Outage Probability of Cognitive Relay Network Considering the Interference Link from Primary Users on the Secondary Relay and Receiver
|
|
- Μακεδνός Κουρμούλης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 1396 () (1) - - (1) - () 1395/1/1 : 1395/1/1 :. : : Outage Probability of Cogitive elay etwork Cosiderig e terferece Lik from Primary Users o e Secodary elay ad eceiver afise Sadegi (1) - ooola Agajai () (1) MSc. epartmet of Electrical Egieerig, ajafabad Brac, slamic Azad Uiversity, ajafabad, ra sadegi.0369@gmail.com () Assistat Professor - epartmet of Electrical Egieerig, ajafabad Brac, slamic Azad Uiversity, ajafabad, ra agajai@iau.ac.ir Cogitive elay etwork is a pla to remove some problems suc as limited coverage ad limited spectrum. Tis strategy permits secodary user to use a sared frequecy bad, wic is dedicated to e primary users. Te secodary etwork employs a relay ode to eted e commuicatio rage ad improves e etwork outage probability. By e way, primary ad secodary users ca cause destructive effects o eac oer, if ey do t cotrol e trasmitted power. is paper, we cosider bo primary ad secodary iterfereces to model a more accurate cogitive relay etwork. Te aim is to sow e effects of iterferece caused by primary users o e correct data trasmisio ad e outage probability i e cogitive relay etwork. de Terms: Cogitive relay, Outage probability, iterferece from primary agajai@iau.ac.ir - : 15
2 -15.. [6].. [7]. [8]. [9] [10]. [11]. [1]... [13] (1) [1].[] 005.[3] [4] [3] [5] -. 16
3 1396 su... σ... : () (1) y P + P + ( 1) su su su P su direct. su su y P y P + P + ( ) su (1) y direct (1).. (3) P su P su ( 3) su. y P + () (). ( 4) (3) su sup P 1 : S ( 5) σ + S. :(1) Fig. (1): Cogitive relay etwork model cosiderig relay ad destiatio iterfereces liks (1).. 17
4 -15. A f Y ( y) ( 9) (A + y) ) ( W 1 PU ϒ : 1 (Y ) w ep ( Y w ) f w (w ) ( 10) ( 1)! S F (). Pr (X ) Pr FX () 0 f A 1 P Y W + w (w ) ( w + ) f Y ( 1)! η B Γ() Γ(1, ) η (y) dy dw B 1 (11) B ep η A σ α B + A B A P PU PPU ε ZS. : Pr (Z z) Pr C 1 z P Y W + ( w + ) F (z) Z f (w ) w f Y (y) dy dw ( 1) 0 0 z 1 1 ( 1)! γ 1 B ep Γ ( ) Γ (1, ) γ γ S F Y (y). C σ β + C zp PU PPU ε. S MC P. : Pr( r) ( 13) out < 18 σ.. (5) S : S SU SUP PU 1 ( 6) σ + P PU (6) σ. (7) S MC MC.. S MC su + sup PU ( 7) σ + PPU 1 PU... SUP SU ζ α. (7) (5) SU. ϒ η PU ε PU β su su su.[14] sup su sup. Y. F ( y) Pr (Y y) Pr ( X : Y y) X 1 su sup 1 Y ( 8) y y λ 1 f ( ) f ( 1 ) d 1 d, A A + y λ
5 1396 bps γ r( ) Hz.. (5)... :() Fig. (): Outage probability diagram versus maimum resold iterferece d :(3) Fig. (3): Outage probability diagram for differet d. r. Pout Pr (log (1 + S ) < r ( 14) r pr (S < 1) Pout [ Pr (S < Y ). Pr (S < γ )] [ Pr (S γ ). Pr (S < γ )]. γ MC r 1 : + ( 15).. YS XS (13) US MC. Pout F ( γ ) FY ( γ ) + (1 FX ( γ )) FU ( γ ) ( 16) (11) Y X. (1) (). [-5, 15] db. db.. (3) d... ( ) (4). 19
