به نام حضرت دوست. Downloaded from: درسنامه
|
|
- Ἐλισάβετ Τρικούπης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 به نام حضرت دوست درسنامه کروی هندسه گردآوری: و تهی ه معتمدی ارسالن اصالح: سی د و بازبینی امیر سادات موسوی
2 سالم دوستان همان طور که می دانیم نجوم کروی یکی از بخش های مهم المپیاد نجوم است. این علم شامل دو بخش اصلی یعنی مثلثات کروی و هندسه کروی است. بخش عمده ای از نجوم کروی که در سواالت و منابع المپیاد نجوم دیده اید مربوط به بخش مثلثات کروی بوده است و به بخش دیگر یعنی هندسه کروی خیلی کمتر پرداخته شده است. همچنین امسال به همت آقای امیرسادات موسوی این بحث یعنی هندسه کروی در دوره تابستانه المپیاد نجوم به شکل جدی مطرح شد و در آزمون های پایانی نیز مورد ارزیابی قرار گرفت. بر این اساس تصمیم گرفتیم درسنامه ای با این عنوان گرد آوری کنیم تا مطالعه ی این مبحث تازه رونق گرفته را برای شما دوستان راحت تر کنیم. اکثر بخش های این درس نامه مباحث تدریس شده در کالس هندسه کروی دوره تابستانه می باشد به همین منظور باز هم جا دارد از جناب آقای امیر سادات موسوی کمال تشکر و سپاس گزاری را داشته باشیم. و اما نکته ای دیگر در مورد متن درسنامه آن که بخش هایی که با عالمت *** مشخص شده اند جزء مباحث اصلی درسنامه نبوده و صرفا برای تفهیم بیشتر مطرح گردیده اند. حل بخش هایی که به عنوان مسئله آورده شده اند مدتی پس از گذاشتن درسنامه بر روی وبالگ قرار خواهد گرفت. در پایان تشکر میکنم از دوست خوبم آقای وحید احمدی که مرا در نگارش این درسنامه یاری داد. همچنین اگر با ایراد یا ابهامی در هر جایی از درسنامه روبرو شدید می توانید از طریق ایمیل های زیر با ما در میان بگذارید. موفق باشیم 49Downloaded from: پاییز 1
3 رابطه سینوس ها: با استفاده از تشابه نشان دهید در هندسه ی تخت اگر در مثلث قائم الزاویه ABC که BAC=41 از نقطه ای دلخواه واقع بر ضلع AB )که D مینامیم( عمودی بر AB خارج کنیم که ضلع BC را در نقطه ی E قطع نماید رابطه ی زیر برقرار است: DE BE = AC BC این بار مثلث کروی ABC را درنظر بگیرید به طوری که. BAC=41 حال از نقطه ی D دلخواه واقع بر دایره عظیمه ی AB دایره عظیمه ای رسم میکنیم تا دایره عظیمه ی را درE BC قطع کند و. EDB=41 داریم: )اثبات این مطلب ما را از مباحث المپیاد دور میکند. به همین دلیل اثبات این مطلب در پستی جداگانه برای عالقه مندان گذاشته خواهد شد.( sin(de) sin(be) = sin(ac) sin(bc) با استفاده از رابطه ی بدست آمده میخواهیم رابطه ی سینوس ها در مثلث مسطحه را بدست آوریم: مثلث دلخواه ABC مانند شکل مفروض است. اضالع AB,AC را به اندازه ای امتداد میدهیم تا ضلع AC به نقطه ی E برسد به طوری که.CE=L همچنین AB را به اندازه ای امتداد میدهیم تا به D برسیم به طوری که.BD=L از نقاط D,A,E به ضلع BC عمودی رسم میکنیم که خود BC یا امتداد آن را به ترتیب در نقاط F,G,H قطع کند. برای راحتی AG را h مینامیم. )مطابق شکل 0( Eqn.1 شکل 1 2
4 اگر در مثلث BDF رابطه ی 0 را به کار ببریم: با به کار بردن این رابطه برای مثلث CEH داریم: با استفاده از این دو رابطه نتیجه میگیریم: AB h = L DF = 0 sin(b) CA h = L EH = 0 sin(c) AB sin(c) = CA sin(b) )راه ساده تری نیز برای اثبات سینوس ها در مثلث مسطحه وجود دارد اما برای درک بهتر اثبات رابطه سینوس ها در مثلث کروی اثبات باال را به این شکل نوشته ایم.( حال با روشی مشابه دو اثبات برای رابطه ی سینوس ها در مثلث کروی مینویسیم که کمی با هم تفاوت دارند: راه اول( مثلث کروی دلخواه ABC را درنظر بگیرید)شکل 3 ). دایره عظیمه های AB,AC را به اندازه ای امتداد میدهیم که به نقاط D,E برسیم به طوری که.BD=CE=41 از A دایره عظیمه ای رسم میکنیم که بر BC عمود باشد و آن را در F قطع نماید. همچنین از D واقع بر AB دایره عظیمه ای عمود بر AB رسم می کنیم تا دایره عظیمه ی گذرنده از B,C را در G قطع کند و هم از E دایره عظیمه ای عمود بر AC رسم میکنیم تا دایره عظیمه ی گذرنده از B,C را در H قطع کند. *** ابتدا اثبات میکنیم که اگر نقطه ای مانند P از یکی از نقاط دایره عظیمه ی O به نام A به فاصله ی 41 درجه باشد و نقطه ی دیگری نیز مانند B بر روی دایره عظیمه ی O وجود داشته باشد به طوری که PAB=41 آنگاه PB=41 و در نتیجه P قطب O است. )نقاط A,B در این اثبات با نقاط A,B معرفی شده در راه اول اثبات سینوس ها متفاوتند و ربطی به هم ندارند.( 3
5 مطابق شکل 2 از P به A,B وصل میکنیم. همچنین از نقطه ی C روی دایره عظیمه ی PA در نزدیکی P دایره عظیمه ای عمود بر PA رسم میکنیم تا PB را در D قطع نماید. طبق معادله ی 0 داریم: داریم: sin(pd) sin(cd) = sin(pb) sin(ab) از طرفی چون سه نقطه ی P,C,D را نزدیک به هم اختیار کرده ایم میتوانیم مثلث PCD را مثلث تخت درنظر بگیریم. پس و خواهیم داشت: شکل 2 sin(pd) PD sin(cd) CD sin(pd) sin(cd) PD CD حال اگر زاویه ی APB را α بنامیم)با تقریب مسطح بودن مثلث )PCD داریم: CD = sin α PD سپس با استفاده از نتایج بدست آمده: 4
6 sin α = sin(ab) sin(pb) Eqn.5 این معادله معادله ی مهمی است که در ادامه چندین بار از آن استفاده میکنیم. حال اگر از نقطه ای دیگر روی دایره عظیمه ی PB )که نزدیک به B باشد( بر AB عمودی رسم نماییم. دوباره با استفاده از روش باال به رابطه ی خوبی میرسیم که به صورت زیر خواهد بود: PBA( θ( >= و دانیم PA=41 پس: میدانیم 2 sin(pa) = sin θ sin(pb) می sin θ = 0 sin(pb) < θ < π, 1 < PB < π 1 پس 0, < PB < sin θ < 0, 1 < sin 1 با این اوصاف و معادله ی نتیجه میشود:.PB = θ = π پس نتیجه گرفتیم که P و B هم با یکدیگر 41 درجه فاصله داشته و P قطب O است. 2 همچنین معادله ی 5 به صورت ساده ی زیر در میآید: AB = α B مسئله 0 : مثلث قطبی APB را رسم کنید و مانند روش باال نتیجه بگیرید که P قطب O است. حال باز میگردیم به اثبات رابطه ی سینوس ها! اثبات این مطلب به این منظور بود که نشان دهیم در مساله ی معرفی شده قطب دایره عظیمه ی گذرنده از D,G است. همچنین C قطب دایره عظیمه ی گذرنده از E,H است. پس اگر < ACB را را β < ABC و α ببریم: بنامیم آنگاه DG = β و EH = α است )مطابق شکل 3(. اگر معادله ی 0 را در مثلث BDG بکار و با به کار بردن این رابطه در مثلث کروی :CEH sin(ba) 0 sin(ca) 0 = sin(af) sin β = sin(af) sin α Eqn.2 5
