On the conformal change of five-dimensional Finsler spaces

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "On the conformal change of five-dimensional Finsler spaces"

Transcript

1 On the conformal change of five-dimensional Finsler spaces Gauree Shanker Abstract. The purpose of the present paper is to deal with the theory of conformal change in five-dimensional Finsler space. We have obtained the conditions under which the h- and v- connection vectors are conformally invariant in five-dimensional Finsler space. M.S.C. 2010: 53B40, 53C60. Key words: Finsler space; Conformal change; h and v-connection vectors; main scalars. 1 Introduction 9 The conformal change and conformal transformation of n-dimensional Finsler spaces 10 have been studied in [6] and [1]. The conformal theory of two, three & four-dimensional 11 Finsler spces have been discussed in [2, 8, 10] respectively. As far as author knows 12 there is no paper concerned with the conformal theory of five-dimensional Finsler 13 space. Recently, the present author has found that in a five-dimensional Finsler space there are seventeen main scalars H, I, J, K, H, I, J, K, H, I, J, K, M, M, M 14, N, N 15 [11] in which the sum of H, I, K and M is LC, which is called unified main 16 scalar. It has been also shown by the present author that in a five-dimensional Finsler space there exist six v-connection vectors u i, v i, w i, u 17 i, v i, w i and six h-connection vectors h i, J i, k i, h i, J i 18, k i [11]. The theory of five-dimensional Finsler space with con- stant unified main scalars has been discussed in [12]. The orthonormal frame field ( l i, m i, n i, p i, q i), called the Miron frame plays an important role in five-dimensional Finsler space. Here we discuss the theory of conformal change in five-dimensional Finsler space. 2 Scalar components in Miron frame Let F 5 be a five-dimensional Finsler space with fundamental function L(x, y). The metric tensor g ij and Cartan C tensor C ijk of F 5 are defined by g ij = 1 2 i j L2, C ijk = 1 2 k g ij = 1 4 i j k L2. Differential Geometry - Dynamical Systems, Vol.15, 2013, pp c Balkan Society of Geometers, Geometry Balkan Press 2013.

2 80 Gauree Shanker Throughout the paper, the symbols i { } = frame e i (α) y and i i = x i have been used. The, α = 1, 2, 3, 4, 5 is called the Miron frame of F 5, where e i (1) = li = yi L 29 is called the normalized supporting element, e i (2) = mi = Ci C is called the normalized 30 torsion vector, e i (3) = ni, e i (4) = pi, e i (5) = qi are constructed from g ij e i (α) ej (β) = 31 δ αβ.here, C is the length of torsion vector C i = C ijkg jk.the Greek letters α, β, γ, δ 32 vary from 1 to 5 throughout the paper. Summation convention is applied for both 33 the Greek and Latin indices. In the Miron frame an arbitrary tensor can be expressed 34 by scalar components along the unit vectors l i, m i, n i, p i, q i. For instance; let T = Tj i 35 be a tensor field of (1, 1) type, then the scalar components T αβ of T are defined by T αβ = Tj ie (α)ie j (β) and the components T j i of the tensor T are expressed as T j i = 37 T αβe i (α) e (β)j.from the equation g ij e i (α) ej (β) = δ αβ, we have (2.1) g ij = l i l j + m i m j + n i n j + p i p j + q i q j Next, the C-tensor C ijk = 1 2 k g ij satisfies C ijk l i = 0 and is symmetric in i, j, k. Therefore, if C αβγ are scalar components of LC ijk i. e., if (2.2) LC ijk = C αβγ e (α)i e (β)j e (γ)k, then, we have (2.3) LC ijk = C 222 m i m j m k + C 223 (m i m j n k ) + C 233 (m i n j n k ) + C 333 (n i n j n k ) + C 224 (m i m j p k ) + C 444 (p i p j p k ) + C 244 (m i p j p k ) + C 225 (m i m j q k ) + C 255 (m i q j q k ) + C 555 (q i q j q k ) + C 334 (n i n j p k ) + C 344 (n i p j p k ) + C 335 (n i n j q k ) + C 355 (n i q j q k ) + C 445 (p i p j q k ) + C 455 (p i q j q k ) + C 234 {m i (n j p k + n k p j )} + C 235 {m i (n j q k + n k q j )} + C 245 {m i (p j q k + p k q j )} + C 345 {n i (p j q k + p k q j )}, where 38 {...} denote the cyclic interchange of i, j, k and summation. For instance; {A ib j C k } = A i B j C k + A j B k C i + A k B i C j. 39

3 On the conformal change of five-dimensional Finsler spaces 81 Contracting (2.2) with g jk, we get LCm i = C αββ e (α)i. Thus, if we put (2.4) C 222 = H, C 233 = I, C 244 = K, C 333 = J, C 344 = J, C 444 = H, C 334 = I, C 234 = K, C 255 = M, C 355 = J, C 455 = M, C 555 = H, C 335 = I, C 445 = K, C 235 = N, C 245 = N, C 345 = M, C 224 = (H + I + M ), C 225 = ( H + I + K ). then, we have (2.5) H + I + K + M = LC, C 223 = (J + J + J ), Hence, we have the following: Theorem 2.1. In a five-dimensional Finsler space there are seventeen main scalars H, I, J, K, H, I, J, K, H, I, J, K, M, M, M, N, N in which the sum of H, I, K and M is LC which is called unified main scalar. Using (2.4) and (2.5), the equation (2.3) can be rewritten as [11] (2.6) LC ijk = Hm i m j m k (J + J + J ) (m i m j n k ) + I (m i n j n k ) J (n i n j n k ) (H + I + M ) (m im j p k ) + H (p i p j p k ) +K (m ip j p k ) (H + I + K ) (m im j q k ) +M (m iq j q k ) + H (q i q j q k ) + I (n in j p k ) + J (n ip j p k ) +I (n in j q k ) + J (n iq j q k ) + K (p ip j q k ) +M (p iq j q k )+K {m i (n j p k + n k p j )}+ N {m i (n j q k + n k q j )} +N {m i (p j q k + p k q j )}+M {n i (p j q k + p k q j )}. ( ) The Cartan s connection CΓ = Γ i jk, Gi j, Ci jk will be used in the following section of this paper. The h and v covariant derivatives of the frame field e (α)i are given by [4] (2.7) e (α)i j=h(α)βγ e (β)i e (γ)j, Le (α)i j = V (α)βγ e (β)i e (γ)j, where H (α)βγ and V (α)βγ, γ being fixed, are given by (2.8) H α)βγ = h γ J γ k γ 0 h γ 0 h γ J γ 0 J γ h γ 0 k γ 0 k γ J γ k γ 0, V α)βγ = 0 δ 2γ δ 3γ δ 4γ δ 5γ δ 2γ 0 u γ v γ w γ δ 3γ u γ 0 u γ v γ δ 4γ v γ u γ 0 w γ δ 5γ w γ v γ w γ 0 In (2.8), we have put (2.9) H 2)3γ = H 3)2γ = h γ, H 2)4γ = H 4)2γ = J γ, H 2)5γ = H 5)2γ = k γ,