6 :(4) Fig. (4): Outage probability diagram for differet r. :(5) Fig. (5): Outage probability diagram for differet efereces [1] Z. Zag, Partial coverse for a relay cael, EEE Tras. o formatio Teory, Vol. 34, o. 5, pp , May [] A. Høst-Madse, J. Zag, Capacity bouds ad power allocatio for wireless relay caels, EEE Tras. o formatio Teory, Vol. 51, o. 6, pp , Ju [3] O. Simeoe, J. Gambii, Y. Bar-ess, U. Spagolii, Cooperatio ad cogitive radio, Proceedig of e EEE/CC, Glasgow, UK, pp , Ju [4]. Hu, S. Mao, Cooperative relay i cogitive radio etworks: ecode-ad-forward or amplify-ad-forward?, Proceedig of e EEE/ GLOBECOM, Miami, FL, USA, ec [5] Y. Guo, G. Kag,. Zag, W. Zou, P. Zag, Outage performace of relay-assisted cogitive-radio system uder, spectrum-sarig costraits, Electroic Letter, Vol. 46, o., pp , Ja [6] T.T. uy, G.C. Aleadropoulos, V.T. Tug, V.. So, T.Q. uog. Outage performace of cogitive cooperative etworks wi relay selectio over double-ayleig fadig caels, ET Commuicatios, Vol. 10, o. 1, pp , Ja [7] K. Soaib, Y. Coi, Y. Ha, Outage improvemet i cogitive relay etworks by usig a geeralized regioal model, Proceedig of e EEE/VTC, pp. 1-5, Ottawa, O, Caada, Sep [8] L. Fa, X. Lei, T.Q. uog,.q. Hu, M. Elkasla, Multiuser cogitive relay etworks: Joit impact of direct ad relay commuicatios, EEE Tras. o Wireless Commuicatios, Vol. 13, o. 9, pp , Sep [9] S. Sagog, J. Lee,. Hog, Capacity of reactive F sceme i cogitive relay etworks, EEE Tras. o Wireless Commuicatios, Vol. 10, o. 10, pp , Oct
7 1396 [10] J. Lee, H. Wag, J.G. Adrews,. Hog, Outage probability of cogitive relay etworks wi iterferece costraits, EEE Tras. o Wireless Commuicatios, Vol. 10, o., pp , Feb [11] F..V. Guimaraes,.B Costa, T.A. Tsiftsis, C.C Cavalcate, G.K. karagiaidis, Multiuser ad multirelay cogitive radio etworks uder spectrum-sarig costraits, EEE Tras.Veicular o Tecology, Vol. 63, o. 1, pp , Ja [1] A. Alizade, S.M.S. Sadoug, Power miimizatio i ui-directioal relay etworks wi cogitive radio capabilities, Proceedig of e EEE/ST, Tera, ra, 010. [13]. Sadegi,. Agajai, Effect of primary iterferece o cogitive relay etwork, Ciecia & atura, Vol. 37, pp , ec [14] A. Leo-Garcia, Probability, statistics, ad radom processes for electrical egieerig, Upper Saddle iver, J: Pearso/Pretice Hall,
8
Rapid Acquisitio n of Doppler Shift in Satellite Co mmunicatio ns
7 3 7 ATA ELETRONIA SINIA Vol. 31 No. 7 July 3 1, 1, (1., 184 ;., 444) :., PN,.,,. : ; ; ; : TN9 : A : 3711 (3) 7155 Rapid Acquisitio of Doppler Shift i Satellite o mmuicatio s HUAN Zhe 1,LU Jiahua 1,YAN
JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering TP (2012)
30 1 01 1 JOURNAL OF APPLIED SCIENCES Electroics ad Iformatio Egieerig Vol. 30 No. 1 Ja. 01 DOI: 10.3969/j.iss.055-897.01.01.007 OFDM 1, 1,, 1, 1 1. 400065. 400035 OFDMAF amlify ad forward...... P393.04
Outline. Detection Theory. Background. Background (Cont.)
Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear
CDMA. Performance Analysis of Chaotic Spread Spectrum CDMA Systems. LI Xiao - chao, GUO Dong - hui, ZENG Quan, WU Bo - xi RESEARCH & DEVELOPMENT
2003 6 RESEARCH & DEVELOPME 00-893X(2003) 06-003 - 06 3 CDMA Ξ,, (, 36005), roecker Delta, CDMA, DS - CDMA, CDMA, CDMA CDMA, CDMA, Gold asami DS - CDMA CDMA ; ; ; 929. 5 ;O45. 5 A Performace Aalysis of
Japanese Fuzzy String Matching in Cooking Recipes
1 Japanese Fuzzy String Matching in Cooking Recipes Michiko Yasukawa 1 In this paper, we propose Japanese fuzzy string matching in cooking recipes. Cooking recipes contain spelling variants for recipe
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
K. Hausdorff K K O X = SDA. symbolic data analysis SDA SDA. Vol. 16 No. 3 Mar JOURNAL OF MANAGEMENT SCIENCES IN CHINA
16 3 013 3 JOURNAL OF MANAGEMENT SCIENCES IN CHINA Vol 16 No 3 Mar 013 1 K 30007 K Hausdorff K K K O1 4 A 1007-9807 013 03-001 - 08 0 3 X = 5 36 K SDA 1 symbolic data aalysis SDA 3 5 SDA 1 011-06 - 15
J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.
Vol. 35 ( 205 ) No. 4 J. of Math. (PRC), (, 243002) : a.s. Marov Borel-Catelli. : Marov ; Borel-Catelli ; ; ; MR(200) : 60F5 : O2.4; O236 : A : 0255-7797(205)04-0969-08 Shao-McMilla,. Shao 948 [],, McMilla
Research on Real-Time Collision Detection Based on Hybrid Hierarchical Bounding Volume
20 2 Vol. 20 o. 2 2008 Joural of System Simulatio Ja., 2008 6024 SphereOBB X Z X Sphere OBB-Sphere Z OBB Sphere Sphere OBB OBB OBB OBB TP9.9 A 004-7X (2008) 02-72-06 Research o Real-Time Collisio Detectio
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
Journal of Central South University (Science and Technology) Jun i p i q
4 3 ( ) Vol.4 No.3 6 Joural of Cetral South Uiversity (Sciece ad Techology) Ju. pq i p i q (. 483. 483) pq i p i q pq TM74 A 6777()357 A improved i p i q detectio approach of positive fudametal active
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
þÿÿ ÁÌ» Â Ä Å ¹µÅ Å½Ä ÃÄ
Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿÿ ÁÌ» Â Ä Å ¹µÅ Å½Ä ÃÄ þÿ ¹±Çµ Á¹Ã ºÁ õɽ ÃÄ ÃÇ» Tokatzoglou,
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m
HIGH-ACCURACY AB-INITIO ROVIBRATIONAL SPECTROSCOPY
IG-UY -INITIO OVITIONL SPETOSOPY Gábor zakó a Edit Mátyus b ttila G. sászár b astiaa J. raas a ad Joel M. owa a a Eory Uiversity tlata US b Eötvös Uiversity udapest ugary D 7 7 5 8 Eergy / c - SET May
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Διπλωματική Εργασία του φοιτητή του τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose
Bessel function for complex variable
Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {
SIEMENS Squirrel Cage Induction Standard Three-phase Motors
- SIEMENS Squirrel Cage Induction Standard Three-phase Motors 2 pole 3000 rpm 50Hz Rated current Power Efficiency Rated Ratio Noise Output Frame Speed Weight 3V 400V 415V factor Class 0%Load 75%Load torque
Teor imov r. ta matem. statist. Vip. 94, 2016, stor
eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process
Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa
Cytotoxcty of oc lqud ad precuror compoud toward huma cell le HeLa Xuefeg Wag, a,b C. Adré Ohl, a Qghua Lu,* a Zhaofu Fe, c Ju Hu, b ad Paul J. Dyo c a School of Chemtry ad Chemcal Techology, Shagha Jao
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Turbo Equalization. André Fonseca dos Santos Dayan Adionel Guimarães. The discrete model of the channel with ISI.