7 حال با ترکیب دو معادله ی فوق داریم: که همان رابطه ی سینوس های معروف است. sin(ba) sin(α) = sin(ca) sin(β) راه دوم( مثلث کروی ABC را درنظر بگیرید. دایره عظیمه ی AB,AC را از طرف A به اندازه ای امتداد می دهیم که به نقاط D,E برسیم. به طوری که BD=CE=41 است. از A,D,E بر دایره عظیمه ی گذرنده از B,C عمودی رسم میکنیم که آن را به ترتیب در F,G,H قطع نمایند.)مطابق شکل 5 ( *** شکل 3 مانند قبلی میخواهیم اثبات کنیم و EH= ACB DG= ABCاست. برای این کار روشی مانند روش باال را به کار میبریم. نقطه ای مانند P داریم که فاصله زاویه آن از نقطه ی A )که بر روی دایره عظیمه ی O قرار دارد (41 درجه بوده و نقطه ی دیگری به نام B بر روی O وجود دارد که دایره عظیمه ی PB بر O عمود است. )باز هم تاکید می کنیم که نقاط A,B در این اثبات با نقاط A,B معرفی شده در راه دوم اثبات سینوس ها متفاوتند و ربطی به هم ندارند.( PB D A,B P مطابق شکل 9 به از وصل می کنیم. از نقطه ی روی دایره عظیمه ی PB دایره عظیمه ای عمود بر رسم میکنیم تا PA را در C قطع کند. با استفاده از معادله ی 0 مینویسیم: sin(pc) sin(cd) = sin(pa) sin(ab) از طرفی چون سه نقطه ی P,C,D نزدیک به هم اختیار شده اند می توانیم مثلث PCD داریم: را مثلث تخت درنظر بگیریم. پس sin(pc) PC 6
8 sin(cd) CD سپس خواهیم داشت: sin(pc) sin(cd) PC CD حال زاویه ی APB را α مینامیم )با تقریب مسطح بودن مثلث :)PCD شکل 4 CD PC = sin α پس مینویسیم : sin α = sin(ab) sin(pa) چون میدانیم که PA=41 نتیجه میگیریم که AB=α است. با توجه به مطلب باال ادامه اثبات رابطه سینوس ها در مثلث کروی با راه دوم میشود. که مشابه راه اول است به خواننده واگذار 7
9 شکل 5 مسئله 2 : اگر در یک مثلث تخت مقابل ضلعی به طول a زاویه ای به اندازه ی α باشد و مقابل ضلعی به طول b زاویه ای به اندازه ی β باشد نشان دهید رابطه ی زیر برقرار است: a b a + b = tan( α β ) 2 α + β tan( ) 2 مسئله 3 : الف. اگر در یک مثلث کروی مقابل ضلعی به طول a زاویه ای به اندازه ی α باشد و مقابل ضلعی به طول b زاویه ای به اندازه ی β باشد نشان دهید رابطه ی زیر برقرار است: a + b tan( 2 ) = a b tan( 2 ) α + β tan( ) 2 α β tan( ) 2 ب. نشان دهید این رابطه در حد 1 b a,1 همان رابطه ی مثال قبل میشود. 8
10 قضیه ی همخطی در مثلث مسطحه: قضیه منالئوس در هندسه تخت: اگر در مثلث دلخواه ABC بر امتداد ضلع BC نقطه ی Z را انتخاب کنیم و خطی از Z رسم کنیم تا اضالع AC,AB را به ترتیب در Y,X قطع کند آنگاه داریم: AX XB BZ CZ CY AY = 0 شکل 6 اثبات: مطابق شکل از نقاط A,B,C بر خط گذرنده از X,Y,Z عمود میکنیم. 9
11 AX BX = AE BF CY AY = CG AE با استفاده از تشابه مثلث های AEX و BFX داریم: همچنین از تشابه دو مثلث AEY و CGY داریم: و از تشابه ZCG و :ZBF BZ CZ = BF CG حال اگر سه معادله را در هم ضرب کنیم به معادله زیر که همان قضیه ی منالئوس میباشد میرسیم: AX XB BZ CZ CY AY = 0 مسئله 9 : قضیه ی منالئوس را با استفاده از رابطه ی سینوس ها اثبات کنید. )راهنمایی: (X )sin X = sin(π عکس قضیه ی منالئوس نیز برقرار است. عکس قضیه منالئوس: اگر نقاط X,Y,Z به ترتیب بر روی اضالع یا امتداد اضالع AB,AC,BC واقع باشند و رابطه ی زیر برقرار باشد X,Y,Z بر یک خط واقعند. 11
12 مسئله 5 : عکس قضیه ی منالئوس را اثبات کنید. AX XB BZ CZ CY AY = 0 قضیه هم خطی در مثلث کروی)رابطه ی قطاع(: اگر در مثلث کروی ABC نقطه ی X را بر روی امتداد دایره عظیمه ی انتخاب کنیم و از X دایره عظیمه ای رسم کنیم تا AC,AB را به ترتیب در Y,Z قطع کند داریم: عکس قضیه ی باال هم برقرار است. BC sin AZ sin BX sin CY sin BZ sin CX sin AY = 0 )0 شکل 7 قضیه همخطی در مثلث مسطحه: )این قضیه به قضیه ی سوا معروف است اما در واقع چند قرن قبل از سوا توسط شخص دیگری به نام المؤتمن ابن هود وضع شده بود( این قضیه را به دو صورت زیر میتوان بیان کرد: نقطه ی O را داخل مثلث ABC انتخاب می کنیم و از A به این نقطه وصل می کنیم و امتداد میدهیم تا BC را در 'A قطع کند. همچنین از B به این نقطه وصل میکنیم و امتداد میدهیم تا AC را در 'B قطع کند و همین طور از C به O وصل میکنیم و امتداد میدهیم تا AB را در 'C قطع کند. داریم: 11
13 A B A C B C AB AC C B = 0 اثبات قضیه باال: اگر طول ارتفاع رسم شده از A به BC را با h نمایش دهیم: = 0 مساحت AA B 2 (A B) h = 0 مساحت AA C 2 (AC ) h پس نتیجه میشود که: مساحت AA B مساحت AA C = A B A C و به همین ترتیب مینویسیم: مساحت BOA مساحت COA = A B A C k = a c است. پس مینویسیم: از طرفی میدانیم که اگر k = c = a باشد آنگاه b d d b 12
14 مساحت AOC مساحت AOB = A B A C به روشی مشابه اثبات میشود که: مساحت BOC مساحت BOA = B C AB مساحت COA مساحت COB = AC C B حال اگر این سه عبارت اخیر را در هم ضرب کنیم در سمت چپ معادله صورت و مخرج ها با هم ساده می شوند و به این ترتیب به حکم مساله می رسیم. )2 نقطه ی O را داخل مثلث ABC انتخاب می کنیم و از A به این نقطه وصل می کنیم و امتداد می دهیم تا BC را در 'A قطع کند. همچنین از B به این نقطه وصل می کنیم و امتداد می دهیم تا AC را در 'B قطع کند و همین طور از C به O وصل می کنیم و امتداد می دهیم تا AB را در 'C قطع کند. داریم: sin(a AC) sin(a AB) sin(b BA) sin(b BC) sin(c CB) sin(c CA) = 0 مسئله 6 : بیان دوم قضیه ی سوا را با استفاده از رابطه ی سینوس ها اثبات کنید. مسئله 1 : اگر در مثلث ABC برای سه خط سوائی AX,BY,CZ داشته باشیم: AZ ZB BX XC CY AY = 0 آنگاه سه خط مزبور همرسند. قضیه ی همرسی در هندسه کروی: نقطه ی O را داخل مثلث کروی ABC درنظر بگیرید. از A و O دایره عظیمه ای عبور می دهیم تا دایره عظیمه ی واصل CوB را در 'A قطع کند. همچنین از B و O دایره عظیمه ای می گذرانیم تا دایره عظیمه ی واصل A,C را در 'B قطع کند. و به همین شکل از C و O دایره عظیمه ای عبور می دهیم تا دایره عظیمه ی واصل BوA را در 'C قطع کند. سپس داریم: 13