4 82 Gauree Shanker H 3)4γ = H 4)3γ = h γ, H 3)5γ = H 5)3γ = J γ, H 4)5γ = H 5)4γ = k γ, V 2)3γ = V 3)2γ = u γ, V 2)4γ = V 4)2γ = v γ, V 2)5γ = V 5)2γ = w γ, V 3)4γ = V 4)3γ = u γ, V 3)5γ = V 5)3γ = v γ, V 4)5γ = V 5)4γ = w γ. Hence, we have the following: 54 Theorem 2.2. In a five-dimensional Finsler space there exist six h-connection} vectors h i, J i, k i, h i, J i, k i {e whose scalar components with respect to the frame i 55 (α) are h γ, J γ, k γ, h γ, J γ, k γ, i. e., h i = h γ e (γ)i, J i = J γ e (γ)i, k i = k γ e (γ)i, h i = h γe (γ)i, J i 56 = J γe (γ)i, k i 57 = k γe (γ)i. 58 Theorem 2.3. In a five-dimensional Finsler space there exist six v-connection} vectors u i, v i, w i, u i, v i, w i {e whose scalar components with respect to the frame i 59 (α) are u γ, v γ, w γ, u γ, v γ, w γ i. e., u i = u γ e (γ)i, v i = v γ e (γ)i, w i = w γ e (γ)i, u i = u γe (γ)i, v i 60 = v γe (γ)i, w i 61 = w γe (γ)i. In view of equations (2.8), (2.9) and using the theorems (2.2) and (2.3), the equations (2.7) may be explicitly written as [11] (2.10) l i j = 0, m i j = n i h j + p i J j + q i k j, n i j = m i h j + p i h j + q i J j, p i j = m i J j n i h j + q i k j, q i j = m i k j n i J j p i k j and (2.11) Ll i j = m i m j + n i n j + p i p j + q i q j = g ij l i l j = h ij, Lm i j = l i m j + n i u j + p i v j + q i w j, Ln i j = l i n j m i u j + p i u j + q i v j, Lp i j = l i p j m i v j n i u j + q i w j, Lq i j = l i q j m i w j n i v j p i w j. 62 Since m i, n i, p i, q i are homogeneous functions of degree zero in y i, we have Lm i j l j = Ln i j l j = Lp i j l j = Lq i j l j = 0 which in view of equation (2.11) and theorem (2.3) gives (2.12) u 1 = v 1 = w 1 = u 1 = v 1 = w 1 = Thus we have the following: Theorem 2.4. In a five-dimensional Finsler space, the first scalar components of v-connection vectors u i, v i, w i, u i, v i, w i vanish identically. The equations (2.11) and (2.6) lead to the following expressions for the partial derivatives with respect to y j : (2.13) L jl i = h ij = m i m j + n i n j + p i p j + q i q j, 66 L j m i = l i m j + n i u j + p i v j + q i w j + Hm i m j + In i n j + Kp i p j + Mq i q j

5 On the conformal change of five-dimensional Finsler spaces (J + J + J )(m i n j + m j n i ) (H + I + M )(m i p j + m j p i ) (H + I + K )(m i q j + m j q i ) + K (n i p j + n j p i ) + N(n i q j + n j q i ) +N (p i q j + p j q i ), L j n i = l i n j m i u j + p i u j + q iv j (J + J + J )m i m j + Jn i n j + J p i p j +J q i q j + I(m i n j + m j n i ) + K (m i p j + m j p i ) + N(m i q j + m j q i ) +I (n i p j + n j p i ) + I (n i q j + n j q i ) + M (p i q j + p j q i ), L j p i = l i p j m i v j n i u j + q iw j (H + I + M ) m i m j + I n i n j + H p i p j +M q i q j + K (m i n j + m j n i ) + K(m i p j + m j p i ) + N (m i q j + m j q i ) +J (n i p j + n j p i ) + M (n i q j + n j q i ) + K (p i q j + p j q i ), L j q i = l i q j m i w j n i v j p iw j (H + I + M ) m i m j + I n i n j + K p i p j +H q i q j + N(m i n j + m j n i ) + N (m i p j + m j p i ) + M(m i q j + m j q i ) +M (n i p j + n j p i ) + J (n i q j + n j q i ) + M (p i q j + p j q i ), (2.14) L jl i = m i m j + n i n j + p i p j + q i q j, L j mi = l i m j + n i u j + p i v j + q i w j Hm i m j In i n j Kp i p j Mq i q j +(J + J + J )(m i n j + m j n i ) + (H + I + M )(m i p j + m j p i ) +(H + I + K )(m i q j + m j q i ) K (n i p j + n j p i ) N(n i q j + n j q i ) N (p i q j + p j q i ), L j ni = l i n j m i u j + p i u j + qi v j + (J + J + J )m i m j Jn i n j J p i p j J q i q j I(m i n j + m j n i ) K (m i p j + m j p i ) N(m i q j + m j q i ) I (n i p j + n j p i ) I (n i q j + n j q i ) M (p i q j + p j q i ), L j pi = l i p j m i v j n i u j + qi w j + (H + I + M ) m i m j I n i n j H p i p j M q i q j K (m i n j + m j n i ) K(m i p j + m j p i ) N (m i q j + m j q i ) J (n i p j + n j p i ) M (n i q j + n j q i ) K (p i q j + p j q i ), L j qi = l i q j m i w j n i v j pi w j + (H + I + M ) m i m j I n i n j K p i p j H q i q j N(m i n j + m j n i ) + N (m i p j + m j p i ) M(m i q j + m j q i ) + M (n i p j + n j p i ) J (n i q j + n j q i ) M (p i q j + p j q i ),