Turbo qualizatio Adré Foseca dos Satos aya Adioel Guimarães Outlie The discrete model of the chael with ISI. The turbo priciple applied to iterative equalizatio ad decodig: Turbo qualizatio. The BCJR algorithm
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael
Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent
Supplemetary Materials: Tradig Computatio for Commuicatio: istributed Stochastic ual Coordiate Ascet Tiabao Yag NEC Labs America, Cupertio, CA 954 tyag@ec-labs.com Proof of Theorem ad Theorem For the proof
ΕΠΛ 476: ΚΙΝΗΤΑ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΠΛ 476: ΚΙΝΗΤΑ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ Δρ. Χριστόφορος Χριστοφόρου Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής Περιγραφή Μαθήματος, Συμβόλαιο Γενικά 1 Στόχοι Μαθήματος: Nα γίνει μια εισαγωγή σε ασύρματα και κινητά
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Chapter 22 - Heat Engines, Entropy, and the Second Law of Thermodynamics
apter - Heat Engines, Entropy, and te Seond Law o ermodynamis.1 (a).0 J e 0.069 4 or 6.94% 60 J (b) 60 J.0 J J. e eat to melt 1.0 g o Hg is 4 ml 1 10 kg 1.18 10 J kg 177 J e energy absorbed to reeze 1.00
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS
Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
Research on Economics and Management
36 5 2015 5 Research on Economics and Management Vol. 36 No. 5 May 2015 490 490 F323. 9 A DOI:10.13502/j.cnki.issn1000-7636.2015.05.007 1000-7636 2015 05-0052 - 10 2008 836 70% 1. 2 2010 1 2 3 2015-03
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices
No. 3 + 1,**- Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 3, pp. + 1,,**-. MT * ** *** Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΑΤΡΙΒΗ ΤΟΥ ΕΥΘΥΜΙΟΥ ΘΕΜΕΛΗ ΤΙΤΛΟΣ Ανάλυση
Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =
. (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95
r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95
ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΩΝ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ-ΕΞΟ ΩΝ (ΜΙΜΟ) ΓΙΑ ΣΥΓΧΡΟΝΕΣ ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ
ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΩΝ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ-ΕΞΟ ΩΝ (ΜΙΜΟ) ΓΙΑ ΣΥΓΧΡΟΝΕΣ ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ. Ζαρµπούτη, Γ. Τσούλος,. I. Κακλαµάνη Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών,
y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V
1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5
46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []
2 Chinese Journal of Alied Probability and Statistics Vol.26 No.5 Oct. 2 Coula,2 (,, 372; 2,, 342) Coula Coula,, Coula,. Coula, Coula. : Coula, Coula,,. : F83.7..,., Coula,,. Coula Sklar [],,, Coula.,
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:
HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
ΕΠΛ 476: ΚΙΝΗΤΑ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΠΛ 476: ΚΙΝΗΤΑ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ Δρ. Χριστόφορος Χριστοφόρου Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής Περιγραφή Μαθήματος, Συμβόλαιο Γενικά 1 Στόχοι Μαθήματος: Nα γίνει μια εισαγωγή σε ασύρματα και κινητά