15 sin(a AC) sin(a AB) sin(b BA) sin(b BC) sin(c CB) sin(c CA) = 0 )اثبات این قضیه بسیار شبیه به بیان دوم نوشته شده برای قضیه ی همرسی در هندسه ی تحت است. به همین دلیل اثبات این قضیه هم به خواننده واگذار می گردد.( )عکس قضیه ی فوق هم برقرار است.( مسئله 8 : یکبار بدون استفاده از قضیه ی همخطی در مثلث کروی و یکبار با استفاده از این قضیه همرسی نیمساز ها در مثلث کروی را اثبات کنید. مسئله 4 : با استفاده از قضیه ی همخطی در مثلث کروی همرسی میانه ها را ثابت کنید. مسئله 01 : ثابت کنید عمود منصف ها در مثلث کروی همرسند. مسئله 00 : الف( نشان دهید ارتفاع ها در مثلث کروی همرسند. ب( در چه شرایطی این همرسی برقرار نیست )قسمت های الف و ب سوال امتحان نهایی المپیاد نجوم است( یازدهمین دوره ی تابستانه ی پ( برای مثلث دلخواه ABC مثلث قطبی DEF را رسم می کنیم.) D قطب E BC قطب AC و F قطب AB است(. دایره عظیمه های AB,DE همدیگر را در G دایره عظیمه های DF,AC همدیگر را در H و دایره عظیمه های FE,BC همدیگر را در I قطع می کنند. نشان دهید G,H,I هر سه روی یک دایره عظیمه قرار دارند. 14
محاسبه ی برآیند بردارها به روش تحلیلی
محاسبه ی برآیند بردارها به روش تحلیلی برای محاسبه ی برآیند بردارها به روش تحلیلی باید توانایی تجزیه ی یک بردار در دو راستا ( محور x ها و محور y ها ) را داشته باشیم. به بردارهای تجزیه شده در راستای محور
Διαβάστε περισσότεραروش محاسبه ی توان منابع جریان و منابع ولتاژ
روش محاسبه ی توان منابع جریان و منابع ولتاژ ابتدا شرح کامل محاسبه ی توان منابع جریان: برای محاسبه ی توان منابع جریان نخست باید ولتاژ این عناصر را بدست آوریم و سپس با استفاده از رابطه ی p = v. i توان این
Διαβάστε περισσότεραتصاویر استریوگرافی.
هب انم خدا تصاویر استریوگرافی تصویر استریوگرافی یک روش ترسیمی است که به وسیله آن ارتباط زاویه ای بین جهات و صفحات بلوری یک کریستال را در یک فضای دو بعدی )صفحه کاغذ( تعیین میکنند. کاربردها بررسی ناهمسانگردی
Διαβάστε περισσότερα1 دایره فصل او ل کاربردهای بسیاری داشته است. یک قضیۀ بنیادی در هندسه موسوم با محیط ثابت دایره دارای بیشترین مساحت است. این موضوع در طراحی
فصل او ل 1 دایره هندسه در ساخت استحکامات دفاعی قلعهها و برج و باروها از دیرباز کاربردهای بسیاری داشته است. یک قضیۀ بنیادی در هندسه موسوم به»قضیۀ همپیرامونی«میگوید در بین همۀ شکلهای هندسی بسته با محیط ثابت
Διαβάστε περισσότεραمثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) X"Y=-XY" X" X" kx = 0
مثال( مساله الپالس در ناحیه داده شده را حل کنید. (,)=() > > < π () حل: به کمک جداسازی متغیرها: + = (,)=X()Y() X"Y=-XY" X" = Y" ثابت = k X Y X" kx = { Y" + ky = X() =, X(π) = X" kx = { X() = X(π) = معادله
Διαβάστε περισσότερα:موس لصف یسدنه یاه لکش رد یلوط طباور
فصل سوم: 3 روابط طولی درشکلهای هندسی درس او ل قضیۀ سینوس ها یادآوری منظور از روابط طولی رابطه هایی هستند که در مورد اندازه های پاره خط ها و زاویه ها در شکل های مختلف بحث می کنند. در سال گذشته روابط طولی
Διαβάστε περισσότεραتحلیل مدار به روش جریان حلقه
تحلیل مدار به روش جریان حلقه برای حل مدار به روش جریان حلقه باید مراحل زیر را طی کنیم: مرحله ی 1: مدار را تا حد امکان ساده می کنیم)مراقب باشید شاخه هایی را که ترکیب می کنید مورد سوال مسئله نباشد که در
Διαβάστε περισσότεραهندسه تحلیلی بردارها در فضای R
هندسه تحلیلی بردارها در فضای R فصل اول-بردارها دستگاه مختصات سه بعدی از سه محور ozوoyوox عمود بر هم تشکیل شده که در نقطه ای به نام o یکدیگر را قطع می کنند. قرارداد: دستگاه مختصات سه بعدی راستگرد می باشد
Διαβάστε περισσότεραتمرینات درس ریاض عموم ٢. r(t) = (a cos t, b sin t), ٠ t ٢π. cos ٢ t sin tdt = ka۴. x = ١ ka ۴. m ٣ = ٢a. κds باشد. حاصل x٢
دانش اه صنعت شریف دانش ده ی علوم ریاض تمرینات درس ریاض عموم سری دهم. ١ سیم نازک داریم که روی دایره ی a + y x و در ربع اول نقطه ی,a را به نقطه ی a, وصل م کند. اگر چ ال سیم در نقطه ی y,x برابر kxy باشد جرم
Διαβάστε περισσότεραمعادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد:
شکل کلی معادلات همگن خطی مرتبه دوم با ضرایب ثابت = ٠ cy ay + by + و معادله درجه دوم = ٠ c + br + ar را معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد: c ١ e r١x
Διαβάστε περισσότεραقاعده زنجیره ای برای مشتقات جزي ی (حالت اول) :
۱ گرادیان تابع (y :f(x, اگر f یک تابع دومتغیره باشد ا نگاه گرادیان f برداری است که به صورت زیر تعریف می شود f(x, y) = D ۱ f(x, y), D ۲ f(x, y) اگر رویه S نمایش تابع (y Z = f(x, باشد ا نگاه f در هر نقطه
Διαβάστε περισσότεραمفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل
مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل شما باید بعد از مطالعه ی این جزوه با مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل کامال آشنا شوید. VA R VB به نظر شما افت ولتاژ مقاومت R چیست جواب: به مقدار عددی V A
Διαβάστε περισσότεραمدار معادل تونن و نورتن
مدار معادل تونن و نورتن در تمامی دستگاه های صوتی و تصویری اگرچه قطعات الکتریکی زیادی استفاده می شود ( مانند مقاومت سلف خازن دیود ترانزیستور IC ترانس و دهها قطعه ی دیگر...( اما هدف از طراحی چنین مداراتی
Διαβάστε περισσότεραCD = AB, BC = ٢DA, BCD = ٣٠ الاضلاع است.
