφου. Ακτίνα και Διάμετρος Δυνάμεις Γραφημάτων Γράφοι Euler.
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα
έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής. Αναπαράσταση
ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;
ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά
ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΟΛΙΤΙΣΜΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ 3 ΘΕΜΑ: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ ΓΡΑΦΗΜΑΤΑ Επίκουρος Καθηγητής ΠΕΡΙΕΧΟΜΕΝΟ
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα συνεκτικότητα,
Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.
Κατευθυνόµενα γραφήµατα Απλό κατευθυνόµενο Γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E), µε: Στοιχεία Θεωρίας Γραφηµάτων (1) σύνολο κορυφών / κόµβων V, Ορέστης Τελέλης tllis@unipi.r Τµήµα Ψηφιακών Συστηµάτων,
ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.
Αλγόριθμοι εύρεσης ελάχιστων γεννητικών δέντρων (MST)
Αλγόριθμοι εύρεσης ελάχιστων γεννητικών δέντρων (MST) Γεννητικό δέντρο (Spanning Tree) Ένα γεννητικό δέντρο για ένα γράφημα G είναι ένα υπογράφημα του G που είναι δέντρο (δηλ., είναι συνεκτικό και δεν
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Θεωρία Γραφημάτων 6η Διάλεξη
Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
E(G) 2(k 1) = 2k 3.
Διάλεξη :..06 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Τζαλάκας Ανδρέας & Σ.Κ.. Εξωεπίπεδα γραφήματα (συνέχεια) Ορισμός. Εστω γράφημα G = (V, E) και S V. S-λοβός (S-lobe) ενάγεται από
d(v) = 3 S. q(g \ S) S
Διάλεξη 9: 9.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιωτίδης Αλέξανδρος Θεώρημα 9.1 Εστω γράφημα G = (V, E), υπάρχει τέλειο ταίριασμα στο G αν και μόνο αν για κάθε S υποσύνολο
z 1 E(G) 2(k 1) = 2k 3. x z 2 H 1 H 2
Διάλεξη :..06 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Τζαλάκας Ανδρέας & Σ.Κ.. Εξωεπίπεδα γραφήματα (συνέχεια) Ορισμός. Εστω γράφημα G = (V, E) και S V. S-λοβός (S-lobe) ενάγεται από
Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Εισαγωγή σε βασικές έννοιες Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 1 Περιεχόμενα
Αλγόριθμοι και Πολυπλοκότητα
7ο εξάμηνο Σ.Η.Μ.Μ.Υ. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 4η εβδομάδα: Εύρεση k-οστού Μικρότερου Στοιχείου, Master Theorem, Τεχνική Greedy: Knapsack, Minimum Spanning Tree, Shortest Paths
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήµατα Μοντελοποίηση πολλών σηµαντικών προβληµάτων (π.χ. δίκτυα
ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός
ΘΕΩΡΙΑ ΓΡΑΦΩΝ 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός Βασικές Έννοιες Στο κεφάλαιο αυτό θα μελετηθεί ο βαθμός συνεκτικότητας (συνδεσμικότητας)
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 2: Γραφήματα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης
Θεωρία Γραφημάτων 9η Διάλεξη
Θεωρία Γραφημάτων 9η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 9η Διάλεξη
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 6 ΕΠΙΠΕΔΙΚΟΤΗΤΑ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Εφαρμογές Θεωρίας Γραφημάτων Επιπεδικότητα ΔΕΗ ΟΤΕ ΔΕΥΑΙ Σύνδεσε όλα τα
HY118-Διακριτά Μαθηματικά. Θεωρία γράφων/ γραφήματα. Τι έχουμε δει μέχρι τώρα. Ισομορφισμός γράφων: Μία σχέση ισοδυναμίας μεταξύ γράφων.
HY118-Διακριτά Μαθηματικά Θεωρία γράφων/ γραφήματα Τρίτη, 15/05/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 16-May-18 1 1 16-May-18 2 2 Τι έχουμε δει μέχρι τώρα Κατευθυνόμενοι μη κατευθυνόμενοι
q(g \ S ) = q(g \ S) S + d = S.