6 84 Gauree Shanker The h scalar derivative of the adapted components T αβ of the tensor Tj i is defined as [4] of (1, 1) type (2.15) T αβ,γ = (δ k T αβ ) e k γ) + T µβh µ)αγ + T αµ H µ)βγ, where δ k = k G r k r.similarly, the v-scalar derivative of the adapted components T αβ of the tensor Tj i of (1, 1) type is defined as [4] (2.16) T αβ;γ = L ( kt αβ ) e k γ) + T µβv µ)αγ + T αµ V µ)βγ. Thus, T αβ,γ and T αβ;γ are the adapted components of T i j k and T i j krespectively i. e., (2.17) (2.18) T i j k = T αβ,γ e i (α) e (β)je (γ)k, LT i j k = T αβ;γ e i (α) e (β)je (γ)k A covariant vector field σ i is called a gradient vector, if there exists a scalar field σ = σ (x) satisfying σ i = i σ. Then, we have Lemma 2.5. A covariant vector field σ i = σ α e α)i is locally a gradient vector, if and only if the scalar components σ α, α = 1, 2, 3, 4, 5. (2.19) σ α,β = σ β,α, α, β = 1, 2, 3, 4, (2.20) σ 1;α = σ α;1 = 0, α = 1, 2, 3, 4, 5 σ 2;2 = σ 2 H + σ 3 (J + J + J ) + σ 4 (H + I + M ) +σ 5 (H + I + K ), σ 3;3 = σ 2 I σ 3 J σ 4 I σ 5 I, σ 4;4 = σ 2 K σ 3 J σ 4 H σ 5 K, σ 5;5 = σ 2 M σ 3 J σ 4 M σ 5 H, σ 2;3 = σ 3;2 = σ 2 (J + J + J ) σ 3 I σ 4 K σ 5 N, σ 2;4 = σ 4;2 = σ 2 (H + I + M ) σ 3 K σ 4 K σ 5 N, σ 2;5 = σ 5;2 = σ 2 (H + I + K ) σ 3 N σ 4 N σ 5 M, σ 3;4 = σ 4;3 = σ 2 K σ 3 I σ 4 J σ 5 M, σ 3;5 = σ 5;3 = σ 2 N σ 3 I σ 4 M σ 5 J, σ 4;5 = σ 5;4 = σ 2 N σ 3 M σ 4 K σ 5 M. 97 Proof. It is obvious that σ i is locally a gradient vector if and only if it satisfies 98 (a) j σ i i σ j = 0, (b) j σ i = 0. These are equivalent, respectively, to (2.10) ( σ i j = j σ i σ k Fij) k = σj i, (2.11) σ i j = σ k Cij k 99. We examine the scalar components σ α of σ i. Then equations (2.17) and (2.18) give σ i j = σ α,β e α)i e β)j, σ i j = σ α;β e α)i e β)j respectively. Then the equations (2.10) and (2.11) are written, respectively, in the forms (2.19) and σ α;β = σ γ C αβγ. This equation together with (2.6) gives (2.20)

7 On the conformal change of five-dimensional Finsler spaces Conformal change of Cartan s connection We consider a conformal change L(x, y) L(x, y) = e σ(x) L(x, y) of a five-dimensional Finsler space F 5 = (M 5, L(x, y)) with the fundamental function L(x, y), where σ(x) is a scalar function of position x i alone, called the conformal factor. We shall denote the Finsler space with changed fundamental function L(x, y) by F 5 = (M 5, L(x, y))) and quantities of F 5 by upper line. The following change of important quantities are known [1]. (3.1) (3.2) (3.3) l i = e σ l i, m i = e σ m i, n i = e σ n i, p i = e σ p i, q i = e σ q i, g ij = e 2σ g ij, l i = e σ l i, m i = e σ m i, n i = e σ n i, p i = e σ p i, q i = e σ q i, g ij = e 2σ g ij, C ijk = e 2σ C ijk, C i jk = Cjk, i H = H, I = I, J = J, K = K, M = M, N = N, H = H, I = I, J = J, K = K, M = M, N = N, H = H, I = I, J = J, K = K, M = M Lemma (2.5) leads us to the following useful relations: Proposition 3.1. If we put σ i = i σ(x) = σ α e α)i, then we have the relations (i) σ α,β = σ β,α, α, β = 1, 2, 3, 4, 5. (ii) σ 1;α = σ α;1 = 0, α = 1, 2, 3, 4, 5. σ 2;2 = σ 1 + σ 6, σ 2;3 = σ 3;2 = σ 7, σ 2;4 = σ 4;2 = σ 8, σ 2;5 = σ 5;2 = σ 9, σ 3;3 = σ 1 + σ 10, σ 3;4 = σ 4;3 = σ 11, σ 3;5 = σ 5;3 = σ 12, σ 4;4 = σ 1 + σ 13, σ 4;5 = σ 5;4 = σ 14, σ 5;5 = σ 1 + σ 15, where we have substituted σ 6 = σ 1 σ 2 H + σ 3 (J + J + J ) + σ 4 (H + I + M ) + σ 5 (H + I + K ), σ 7 = σ 2 (J + J + J ) σ 3 I σ 4 K σ 5 N, σ 8 = σ 2 (H + I + M ) σ 3 K σ 4 K σ 5 N, σ 9 = σ 2 (H + I + K ) σ 3 N σ 4 N σ 5 M, σ 10 = σ 1 σ 2 I σ 3 J σ 4 I σ 5 I, σ 11 = σ 2 K σ 3 I σ 4 J σ 5 M, σ 12 = σ 2 N σ 3 I σ 4 M σ 5 J, σ 13 = σ 1 σ 2 K σ 3 J σ 4 H σ 5 K, σ 14 = σ 2 N σ 3 M σ 4 K σ 5 M, σ 15 = σ 1 σ 2 M σ 3 J σ 4 M σ 5 H.