1.چهار مثلث چوبی مساوي با اضلاع 3 و 4 و 5 داریم. با استفاده از این چهار مثلث چه تعداد چندضلعی محدب می توان ساخت نیازي به اثبات نیست و تنها کافی است چندضلعی هاي موردنظر را رسم کنید. چندضلعی محدب به چندضلعی
Διαβάστε περισσότεραدبیرستان غیر دولتی موحد
دبیرستان غیر دلتی محد هندسه تحلیلی فصل دم معادله های خط صفحه ابتدا باید بدانیم که از یک نقطه به مازات یک بردار تنها یک خط می گذرد. با تجه به این مطلب برای نشتن معادله یک خط احتیاج به داشتن یک نقطه از خط
Διαβάστε περισσότεραسايت ويژه رياضيات درسنامه ها و جزوه هاي دروس رياضيات
سايت ويژه رياضيات درسنامه ها و جزوه هاي دروس رياضيات دانلود نمونه سوالات امتحانات رياضي نمونه سوالات و پاسخنامه كنكور دانلود نرم افزارهاي رياضيات و... کانال سایت ریاضی سرا در تلگرام: https://telegram.me/riazisara
Διαβάστε περισσότεραفصل دوم مثلثات نسبت های مثلثاتی دایره مثلثاتی روابط بین نسبتهای مثلثاتی
37 فصل دوم مثلثات نسبت های مثلثاتی دایره مثلثاتی روابط بین نسبتهای مثلثاتی 38 آخر این درس با چی آشنا میشی نسبت های مثلثاتی آشنایی با نسبت های مثلثاتی سینوس کسینوس تانژانت کتانژانت 39 به شکل مقابل نگاه
Διαβάστε περισσότεραآزمایش 8: تقویت کننده عملیاتی 2
آزمایش 8: تقویت کننده عملیاتی 2 1-8 -مقدمه 1 تقویت کننده عملیاتی (OpAmp) داراي دو یا چند طبقه تقویت کننده تفاضلی است که خروجی- هاي هر طبقه به وروديهاي طبقه دیگر متصل شده است. در انتهاي این تقویت کننده
Διαβάστε περισσότεραSanatiSharif.ir مقطع مخروطی: دایره: از دوران خط متقاطع d با L حول آن یک مخروط نامحدود بدست میآید که سطح مقطع آن با یک
مقطع مخروطی: از دوران خط متقاطع d با L حول آن یک مخروط نامحدود بدست میآید که سطح مقطع آن با یک صفحه میتواند دایره بیضی سهمی هذلولی یا نقطه خط و دو خط متقاطع باشد. دایره: مکان هندسی نقاطی است که فاصلهی
Διαβάστε περισσότεραبسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )2( shimiomd
بسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )( shimiomd خواندن مقاومت ها. بررسی قانون اهم برای مدارهای متوالی. 3. بررسی قانون اهم برای مدارهای موازی بدست آوردن مقاومت مجهول توسط پل وتسون 4. بدست آوردن مقاومت
Διαβάστε περισσότεραجلسه ی ۱۰: الگوریتم مرتب سازی سریع
دانشکده ی علوم ریاضی داده ساختارها و الگوریتم ها ۸ مهر ۹ جلسه ی ۱۰: الگوریتم مرتب سازی سریع مدر س: دکتر شهرام خزاي ی نگارنده: محمد امین ادر یسی و سینا منصور لکورج ۱ شرح الگور یتم الگوریتم مرتب سازی سریع
Διαβάστε περισσότεραآزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ(
آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ( فرض کنید جمعیت یک دارای میانگین و انحراف معیار اندازه µ و انحراف معیار σ باشد و جمعیت 2 دارای میانگین µ2 σ2 باشند نمونه های تصادفی مستقل از این دو جامعه
Διαβάστε περισσότεραﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد
دانشگاه صنعتی خواجه نصیر طوسی دانشکده برق - گروه کنترل آزمایشگاه کنترل سیستمهای خطی گزارش کار نمونه تابستان 383 به نام خدا گزارش کار آزمایش اول عنوان آزمایش: آشنایی با نحوه پیاده سازی الکترونیکی فرایندها
Διαβάστε περισσότεραباشند و c عددی ثابت باشد آنگاه تابع های زیر نیز در a پیوسته اند. به شرطی که g(a) 0 f g
تعریف : 3 فرض کنیم D دامنه تابع f زیر مجموعه ای از R باشد a D تابع f:d R در نقطه a پیوسته است هرگاه به ازای هر دنباله از نقاط D مانند { n a{ که به a همگراست دنبال ه ){ n }f(a به f(a) همگرا باشد. محتوی
Διαβάστε περισσότεραجلسه ی ۵: حل روابط بازگشتی
دانشکده ی علوم ریاضی ساختمان داده ها ۶ مهر ۲ جلسه ی ۵: حل روابط بازگشتی مدر س: دکتر شهرام خزاي ی نگارنده: ا رمیتا ثابتی اشرف و علی رضا علی ا بادیان ۱ مقدمه پیدا کردن کران مجانبی توابع معمولا با پیچیدگی
Διαβάστε περισσότεραزمین شناسی ساختاری.فصل پنجم.محاسبه ضخامت و عمق الیه
پن ج م فص ل محاسبه ضخامت و عم ق الهی زمین شناسی ساختاری.کارشناسی زمین شناسی.بخش زمین شناسی دانشکده علوم.دانشگاه شهید باهنر کرمان.استاد درس:دکتر شهرام شفیعی بافتی 1 تعاریف ضخامت - فاصله عمودی بین دو صفحه
Διαβάστε περισσότεραمود لصف یسدنه یاه لیدبت
فصل دوم 2 تبدیلهای هندسی 1 درس او ل تبدیل های هندسی در بسیاری از مناظر زندگی روزمره نظیر طراحی پارچه نقش فرش کاشی کاری گچ بری و... شکل های مختلف طبق الگویی خاص تکرار می شوند. در این فصل وضعیت های مختلفی
Διαβάστε περισσότεραجلسه 3 ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک کوانتمی بیان. d 1. i=0. i=0. λ 2 i v i v i.
محاسبات کوانتمی (671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: محمد جواد داوري جلسه 3 می شود. ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک
Διαβάστε περισσότεραدانشکده ی علوم ریاضی جلسه ی ۵: چند مثال
دانشکده ی علوم ریاضی احتمال و کاربردا ن ۴ اسفند ۹۲ جلسه ی : چند مثال مدر س: دکتر شهرام خزاي ی نگارنده: مهدی پاک طینت (تصحیح: قره داغی گیوه چی تفاق در این جلسه به بررسی و حل چند مثال از مطالب جلسات گذشته
Διαβάστε περισσότεραتئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود.