Διάλεξη 9: 9.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιωτίδης Αλέξανδρος & Σ. Κ. Θεώρημα 9.1 Εστω γράφημα G = (V, E), υπάρχει τέλειο ταίριασμα στο G αν και μόνο αν για κάθε
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 26 Ιουνίου 201 1 / Απληστοι (Greedy) Αλγόριθµοι
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 1 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Σχετικά με το Μάθημα Ώρες γραφείου: Δευτέρα Παρασκευή
βασικές έννοιες (τόμος Β)
θεωρία γραφημάτων Παύλος Εφραιμίδης 1 περιεχόμενα βασικές έννοιες (τόμος Α) βασικές έννοιες (τόμος Β) 2 Θεωρία Γραφημάτων Βασική Ορολογία Τόμος Α, Ενότητα 4.1 Βασική Ορολογία Γραφημάτων Γράφημα Γ = (E,V)
Μονοπάτια και Κυκλώµατα Euler. Στοιχεία Θεωρίας Γραφηµάτων (3,4) Παραδείγµατα. Κριτήρια Υπαρξης.
Μονοπάτια και Κυκλώµατα Eulr Σε γράφηµα G(V, E): Στοιχεία Θεωρίας Γραφηµάτων (3,4) Ορέστης Τελέλης tllis@unipi.r Κύκλωµα Eulr: Απλό κύκλωµα που διασχίζει κάθε ακµή του G. Μονοπάτι Eulr: Απλό µονοπάτι που
Επίπεδα Γραφήματα (planar graphs)
Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους 1 2 1 2 3 4 3 4 Άρα αυτό το γράφημα είναι επίπεδο Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Μαΐου 201 1 / Απληστοι (Greedy) Αλγόριθµοι
Βασικές Έννοιες Θεωρίας Γραφημάτων
Βασικές Έννοιες Θεωρίας Γραφημάτων Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων
Βασικές Έννοιες Θεωρίας Γραφημάτων
Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση
Θεωρία Γραφημάτων 2η Διάλεξη
Θεωρία Γραφημάτων 2η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα
Αλγόριθµοι Γραφηµάτων
Αλγόριθµοι Γραφηµάτων Παύλος Σπυράκης Πανεπιστήµιο Πατρών Τοµέας Θεµελιώσεων και Εφαρµογών της Επιστήµης των Υπολογιστών Ερευνητικό Ακαδηµαϊκό Ινστιτούτο Τεχνολογίας Υπολογιστών Γραφήµατα Μοντελοποίηση
Θεωρία Γραφημάτων 1η Διάλεξη
Θεωρία Γραφημάτων η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 206 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη
Διάλεξη 7: X Y Σχήμα 7.2: Παράδειγμα για το Πόρισμα 7.2, όπου: 1 = {1, 2, 5}, 2 = {1, 2, 3}, 3 = {4}, 4 = {1, 3, 4}. Θ
Διάλεξη 7: 2.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Βασίλης Μαργώνης & Σ. Κ. 7.1 Εφαρμογές του Θεωρήματος του Hall Πόρισμα 7.1 (Ελλειματική εκδοχή Θεωρήματος Hall) Δίνεται διμερές
2 ) d i = 2e 28, i=1. a b c
ΑΣΚΗΣΕΙΣ ΘΕΩΡΙΑΣ ΓΡΑΦΩΝ (1) Εστω G απλός γράφος, που έχει 9 κορυφές και άθροισμα βαθμών κορυφών μεγαλύτερο του 7. Αποδείξτε ότι υπάρχει μια κορυφή του G με βαθμό μεγαλύτερο ή ίσο του 4. () Αποδείξτε ότι
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Πέμπτη, 10/05/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 10-May-18 1 1 Θεωρία γράφων / γραφήματα 10-May-18 2 2 Τι είναι οι γράφοι; Mία ειδική κλάση διακριτών δομώνκαι
ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 10 η Διάλεξη Κατευθυνόμενοι Γράφοι Βασικά χαρακτηριστικά Αλγόριθμοι διάσχισης κατευθυνόμενων γράφων Λίγα Λόγια για Αλυσίδες Markov
Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής ΘΕΩΡΙΑ ΓΡΑΦΩΝ 10 η Διάλεξη Κατευθυνόμενοι Γράφοι Βασικά χαρακτηριστικά Αλγόριθμοι διάσχισης κατευθυνόμενων γράφων Λίγα Λόγια για Αλυσίδες Markov Βασικά Χαρακτηριστικά
S A : N G (S) N G (S) + d S d + d = S