8 86 Gauree Shanker Now we consider the change of Christoffel symbols γ ijk = g jr γ r ik = 1 2 ( kg ij + i g jk j g ki ) constructed from g ij (x, y) with respect to x i, then we have (3.4) γ i jk = γ i jk + δ i jσ k + δ i kσ j g jk σ i, ( σ i = g ij σ j ). Thus the change of the well-known quantities 2G i = γ i jk yj y k = γ i 00 is given by (3.5) 2G i = 2G i + L 2 ( σ 1 l i σ 2 m i σ 3 n i σ 4 p i σ 5 q i). Differentiating (3.5) with respect to y j, using proposition (3.1) and equation (2.14), we get (3.6) G i j = G i j + Ll i (σ 1 l j + σ 2 m j + σ 3 n j + σ 4 p j + σ 5 q j ) Lm i 130 (σ 2 l j + σ 6 m j + σ 7 n j + σ 8 p j + σ 9 q j ) Ln i 131 (σ 3 l j + σ 7 m j + σ 10 n j + σ 11 p j + σ 12 q j ) Lp i 132 (σ 4 l j + σ 8 m j + σ 11 n j + σ 13 p j + σ 14 q j ) Lq i 133 (σ 5 l j + σ 9 m j + σ 12 n j + σ 14 p j + σ 15 q j ). On the other hand, the connection coefficients Fjk i 134 of CΓ are given by [4] F ijk = g jr Fik r = γ ijk C ijr G r k C jkrg r i + C ikrg r 135 j. Then the equations (2.6), (3.4) and (3.6) lead to (3.7) +l i m i n i p i q i F i jk = F i jk σ 1 l j l k + σ 2 (l j m k + l k m j ) + σ 3 (l j n k + l k n j ) + σ 4 (l j p k + l k p j ) + σ 5 (l j q k + l k q j ) +σ 6 m j m k + σ 7 (m j n k + m k n j ) + σ 8 (m j p k + m k p j ) + σ 9 (m j q k + m k q j ) + σ 10 n j n k +σ 11 (n j p k + n k p j ) + σ 12 (n j q k + n k q j ) + σ 13 p j p k + σ 14 (p j q k + p k q j ) + σ 15 q j q k σ 2 l j l k + σ 6 (l j m k + l k m j ) + σ 7 (l j n k + l k n j ) + σ 8 (l j p k + l k p j ) + σ 9 (l j q k + l k q j ) +σ 16 m j m k + σ 17 (m j n k + m k n j ) + σ 18 (m j p k + m k p j ) + σ 19 (m j q k + m k q j ) + σ 20 n j n k +σ 21 (n j p k + n k p j ) + σ 22 (n j q k + n k q j ) + σ 23 p j p k + σ 24 (p j q k + p k q j ) + σ 25 q j q k σ 3 l j l k + σ 7 (l j m k + l k m j ) + σ 10 (l j n k + l k n j ) + σ 11 (l j p k + l k p j ) + σ 12 (l j q k + l k q j ) +σ 26 m j m k + σ 27 (m j n k + m k n j ) + σ 28 (m j p k + m k p j ) + σ 29 (m j q k + m k q j ) + σ 30 n j n k + σ 31 (n j p k + n k p j ) + σ 32 (n j q k + n k q j ) + σ 33 p j p k + σ 34 (p j q k + p k q j ) + σ 35 q j q k σ 4 l j l k + σ 8 (l j m k + l k m j ) + σ 11 (l j n k + l k n j ) + σ 13 (l j p k + l k p j ) + σ 14 (l j q k + l k q j ) +σ 36 m j m k + σ 37 (m j n k + m k n j ) + σ 38 (m j p k + m k p j ) + σ 39 (m j q k + m k q j ) + σ 40 n j n k +σ 41 (n j p k + n k p j ) + σ 42 (n j q k + n k q j ) + σ 43 p j p k + σ 44 (p j q k + p k q j ) + σ 45 q j q k σ 5 l j l k + σ 9 (l j m k + l k m j ) + σ 12 (l j n k + l k n j ) + σ 14 (l j p k + l k p j ) + σ 15 (l j q k + l k q j ) +σ 46 m j m k + σ 47 (m j n k + m k n j ) + σ 48 (m j p k + m k p j ) + σ 49 (m j q k + m k q j ) + σ 50 n j n k +σ 51 (n j p k + n k p j ) + σ 52 (n j q k + n k q j ) + σ 53 p j p k + σ 54 (p j q k + p k q j ) + σ 55 q j q k where σ 16 = σ 2 σ 6 H + σ 7 (J + J + J ) + σ 8 (H + I + M ) + σ 9 (H + I + K ), σ 17 = σ 3 σ 7 H + σ 10 (J + J + J ) + σ 11 (H + I + M ) + σ 12 (H + I + K ), σ 18 = σ 4 σ 8 H + σ 11 (J + J + J ) + σ 13 (H + I + M ) + σ 14 (H + I + K ), σ 19 = σ 5 σ 9 H + σ 12 (J + J + J ) + σ 14 (H + I + M ) + σ 15 (H + I + K ), σ 20 = σ 2 + σ 6 I + σ 7 (3J + 2J + 2J ) + σ 8 I + σ 9 I 2σ 10 I 2σ 11 K 2σ 12 N, σ 21 = σ 6 K + σ 7 (H + 2I + M ) + σ 8 (J + 2J + J ) + σ 9 M σ 10 K σ 11 (K + I) σ 12 N σ 13 K σ 14 N,,

9 On the conformal change of five-dimensional Finsler spaces σ 22 = σ 6 N + σ 7 (H + 2I + K ) + σ 8 M + σ 9 (J + J + 2J ) σ 10 N σ 11 N σ 12 (I + M) σ 14 K σ 15 N, σ 23 = σ 2 + σ 6 K + σ 7 J + σ 8 (3H + 2I + 2M ) + σ 9 K 2 (σ 11 K + σ 13 K + σ 14 N ), σ 24 = σ 6 N + σ 7 M + σ 8 (H + I + K ) + σ 9 (H + I + 2M ) σ 11 N σ 12 K σ 13 N σ 14 (M + K), σ 25 = σ 2 +σ 6 M+σ 7 J +σ 8 M +σ 9 (3H + 2I + 2K ) 2 (σ 12 N + σ 14 N + σ 15 M), σ 26 = σ 3 + 2σ 6 (J + J + J ) σ 7 (H + 2I) 2 (σ 8 K + σ 9 N) σ 10 (J + J + J ) σ 11 (H + I + M ) σ 12 (H + I + K ), σ 27 = σ 2 σ 6 I σ 7 J σ 8 I σ 9 I, σ 28 = σ 6 K + σ 8 (J + J ) σ 7 (H + 2I + M ) σ 9 M + σ 10 K +σ 11 (K I) + σ 12 N σ 13 K σ 14 N, σ 29 = σ 6 N σ 7 (H + 2I + M ) σ 8 M + σ 9 (J + J ) + σ 10 N +σ 11 N + σ 12 (M I) σ 14 K σ 15 N, σ 30 = σ 3 σ 7 I σ 10 J σ 11 I σ 12 I, σ 31 = σ 4 σ 8 I σ 11 J σ 13 I σ 14 I, σ 32 = σ 5 σ 9 I σ 12 J σ 14 I σ 15 I, σ 33 = σ 3 + σ 7 K 2σ 8 K + σ 11 (H 2I ) + σ 12 K 2σ 13 J 2σ 14 M, σ 34 = σ 7 N σ 8 N σ 9 K + σ 10 M σ 11 (K I ) + σ 12 (M I ) σ 13 M σ 14 (J + J ) σ 15 M, σ 35 = σ 3 + σ 7 M 2σ 9 N + σ 10 J + σ 11 M + σ 12 (H 2I ) σ 14 M σ 15 J, σ 36 = σ 4 + 2σ 6 (H + I + M ) 2σ 7 K + σ 8 (H 2K) 2σ 9 N σ 11 (J + J + J ) σ 13 (H + I + M ) σ 14 (H + I + K ), σ 37 = σ 6 K + σ 7 (H + M ) σ 8 (J + 2J + J ) σ 9 M σ 10 K +σ 11 I K σ 12 N + σ 13 K + σ 14 N, σ 38 = σ 2 σ 6 K σ 7 J σ 8 H σ 9 K, σ 39 = σ 6 N σ 7 M σ 8 (H + I + 2K ) + σ 9 (H + I ) + σ 11 N σ 12 K + σ 13 N σ 14 (K M) σ 15 N, σ 40 = σ 4 2σ 7 K + σ 8 I 2σ 10 I + σ 11 (J 2J ) 2σ 12 M + σ 13 I + σ 14 I, σ 41 = σ 3 σ 7 K σ 10 J σ 11 H σ 12 K, σ 42 = σ 7 N + σ 8 N σ 9 K σ 10 M σ 11 (K I ) σ 12 (M + I ) + σ 13 M +σ 14 (J J ) σ 15 M, σ 43 = σ 4 σ 8 K σ 11 J σ 13 H σ 14 K, σ 44 = σ 5 σ 9 K σ 12 J σ 14 H σ 15 K, σ 45 = σ 4 + σ 8 M σ 9 N + σ 11 J σ 12 M + σ 13 M + σ 14 (H K ) σ 15 M, σ 46 = σ 5 +2σ 6 (H + I + K ) 2σ 7 N 2σ 8 N +σ 9 (H 2M) σ 12 (J + J + J ) σ 14 (H + I + M ) σ 15 (H + I + K ), σ 47 = σ 6 N + σ 7 (H + K ) σ 8 M σ 9 (J + J + J ) σ 10 N σ 11 N σ 12 (M I) + σ 14 K + σ 15 N, σ 48 = σ 6 N σ 7 M + σ 8 (H + I ) σ 9 (H + I + 2M ) σ 11 N +σ 12 K σ 13 N + σ 14 (K M) + σ 15 N, σ 49 = σ 2 σ 6 M σ 7 J σ 8 M σ 9 H, σ 50 = σ 5 2σ 7 N + σ 9 I 2σ 10 I 2σ 11 M + σ 12 (J 2J ) + σ 14 I + σ 15 I, σ 51 = σ 7 N σ 8 N + σ 9 K σ 10 M σ 11 (K + I ) σ 12 (M I ) σ 13 M σ 14 (J J ) + σ 15 M, σ 52 = σ 3 σ 7 M σ 10 J σ 11 M σ 12 H, σ 53 = σ 5 2σ 8 N + σ 9 K 2σ 11 M + σ 12 J 2σ 13 K