مفاهیم اصلی جهت آنالیز ماشین های الکتریکی سه فاز محاسبه اندوکتانس سیمپیچیها و معادالت ولتاژ ماشین الف ) ماشین سنکرون جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. در حال حاضر از
Διαβάστε περισσότεραتمرین اول درس کامپایلر
1 تمرین اول درس 1. در زبان مربوط به عبارت منظم زیر چند رشته یکتا وجود دارد (0+1+ϵ)(0+1+ϵ)(0+1+ϵ)(0+1+ϵ) جواب 11 رشته کنند abbbaacc را در نظر بگیرید. کدامیک از عبارتهای منظم زیر توکنهای ab bb a acc را ایجاد
Διαβάστε περισσότεραجلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی:
نظریه ي اطلاعات کوانتومی 1 ترم پاي یز 1391-1391 مدرس: دکتر ابوالفتح بیگی ودکتر امین زاده گوهري نویسنده: محمدرضا صنم زاده جلسه 15 فرض کنیم ماتریس چگالی سیستم ترکیبی شامل زیر سیستم هايB و A را داشته باشیم.
Διαβάστε περισσότεραتبدیل ها هندسه سوم دبیرستان ( D با یک و تنها یک عضو از مجموعه Rست که در آن هر عضو مجموعه نگاشت از Dبه R تناظری بین مجموعه های D و Rمتناظر باشد.
تبدیل ها ن گاشت : D با یک و تنها یک عضو از مجموعه نگاشت از Dبه R تناظری بین مجموعه های D و Rمتناظر باشد. Rست که در آن هر عضو مجموعه تبد ی ل : نگاشتی یک به یک از صفحه به روی خودش است یعنی در تبدیل هیچ دو
Διαβάστε περισσότεραجلسه ی ۳: نزدیک ترین زوج نقاط
دانشکده ی علوم ریاضی ا نالیز الگوریتم ها ۴ بهمن ۱۳۹۱ جلسه ی ۳: نزدیک ترین زوج نقاط مدر س: دکتر شهرام خزاي ی نگارنده: امیر سیوانی اصل ۱ پیدا کردن نزدیک ترین زوج نقطه فرض می کنیم n نقطه داریم و می خواهیم
Διαβάστε περισσότερα1) { } 6) {, } {{, }} 2) {{ }} 7 ) { } 3) { } { } 8) { } 4) {{, }} 9) { } { }
هرگاه دسته اي از اشیاء حروف و اعداد و... که کاملا"مشخص هستند با هم در نظر گرفته شوند یک مجموعه را به وجود می آورند. عناصر تشکیل دهنده ي یک مجموعه باید دو شرط اساسی را داشته باشند. نام گذاري مجموعه : الف
Διαβάστε περισσότεραجلسه 9 1 مدل جعبه-سیاه یا جستاري. 2 الگوریتم جستجوي Grover 1.2 مسا له 2.2 مقدمات محاسبات کوانتمی (22671) ترم بهار
محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: هیربد کمالی نیا جلسه 9 1 مدل جعبه-سیاه یا جستاري مدل هایی که در جلسه ي پیش براي استفاده از توابع در الگوریتم هاي کوانتمی بیان
Διαβάστε περισσότεραهندسه در فضا 1. خط و صفحه در فضا ب. وضعیت نسبی دو صفحه در فضا پ. وضعیت نسبی دو خط در فضا ت. وضعیت نسبی خط و صفحه در فضا الف.
4 هندسه در فضا فصل در اين فصل ميخوانيم: 1. خط و صفحه در فضا الف. اصول هندسهي فضايي ب. وضعیت نسبی دو صفحه در فضا پ. وضعیت نسبی دو خط در فضا ت. وضعیت نسبی خط و صفحه در فضا ث. حاالت چهارگانهي مشخص كردن صفحه
Διαβάστε περισσότεραAngle Resolved Photoemission Spectroscopy (ARPES)
Angle Resolved Photoemission Spectroscopy (ARPES) روش ARPES روشی است تجربی که برای تعیین ساختار الکترونی مواد به کار می رود. این روش بر پایه اثر فوتوالکتریک است که توسط هرتز کشف شد: الکترونها می توانند
Διαβάστε περισσότεραویرایشسال 95 شیمیمعدنی تقارن رضافالحتی
ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی از ابتدای مبحث تقارن تا ابتدای مبحث جداول کاراکتر مربوط به کنکور ارشد می باشد افرادی که این قسمت ها را تسلط دارند می توانند از ابتدای مبحث جداول کاراکتر به مطالعه
Διαβάστε περισσότεραآزمایش 1: پاسخ فرکانسی تقویتکننده امیتر مشترك
آزمایش : پاسخ فرکانسی تقویتکننده امیتر مشترك -- مقدمه هدف از این آزمایش بدست آوردن فرکانس قطع بالاي تقویتکننده امیتر مشترك بررسی عوامل تاثیرگذار و محدودکننده این پارامتر است. شکل - : مفهوم پهناي باند تقویت
Διαβάστε περισσότεραهو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم
هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network شنبه 2 اسفند 1393 جلسه هفتم استاد: مهدي جعفري نگارنده: سید محمدرضا تاجزاد تعریف 1 بهینه سازي محدب : هدف پیدا کردن مقدار بهینه یک تابع ) min
Διαβάστε περισσότεραبخش اول: زاویه و مثلث... 7 بخش دوم: چندضلعی بخش دوم: مساحت مثلث بخش سوم: مساحت چهارضلعیها بخش اول: نسبت و تناسب تالس...
فصل : هندسه و استدالل... 7 بخش اول: زاویه و مثلث... 7 بخش دوم: چندضلعی... 8 پرسشهای چهارگزینهای... 5 پاسخنامهی تشریحی فصل اول... 3 فصل : مساحت و قضیهی فیثاغورس... 43 بخش اول: قضیهی فیثاغورس... 43 بخش دوم:
Διαβάστε περισσότεραهندسه تحلیلی و جبر خطی ( خط و صفحه )
هندسه تحلیلی جبر خطی ( خط صفحه ) z معادالت متقارن ) : خط ( معادله برداری - معادله پارامتری P فرض کنید e معادلهی خطی باشد که از نقطه ی P به مازات بردار ( c L ) a b رسم شده باشد اگر ( z P ) x y l L نقطهی
Διαβάστε περισσότεραجلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان
هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network سه شنبه 21 اسفند 1393 جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان استاد: مهدي جعفري نگارنده: علیرضا حیدري خزاي ی در این نوشته مقدمه اي بر
Διαβάστε περισσότεραجلسه 16 نظریه اطلاعات کوانتمی 1 ترم پاییز
نظریه اطلاعات کوانتمی ترم پاییز 39-39 مدرسین: ابوالفتح بیگی و امین زاده گوهري نویسنده: محم دحسن آرام جلسه 6 تا اینجا با دو دیدگاه مختلف و دو عامل اصلی براي تعریف و استفاده از ماتریس چگالی جهت معرفی حالت
Διαβάστε περισσότεραفصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت
فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت در تقویت کننده ها از فیدبک منفی استفاده می نمودیم تا بهره خیلی باال نرفته و سیستم پایدار بماند ولی در فیدبک مثبت هدف فقط باال بردن بهره است در
Διαβάστε περισσότεραتلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: میباشد. تلفات خط انتقال با مربع توان انتقالی متناسب
تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: این شبکه دارای دو واحد کامال یکسان آنها 400 MW میباشد. است تلفات خط انتقال با مربع توان انتقالی متناسب و حداکثر
Διαβάστε περισσότεραتخمین با معیار مربع خطا: حالت صفر: X: مکان هواپیما بدون مشاهده X را تخمین بزنیم. بهترین تخمین مقداری است که متوسط مربع خطا مینیمم باشد:
تخمین با معیار مربع خطا: هدف: با مشاهده X Y را حدس بزنیم. :y X: مکان هواپیما مثال: مشاهده نقطه ( مجموعه نقاط کنارهم ) روی رادار - فرض کنیم می دانیم توزیع احتمال X به چه صورت است. حالت صفر: بدون مشاهده