Διάλεξη 7: 2.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Βασίλης Μαργώνης 7.1 Εφαρμογές του Θεωρήματος του Hall Πόρισμα 7.1 (Ελλειματική εκδοχή Θεωρήματος Hall) Εάν σε διμερές γράφημα
Προβλήματα Ελάχιστου Κόστους Ροής σε Δίκτυο. Δίκτυα Ροής Ελάχιστου Κόστους (Minimum Cost Flow Networks)
Προβλήματα Ελάχιστου Κόστους Ροής σε Δίκτυο Ορισμοί Παραδείγματα Δικτυακή Simplex (προβλήματα με και χωρίς φραγμούς). Δίκτυα Ροής Ελάχιστου Κόστους (Minimum ost Flow Networks) Ένα δίκτυο μεταφόρτωσης αποτελείται
u v 4 w G 2 G 1 u v w x y z 4
Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E
Στοιχεία Θεωρίας Γράφων (Graph Theory)
Στοιχεία Θεωρίας Γράφων (Graph Theory) Ε Εξάμηνο, Τμήμα Πληροφορικής & Τεχνολογίας Υπολογιστών ΤΕΙ Λαμίας plam@inf.teilam.gr, Οι διαφάνειες βασίζονται στα βιβλία:. Αλγόριθμοι, Σχεδιασμός & Ανάλυση, η έκδοση,
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος
Παράδειγµα (4) Στοιχεία Θεωρίας Γραφηµάτων (2) Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς. v 2. u 3.
Παράδειγµα (2) s t Στοιχεία Θεωρίας Γραφηµάτων (2) w x Ορέστης Τελέλης z y tllis@unipi.r v u Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Τα δύο γραφήµατα δεν είναι ισόµορφα. Ο κόµβος (αριστερά) είναι
Στοιχεία Θεωρίας Γραφηµάτων (3)
Στοιχεία Θεωρίας Γραφηµάτων (3) Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 1 / 23 Απαρίθµηση Μονοπατιών Εστω
Απαρίθµηση Μονοπατιών. Στοιχεία Θεωρίας Γραφηµάτων (3) Μονοπάτια και Κυκλώµατα Euler. Ορέστης Τελέλης
Απαρίθµηση Μονοπατιών Εστω γράφηµα G(V, E) µε πίνακα γειτνίασης A Στοιχεία Θεωρίας Γραφηµάτων (3) Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς ως προς µια διάταξη των
Διαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k
Διαίρει και Βασίλευε πρόβλημα μεγέθους Ν διάσπαση πρόβλημα μεγέθους k πρόβλημα μεγέθους Ν-k Διαίρει και Βασίλευε πρόβλημα μεγέθους Ν διάσπαση επιλύουμε αναδρομικά τα υποπροβλήματα πρόβλημα μεγέθους k πρόβλημα
Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός
Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ενότητα 3 Αλγόριθµοι Γραφηµάτων Prim-Kruskal Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 3 Prim-Kruskal
Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε
Διάλεξη 4: 20.10.2016 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος 4.1 2-συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός γραφήματος G μοιράζονται το πολύ μία κορυφή. Απόδειξη:
Θεωρία Γραφημάτων 7η Διάλεξη
Θεωρία Γραφημάτων 7η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 7η Διάλεξη
Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα
Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)
Επαναληπτικές Ασκήσεις. Ρίζου Ζωή
Επαναληπτικές Ασκήσεις Ρίζου Ζωή email: zrizou@ee.duth.gr Άσκηση 1 Τι πραγματεύεται το θεώρημα Euler; Απάντηση Ψευδογραφήματα που περιέχουν ένα κύκλωμα στο ψευδογραφήματα, των οποίων ο βαθμός κάθε κορυφής
Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 2 Περιεχόμενα
(elementary graph algorithms)
(elementary graph algorithms) Παύλος Εφραιμίδης 1 περιεχόμενα γραφήματα αναπαραστάσεις οριζόντια διερεύνηση καθοδική διερεύνηση 2 ΓΡΑΦΉΜΑΤΑ 3 αναπαράσταση δύο καθιερωμένοι τρόποι: πίνακας γειτνίασης συλλογή
Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ
Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ 4 η Διάλεξη Κύκλοι και μονοπάτια Hamilton Ικανές ή αναγκαίες συνθήκες για ύπαρξη κύκλων Αλγόριθμος κατασκευής μονοπατιών Hamilton