10 88 Gauree Shanker σ 14 (H 2M ) + σ 15 K, σ 54 = σ 4 σ 8 M σ 11 J σ 13 M σ 14 H, σ 55 = σ 5 σ 9 M σ 12 J σ 14 M σ 15 H. Now we shall deal with the conformally invariant scalar field S(x, y). Its h-covariant derivative S i with respect to the changed CΓ is defined by S i = i S ( j S) G j i. It is enough for the later use to treat a positively homogeneous scalar field S of degree zero in y i so that S ;1 = 0. Then from (3.6), we have (3.8) S i = S i + S ;2 (σ 2 l i + σ 6 m i + σ 7 n i + σ 8 p i + σ 9 q i ) S ;3 (σ 3 l i + σ 7 m i + σ 10 n i + σ 11 p i + σ 12 q i ) +S ;4 (σ 4 l i + σ 8 m i + σ 11 n i + σ 13 p i + σ 14 q i ) +S ;5 (σ 5 l i + σ 9 m i + σ 12 n i + σ 14 p i + σ 15 q i ). Since S i = S, 1 l i + S, 2 m i + S, 3 n i + S, 4 p i + S, 5 q i, from the equations (3.2) and (3.8) we have the relations: (3.9) S, 1 = S i l i = e σ (S, 1 +S ;2 σ 2 + S ;3 σ 3 + S ;4 σ 4 + S ;5 σ 5 ), S, 2 = S i m i = e σ (S, 2 +S ;2 σ 6 + S ;3 σ 7 + S ;4 σ 8 + S ;5 σ 9 ), S, 3 = S i n i = e σ (S, 3 +S ;2 σ 7 + S ;3 σ 10 + S ;4 σ 11 + S ;5 σ 12 ), S, 4 = S i p i = e σ (S, 4 +S ;2 σ 8 + S ;3 σ 11 + S ;4 σ 13 + S ;5 σ 14 ), S, 5 = S i q i = e σ (S, 5 +S ;2 σ 9 + S ;3 σ 12 + S ;4 σ 14 + S ;5 σ 15 ). On the other hand, the v-covariant derivative S i with respect to the changed CΓ is defined by S i = i S = S i. Making use of the relation (3.2), this equation gives (3.10) S ;1 = LS i l i = 0, S ;2 = LS i m i = S ;2, S ;3 = LS i n i = S ;3, S ;4 = LS i p i = S ;4, S ;5 = LS i q i = S ;5. Proposition 3.2. Let S be a conformally invariant scalar field, which is positively homogeneous of degree zero in y i. Then the conformal changes of scalar derivatives of S are given by (3.9) and (3.10). For the conformal change of the adapted components h α, J α, k α, h α, J α, k α of the six h-connection vectors h i, J i, k i, h i, J i, k i, from (3.1) and (2.10), we have m i j = e σ (σ j m i + m i j ), n i j = e σ (σ j n i + n i j ), p i j = e σ (σ j p i + p i j ), q i j = e σ (σ j q i + q i j ) which in view of (3.6) and (3.7) leads to (3.11) (a) h j = h j + {σ 2 u 2 + σ 3 u 3 + σ 4 u 4 + σ 5 u 5 } l j + {σ 6 u 2 + σ 7 u 3 + σ 8 u 4 + σ 9 u 5 + σ 17 + σ 56 } m j + {σ 7 u 2 + σ 10 u 3 + σ 11 u 4 + σ 12 u 5 + σ 20 + σ 57 } n j + {σ 8 u 2 + σ 11 u 3 + σ 13 u 4 + σ 14 u 5 + σ 21 + σ 58 } p j + {σ 9 u 2 + σ 12 u 3 + σ 14 u 4 + σ 15 u 5 + σ 22 + σ 59 } q j.