Διαβάστε περισσότεραآشنایی با پدیده ماره (moiré)
فلا) ب) آشنایی با پدیده ماره (moiré) توری جذبی- هرگاه روی ورقه شفافی چون طلق تعداد زیادی نوارهای خطی کدر هم پهنا به موازات یکدیگر و به فاصله های مساوی از هم رسم کنیم یک توری خطی جذبی به وجود می آید شکل
Διαβάστε περισσότεραDelaunay Triangulations محیا بهلولی پاییز 93
محیا بهلولی پاییز 93 1 Introduction در فصل های قبلی نقشه های زمین را به طور ضمنی بدون برجستگی در نظر گرفتیم. واقعیت این گونه نیست. 2 Introduction :Terrain یک سطح دوبعدی در فضای سه بعدی با یک ویژگی خاص
Διαβάστε περισσότεραجلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1
محاسبات کوانتمی (67) ترم بهار 390-39 مدرس: سلمان ابوالفتح بیگی نویسنده: سلمان ابوالفتح بیگی جلسه ذخیره پردازش و انتقال اطلاعات در دنیاي واقعی همواره در حضور خطا انجام می شود. مثلا اطلاعات کلاسیکی که به
Διαβάστε περισσότεραجلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال
نظریه اطلاعات کوانتمی 1 ترم پاییز 1391-1392 مدرسین: ابوالفتح بیگی و امین زاده گوهري جلسه 2 فراگیري نظریه ي اطلاعات کوانتمی نیازمند داشتن پیش زمینه در جبرخطی می باشد این نظریه ترکیب زیبایی از جبرخطی و نظریه
Διαβάστε περισσότεραجلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز
تي وري اطلاعات کوانتومی ترم پاییز 1391-1392 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: محمد مهدي مجاهدیان جلسه 22 تا اینجا خواص مربوط به آنتروپی را بیان کردیم. جهت اثبات این خواص نیاز به ابزارهایی
Διαβάστε περισσότεραجلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار
محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: نادر قاسمی جلسه 2 در این درسنامه به مروري کلی از جبر خطی می پردازیم که هدف اصلی آن آشنایی با نماد گذاري دیراك 1 و مباحثی از
Διαβάστε περισσότεραجلسه 14 را نیز تعریف کرد. عملگري که به دنبال آن هستیم باید ماتریس چگالی مربوط به یک توزیع را به ماتریس چگالی مربوط به توزیع حاشیه اي آن ببرد.
تي وري اطلاعات کوانتمی ترم پاییز 39-39 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: کامران کیخسروي جلسه فرض کنید حالت سیستم ترکیبی AB را داشته باشیم. حالت سیستم B به تنهایی چیست در ابتداي درس که حالات
Διαβάστε περισσότεραهد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط
هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. - اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط اجسام متحرک را محاسبه کند. 4- تندی متوسط و لحظه ای را
Διαβάστε περισσότεραبه نام ستاره آفرین قضیه ویریال جنبشی کل ذرات یک سیستم پایدار مقید به نیرو های پایستار را به متوسط انرژی پتانسیل کل شان
به نام ستاره آفرین قضیه ویریال درود بر ملت نجومی! در این درس نامه می خواهیم یکی از قضیه های معروف اخترفیزیک و مکانیک یعنی قضیه ی شریفه ی ویریال را به دست آوریم. به طور خالصه قضیه ی ویریال متوسط انرژی جنبشی
Διαβάστε περισσότεραجلسه ی ۲۴: ماشین تورینگ
دانشکده ی علوم ریاضی نظریه ی زبان ها و اتوماتا ۲۶ ا ذرماه ۱۳۹۱ جلسه ی ۲۴: ماشین تورینگ مدر س: دکتر شهرام خزاي ی نگارندگان: حمید ملک و امین خسر وشاهی ۱ ماشین تور ینگ تعریف ۱ (تعریف غیررسمی ماشین تورینگ)
Διαβάστε περισσότεραتبدیل سوم: فصل تجانس انواع تجانس
ها تبدیل سوم: فصل تجانس پنجم: بخش میخوانیم بخش این در آنچه تجانس مفهوم تجانس ضابطهی تجانس انواع تجانس ویژگیهای )O αβ, ) مرکز با تجانس ضابطهی متوالی تجانسهای زیر صورت به را آن که میباش د تجانس نیس ت ایزومتری
Διαβάστε περισσότεραفعالیت = ) ( )10 6 ( 8 = )-4( 3 * )-5( 3 = ) ( ) ( )-36( = m n m+ m n. m m m. m n mn
درس»ریشه ام و توان گویا«تاکنون با مفهوم توان های صحیح اعداد و چگونگی کاربرد آنها در ریشه گیری دوم و سوم اعداد آشنا شده اید. فعالیت زیر به شما کمک می کند تا ضمن مرور آنچه تاکنون در خصوص اعداد توان دار و
Διαβάστε περισσότεραرشتۀ ریاضی و فیزیک پایۀ یازدهم دورۀ دوم متوسطه
هندسه )2( رشتۀ ریاضی و فیزیک پایۀ یازدهم دورۀ دوم متوسطه 1396 وزارت آموزش و پرورش سازمان پژوهش و برنامهريزي آموزشي نام کتاب: پدیدآورنده: مدیریت برنامهریزی درسی و تألیف: شناسه افزوده برنامهریزی و تألیف:
Διαβάστε περισσότεραفصل 5 :اصل گسترش و اعداد فازی
فصل 5 :اصل گسترش و اعداد فازی : 1-5 اصل گسترش در ریاضیات معمولی یکی از مهمترین ابزارها تابع می باشد.تابع یک نوع رابطه خاص می باشد رابطه ای که در نمایش زوج مرتبی عنصر اول تکراری نداشته باشد.معموال تابع
Διαβάστε περισσότερα........................................................................................................................................................... حجم ومساحت ف ص ل 8.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
Διαβάστε περισσότερα:لاثم 1 - در هر مثلث نیمسازها همرسند پس مثلث همواره محیطی است و مرکز دایرهی قضیه قضیه 3- هر چندضلعی منتظم محیطی است. است.
دایره دوم: فصل محیطی و محاطی دایرههای محیطی و محاطی چندضلعیهای سوم: بخش میخوانیم بخش این در آنچه محاطی دایرهی و محیطی چندضلعیهای مثلث محاطی دایرههای محیطی دایرهی و محاطی چندضلعیهای محیطی چهارضلعیهای داخلی
Διαβάστε περισσότεραدانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم
آزمون پایان ترم درس: هندسه منیفلد 1 زمان آزمون 120 دقیقه نیمسال: اول 95-94 رشته تحصیلی : ریاضی محض 1. نشان دهید X یک میدان برداري روي M است اگر و فقط اگر براي هر تابع مشتقپذیر f روي X(F ) M نیز مشتقپذیر
Διαβάστε περισσότεραهدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه
آزما ی ش شش م: پا س خ فرکا نس ی مدا رات مرتبه اول هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه و پاسخ فاز بررسی رفتار فیلتري آنها بدست
Διαβάστε περισσότεραفهرست مطالب جزوه ی فصل اول مدارهای الکتریکی مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل تحلیل مدار به روش جریان حلقه... 22
فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی آنچه باید پیش از شروع کتاب مدار بدانید تا مدار را آسان بیاموزید.............................. 2 مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل................................................
Διαβάστε περισσότεραفصل سوم جریان های الکتریکی و مدارهای جریان مستقیم جریان الکتریکی
فصل سوم جریان های الکتریکی و مدارهای جریان مستقیم جریان الکتریکی در رساناها مانند یک سیم مسی الکترون های آزاد وجود دارند که با سرعت های متفاوت بطور کاتوره ای)بی نظم(در حال حرکت هستند بطوریکه بار خالص گذرنده
Διαβάστε περισσότεραبه نام خدا. الف( توضیح دهید چرا از این تکنیک استفاده میشود چرا تحلیل را روی کل سیگنال x[n] انجام نمیدهیم
پردازش گفتار به نام خدا نیمسال اول 59-59 دکتر صامتی تمرین سری سوم پیشبینی خطی و کدینگ شکلموج دانشکده مهندسی کامپیوتر زمان تحویل: 32 آبان 4259 تمرینهای تئوری: سوال 1. می دانیم که قبل از انجام تحلیل پیشبینی
Διαβάστε περισσότεραفصل چهارم تعیین موقعیت و امتدادهای مبنا
فصل چهارم تعیین موقعیت و امتدادهای مبنا هدف های رفتاری پس از آموزش و مطالعه این فصل از فراگیرنده انتظار می رود بتواند: 1 راهکار کلی مربوط به ترسیم یک امتداد در یک سیستم مختصات دو بعدی و اندازه گیری ژیزمان
Διαβάστε περισσότεραفهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها(
فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها( رفتار عناصر L, R وC در مدارات جریان متناوب......................................... بردار و کمیت برداری.............................................................
Διαβάστε περισσότεραندرک درگ ندرک درگ شور
٥ عددهای تقریبی درس او ل: تقریب زدن گردکردن در کالس چهارم شما با تقریب زدن آشنا شده اید. عددهای زیر را با تقریب دهگان به نزدیک ترین عدد مانند نمونه تقریب بزنید. عدد جواب را در خانه مربوطه بنویسید. 780
Διαβάστε περισσότεραهمبستگی و رگرسیون در این مبحث هدف بررسی وجود یک رابطه بین دو یا چند متغیر می باشد لذا هدف اصلی این است که آیا بین
همبستگی و رگرسیون در این مبحث هدف بررسی وجود یک رابطه بین دو یا چند متغیر می باشد لذا هدف اصلی این است که آیا بین دو صفت متغیر x و y رابطه و همبستگی وجود دارد یا خیر و آیا می توان یک مدل ریاضی و یک رابطه
Διαβάστε περισσότεραجلسه ی ۴: تحلیل مجانبی الگوریتم ها
دانشکده ی علوم ریاضی ساختمان داده ها ۲ مهر ۱۳۹۲ جلسه ی ۴: تحلیل مجانبی الگوریتم ها مدر س: دکتر شهرام خزاي ی نگارنده: شراره عز ت نژاد ا رمیتا ثابتی اشرف ۱ مقدمه الگوریتم ابزاری است که از ا ن برای حل مسا
Διαβάστε περισσότεραنویسنده: محمدرضا تیموری محمد نصری مدرس: دکتر پرورش خالصۀ موضوع درس سیستم های مینیمم فاز: به نام خدا
به نام خدا پردازش سیگنالهای دیجیتال نیمسال اول ۹۵-۹۶ هفته یازدهم ۹۵/۰8/2۹ مدرس: دکتر پرورش نویسنده: محمدرضا تیموری محمد نصری خالصۀ موضوع درس یا سیستم های مینیمم فاز تجزیه ی تابع سیستم به یک سیستم مینیمم
Διαβάστε περισσότεραشاخصهای پراکندگی دامنهی تغییرات:
شاخصهای پراکندگی شاخصهای پراکندگی بیانگر میزان پراکندگی دادههای آماری میباشند. مهمترین شاخصهای پراکندگی عبارتند از: دامنهی تغییرات واریانس انحراف معیار و ضریب تغییرات. دامنهی تغییرات: اختالف بزرگترین و
Διαβάστε περισσότεραهندسه )1( رشتۀ ریاضی و فیزیک کتاب معلم )راهنمای تدریس( پایۀ دهم دورۀ دوم متوسطه
هندسه )( رشتۀ ریاضی و فیزیک کتاب معلم )راهنمای تدریس( پایۀ دهم دورۀ دوم متوسطه 395 وزارت آموزش و پرورش سازمان پژوهش و برنامهريزي آموزشي نام کتاب: پدیدآورنده: مدیریت برنامهریزی درسی و تألیف: شناسه افزوده
Διαβάστε περισσότεραمینامند یا میگویند α یک صفر تابع
1 1-1 مقدمه حل بسیاری از مسائل اجتماعی اقتصادی علمی منجر به حل معادله ای به شکل ) ( می شد. منظر از حل این معادله یافتن عدد یا اعدادی است که مقدار تابع به ازای آنها صفر شد. اگر (α) آنگاه α را ریشه معادله
Διαβάστε περισσότεραالکتریسیته ساکن مدرس:مسعود رهنمون سال تحصیلى 95-96
الکتریسیته ساکن سال تحصیلى 95-96 مقدمه: همانطور که می دانیم بارهای الکتریکی بر هم نیرو وارد می کنند. بارهای الکتریکی هم نام یکدیگر را می رانند و بارهای الکتریکی نا هم نام یکدیگر را می ربایند. بار نقطه
Διαβάστε περισσότεραI = I CM + Mh 2, (cm = center of mass)
قواعد کلی اینرسی دو ارنی المان گیری الزمه یادگیری درست و کامل این مباحث که بخش زیادی از نمره پایان ترم ار به خود اختصاص می دهند یادگیری دقیق نکات جزوه استاد محترم و درک درست روابط ریاضی حاکم بر آن ها است
Διαβάστε περισσότεραخواص هندسی سطوح فصل ششم بخش اول - استاتیک PROBLEMS. 6.1 through 6.18 Using. Fig. P6.4. Fig. Fig. P ft 8 ft. 2.4 m 2.4 m lb. 48 kn.
خواص هندسی فصل ششم سطوح بخش اول - استاتیک... P6.4 0 kn 5 k 9. P6.5 n. 600 l. P6.. P6. 5 m PROLEMS ee8056_ch06_6-75.ndd Page 8 0/6/09 :50:46 M user-s7 . P6.4. P6.... P6. 5 m. P6.5 n. 0 kn 5 k PROLEMS ee8056_ch06_6-75.ndd
Διαβάστε περισσότεραمسائل. 2 = (20)2 (1.96) 2 (5) 2 = 61.5 بنابراین اندازه ی نمونه الزم باید حداقل 62=n باشد.
) مسائل مدیریت کارخانه پوشاک تصمیم دارد مطالعه ای به منظور تعیین میانگین پیشرفت کارگران کارخانه انجام دهد. اگر او در این مطالعه دقت برآورد را 5 نمره در نظر بگیرد و فرض کند مقدار انحراف معیار پیشرفت کاری
Διαβάστε περισσότεραفصل پنجم زبان های فارغ از متن
فصل پنجم زبان های فارغ از متن خانواده زبان های فارغ از متن: ( free )context تعریف: گرامر G=(V,T,,P) کلیه قوانین آن به فرم زیر باشد : یک گرامر فارغ از متن گفته می شود در صورتی که A x A Є V, x Є (V U T)*
Διαβάστε περισσότεραجلسه ی ۱۸: درهم سازی سرتاسری - درخت جست و جوی دودویی
دانشکده ی علوم ریاضی ساختمان داده ۱۰ ا ذر ۹۲ جلسه ی ۱۸: درهم سازی سرتاسری - درخت جست و جوی دودویی مدر س: دکتر شهرام خزاي ی نگارنده: معین زمانی و ا رمیتا اردشیری ۱ یادا وری همان طور که درجلسات پیش مطرح
Διαβάστε περισσότεραفصل اول هدف های رفتاری: پس از پایان این فصل از هنرجو انتظار می رود: 5 روش های اجرای دستور را توضیح دهد. 6 نوارهای ابزار را توصیف کند.
فصل اول آشنایی با نرم افزار اتوکد هدف های رفتاری: پس از پایان این فصل از هنرجو انتظار می رود: 1 قابلیت های نرم افزار اتوکد را بیان کند. 2 نرم افزار اتوکد 2010 را روی رایانه نصب کند. 3 محیط گرافیکی نرم
Διαβάστε περισσότεραجلسه 28. فرض کنید که m نسخه مستقل یک حالت محض دلخواه
نظریه اطلاعات کوانتمی 1 ترم پاییز 1392-1391 مدرسین: ابوالفتح بیگی و امین زاده گوهري نویسنده: مرتضی نوشاد جلسه 28 1 تقطیر و ترقیق درهم تنیدگی ψ m بین آذر و بابک به اشتراك گذاشته شده است. آذر و AB فرض کنید
Διαβάστε περισσότεραماشینهای مخصوص سیم پیچي و میدانهای مغناطیسي
ماشینهای مخصوص سیم پیچي و میدانهای مغناطیسي استاد: مرتضي خردمندی تهیهکننده: سجاد شمس ویراستار : مینا قنادی یاد آوری مدار های مغناطیسی: L g L g مطابق شکل فرض کنید سیمپیچ N دوری حامل جریان i به دور هستهای
Διαβάστε περισσότεραآموزش SPSS مقدماتی و پیشرفته مدیریت آمار و فناوری اطالعات -
آموزش SPSS مقدماتی و پیشرفته تهیه و تنظیم: فرزانه صانعی مدیریت آمار و فناوری اطالعات - مهرماه 96 بخش سوم: مراحل تحلیل آماری تحلیل داده ها به روش پارامتری بررسی نرمال بودن توزیع داده ها قضیه حد مرکزی جدول
Διαβάστε περισσότεραمقاومت مصالح 2 فصل 9: خيز تيرها. 9. Deflection of Beams
مقاومت مصالح فصل 9: خيز تيرها 9. Deflection of eams دکتر مح مدرضا نيرومند دااگشنه ايپم نور اصفهان eer Johnston DeWolf ( ) رابطه بين گشتاور خمشی و انحنا: تير طره ای تحت بار متمرکز در انتهای آزاد: P انحنا
Διαβάστε περισσότεραبرابری کار نیروی برآیند و تغییرات انرژی جنبشی( را بدست آورید. ماتریس ممان اینرسی s I A
مبحث بیست و سوم)مباحث اندازه حرکت وضربه قانون بقای اندازه حرکت انرژی جنبشی و قانون برابری کار نیروی برآیند و تغییرات انرژی جنبشی( تکلیف از مبحث ماتریس ممان اینرسی( را بدست آورید. ماتریس ممان اینرسی s I
Διαβάστε περισσότεραفصل صفر یادآوری مفاهیم پایه
فصل صفر جبر اعداد حقیقی در این فصل به مرور مهم ترین مطالبی میپردازیم که در مباحث حساب دیفرانسیل و انتگرال بدان محتاج هستیم این مطالب مشتمل بر مروری مجد د بر خواص اعداد حقیقی است که دانشآموزان از دوره دبستان
Διαβάστε περισσότεραفصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت
جزوه تکنیک پالس فصل چهارم: مولتی ویبراتورهای ترانزیستوری فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت در تقویت کننده ها از فیدبک منفی استفاده می نمودیم تا بهره خیلی باال نرفته و سیستم پایدار
Διαβάστε περισσότεραفصل ٤ انتگرال کند. در چنین روشی برای محاسبه دایره از درج چندضلعیهای منتظم در درون دایره استفاده میشود
فصل ٤ انتگرال ٤ ١ مسأله مساحت فرمولهای مربوط به مساحت چندضلعیها نظیر مربع مستطیل مثلث و ذوزنقه از زمانهای شروع تمدنهای نخستین به خوبی شناخته شده بوده است. با اینحال مسأله یافتن فرمولی برای بعضی نواحی که
Διαβάστε περισσότεραسینماتیک مستقیم و وارون
3 سینماتیک مستقیم و وارون بهنام میری پور فرد استادیار گروه مهندسی رباتیک دانشگاه صنعتی همدان همدان ایران bmf@hut.ac.ir B. Miripour Fard Hamedan University of Technology 1 در سینماتیک حرکت بررسی کند می
Διαβάστε περισσότεραBeta Coefficient نویسنده : محمد حق وردی
مفهوم ضریب سهام بتای Beta Coefficient نویسنده : محمد حق وردی مقدمه : شاید بارها در مقاالت یا گروهای های اجتماعی مربوط به بازار سرمایه نام ضریب بتا رو دیده باشیم یا جایی شنیده باشیم اما برایمان مبهم باشد
Διαβάστε περισσότεραنظریه زبان ها و ماشین ها
نظریه زبان ها و ماشین ها Theory of Languages & Automatas سید سجاد ائم ی زمستان 94 به نام خدا پیش گفتار جزوه پیش رو جهت استفاده دانشجویان عزیز در درس نظریه زبانها و ماشینها تهیه شده است. در این جزوه با
Διαβάστε περισσότεραک ت اب درس ی ن ظ ری ه گ راف ب الاک ری ش ن ان و ران گ ان ات ه ان (ح ل ت ع دادي از ت م ری ن ه اي ف ص ل ه اي 4 و 5) دک ت ر ب ی ژن ط اي ري
ک ت اب درس ی ن ظ ری ه گ راف ب الاک ری ش ن ان و ران گ ان ات ه ان (ح ل ت ع دادي از ت م ری ن ه اي ف ص ل ه اي 4 و 5) دک ت ر ب ی ژن ط اي ري دان ش ک ده ي ع ل وم ری اض ی دان ش گ اه ص ن ع ت ی اص ف ه ان Copyright
Διαβάστε περισσότερα3 لصف یربج یاه ترابع و ایوگ یاه ناوت
فصل توان های گویا و عبارت های جبری 8 نگاه کلی به فصل هدفهای این فصل را میتوان به اختصار چنین بیان کرد: همانگونه که توان اعداد را در آغاز برای توانهای طبیعی عددهای ٢ و ٣ تعریف میکنیم و سپس این مفهوم را
Διαβάστε περισσότεραجلسه 23 1 تابع آنتروپی و خاصیت مقعر بودن نظریه اطلاعات کوانتمی 1 ترم پاییز
نظریه اطلاعات کوانتمی ترم پاییز 392-39 مدرس: ابوالفتح بیگی و امین راده گوهري نویسنده: علی ایزدي راد جلسه 23 تابع آنتروپی و خاصیت مقعر بودن در جلسه ي قبل به تعریف توابع محدب و صعودي پرداختیم و قضیه هاي
Διαβάστε περισσότεραمی باشد. انشاال قسمت شعاعی بماند برای مکانیک کوانتومی 2.
تکانه زاویه ای اهداف فصل: در این فصل سعی میکنیم تا مساله شرودینگر را در حالت سه بعدی مورد بررسی قرار دهیم. مهمترین نکته فصل این است که ما در انجا فقط پتانسیل های شعاعی را در نظر می گیریم. یعنی پتانسیل
Διαβάστε περισσότερα