Στοιχεία Θεωρίας Γραφηµάτων (2)
Στοιχεία Θεωρίας Γραφηµάτων (2) Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (2) 1 / 21 Παράδειγµα (2) s t w x h g
Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis
Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis Θεώρημα για σφαίρες Θα δείξουμε ότι το γράφημα G(n, 2 ln n n 1 ) έχει μικρή διάμετρο Θα ξεκινήσουμε με ένα θεώρημα για το μέγεθος μιας σφαίρας
HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι έχουµε δει µέχρι τώρα. Υπογράφηµα Γράφοι
HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Πέµπτη, 19/05/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/22/2016 1 1 5/22/2016 2 2 Τι έχουµε δει µέχρι τώρα Κατευθυνόµενοι µη κατευθυνόµενοι
Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα
Αλγόριθμοι πολυωνυμικού χρόνου Ένας αλγόριθμος πολυωνυμικού χρόνου έχει χρόνο εκτέλεσης όπου είναι μία (θετική) σταθερά Κλάση πολυπλοκότητας : περιλαμβάνει τα προβλήματα που επιδέχονται λύση σε πολυωνυμικό
Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός
Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αρκετά απαιτητικά ερωτήματα,
Γέφυρες σε Δίκτυα. Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος. Γέφυρα του (με αφετηρία τον ) :
Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος και Γέφυρα του (με αφετηρία τον ) : Ακμή που περιέχεται σε κάθε μονοπάτι από το στο s a b c d e f g h i j k l Μας δίνεται ένα δίκτυο (κατευθυνόμενο
Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός
Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου
Διάλεξη 4: Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός
Διάλεξη 4: 20.10.2016 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος 4.1 2-συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός γραφήματος G μοιράζονται το πολύ μία κορυφή. Απόδειξη:
Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)
Μη κατευθυνόµενα γραφήµατα Στοιχεία Θεωρίας Γραφηµάτων (1) Απλό µη κατευθυνόµενο γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E) µε σύνολο κορυφών/κόµβων V Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων,
HY118-Διακριτά Μαθηματικά. Θεωρία γράφων / γραφήματα. Τι είναι οι γράφοι; Εφαρμογές των γράφων. 23-Γράφοι
HY118-Διακριτά Μαθηματικά Θεωρία γράφων / γραφήματα Πέμπτη, 10/05/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 10-May-18 1 1 10-May-18 2 2 Τι είναι οι γράφοι; Mία ειδική κλάση διακριτών δομών και
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αξιόλογη προσπάθεια,
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Σταύρος Δ. Νικολόπουλος 016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Ενότητα 7.0 Αλγόριθμοι Γραφημάτων Διερεύνηση Γραφημάτων
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 4 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών
Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ
Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ 2 Η ΔΙΑΛΕΞΗ Βασικές Έννοιες Γράφων - Ορισμοί (συνέχεια) - Ισομορφισμοί-Ομοιομορφισμοί Γράφων - Πράξεις - Αναπαράσταση Γράφων (Πίνακες
Δένδρα. συνεκτικό μη κατευθυνόμενο γράφημα που δεν περιέχει απλά κυκλώματα
Δένδρα Δένδρα Ειδική κατηγορία γραφημάτων: συνεκτικά γραφήματα που δεν περιέχουν απλά κυκλώματα [1857] Arthur Cayley: για απαρίθμηση ορισμένων ειδών χημικών ενώσεων Χρησιμοποιούνται σε πληθώρα προβλημάτων,
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 2: Μαθηματικό Υπόβαθρο Τι θα κάνουμε σήμερα Συναρτήσεις & Σχέσεις (0.2.3) Γράφοι (Γραφήματα) (0.2.4) Λέξεις και Γλώσσες (0.2.5) Αποδείξεις (0.3) 1
HY118-Διακριτά Μαθηματικά. Θεωρία γράφων / γραφήματα. Τι έχουμε δει μέχρι τώρα. Υπογράφημα. 24 -Γράφοι
HY118-Διακριτά Μαθηματικά Θεωρία γράφων / γραφήματα Πέμπτη, 11/05/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 11-May-17 1 1 11-May-17 2 2 Τι έχουμε δει μέχρι τώρα Κατευθυνόμενοι μη κατευθυνόμενοι
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 5 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών
Στοιχεία Θεωρίας Γραφηµάτων (1)
Στοιχεία Θεωρίας Γραφηµάτων (1) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 1 / 23 Μη κατευθυνόµενα γραφήµατα
m = 18 και m = G 2
Διάλεξη 11: 2.11.201 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιώτης Ρεπούσκος 11.1 Βασικές Ιδιότητες Θεώρημα 11.1 (Τύπος του Eulr, 172) Αν ένα συνεκτικό ενεπίπεδο γράφημα έχει n κορυφές,
Θεωρία Γραφημάτων 8η Διάλεξη
Θεωρία Γραφημάτων 8η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 8η Διάλεξη
Θεωρία Γραφημάτων 11η Διάλεξη
Θεωρία Γραφημάτων 11η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη
ΠΛΗ20 ΕΝΟΤΗΤΑ 5: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ/2. Μάθηµα 5.1: Παραστάσεις Γραφηµάτων. ηµήτρης Ψούνης
ΠΛΗ20 ΕΝΟΤΗΤΑ 5: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ/2 Μάθηµα 5.1: Παραστάσεις Γραφηµάτων ηµήτρης Ψούνης 2 ΠΕΡΙΕΧΟΜΕΝΑ Α. Σκοπός του Μαθήµατος Β.Θεωρία 1. Πίνακας Γειτνίασης 1. Ορισµός για µη κατευθυνόµενα γραφήµατα 2.
Συνεκτικότητα Γραφήματος
Συνεκτικότητα Γραφήματος Θεμελιώδης έννοια στη Θεωρία Γραφημάτων. Πληθώρα πρακτικών εφαρμογών, όπως: Αξιόπιστη και ασφαλής επικοινωνία. Δρομολόγηση σε δίκτυα. Πλοήγηση. Συνεκτικότητα Γραφήματος Θεμελιώδης
Θέματα Υπολογισμού στον Πολιτισμό - Δένδρα. Δένδρα
Δένδρα Δένδρα Ειδική κατηγορία γραφημάτων: συνεκτικά γραφήματα που δεν περιέχουν απλά κυκλώματα [1857] Arthur Cayley: για απαρίθμηση ορισμένων ειδών χημικών ενώσεων Χρησιμοποιούνται σε πληθώρα προβλημάτων,
Θεωρία Γραφημάτων 4η Διάλεξη
Θεωρία Γραφημάτων 4η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 4η Διάλεξη
Γράφοι. Αλγόριθμοι και πολυπλοκότητα. Στάθης Ζάχος, Δημήτρης Φωτάκης
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αλγόριθμοι και πολυπλοκότητα Στάθης Ζάχος, Δημήτρης Φωτάκης Γράφοι Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 7 ΧΡΩΜΑΤΙΣΜΟΣ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Εισαγωγή Χρωματισμός κορυφών-ακμών-περιοχών. Χρωματική τάξη (color class):
ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Ένα γράφημα αποτελείται από ένα σύνολο 94.
ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» ΤΟΜΟΣ Α ΤΟΜΟΣ Β ΑΓΓΛΙΚΗ Γράφημα, Γράφος, Ένα γράφημα αποτελείται από ένα σύνολο 94 11 κορυφών και ένα σύνολο ακμών.
HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων. 22 - Γράφοι
HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Τρίτη, 19/05/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/21/2015 1 1 5/21/2015 2 2 Τι είναι οι γράφοι; Mία ειδική κλάση διακριτών δοµών (που