11 On the conformal change of five-dimensional Finsler spaces (b) J j = J j + {σ 2 v 2 + σ 3 v 3 + σ 4 v 4 + σ 5 v 5 } l j + {σ 6 v 2 + σ 7 v 3 + σ 8 v 4 + σ 9 v 5 + σ 18 + σ 60 } m j + {σ 7 v 2 + σ 10 v 3 + σ 11 v 4 + σ 12 v 5 + σ 21 + σ 61 } n j + {σ 8 v 2 + σ 11 v 3 + σ 13 v 4 + σ 14 v 5 + σ 23 + σ 62 } p j, + {σ 9 v 2 + σ 12 v 3 + σ 14 v 4 + σ 15 v 5 + σ 24 + σ 63 } q j. (c) k j = k j + {σ 2 w 2 + σ 3 w 3 + σ 4 w 4 + σ 5 w 5 } l j + {σ 6 w 2 + σ 7 w 3 + σ 8 w 4 + σ 9 w 5 + σ 19 + σ 64 } m j + {σ 7 w 2 + σ 10 w 3 + σ 11 w 4 + σ 12 w 5 + σ 22 + σ 65 } n j + {σ 8 w 2 + σ 11 w 3 + σ 13 w 4 + σ 14 w 5 + σ 24 + σ 66 } p j + {σ 9 w 2 + σ 12 w 3 + σ 14 w 4 + σ 15 w 5 + σ 25 + σ 67 } q j. (d) h j = h j + {σ 2u 2 + σ 3 u 3 + σ 4 u 4 + σ 5 u 5} l j + {σ 6 u 2 + σ 7 u 3 + σ 8 u 4 + σ 9 u 5 + σ 28 + σ 68 } m j + {σ 7 u 2 + σ 10 u 3 + σ 11 u 4 + σ 12 u 5 + σ 31 + σ 69 } n j + {σ 8 u 2 + σ 11 u 3 + σ 13 u 4 + σ 14 u 5 + σ 33 + σ 70 } p j + {σ 9 u 2 + σ 12 u 3 + σ 14 u 4 + σ 15 u 5 + σ 34 + σ 71 } q j. (e) J j = J j + {σ 2v 2 + σ 3 v 3 + σ 4 v 4 + σ 5 v 5} l j + {σ 6 v 2 + σ 7 v 3 + σ 8 v 4 + σ 9 v 5 + σ 29 + σ 72 } m j + {σ 7 v 2 + σ 10 v 3 + σ 11 v 4 + σ 12 v 5 + σ 32 + σ 73 } n j + {σ 8 v 2 + σ 11 v 3 + σ 13 v 4 + σ 14 v 5 + σ 34 + σ 74 } p j, + {σ 9 v 2 + σ 12 v 3 + σ 14 v 4 + σ 15 v 5 + σ 35 + σ 75 } q j. (f) k j = k j + {σ 2w 2 + σ 3 w 3 + σ 4 w 4 + σ 5 w 5} l j + {σ 6 w 2 + σ 7 w 3 + σ 8 w 4 + σ 9 w 5 + σ 39 + σ 76 } m j + {σ 7 w 2 + σ 10 w 3 + σ 11 w 4 + σ 12 w 5 + σ 42 + σ 77 } n j + {σ 8 w 2 + σ 11 w 3 + σ 13 w 4 + σ 14 w 5 + σ 44 + σ 78 } p j + {σ 9 w 2 + σ 12 w 3 + σ 14 w 4 + σ 15 w 5 + σ 45 + σ 79 } q j. where we have put σ 56 = σ 6 (J + J + J ) + σ 7 I + σ 8 K + σ 9 N, σ 57 = σ 7 (J + J + J ) + σ 10 I + σ 11 K + σ 12 N, σ 58 = σ 8 (J + J + J ) + σ 11 I + σ 13 K + σ 14 N, σ 59 = σ 9 (J + J + J ) + σ 12 I + σ 14 K + σ 15 N, σ 60 = σ 6 (H + I + M ) + σ 7 K + σ 8 K + σ 9 N, σ 61 = σ 7 (H + I + M ) + σ 10 K + σ 11 K + σ 12 N, σ 62 = σ 8 (H + I + M ) + σ 11 K + σ 13 K + σ 14 N, σ 63 = σ 9 (H + I + M ) + σ 12 K + σ 14 K + σ 15 N, σ 64 = σ 6 (H + I + K ) + σ 7 N + σ 8 N + σ 9 M, σ 65 = σ 7 (H + I + K ) + σ 10 N + σ 11 N + σ 12 M, σ 66 = σ 8 (H + I + K ) + σ 11 N + σ 13 N + σ 14 M, σ 67 = σ 9 (H + I + K ) + σ 12 N + σ 14 N + σ 15 M, σ 68 = σ 6 K + σ 7 I + σ 8 J + σ 9 M, σ 69 = σ 7 K + σ 10 I + σ 11 J + σ 12 M, σ 70 = σ 8 K + σ 11 I + σ 13 J + σ 14 M, σ 71 = σ 9 K + σ 12 I + σ 14 J + σ 15 M, σ 72 = σ 6 N + σ 7 I + σ 8 M + σ 9 J, σ 73 = σ 7 N + σ 10 I + σ 11 M + σ 12 J, σ 74 = σ 8 N + σ 11 I + σ 13 M + σ 14 J, σ 75 = σ 9 N + σ 12 I + σ 14 M + σ 15 J, σ 76 = σ 6 N + σ 7 M + σ 8 K + σ 9 M,