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
ASYMPTOTIC BEST LINEAR UNBIASED ESTIMATION FOR THE LOG-GAMMA DISTRIBUTION
Sakhyā : The Idia Joural of Statistics 994, Volume 56, Series B, Pt. 3, pp. 34-322 ASYMPTOTIC BEST LINEAR UNBIASED ESTIMATION FOR THE LOG-GAMMA DISTRIBUTION By N. BALAKRISHNAN McMaster Uiversity, Hamilto
Molecular evolutionary dynamics of respiratory syncytial virus group A in
Molecular evolutionary dynamics of respiratory syncytial virus group A in recurrent epidemics in coastal Kenya James R. Otieno 1#, Charles N. Agoti 1, 2, Caroline W. Gitahi 1, Ann Bett 1, Mwanajuma Ngama
❷ s é 2s é í t é Pr 3
❷ s é 2s é í t é Pr 3 t tr t á t r í í t 2 ➄ P á r í3 í str t s tr t r t r s 3 í rá P r t P P á í 2 rá í s é rá P r t P 3 é r 2 í r 3 t é str á 2 rá rt 3 3 t str 3 str ýr t ý í r t t2 str s í P á í t
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z
00 Chinese Journal of Applied Probability and Statistics Vol6 No Feb 00 Panel, 3,, 0034;,, 38000) 3,, 000) p Panel,, p Panel : Panel,, p,, : O,,, nuisance parameter), Tsui Weerahandi [] Weerahandi [] p
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
f RF f LO f RF ±f LO Ιδανικός μείκτης RF Είσοδος f RF f RF ± f LO IF Έξοδος f LO LO Είσοδος f RF f LO (ω RF t) (ω LO t) = 1 2 [(ω RF + ω LO )t + (ω RF ω LO )t] RF LO IF f RF ± f LO 0 180 +1 RF IF 1 LO
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ιπλωµατική Εργασία του φοιτητή του τµήµατος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών
ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο
ΚΕΦΑΛΑΙΟ 2 Περιγραφή της Κίνησης Στο κεφάλαιο αυτό θα δείξουμε πώς να προγραμματίσουμε απλές εξισώσεις τροχιάς ενός σωματιδίου και πώς να κάνουμε βασική ανάλυση των αριθμητικών αποτελεσμάτων. Χρησιμοποιούμε
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
A Convolutional Neural Network Approach for Objective Video Quality Assessment
A Convolutional Neural Network Approach for Objective Video Quality Assessment Patrick Le Callet, Christian Viard-Gaudin, Dominique Barba To cite this version: Patrick Le Callet, Christian Viard-Gaudin,
ΔΕΛΤΙΟ ΔΕΔΟΜΕΝΩN ΑΣΦΑΛΕΙΑΣ ΥΛΙΚΟΥ BOSTIK OPF GREY
ΔΕΛΤΙΟ ΔΕΔΟΜΕΝΩN ΑΣΦΑΛΕΙΑΣ ΥΛΙΚΟΥ According to Regulation (EC) No 1907/2006 1 ΣΤΟΙΧΕΙΑ ΟΥΣΙΑΣ/ΠΑΡΑΣΚΕΥΑΣΜΑΤΟΣ ΚΑΙ ΕΤΑΙΡΕΙΑΣ/ΕΠΙΧΕΙΡΗΣΗΣ ΟΝΟΜΑΣIΑ ΠΡΟIOΝΤΟΣ ΑΡ. ΠΡΟIOΝΤΟΣ 068865 ΕΦΑΡΜΟΓH ΠΡΟΜΗΘΕΥΤHΣ 2 ΠPOΣΔIOPIΣMOΣ
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Model: MTZ22. Data. Cylinder count: 1 Displacement [m³/h]: 6,63 Cylinder capacity [cm³]: 38,1 RPM [min -1 ]: 2900 Weight [kg]: 21 Oil charge [dm³]: 1
Technical data Data Cylinder count: 1 Displacement [m³/h]: 6,63 Cylinder capacity [cm³]: 38,1 RPM [min -1 ]: 2900 Weight [kg]: 21 Oil charge [dm³]: 1 Oil type: 160PZ Crankcase heater type: PTC 35 W Maximum
Ανάκτηση Πληροφορίας
Ανάκτηση Πληροφορίας Αποτίμηση Αποτελεσματικότητας Μέτρα Απόδοσης Precision = # σχετικών κειμένων που επιστρέφονται # κειμένων που επιστρέφονται Recall = # σχετικών κειμένων που επιστρέφονται # συνολικών
VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )
22 1 2002 1 Vol. 22 No. 1 Jan. 2002 Proceedings of the CSEE ν 2002 Chin. Soc. for Elec. Eng. :025828013 (2002) 0120017206 VSC 1, 1 2, (1., 310027 ; 2., 250061) STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL
GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet
JFE No. 4 20045 p 82 Composite Material for Automotive Headliners Expandable Stampable Sheet with Light Weight and High Stiffness A JFE SUZU JFE HA KP 50 mass 30 UL 800 g/m 2 7.2 N/mm Abstract: KP-Sheet
(6,5 μονάδες) Θέμα 1 ο. Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΟΝΟΜΑΤΕΠΩΝΥΜΟ
Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΕΡΓΑΣΤΗΡΙΟΥ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔ. ΕΤΟΣ 8-9 ΔΙΔΑΣΚΩΝ : Χ. Βοζίκης ΟΝΟΜΑΤΕΠΩΝΥΜΟ Αριθμός
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
On Inclusion Relation of Absolute Summability
It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
IMES DISCUSSION PAPER SERIES
IMES DISCUSSION PAPER SERIES Will a Growth Miracle Reduce Debt in Japan? Selahattin mrohorolu and Nao Sudo Discussion Paper No. 2011-E-1 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 2-1-1
Couplage dans les applications interactives de grande taille
Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
ITU-R P (2009/10)
ITU-R.38-6 (009/0 $% #! " #( ' * & ' /0,-. # GHz 00 MHz 900 ITU-R.38-6 ii.. (IR (ITU-T/ITU-R/ISO/IEC.ITU-R http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M
Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας
Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί
ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΜΟΝΗΣ ΚΑΤΑ ΤΗΝ ΜΕΤΡΗΣΗ ΚΑΙ ΤΑΥΤΟΠΟΙΗΣΗ ΤΗΣ ΠΑΡΑΓΩΓΗΣ ΕΠΙΤΡΑΠΕΖΙΩΝ ΣΤΑΦΥΛΙΩΝ ΣΤΟΝ ΑΓΡΟ
ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΜΟΝΗΣ ΚΑΤΑ ΤΗΝ ΜΕΤΡΗΣΗ ΚΑΙ ΤΑΥΤΟΠΟΙΗΣΗ ΤΗΣ ΠΑΡΑΓΩΓΗΣ ΕΠΙΤΡΑΠΕΖΙΩΝ ΣΤΑΦΥΛΙΩΝ ΣΤΟΝ ΑΓΡΟ Ι.Γ. Αμπατζίδης 1 και Σ.Γ. Βουγιούκας 1 1 Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Γεωπονική Σχολή,
ITU-R BT ITU-R BT ( ) ITU-T J.61 (
ITU-R BT.439- ITU-R BT.439- (26-2). ( ( ( ITU-T J.6 ( ITU-T J.6 ( ( 2 2 2 3 ITU-R BT.439-2 4 3 4 K : 5. ITU-R BT.24 :. ITU-T J.6. : T u ( ) () (S + L = M) :A :B :C : D :E :F :G :H :J :K :L :M :S :Tsy :Tlb
Συστηματική Συλλογή Δεδομένων από Υπηρεσίες Κοινωνικής Δικτύωσης για χρήση σε εφαρμογές μεταφορών
Συστηματική Συλλογή Δεδομένων από Υπηρεσίες Κοινωνικής Δικτύωσης για χρήση σε εφαρμογές μεταφορών Ε. Χανιωτάκης 1,2, Κ. Αντωνίου 2, Ε. Μητσάκης 1 1 Εθνικό Κέντρο Έρευνας και Τεχνολογικής Ανάπτυξης, Ινστιτούτο
ΦΥΛΛΟ ΣΤΟΙΧΕΙΩΝΑΣΦΑΛΕΙΑΣ
ΦΥΛΛΟ ΣΤΟΙΧΕΙΩΝΑΣΦΑΛΕΙΑΣ 1.Στοιχείαουσίας/παρασκευάσματοςκαιεταιρείας/επιχείρηση Στοιχείατηςουσίαςήτουπαρασκευάσματος Αριθμόςπροΐόντος Ονομασίαπροΐόντος 4332653 HumanB2M (Beta-2-Microglobulin)EndogenousControl(FAM
Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης
ΑΝΩΤΑΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητς: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμ: Σ. ΒΑΣΙΛΕΙΑΔΟΥ
Detection and Recognition of Traffic Signal Using Machine Learning
1 1 1 Detection and Recognition of Traffic Signal Using Machine Learning Akihiro Nakano, 1 Hiroshi Koyasu 1 and Hitoshi Maekawa 1 To improve road safety by assisting the driver, traffic signal recognition