12 90 Gauree Shanker σ 77 = σ 7 N + σ 10 M + σ 11 K + σ 12 M, σ 78 = σ 8 N + σ 11 M + σ 13 K + σ 14 M, σ 79 = σ 9 N + σ 12 M + σ 14 K + σ 15 M. ( Thus the adapted components h α, J α, k α, h α, J α, k α, of h i, J i, k i M 5, L(x, y) ) are given by in F 5 = (3.12) (a) h 1 = e σ {h 1 + σ 2 u 2 + σ 3 u 3 + σ 4 u 4 + σ 5 u 5 }, h 2 = e σ {h 2 + σ 6 u 2 + σ 7 u 3 + σ 8 u 4 + σ 9 u 5 + σ 17 + σ 56 }, h 3 = e σ {h 3 + σ 7 u 2 + σ 10 u 3 + σ 11 u 4 + σ 12 u 5 + σ 20 + σ 57 }, h 4 = e σ {h 4 + σ 8 u 2 + σ 11 u 3 + σ 13 u 4 + σ 14 u 5 + σ 21 + σ 58 }, h 5 = e σ {h 5 + σ 9 u 2 + σ 12 u 3 + σ 14 u 4 + σ 15 u 5 + σ 22 + σ 59 } (b) J 1 = e σ {J 1 + σ 2 v 2 + σ 3 v 3 + σ 4 v 4 + σ 5 v 5 }, J 2 = e σ {J 2 + σ 6 v 2 + σ 7 v 3 + σ 8 v 4 + σ 9 v 5 + σ 18 + σ 60 }, J 3 = e σ {J 3 + σ 7 v 2 + σ 10 v 3 + σ 11 v 4 + σ 12 v 5 + σ 21 + σ 61 }, J 4 = e σ {J 4 + σ 8 v 2 + σ 11 v 3 + σ 13 v 4 + σ 14 v 5 + σ 23 + σ 62 }, J 5 = e σ {J 5 + σ 9 v 2 + σ 12 v 3 + σ 14 v 4 + σ 15 v 5 + σ 24 + σ 63 }. (c) k 1 = e σ {k 1 + σ 2 w 2 + σ 3 w 3 + σ 4 w 4 + σ 5 w 5 }, k 2 = e σ {k 2 + σ 6 w 2 + σ 7 w 3 + σ 8 w 4 + σ 9 w 5 + σ 19 + σ 64 }, k 3 = e σ {k 3 + σ 7 w 2 + σ 10 w 3 + σ 11 w 4 + σ 12 w 5 + σ 22 + σ 65 }, k 4 = e σ {k 4 + σ 8 w 2 + σ 11 w 3 + σ 13 w 4 + σ 14 w 5 + σ 24 + σ 66 }, k 5 = e σ {k 5 + σ 9 w 2 + σ 12 w 3 + σ 14 w 4 + σ 15 w 5 + σ 25 + σ 67 }. (d) h 1 = e σ {h 1 + σ 2 u 2 + σ 3 u 3 + σ 4 u 4 + σ 5 u 5}, h 2 = e σ {h 2 + σ 6 u 2 + σ 7 u 3 + σ 8 u 4 + σ 9 u 5 + σ 28 + σ 68 }, h 3 = e σ {h 3 + σ 7 u 2 + σ 10 u 3 + σ 11 u 4 + σ 12 u 5 + σ 31 + σ 69 }, h 4 = e σ {h 4 + σ 8 u 2 + σ 11 u 3 + σ 13 u 4 + σ 14 u 5 + σ 33 + σ 70 }, h 5 = e σ {h 5 + σ 9 u 2 + σ 12 u 3 + σ 14 u 4 + σ 15 u 5 + σ 34 + σ 71 }. (e) J 1 = e σ {J 1 + σ 2 v 2 + σ 3 v 3 + σ 4 v 4 + σ 5 v 5}, J 2 = e σ {J 2 + σ 6 v 2 + σ 7 v 3 + σ 8 v 4 + σ 9 v 5 + σ 29 + σ 72 }, J 3 = e σ {J 3 + σ 7 v 2 + σ 10 v 3 + σ 11 v 4 + σ 12 v 5 + σ 32 + σ 73 }, J 4 = e σ {J 4 + σ 8 v 2 + σ 11 v 3 + σ 13 v 4 + σ 14 v 5 + σ 34 + σ 74 }, J 5 = e σ {J 5 + σ 9 v 2 + σ 12 v 3 + σ 14 v 4 + σ 15 v 5 + σ 35 + σ 75 }. (f) k 1 = e σ {k 1 + σ 2 w 2 + σ 3 w 3 + σ 4 w 4 + σ 5 w 5}, k 2 = e σ {k 2 + σ 6 w 2 + σ 7 w 3 + σ 8 w 4 + σ 9 w 5 + σ 39 + σ 76 }, k 3 = e σ {k 3 + σ 7 w 2 + σ 10 w 3 + σ 11 w 4 + σ 12 w 5 + σ 42 + σ 77 }, k 4 = e σ {k 4 + σ 8 w 2 + σ 11 w 3 + σ 13 w 4 + σ 14 w 5 + σ 44 + σ 78 }, k 5 = e σ {k 5 + σ 9 w 2 + σ 12 w 3 + σ 14 w 4 + σ 15 w 5 + σ 45 + σ 79 }. For the conformal change of the adapted components u α, v α, w α, u α, v α, w α, of six v-connection vectors u i, v i, w i, u i, v i, w i, we again use (3.1) and (2.11). Thus we get u j = e σ u j, v j = e σ v j, w j = e σ w j, u j = e σ u j, v j = e σ v j, w j = e σ w j, which lead to (3.13) (a) u 1 = u 1 = 0, u 2 = u 2, u 3 = u 3, u 4 = u 4, u 5 = u 5, (b) v 1 = v 1 = 0, v 2 = v 2, v 3 = v 3, v 4 = v 4, v 5 = v 5, (c) w 1 = w 1 = 0, w 2 = w 2, w 3 = w 3, w 4 = w 4, w 5 = w 5, (d) u 1 = u 1 = 0, u 2 = u 2, u 3 = u 3, u 4 = u 4, u 5 = u 5,

13 On the conformal change of five-dimensional Finsler spaces (e) v 1 = v 1 = 0, v 2 = v 2, v 3 = v 3, v 4 = v 4, v 5 = v 5, (f) w 1 = w 1 = 0, w 2 = w 2, w 3 = w 3, w 4 = w 4, w 5 = w 5. From (3.11) and (3.13), we have the following: Theorem 3.3. The adapted components of all the six v-connection vectors of fivedimensional Finsler space are invariant under any conformal change. Theorem 3.4. The h-connection vector h i of F 5 is invariant under σ-conformal change if and only if (i) σ 2 u 2 + σ 3 u 3 + σ 4 u 4 + σ 5 u 5 = 0, (ii) σ 6 u 2 + σ 7 u 3 + σ 8 u 4 + σ 9 u 5 + σ 17 + σ 56 = 0, (iii) σ 7 u 2 + σ 10 u 3 + σ 11 u 4 + σ 12 u 5 + σ 20 + σ 57 = 0, (iv) σ 8 u 2 + σ 11 u 3 + σ 13 u 4 + σ 14 u 5 + σ 21 + σ 58 = 0, (v) σ 9 u 2 + σ 12 u 3 + σ 14 u 4 + σ 15 u 5 + σ 22 + σ 59 = 0. Theorem 3.5. The h-connection vector J i of F 5 is invariant under σ-conformal change if and only if (i) σ 2 v 2 + σ 3 v 3 + σ 4 v 4 + σ 5 v 5 = 0, (ii) σ 6 v 2 + σ 7 v 3 + σ 8 v 4 + σ 9 v 5 + σ 18 + σ 60 = 0, (iii) σ 7 v 2 + σ 10 v 3 + σ 11 v 4 + σ 12 v 5 + σ 21 + σ 61 = 0, (iv) σ 8 v 2 + σ 11 v 3 + σ 13 v 4 + σ 14 v 5 + σ 23 + σ 62 = 0, (v) σ 9 v 2 + σ 12 v 3 + σ 14 v 4 + σ 15 v 5 + σ 24 + σ 63 = 0. Theorem 3.6. The h-connection vector k i of F 5 is invariant under σ-conformal change if and only if (i) σ 2 w 2 + σ 3 w 3 + σ 4 w 4 + σ 5 w 5 = 0, (ii) σ 6 w 2 + σ 7 w 3 + σ 8 w 4 + σ 9 w 5 + σ 19 + σ 64 = 0, (iii) σ 7 w 2 + σ 10 w 3 + σ 11 w 4 + σ 12 w 5 + σ 22 + σ 65 = 0, (iv) σ 8 w 2 + σ 11 w 3 + σ 13 w 4 + σ 14 w 5 + σ 24 + σ 66 = 0, (v) σ 9 w 2 + σ 12 w 3 + σ 14 w 4 + σ 15 w 5 + σ 25 + σ 67 = 0. Theorem 3.7. The h-connection vector h i of F 5 is invariant under σ-conformal change if and only if (i) σ 2 u 2 + σ 3 u 3 + σ 4 u 4 + σ 5 u 5 = 0, (ii) σ 6 u 2 + σ 7 u 3 + σ 8 u 4 + σ 9 u 5 + σ 28 + σ 68 = 0, (iii) σ 7 u 2 + σ 10 u 3 + σ 11 u 4 + σ 12 u 5 + σ 31 + σ 69 = 0, (iv) σ 8 u 2 + σ 11 u 3 + σ 13 u 4 + σ 14 u 5 + σ 33 + σ 70 = 0, (v) σ 9 u 2 + σ 12 u 3 + σ 14 u 4 + σ 15 u 5 + σ 34 + σ 71 = 0. Theorem 3.8. The h-connection vector J i of F 5 is invariant under σ-conformal change if and only if (i) σ 2 v 2 + σ 3 v 3 + σ 4 v 4 + σ 5 v 5 = 0, (ii) σ 6 v 2 + σ 7 v 3 + σ 8 v 4 + σ 9 v 5 + σ 29 + σ 72 = 0, (iii) σ 7 v 2 + σ 10 v 3 + σ 11 v 4 + σ 12 v 5 + σ 32 + σ 73 = 0, (iv) σ 8 v 2 + σ 11 v 3 + σ 13 v 4 + σ 14 v 5 + σ 34 + σ 74 = 0, (v) σ 9 v 2 + σ 12 v 3 + σ 14 v 4 + σ 15 v 5 + σ 35 + σ 75 = 0.

14 92 Gauree Shanker Theorem 3.9. The h-connection vector k i of F 5 is invariant under σ-conformal change if and only if (i) σ 2 w 2 + σ 3 w 3 + σ 4 w 4 + σ 5 w 5 = 0, (ii) σ 6 w 2 + σ 7 w 3 + σ 8 w 4 + σ 9 w 5 + σ 39 + σ 76 = 0, (iii) σ 7 w 2 + σ 10 w 3 + σ 11 w 4 + σ 12 w 5 + σ 42 + σ 77 = 0, (iv) σ 8 w 2 + σ 11 w 3 + σ 13 w 4 + σ 14 w 5 + σ 44 + σ 78 = 0, (v) σ 9 w 2 + σ 12 w 3 + σ 14 w 4 + σ 15 w 5 + σ 45 + σ 79 = References [1] M. Hashiguchi, On conformal transformations of Finsler metrics, J. Math. Kyoto Univ. 16 (1976), [2] M. Matsumoto, Conformal change of two-dimensional Finsler space and curvature of one-form metric, Tensor N. S. 53 (1993), [3] M. Matsumoto, A theory of three-dimensional Finsler spaces in terms of scalars, Demonstratio Mathematica 6 (1973), [4] M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Saikawa, Otsu, 520, Japan, [5] M. Matsumoto and R. Miron, On an invariant theory of Finsler spaces, Period. Math. Hungar. 8 (1977), [6] A. Moor, Über. die Torsions-Und Krümmung invarianten der dreidimensonalen 356 Finslerschen Räume, Math. Nachr. 16 (1957), [7] T. N. Pandey and D. K. Divedi, A theory of four-dimensional Finsler spaces in 358 terms of scalars, J. Nat. Acad. Math. 11 (1997), [8] B. N. Prasad and D. K. Diwedi, Conformal change of three-dimensional Finsler 360 space, Tensor N. S. 61 (1999), [9] B. N. Prasad, G. C. Chaubey and G. S. Patel, The four-dimensional Finsler 362 space with constant unified main scalar, Bull. Calcutta Math. Soc. 99, 2 (2007), [10] B. N. Prasad and G. Shanker, Conformal change of four-dimensional Finsler 365 space, Bull. Calcutta Math. Soc. 102, 5 (2010), [11] G. Shanker, G. C. Chaubey and V. Pandey, On the main scalars of a five- 367 dimensional Finsler space, Int. J. Pure Appl. Math. 5, 2 (2012), [12] G. Shanker, Five dimensional Finsler space with constant unified main scalar, 369 Tensor N. S. 72, 1 (2010), [13] U. P. Singh and B. Kumari, Conformal change of three-dimensional Finsler space 371 with constant unified main scalars, J. Pur. Acad. Sci. 6 (2000), Author s address: Gauree Shanker Department of Mathematics and Statistics, Banasthali University, Banasthali, Rajasthan , India. grshnkr2007@gmail.com

On a five dimensional Finsler space with vanishing v-connection vectors

On a five dimensional Finsler space with vanishing v-connection vectors South Asian Journal of Mathematics 2017, Vol. 7 ( 2): 73 80 www.sajm-online.com ISSN 2251-1512 RESEARCH ARTICLE On a five dimensional Finsler space with vanishing v-connection vectors Anamika Rai 1, S.

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor Annales Mathematicae et Informaticae 43 (2014) pp. 13 17 http://ami.ektf.hu On geodesic mappings of Riemannian spaces with cyclic Ricci tensor Sándor Bácsó a, Robert Tornai a, Zoltán Horváth b a University

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

A THEORY OF THREE DIMENSIONAL FINSLER SPACES IN TERMS OF SCALARS AND ITS APPLICATIONS

A THEORY OF THREE DIMENSIONAL FINSLER SPACES IN TERMS OF SCALARS AND ITS APPLICATIONS ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII AL.I.CUZA IAŞI Tomul XLV, s.i a, Matematică, 1999, f.1. A THEORY OF THREE DIMENSIONAL FINSLER SPACES IN TERMS OF SCALARS AND ITS APPLICATIONS BY MAKOTO MATSUMOTO In

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Tutorial problem set 6,

Tutorial problem set 6, GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

n=2 In the present paper, we introduce and investigate the following two more generalized

n=2 In the present paper, we introduce and investigate the following two more generalized MATEMATIQKI VESNIK 59 (007), 65 73 UDK 517.54 originalni nauqni rad research paper SOME SUBCLASSES OF CLOSE-TO-CONVEX AND QUASI-CONVEX FUNCTIONS Zhi-Gang Wang Abstract. In the present paper, the author

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

PHYS606: Electrodynamics Feb. 01, Homework 1. A νµ = L ν α L µ β A αβ = L ν α L µ β A βα. = L µ β L ν α A βα = A µν (3)

PHYS606: Electrodynamics Feb. 01, Homework 1. A νµ = L ν α L µ β A αβ = L ν α L µ β A βα. = L µ β L ν α A βα = A µν (3) PHYS606: Electrodynamics Feb. 01, 2011 Instructor: Dr. Paulo Bedaque Homework 1 Submitted by: Vivek Saxena Problem 1 Under a Lorentz transformation L µ ν, a rank-2 covariant tensor transforms as A µν A

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2 Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 10 - Representation Theory III: Theory of Weights Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

THE BIGRADED RUMIN COMPLEX. 1. Introduction

THE BIGRADED RUMIN COMPLEX. 1. Introduction THE BIGRADED RUMIN COMPLEX JEFFREY S. CASE Abstract. We give a detailed description of the bigraded Rumin complex in dimensions three and five, including formulae for all of its constituent operators.

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points Applied Mathematical Sciences, Vol. 2, 2008, no. 35, 1739-1748 Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points S. M. Khairnar and

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Noname manuscript No. will be inserted by the editor Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Victor Nijimbere Received: date / Accepted: date Abstract

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα