On the conformal change of five-dimensional Finsler spaces
|
|
- ŌΘωμᾶς Πυλαρινός
- 7 χρόνια πριν
- Προβολές:
Transcript
1 On the conformal change of five-dimensional Finsler spaces Gauree Shanker Abstract. The purpose of the present paper is to deal with the theory of conformal change in five-dimensional Finsler space. We have obtained the conditions under which the h- and v- connection vectors are conformally invariant in five-dimensional Finsler space. M.S.C. 2010: 53B40, 53C60. Key words: Finsler space; Conformal change; h and v-connection vectors; main scalars. 1 Introduction 9 The conformal change and conformal transformation of n-dimensional Finsler spaces 10 have been studied in [6] and [1]. The conformal theory of two, three & four-dimensional 11 Finsler spces have been discussed in [2, 8, 10] respectively. As far as author knows 12 there is no paper concerned with the conformal theory of five-dimensional Finsler 13 space. Recently, the present author has found that in a five-dimensional Finsler space there are seventeen main scalars H, I, J, K, H, I, J, K, H, I, J, K, M, M, M 14, N, N 15 [11] in which the sum of H, I, K and M is LC, which is called unified main 16 scalar. It has been also shown by the present author that in a five-dimensional Finsler space there exist six v-connection vectors u i, v i, w i, u 17 i, v i, w i and six h-connection vectors h i, J i, k i, h i, J i 18, k i [11]. The theory of five-dimensional Finsler space with con- stant unified main scalars has been discussed in [12]. The orthonormal frame field ( l i, m i, n i, p i, q i), called the Miron frame plays an important role in five-dimensional Finsler space. Here we discuss the theory of conformal change in five-dimensional Finsler space. 2 Scalar components in Miron frame Let F 5 be a five-dimensional Finsler space with fundamental function L(x, y). The metric tensor g ij and Cartan C tensor C ijk of F 5 are defined by g ij = 1 2 i j L2, C ijk = 1 2 k g ij = 1 4 i j k L2. Differential Geometry - Dynamical Systems, Vol.15, 2013, pp c Balkan Society of Geometers, Geometry Balkan Press 2013.
2 80 Gauree Shanker Throughout the paper, the symbols i { } = frame e i (α) y and i i = x i have been used. The, α = 1, 2, 3, 4, 5 is called the Miron frame of F 5, where e i (1) = li = yi L 29 is called the normalized supporting element, e i (2) = mi = Ci C is called the normalized 30 torsion vector, e i (3) = ni, e i (4) = pi, e i (5) = qi are constructed from g ij e i (α) ej (β) = 31 δ αβ.here, C is the length of torsion vector C i = C ijkg jk.the Greek letters α, β, γ, δ 32 vary from 1 to 5 throughout the paper. Summation convention is applied for both 33 the Greek and Latin indices. In the Miron frame an arbitrary tensor can be expressed 34 by scalar components along the unit vectors l i, m i, n i, p i, q i. For instance; let T = Tj i 35 be a tensor field of (1, 1) type, then the scalar components T αβ of T are defined by T αβ = Tj ie (α)ie j (β) and the components T j i of the tensor T are expressed as T j i = 37 T αβe i (α) e (β)j.from the equation g ij e i (α) ej (β) = δ αβ, we have (2.1) g ij = l i l j + m i m j + n i n j + p i p j + q i q j Next, the C-tensor C ijk = 1 2 k g ij satisfies C ijk l i = 0 and is symmetric in i, j, k. Therefore, if C αβγ are scalar components of LC ijk i. e., if (2.2) LC ijk = C αβγ e (α)i e (β)j e (γ)k, then, we have (2.3) LC ijk = C 222 m i m j m k + C 223 (m i m j n k ) + C 233 (m i n j n k ) + C 333 (n i n j n k ) + C 224 (m i m j p k ) + C 444 (p i p j p k ) + C 244 (m i p j p k ) + C 225 (m i m j q k ) + C 255 (m i q j q k ) + C 555 (q i q j q k ) + C 334 (n i n j p k ) + C 344 (n i p j p k ) + C 335 (n i n j q k ) + C 355 (n i q j q k ) + C 445 (p i p j q k ) + C 455 (p i q j q k ) + C 234 {m i (n j p k + n k p j )} + C 235 {m i (n j q k + n k q j )} + C 245 {m i (p j q k + p k q j )} + C 345 {n i (p j q k + p k q j )}, where 38 {...} denote the cyclic interchange of i, j, k and summation. For instance; {A ib j C k } = A i B j C k + A j B k C i + A k B i C j. 39
3 On the conformal change of five-dimensional Finsler spaces 81 Contracting (2.2) with g jk, we get LCm i = C αββ e (α)i. Thus, if we put (2.4) C 222 = H, C 233 = I, C 244 = K, C 333 = J, C 344 = J, C 444 = H, C 334 = I, C 234 = K, C 255 = M, C 355 = J, C 455 = M, C 555 = H, C 335 = I, C 445 = K, C 235 = N, C 245 = N, C 345 = M, C 224 = (H + I + M ), C 225 = ( H + I + K ). then, we have (2.5) H + I + K + M = LC, C 223 = (J + J + J ), Hence, we have the following: Theorem 2.1. In a five-dimensional Finsler space there are seventeen main scalars H, I, J, K, H, I, J, K, H, I, J, K, M, M, M, N, N in which the sum of H, I, K and M is LC which is called unified main scalar. Using (2.4) and (2.5), the equation (2.3) can be rewritten as [11] (2.6) LC ijk = Hm i m j m k (J + J + J ) (m i m j n k ) + I (m i n j n k ) J (n i n j n k ) (H + I + M ) (m im j p k ) + H (p i p j p k ) +K (m ip j p k ) (H + I + K ) (m im j q k ) +M (m iq j q k ) + H (q i q j q k ) + I (n in j p k ) + J (n ip j p k ) +I (n in j q k ) + J (n iq j q k ) + K (p ip j q k ) +M (p iq j q k )+K {m i (n j p k + n k p j )}+ N {m i (n j q k + n k q j )} +N {m i (p j q k + p k q j )}+M {n i (p j q k + p k q j )}. ( ) The Cartan s connection CΓ = Γ i jk, Gi j, Ci jk will be used in the following section of this paper. The h and v covariant derivatives of the frame field e (α)i are given by [4] (2.7) e (α)i j=h(α)βγ e (β)i e (γ)j, Le (α)i j = V (α)βγ e (β)i e (γ)j, where H (α)βγ and V (α)βγ, γ being fixed, are given by (2.8) H α)βγ = h γ J γ k γ 0 h γ 0 h γ J γ 0 J γ h γ 0 k γ 0 k γ J γ k γ 0, V α)βγ = 0 δ 2γ δ 3γ δ 4γ δ 5γ δ 2γ 0 u γ v γ w γ δ 3γ u γ 0 u γ v γ δ 4γ v γ u γ 0 w γ δ 5γ w γ v γ w γ 0 In (2.8), we have put (2.9) H 2)3γ = H 3)2γ = h γ, H 2)4γ = H 4)2γ = J γ, H 2)5γ = H 5)2γ = k γ,
4 82 Gauree Shanker H 3)4γ = H 4)3γ = h γ, H 3)5γ = H 5)3γ = J γ, H 4)5γ = H 5)4γ = k γ, V 2)3γ = V 3)2γ = u γ, V 2)4γ = V 4)2γ = v γ, V 2)5γ = V 5)2γ = w γ, V 3)4γ = V 4)3γ = u γ, V 3)5γ = V 5)3γ = v γ, V 4)5γ = V 5)4γ = w γ. Hence, we have the following: 54 Theorem 2.2. In a five-dimensional Finsler space there exist six h-connection} vectors h i, J i, k i, h i, J i, k i {e whose scalar components with respect to the frame i 55 (α) are h γ, J γ, k γ, h γ, J γ, k γ, i. e., h i = h γ e (γ)i, J i = J γ e (γ)i, k i = k γ e (γ)i, h i = h γe (γ)i, J i 56 = J γe (γ)i, k i 57 = k γe (γ)i. 58 Theorem 2.3. In a five-dimensional Finsler space there exist six v-connection} vectors u i, v i, w i, u i, v i, w i {e whose scalar components with respect to the frame i 59 (α) are u γ, v γ, w γ, u γ, v γ, w γ i. e., u i = u γ e (γ)i, v i = v γ e (γ)i, w i = w γ e (γ)i, u i = u γe (γ)i, v i 60 = v γe (γ)i, w i 61 = w γe (γ)i. In view of equations (2.8), (2.9) and using the theorems (2.2) and (2.3), the equations (2.7) may be explicitly written as [11] (2.10) l i j = 0, m i j = n i h j + p i J j + q i k j, n i j = m i h j + p i h j + q i J j, p i j = m i J j n i h j + q i k j, q i j = m i k j n i J j p i k j and (2.11) Ll i j = m i m j + n i n j + p i p j + q i q j = g ij l i l j = h ij, Lm i j = l i m j + n i u j + p i v j + q i w j, Ln i j = l i n j m i u j + p i u j + q i v j, Lp i j = l i p j m i v j n i u j + q i w j, Lq i j = l i q j m i w j n i v j p i w j. 62 Since m i, n i, p i, q i are homogeneous functions of degree zero in y i, we have Lm i j l j = Ln i j l j = Lp i j l j = Lq i j l j = 0 which in view of equation (2.11) and theorem (2.3) gives (2.12) u 1 = v 1 = w 1 = u 1 = v 1 = w 1 = Thus we have the following: Theorem 2.4. In a five-dimensional Finsler space, the first scalar components of v-connection vectors u i, v i, w i, u i, v i, w i vanish identically. The equations (2.11) and (2.6) lead to the following expressions for the partial derivatives with respect to y j : (2.13) L jl i = h ij = m i m j + n i n j + p i p j + q i q j, 66 L j m i = l i m j + n i u j + p i v j + q i w j + Hm i m j + In i n j + Kp i p j + Mq i q j
5 On the conformal change of five-dimensional Finsler spaces (J + J + J )(m i n j + m j n i ) (H + I + M )(m i p j + m j p i ) (H + I + K )(m i q j + m j q i ) + K (n i p j + n j p i ) + N(n i q j + n j q i ) +N (p i q j + p j q i ), L j n i = l i n j m i u j + p i u j + q iv j (J + J + J )m i m j + Jn i n j + J p i p j +J q i q j + I(m i n j + m j n i ) + K (m i p j + m j p i ) + N(m i q j + m j q i ) +I (n i p j + n j p i ) + I (n i q j + n j q i ) + M (p i q j + p j q i ), L j p i = l i p j m i v j n i u j + q iw j (H + I + M ) m i m j + I n i n j + H p i p j +M q i q j + K (m i n j + m j n i ) + K(m i p j + m j p i ) + N (m i q j + m j q i ) +J (n i p j + n j p i ) + M (n i q j + n j q i ) + K (p i q j + p j q i ), L j q i = l i q j m i w j n i v j p iw j (H + I + M ) m i m j + I n i n j + K p i p j +H q i q j + N(m i n j + m j n i ) + N (m i p j + m j p i ) + M(m i q j + m j q i ) +M (n i p j + n j p i ) + J (n i q j + n j q i ) + M (p i q j + p j q i ), (2.14) L jl i = m i m j + n i n j + p i p j + q i q j, L j mi = l i m j + n i u j + p i v j + q i w j Hm i m j In i n j Kp i p j Mq i q j +(J + J + J )(m i n j + m j n i ) + (H + I + M )(m i p j + m j p i ) +(H + I + K )(m i q j + m j q i ) K (n i p j + n j p i ) N(n i q j + n j q i ) N (p i q j + p j q i ), L j ni = l i n j m i u j + p i u j + qi v j + (J + J + J )m i m j Jn i n j J p i p j J q i q j I(m i n j + m j n i ) K (m i p j + m j p i ) N(m i q j + m j q i ) I (n i p j + n j p i ) I (n i q j + n j q i ) M (p i q j + p j q i ), L j pi = l i p j m i v j n i u j + qi w j + (H + I + M ) m i m j I n i n j H p i p j M q i q j K (m i n j + m j n i ) K(m i p j + m j p i ) N (m i q j + m j q i ) J (n i p j + n j p i ) M (n i q j + n j q i ) K (p i q j + p j q i ), L j qi = l i q j m i w j n i v j pi w j + (H + I + M ) m i m j I n i n j K p i p j H q i q j N(m i n j + m j n i ) + N (m i p j + m j p i ) M(m i q j + m j q i ) + M (n i p j + n j p i ) J (n i q j + n j q i ) M (p i q j + p j q i ),
6 84 Gauree Shanker The h scalar derivative of the adapted components T αβ of the tensor Tj i is defined as [4] of (1, 1) type (2.15) T αβ,γ = (δ k T αβ ) e k γ) + T µβh µ)αγ + T αµ H µ)βγ, where δ k = k G r k r.similarly, the v-scalar derivative of the adapted components T αβ of the tensor Tj i of (1, 1) type is defined as [4] (2.16) T αβ;γ = L ( kt αβ ) e k γ) + T µβv µ)αγ + T αµ V µ)βγ. Thus, T αβ,γ and T αβ;γ are the adapted components of T i j k and T i j krespectively i. e., (2.17) (2.18) T i j k = T αβ,γ e i (α) e (β)je (γ)k, LT i j k = T αβ;γ e i (α) e (β)je (γ)k A covariant vector field σ i is called a gradient vector, if there exists a scalar field σ = σ (x) satisfying σ i = i σ. Then, we have Lemma 2.5. A covariant vector field σ i = σ α e α)i is locally a gradient vector, if and only if the scalar components σ α, α = 1, 2, 3, 4, 5. (2.19) σ α,β = σ β,α, α, β = 1, 2, 3, 4, (2.20) σ 1;α = σ α;1 = 0, α = 1, 2, 3, 4, 5 σ 2;2 = σ 2 H + σ 3 (J + J + J ) + σ 4 (H + I + M ) +σ 5 (H + I + K ), σ 3;3 = σ 2 I σ 3 J σ 4 I σ 5 I, σ 4;4 = σ 2 K σ 3 J σ 4 H σ 5 K, σ 5;5 = σ 2 M σ 3 J σ 4 M σ 5 H, σ 2;3 = σ 3;2 = σ 2 (J + J + J ) σ 3 I σ 4 K σ 5 N, σ 2;4 = σ 4;2 = σ 2 (H + I + M ) σ 3 K σ 4 K σ 5 N, σ 2;5 = σ 5;2 = σ 2 (H + I + K ) σ 3 N σ 4 N σ 5 M, σ 3;4 = σ 4;3 = σ 2 K σ 3 I σ 4 J σ 5 M, σ 3;5 = σ 5;3 = σ 2 N σ 3 I σ 4 M σ 5 J, σ 4;5 = σ 5;4 = σ 2 N σ 3 M σ 4 K σ 5 M. 97 Proof. It is obvious that σ i is locally a gradient vector if and only if it satisfies 98 (a) j σ i i σ j = 0, (b) j σ i = 0. These are equivalent, respectively, to (2.10) ( σ i j = j σ i σ k Fij) k = σj i, (2.11) σ i j = σ k Cij k 99. We examine the scalar components σ α of σ i. Then equations (2.17) and (2.18) give σ i j = σ α,β e α)i e β)j, σ i j = σ α;β e α)i e β)j respectively. Then the equations (2.10) and (2.11) are written, respectively, in the forms (2.19) and σ α;β = σ γ C αβγ. This equation together with (2.6) gives (2.20)
7 On the conformal change of five-dimensional Finsler spaces Conformal change of Cartan s connection We consider a conformal change L(x, y) L(x, y) = e σ(x) L(x, y) of a five-dimensional Finsler space F 5 = (M 5, L(x, y)) with the fundamental function L(x, y), where σ(x) is a scalar function of position x i alone, called the conformal factor. We shall denote the Finsler space with changed fundamental function L(x, y) by F 5 = (M 5, L(x, y))) and quantities of F 5 by upper line. The following change of important quantities are known [1]. (3.1) (3.2) (3.3) l i = e σ l i, m i = e σ m i, n i = e σ n i, p i = e σ p i, q i = e σ q i, g ij = e 2σ g ij, l i = e σ l i, m i = e σ m i, n i = e σ n i, p i = e σ p i, q i = e σ q i, g ij = e 2σ g ij, C ijk = e 2σ C ijk, C i jk = Cjk, i H = H, I = I, J = J, K = K, M = M, N = N, H = H, I = I, J = J, K = K, M = M, N = N, H = H, I = I, J = J, K = K, M = M Lemma (2.5) leads us to the following useful relations: Proposition 3.1. If we put σ i = i σ(x) = σ α e α)i, then we have the relations (i) σ α,β = σ β,α, α, β = 1, 2, 3, 4, 5. (ii) σ 1;α = σ α;1 = 0, α = 1, 2, 3, 4, 5. σ 2;2 = σ 1 + σ 6, σ 2;3 = σ 3;2 = σ 7, σ 2;4 = σ 4;2 = σ 8, σ 2;5 = σ 5;2 = σ 9, σ 3;3 = σ 1 + σ 10, σ 3;4 = σ 4;3 = σ 11, σ 3;5 = σ 5;3 = σ 12, σ 4;4 = σ 1 + σ 13, σ 4;5 = σ 5;4 = σ 14, σ 5;5 = σ 1 + σ 15, where we have substituted σ 6 = σ 1 σ 2 H + σ 3 (J + J + J ) + σ 4 (H + I + M ) + σ 5 (H + I + K ), σ 7 = σ 2 (J + J + J ) σ 3 I σ 4 K σ 5 N, σ 8 = σ 2 (H + I + M ) σ 3 K σ 4 K σ 5 N, σ 9 = σ 2 (H + I + K ) σ 3 N σ 4 N σ 5 M, σ 10 = σ 1 σ 2 I σ 3 J σ 4 I σ 5 I, σ 11 = σ 2 K σ 3 I σ 4 J σ 5 M, σ 12 = σ 2 N σ 3 I σ 4 M σ 5 J, σ 13 = σ 1 σ 2 K σ 3 J σ 4 H σ 5 K, σ 14 = σ 2 N σ 3 M σ 4 K σ 5 M, σ 15 = σ 1 σ 2 M σ 3 J σ 4 M σ 5 H.
8 86 Gauree Shanker Now we consider the change of Christoffel symbols γ ijk = g jr γ r ik = 1 2 ( kg ij + i g jk j g ki ) constructed from g ij (x, y) with respect to x i, then we have (3.4) γ i jk = γ i jk + δ i jσ k + δ i kσ j g jk σ i, ( σ i = g ij σ j ). Thus the change of the well-known quantities 2G i = γ i jk yj y k = γ i 00 is given by (3.5) 2G i = 2G i + L 2 ( σ 1 l i σ 2 m i σ 3 n i σ 4 p i σ 5 q i). Differentiating (3.5) with respect to y j, using proposition (3.1) and equation (2.14), we get (3.6) G i j = G i j + Ll i (σ 1 l j + σ 2 m j + σ 3 n j + σ 4 p j + σ 5 q j ) Lm i 130 (σ 2 l j + σ 6 m j + σ 7 n j + σ 8 p j + σ 9 q j ) Ln i 131 (σ 3 l j + σ 7 m j + σ 10 n j + σ 11 p j + σ 12 q j ) Lp i 132 (σ 4 l j + σ 8 m j + σ 11 n j + σ 13 p j + σ 14 q j ) Lq i 133 (σ 5 l j + σ 9 m j + σ 12 n j + σ 14 p j + σ 15 q j ). On the other hand, the connection coefficients Fjk i 134 of CΓ are given by [4] F ijk = g jr Fik r = γ ijk C ijr G r k C jkrg r i + C ikrg r 135 j. Then the equations (2.6), (3.4) and (3.6) lead to (3.7) +l i m i n i p i q i F i jk = F i jk σ 1 l j l k + σ 2 (l j m k + l k m j ) + σ 3 (l j n k + l k n j ) + σ 4 (l j p k + l k p j ) + σ 5 (l j q k + l k q j ) +σ 6 m j m k + σ 7 (m j n k + m k n j ) + σ 8 (m j p k + m k p j ) + σ 9 (m j q k + m k q j ) + σ 10 n j n k +σ 11 (n j p k + n k p j ) + σ 12 (n j q k + n k q j ) + σ 13 p j p k + σ 14 (p j q k + p k q j ) + σ 15 q j q k σ 2 l j l k + σ 6 (l j m k + l k m j ) + σ 7 (l j n k + l k n j ) + σ 8 (l j p k + l k p j ) + σ 9 (l j q k + l k q j ) +σ 16 m j m k + σ 17 (m j n k + m k n j ) + σ 18 (m j p k + m k p j ) + σ 19 (m j q k + m k q j ) + σ 20 n j n k +σ 21 (n j p k + n k p j ) + σ 22 (n j q k + n k q j ) + σ 23 p j p k + σ 24 (p j q k + p k q j ) + σ 25 q j q k σ 3 l j l k + σ 7 (l j m k + l k m j ) + σ 10 (l j n k + l k n j ) + σ 11 (l j p k + l k p j ) + σ 12 (l j q k + l k q j ) +σ 26 m j m k + σ 27 (m j n k + m k n j ) + σ 28 (m j p k + m k p j ) + σ 29 (m j q k + m k q j ) + σ 30 n j n k + σ 31 (n j p k + n k p j ) + σ 32 (n j q k + n k q j ) + σ 33 p j p k + σ 34 (p j q k + p k q j ) + σ 35 q j q k σ 4 l j l k + σ 8 (l j m k + l k m j ) + σ 11 (l j n k + l k n j ) + σ 13 (l j p k + l k p j ) + σ 14 (l j q k + l k q j ) +σ 36 m j m k + σ 37 (m j n k + m k n j ) + σ 38 (m j p k + m k p j ) + σ 39 (m j q k + m k q j ) + σ 40 n j n k +σ 41 (n j p k + n k p j ) + σ 42 (n j q k + n k q j ) + σ 43 p j p k + σ 44 (p j q k + p k q j ) + σ 45 q j q k σ 5 l j l k + σ 9 (l j m k + l k m j ) + σ 12 (l j n k + l k n j ) + σ 14 (l j p k + l k p j ) + σ 15 (l j q k + l k q j ) +σ 46 m j m k + σ 47 (m j n k + m k n j ) + σ 48 (m j p k + m k p j ) + σ 49 (m j q k + m k q j ) + σ 50 n j n k +σ 51 (n j p k + n k p j ) + σ 52 (n j q k + n k q j ) + σ 53 p j p k + σ 54 (p j q k + p k q j ) + σ 55 q j q k where σ 16 = σ 2 σ 6 H + σ 7 (J + J + J ) + σ 8 (H + I + M ) + σ 9 (H + I + K ), σ 17 = σ 3 σ 7 H + σ 10 (J + J + J ) + σ 11 (H + I + M ) + σ 12 (H + I + K ), σ 18 = σ 4 σ 8 H + σ 11 (J + J + J ) + σ 13 (H + I + M ) + σ 14 (H + I + K ), σ 19 = σ 5 σ 9 H + σ 12 (J + J + J ) + σ 14 (H + I + M ) + σ 15 (H + I + K ), σ 20 = σ 2 + σ 6 I + σ 7 (3J + 2J + 2J ) + σ 8 I + σ 9 I 2σ 10 I 2σ 11 K 2σ 12 N, σ 21 = σ 6 K + σ 7 (H + 2I + M ) + σ 8 (J + 2J + J ) + σ 9 M σ 10 K σ 11 (K + I) σ 12 N σ 13 K σ 14 N,,
9 On the conformal change of five-dimensional Finsler spaces σ 22 = σ 6 N + σ 7 (H + 2I + K ) + σ 8 M + σ 9 (J + J + 2J ) σ 10 N σ 11 N σ 12 (I + M) σ 14 K σ 15 N, σ 23 = σ 2 + σ 6 K + σ 7 J + σ 8 (3H + 2I + 2M ) + σ 9 K 2 (σ 11 K + σ 13 K + σ 14 N ), σ 24 = σ 6 N + σ 7 M + σ 8 (H + I + K ) + σ 9 (H + I + 2M ) σ 11 N σ 12 K σ 13 N σ 14 (M + K), σ 25 = σ 2 +σ 6 M+σ 7 J +σ 8 M +σ 9 (3H + 2I + 2K ) 2 (σ 12 N + σ 14 N + σ 15 M), σ 26 = σ 3 + 2σ 6 (J + J + J ) σ 7 (H + 2I) 2 (σ 8 K + σ 9 N) σ 10 (J + J + J ) σ 11 (H + I + M ) σ 12 (H + I + K ), σ 27 = σ 2 σ 6 I σ 7 J σ 8 I σ 9 I, σ 28 = σ 6 K + σ 8 (J + J ) σ 7 (H + 2I + M ) σ 9 M + σ 10 K +σ 11 (K I) + σ 12 N σ 13 K σ 14 N, σ 29 = σ 6 N σ 7 (H + 2I + M ) σ 8 M + σ 9 (J + J ) + σ 10 N +σ 11 N + σ 12 (M I) σ 14 K σ 15 N, σ 30 = σ 3 σ 7 I σ 10 J σ 11 I σ 12 I, σ 31 = σ 4 σ 8 I σ 11 J σ 13 I σ 14 I, σ 32 = σ 5 σ 9 I σ 12 J σ 14 I σ 15 I, σ 33 = σ 3 + σ 7 K 2σ 8 K + σ 11 (H 2I ) + σ 12 K 2σ 13 J 2σ 14 M, σ 34 = σ 7 N σ 8 N σ 9 K + σ 10 M σ 11 (K I ) + σ 12 (M I ) σ 13 M σ 14 (J + J ) σ 15 M, σ 35 = σ 3 + σ 7 M 2σ 9 N + σ 10 J + σ 11 M + σ 12 (H 2I ) σ 14 M σ 15 J, σ 36 = σ 4 + 2σ 6 (H + I + M ) 2σ 7 K + σ 8 (H 2K) 2σ 9 N σ 11 (J + J + J ) σ 13 (H + I + M ) σ 14 (H + I + K ), σ 37 = σ 6 K + σ 7 (H + M ) σ 8 (J + 2J + J ) σ 9 M σ 10 K +σ 11 I K σ 12 N + σ 13 K + σ 14 N, σ 38 = σ 2 σ 6 K σ 7 J σ 8 H σ 9 K, σ 39 = σ 6 N σ 7 M σ 8 (H + I + 2K ) + σ 9 (H + I ) + σ 11 N σ 12 K + σ 13 N σ 14 (K M) σ 15 N, σ 40 = σ 4 2σ 7 K + σ 8 I 2σ 10 I + σ 11 (J 2J ) 2σ 12 M + σ 13 I + σ 14 I, σ 41 = σ 3 σ 7 K σ 10 J σ 11 H σ 12 K, σ 42 = σ 7 N + σ 8 N σ 9 K σ 10 M σ 11 (K I ) σ 12 (M + I ) + σ 13 M +σ 14 (J J ) σ 15 M, σ 43 = σ 4 σ 8 K σ 11 J σ 13 H σ 14 K, σ 44 = σ 5 σ 9 K σ 12 J σ 14 H σ 15 K, σ 45 = σ 4 + σ 8 M σ 9 N + σ 11 J σ 12 M + σ 13 M + σ 14 (H K ) σ 15 M, σ 46 = σ 5 +2σ 6 (H + I + K ) 2σ 7 N 2σ 8 N +σ 9 (H 2M) σ 12 (J + J + J ) σ 14 (H + I + M ) σ 15 (H + I + K ), σ 47 = σ 6 N + σ 7 (H + K ) σ 8 M σ 9 (J + J + J ) σ 10 N σ 11 N σ 12 (M I) + σ 14 K + σ 15 N, σ 48 = σ 6 N σ 7 M + σ 8 (H + I ) σ 9 (H + I + 2M ) σ 11 N +σ 12 K σ 13 N + σ 14 (K M) + σ 15 N, σ 49 = σ 2 σ 6 M σ 7 J σ 8 M σ 9 H, σ 50 = σ 5 2σ 7 N + σ 9 I 2σ 10 I 2σ 11 M + σ 12 (J 2J ) + σ 14 I + σ 15 I, σ 51 = σ 7 N σ 8 N + σ 9 K σ 10 M σ 11 (K + I ) σ 12 (M I ) σ 13 M σ 14 (J J ) + σ 15 M, σ 52 = σ 3 σ 7 M σ 10 J σ 11 M σ 12 H, σ 53 = σ 5 2σ 8 N + σ 9 K 2σ 11 M + σ 12 J 2σ 13 K
10 88 Gauree Shanker σ 14 (H 2M ) + σ 15 K, σ 54 = σ 4 σ 8 M σ 11 J σ 13 M σ 14 H, σ 55 = σ 5 σ 9 M σ 12 J σ 14 M σ 15 H. Now we shall deal with the conformally invariant scalar field S(x, y). Its h-covariant derivative S i with respect to the changed CΓ is defined by S i = i S ( j S) G j i. It is enough for the later use to treat a positively homogeneous scalar field S of degree zero in y i so that S ;1 = 0. Then from (3.6), we have (3.8) S i = S i + S ;2 (σ 2 l i + σ 6 m i + σ 7 n i + σ 8 p i + σ 9 q i ) S ;3 (σ 3 l i + σ 7 m i + σ 10 n i + σ 11 p i + σ 12 q i ) +S ;4 (σ 4 l i + σ 8 m i + σ 11 n i + σ 13 p i + σ 14 q i ) +S ;5 (σ 5 l i + σ 9 m i + σ 12 n i + σ 14 p i + σ 15 q i ). Since S i = S, 1 l i + S, 2 m i + S, 3 n i + S, 4 p i + S, 5 q i, from the equations (3.2) and (3.8) we have the relations: (3.9) S, 1 = S i l i = e σ (S, 1 +S ;2 σ 2 + S ;3 σ 3 + S ;4 σ 4 + S ;5 σ 5 ), S, 2 = S i m i = e σ (S, 2 +S ;2 σ 6 + S ;3 σ 7 + S ;4 σ 8 + S ;5 σ 9 ), S, 3 = S i n i = e σ (S, 3 +S ;2 σ 7 + S ;3 σ 10 + S ;4 σ 11 + S ;5 σ 12 ), S, 4 = S i p i = e σ (S, 4 +S ;2 σ 8 + S ;3 σ 11 + S ;4 σ 13 + S ;5 σ 14 ), S, 5 = S i q i = e σ (S, 5 +S ;2 σ 9 + S ;3 σ 12 + S ;4 σ 14 + S ;5 σ 15 ). On the other hand, the v-covariant derivative S i with respect to the changed CΓ is defined by S i = i S = S i. Making use of the relation (3.2), this equation gives (3.10) S ;1 = LS i l i = 0, S ;2 = LS i m i = S ;2, S ;3 = LS i n i = S ;3, S ;4 = LS i p i = S ;4, S ;5 = LS i q i = S ;5. Proposition 3.2. Let S be a conformally invariant scalar field, which is positively homogeneous of degree zero in y i. Then the conformal changes of scalar derivatives of S are given by (3.9) and (3.10). For the conformal change of the adapted components h α, J α, k α, h α, J α, k α of the six h-connection vectors h i, J i, k i, h i, J i, k i, from (3.1) and (2.10), we have m i j = e σ (σ j m i + m i j ), n i j = e σ (σ j n i + n i j ), p i j = e σ (σ j p i + p i j ), q i j = e σ (σ j q i + q i j ) which in view of (3.6) and (3.7) leads to (3.11) (a) h j = h j + {σ 2 u 2 + σ 3 u 3 + σ 4 u 4 + σ 5 u 5 } l j + {σ 6 u 2 + σ 7 u 3 + σ 8 u 4 + σ 9 u 5 + σ 17 + σ 56 } m j + {σ 7 u 2 + σ 10 u 3 + σ 11 u 4 + σ 12 u 5 + σ 20 + σ 57 } n j + {σ 8 u 2 + σ 11 u 3 + σ 13 u 4 + σ 14 u 5 + σ 21 + σ 58 } p j + {σ 9 u 2 + σ 12 u 3 + σ 14 u 4 + σ 15 u 5 + σ 22 + σ 59 } q j.
11 On the conformal change of five-dimensional Finsler spaces (b) J j = J j + {σ 2 v 2 + σ 3 v 3 + σ 4 v 4 + σ 5 v 5 } l j + {σ 6 v 2 + σ 7 v 3 + σ 8 v 4 + σ 9 v 5 + σ 18 + σ 60 } m j + {σ 7 v 2 + σ 10 v 3 + σ 11 v 4 + σ 12 v 5 + σ 21 + σ 61 } n j + {σ 8 v 2 + σ 11 v 3 + σ 13 v 4 + σ 14 v 5 + σ 23 + σ 62 } p j, + {σ 9 v 2 + σ 12 v 3 + σ 14 v 4 + σ 15 v 5 + σ 24 + σ 63 } q j. (c) k j = k j + {σ 2 w 2 + σ 3 w 3 + σ 4 w 4 + σ 5 w 5 } l j + {σ 6 w 2 + σ 7 w 3 + σ 8 w 4 + σ 9 w 5 + σ 19 + σ 64 } m j + {σ 7 w 2 + σ 10 w 3 + σ 11 w 4 + σ 12 w 5 + σ 22 + σ 65 } n j + {σ 8 w 2 + σ 11 w 3 + σ 13 w 4 + σ 14 w 5 + σ 24 + σ 66 } p j + {σ 9 w 2 + σ 12 w 3 + σ 14 w 4 + σ 15 w 5 + σ 25 + σ 67 } q j. (d) h j = h j + {σ 2u 2 + σ 3 u 3 + σ 4 u 4 + σ 5 u 5} l j + {σ 6 u 2 + σ 7 u 3 + σ 8 u 4 + σ 9 u 5 + σ 28 + σ 68 } m j + {σ 7 u 2 + σ 10 u 3 + σ 11 u 4 + σ 12 u 5 + σ 31 + σ 69 } n j + {σ 8 u 2 + σ 11 u 3 + σ 13 u 4 + σ 14 u 5 + σ 33 + σ 70 } p j + {σ 9 u 2 + σ 12 u 3 + σ 14 u 4 + σ 15 u 5 + σ 34 + σ 71 } q j. (e) J j = J j + {σ 2v 2 + σ 3 v 3 + σ 4 v 4 + σ 5 v 5} l j + {σ 6 v 2 + σ 7 v 3 + σ 8 v 4 + σ 9 v 5 + σ 29 + σ 72 } m j + {σ 7 v 2 + σ 10 v 3 + σ 11 v 4 + σ 12 v 5 + σ 32 + σ 73 } n j + {σ 8 v 2 + σ 11 v 3 + σ 13 v 4 + σ 14 v 5 + σ 34 + σ 74 } p j, + {σ 9 v 2 + σ 12 v 3 + σ 14 v 4 + σ 15 v 5 + σ 35 + σ 75 } q j. (f) k j = k j + {σ 2w 2 + σ 3 w 3 + σ 4 w 4 + σ 5 w 5} l j + {σ 6 w 2 + σ 7 w 3 + σ 8 w 4 + σ 9 w 5 + σ 39 + σ 76 } m j + {σ 7 w 2 + σ 10 w 3 + σ 11 w 4 + σ 12 w 5 + σ 42 + σ 77 } n j + {σ 8 w 2 + σ 11 w 3 + σ 13 w 4 + σ 14 w 5 + σ 44 + σ 78 } p j + {σ 9 w 2 + σ 12 w 3 + σ 14 w 4 + σ 15 w 5 + σ 45 + σ 79 } q j. where we have put σ 56 = σ 6 (J + J + J ) + σ 7 I + σ 8 K + σ 9 N, σ 57 = σ 7 (J + J + J ) + σ 10 I + σ 11 K + σ 12 N, σ 58 = σ 8 (J + J + J ) + σ 11 I + σ 13 K + σ 14 N, σ 59 = σ 9 (J + J + J ) + σ 12 I + σ 14 K + σ 15 N, σ 60 = σ 6 (H + I + M ) + σ 7 K + σ 8 K + σ 9 N, σ 61 = σ 7 (H + I + M ) + σ 10 K + σ 11 K + σ 12 N, σ 62 = σ 8 (H + I + M ) + σ 11 K + σ 13 K + σ 14 N, σ 63 = σ 9 (H + I + M ) + σ 12 K + σ 14 K + σ 15 N, σ 64 = σ 6 (H + I + K ) + σ 7 N + σ 8 N + σ 9 M, σ 65 = σ 7 (H + I + K ) + σ 10 N + σ 11 N + σ 12 M, σ 66 = σ 8 (H + I + K ) + σ 11 N + σ 13 N + σ 14 M, σ 67 = σ 9 (H + I + K ) + σ 12 N + σ 14 N + σ 15 M, σ 68 = σ 6 K + σ 7 I + σ 8 J + σ 9 M, σ 69 = σ 7 K + σ 10 I + σ 11 J + σ 12 M, σ 70 = σ 8 K + σ 11 I + σ 13 J + σ 14 M, σ 71 = σ 9 K + σ 12 I + σ 14 J + σ 15 M, σ 72 = σ 6 N + σ 7 I + σ 8 M + σ 9 J, σ 73 = σ 7 N + σ 10 I + σ 11 M + σ 12 J, σ 74 = σ 8 N + σ 11 I + σ 13 M + σ 14 J, σ 75 = σ 9 N + σ 12 I + σ 14 M + σ 15 J, σ 76 = σ 6 N + σ 7 M + σ 8 K + σ 9 M,
12 90 Gauree Shanker σ 77 = σ 7 N + σ 10 M + σ 11 K + σ 12 M, σ 78 = σ 8 N + σ 11 M + σ 13 K + σ 14 M, σ 79 = σ 9 N + σ 12 M + σ 14 K + σ 15 M. ( Thus the adapted components h α, J α, k α, h α, J α, k α, of h i, J i, k i M 5, L(x, y) ) are given by in F 5 = (3.12) (a) h 1 = e σ {h 1 + σ 2 u 2 + σ 3 u 3 + σ 4 u 4 + σ 5 u 5 }, h 2 = e σ {h 2 + σ 6 u 2 + σ 7 u 3 + σ 8 u 4 + σ 9 u 5 + σ 17 + σ 56 }, h 3 = e σ {h 3 + σ 7 u 2 + σ 10 u 3 + σ 11 u 4 + σ 12 u 5 + σ 20 + σ 57 }, h 4 = e σ {h 4 + σ 8 u 2 + σ 11 u 3 + σ 13 u 4 + σ 14 u 5 + σ 21 + σ 58 }, h 5 = e σ {h 5 + σ 9 u 2 + σ 12 u 3 + σ 14 u 4 + σ 15 u 5 + σ 22 + σ 59 } (b) J 1 = e σ {J 1 + σ 2 v 2 + σ 3 v 3 + σ 4 v 4 + σ 5 v 5 }, J 2 = e σ {J 2 + σ 6 v 2 + σ 7 v 3 + σ 8 v 4 + σ 9 v 5 + σ 18 + σ 60 }, J 3 = e σ {J 3 + σ 7 v 2 + σ 10 v 3 + σ 11 v 4 + σ 12 v 5 + σ 21 + σ 61 }, J 4 = e σ {J 4 + σ 8 v 2 + σ 11 v 3 + σ 13 v 4 + σ 14 v 5 + σ 23 + σ 62 }, J 5 = e σ {J 5 + σ 9 v 2 + σ 12 v 3 + σ 14 v 4 + σ 15 v 5 + σ 24 + σ 63 }. (c) k 1 = e σ {k 1 + σ 2 w 2 + σ 3 w 3 + σ 4 w 4 + σ 5 w 5 }, k 2 = e σ {k 2 + σ 6 w 2 + σ 7 w 3 + σ 8 w 4 + σ 9 w 5 + σ 19 + σ 64 }, k 3 = e σ {k 3 + σ 7 w 2 + σ 10 w 3 + σ 11 w 4 + σ 12 w 5 + σ 22 + σ 65 }, k 4 = e σ {k 4 + σ 8 w 2 + σ 11 w 3 + σ 13 w 4 + σ 14 w 5 + σ 24 + σ 66 }, k 5 = e σ {k 5 + σ 9 w 2 + σ 12 w 3 + σ 14 w 4 + σ 15 w 5 + σ 25 + σ 67 }. (d) h 1 = e σ {h 1 + σ 2 u 2 + σ 3 u 3 + σ 4 u 4 + σ 5 u 5}, h 2 = e σ {h 2 + σ 6 u 2 + σ 7 u 3 + σ 8 u 4 + σ 9 u 5 + σ 28 + σ 68 }, h 3 = e σ {h 3 + σ 7 u 2 + σ 10 u 3 + σ 11 u 4 + σ 12 u 5 + σ 31 + σ 69 }, h 4 = e σ {h 4 + σ 8 u 2 + σ 11 u 3 + σ 13 u 4 + σ 14 u 5 + σ 33 + σ 70 }, h 5 = e σ {h 5 + σ 9 u 2 + σ 12 u 3 + σ 14 u 4 + σ 15 u 5 + σ 34 + σ 71 }. (e) J 1 = e σ {J 1 + σ 2 v 2 + σ 3 v 3 + σ 4 v 4 + σ 5 v 5}, J 2 = e σ {J 2 + σ 6 v 2 + σ 7 v 3 + σ 8 v 4 + σ 9 v 5 + σ 29 + σ 72 }, J 3 = e σ {J 3 + σ 7 v 2 + σ 10 v 3 + σ 11 v 4 + σ 12 v 5 + σ 32 + σ 73 }, J 4 = e σ {J 4 + σ 8 v 2 + σ 11 v 3 + σ 13 v 4 + σ 14 v 5 + σ 34 + σ 74 }, J 5 = e σ {J 5 + σ 9 v 2 + σ 12 v 3 + σ 14 v 4 + σ 15 v 5 + σ 35 + σ 75 }. (f) k 1 = e σ {k 1 + σ 2 w 2 + σ 3 w 3 + σ 4 w 4 + σ 5 w 5}, k 2 = e σ {k 2 + σ 6 w 2 + σ 7 w 3 + σ 8 w 4 + σ 9 w 5 + σ 39 + σ 76 }, k 3 = e σ {k 3 + σ 7 w 2 + σ 10 w 3 + σ 11 w 4 + σ 12 w 5 + σ 42 + σ 77 }, k 4 = e σ {k 4 + σ 8 w 2 + σ 11 w 3 + σ 13 w 4 + σ 14 w 5 + σ 44 + σ 78 }, k 5 = e σ {k 5 + σ 9 w 2 + σ 12 w 3 + σ 14 w 4 + σ 15 w 5 + σ 45 + σ 79 }. For the conformal change of the adapted components u α, v α, w α, u α, v α, w α, of six v-connection vectors u i, v i, w i, u i, v i, w i, we again use (3.1) and (2.11). Thus we get u j = e σ u j, v j = e σ v j, w j = e σ w j, u j = e σ u j, v j = e σ v j, w j = e σ w j, which lead to (3.13) (a) u 1 = u 1 = 0, u 2 = u 2, u 3 = u 3, u 4 = u 4, u 5 = u 5, (b) v 1 = v 1 = 0, v 2 = v 2, v 3 = v 3, v 4 = v 4, v 5 = v 5, (c) w 1 = w 1 = 0, w 2 = w 2, w 3 = w 3, w 4 = w 4, w 5 = w 5, (d) u 1 = u 1 = 0, u 2 = u 2, u 3 = u 3, u 4 = u 4, u 5 = u 5,
13 On the conformal change of five-dimensional Finsler spaces (e) v 1 = v 1 = 0, v 2 = v 2, v 3 = v 3, v 4 = v 4, v 5 = v 5, (f) w 1 = w 1 = 0, w 2 = w 2, w 3 = w 3, w 4 = w 4, w 5 = w 5. From (3.11) and (3.13), we have the following: Theorem 3.3. The adapted components of all the six v-connection vectors of fivedimensional Finsler space are invariant under any conformal change. Theorem 3.4. The h-connection vector h i of F 5 is invariant under σ-conformal change if and only if (i) σ 2 u 2 + σ 3 u 3 + σ 4 u 4 + σ 5 u 5 = 0, (ii) σ 6 u 2 + σ 7 u 3 + σ 8 u 4 + σ 9 u 5 + σ 17 + σ 56 = 0, (iii) σ 7 u 2 + σ 10 u 3 + σ 11 u 4 + σ 12 u 5 + σ 20 + σ 57 = 0, (iv) σ 8 u 2 + σ 11 u 3 + σ 13 u 4 + σ 14 u 5 + σ 21 + σ 58 = 0, (v) σ 9 u 2 + σ 12 u 3 + σ 14 u 4 + σ 15 u 5 + σ 22 + σ 59 = 0. Theorem 3.5. The h-connection vector J i of F 5 is invariant under σ-conformal change if and only if (i) σ 2 v 2 + σ 3 v 3 + σ 4 v 4 + σ 5 v 5 = 0, (ii) σ 6 v 2 + σ 7 v 3 + σ 8 v 4 + σ 9 v 5 + σ 18 + σ 60 = 0, (iii) σ 7 v 2 + σ 10 v 3 + σ 11 v 4 + σ 12 v 5 + σ 21 + σ 61 = 0, (iv) σ 8 v 2 + σ 11 v 3 + σ 13 v 4 + σ 14 v 5 + σ 23 + σ 62 = 0, (v) σ 9 v 2 + σ 12 v 3 + σ 14 v 4 + σ 15 v 5 + σ 24 + σ 63 = 0. Theorem 3.6. The h-connection vector k i of F 5 is invariant under σ-conformal change if and only if (i) σ 2 w 2 + σ 3 w 3 + σ 4 w 4 + σ 5 w 5 = 0, (ii) σ 6 w 2 + σ 7 w 3 + σ 8 w 4 + σ 9 w 5 + σ 19 + σ 64 = 0, (iii) σ 7 w 2 + σ 10 w 3 + σ 11 w 4 + σ 12 w 5 + σ 22 + σ 65 = 0, (iv) σ 8 w 2 + σ 11 w 3 + σ 13 w 4 + σ 14 w 5 + σ 24 + σ 66 = 0, (v) σ 9 w 2 + σ 12 w 3 + σ 14 w 4 + σ 15 w 5 + σ 25 + σ 67 = 0. Theorem 3.7. The h-connection vector h i of F 5 is invariant under σ-conformal change if and only if (i) σ 2 u 2 + σ 3 u 3 + σ 4 u 4 + σ 5 u 5 = 0, (ii) σ 6 u 2 + σ 7 u 3 + σ 8 u 4 + σ 9 u 5 + σ 28 + σ 68 = 0, (iii) σ 7 u 2 + σ 10 u 3 + σ 11 u 4 + σ 12 u 5 + σ 31 + σ 69 = 0, (iv) σ 8 u 2 + σ 11 u 3 + σ 13 u 4 + σ 14 u 5 + σ 33 + σ 70 = 0, (v) σ 9 u 2 + σ 12 u 3 + σ 14 u 4 + σ 15 u 5 + σ 34 + σ 71 = 0. Theorem 3.8. The h-connection vector J i of F 5 is invariant under σ-conformal change if and only if (i) σ 2 v 2 + σ 3 v 3 + σ 4 v 4 + σ 5 v 5 = 0, (ii) σ 6 v 2 + σ 7 v 3 + σ 8 v 4 + σ 9 v 5 + σ 29 + σ 72 = 0, (iii) σ 7 v 2 + σ 10 v 3 + σ 11 v 4 + σ 12 v 5 + σ 32 + σ 73 = 0, (iv) σ 8 v 2 + σ 11 v 3 + σ 13 v 4 + σ 14 v 5 + σ 34 + σ 74 = 0, (v) σ 9 v 2 + σ 12 v 3 + σ 14 v 4 + σ 15 v 5 + σ 35 + σ 75 = 0.
14 92 Gauree Shanker Theorem 3.9. The h-connection vector k i of F 5 is invariant under σ-conformal change if and only if (i) σ 2 w 2 + σ 3 w 3 + σ 4 w 4 + σ 5 w 5 = 0, (ii) σ 6 w 2 + σ 7 w 3 + σ 8 w 4 + σ 9 w 5 + σ 39 + σ 76 = 0, (iii) σ 7 w 2 + σ 10 w 3 + σ 11 w 4 + σ 12 w 5 + σ 42 + σ 77 = 0, (iv) σ 8 w 2 + σ 11 w 3 + σ 13 w 4 + σ 14 w 5 + σ 44 + σ 78 = 0, (v) σ 9 w 2 + σ 12 w 3 + σ 14 w 4 + σ 15 w 5 + σ 45 + σ 79 = References [1] M. Hashiguchi, On conformal transformations of Finsler metrics, J. Math. Kyoto Univ. 16 (1976), [2] M. Matsumoto, Conformal change of two-dimensional Finsler space and curvature of one-form metric, Tensor N. S. 53 (1993), [3] M. Matsumoto, A theory of three-dimensional Finsler spaces in terms of scalars, Demonstratio Mathematica 6 (1973), [4] M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Saikawa, Otsu, 520, Japan, [5] M. Matsumoto and R. Miron, On an invariant theory of Finsler spaces, Period. Math. Hungar. 8 (1977), [6] A. Moor, Über. die Torsions-Und Krümmung invarianten der dreidimensonalen 356 Finslerschen Räume, Math. Nachr. 16 (1957), [7] T. N. Pandey and D. K. Divedi, A theory of four-dimensional Finsler spaces in 358 terms of scalars, J. Nat. Acad. Math. 11 (1997), [8] B. N. Prasad and D. K. Diwedi, Conformal change of three-dimensional Finsler 360 space, Tensor N. S. 61 (1999), [9] B. N. Prasad, G. C. Chaubey and G. S. Patel, The four-dimensional Finsler 362 space with constant unified main scalar, Bull. Calcutta Math. Soc. 99, 2 (2007), [10] B. N. Prasad and G. Shanker, Conformal change of four-dimensional Finsler 365 space, Bull. Calcutta Math. Soc. 102, 5 (2010), [11] G. Shanker, G. C. Chaubey and V. Pandey, On the main scalars of a five- 367 dimensional Finsler space, Int. J. Pure Appl. Math. 5, 2 (2012), [12] G. Shanker, Five dimensional Finsler space with constant unified main scalar, 369 Tensor N. S. 72, 1 (2010), [13] U. P. Singh and B. Kumari, Conformal change of three-dimensional Finsler space 371 with constant unified main scalars, J. Pur. Acad. Sci. 6 (2000), Author s address: Gauree Shanker Department of Mathematics and Statistics, Banasthali University, Banasthali, Rajasthan , India. grshnkr2007@gmail.com
On a five dimensional Finsler space with vanishing v-connection vectors
South Asian Journal of Mathematics 2017, Vol. 7 ( 2): 73 80 www.sajm-online.com ISSN 2251-1512 RESEARCH ARTICLE On a five dimensional Finsler space with vanishing v-connection vectors Anamika Rai 1, S.
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
On geodesic mappings of Riemannian spaces with cyclic Ricci tensor
Annales Mathematicae et Informaticae 43 (2014) pp. 13 17 http://ami.ektf.hu On geodesic mappings of Riemannian spaces with cyclic Ricci tensor Sándor Bácsó a, Robert Tornai a, Zoltán Horváth b a University
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
A THEORY OF THREE DIMENSIONAL FINSLER SPACES IN TERMS OF SCALARS AND ITS APPLICATIONS
ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII AL.I.CUZA IAŞI Tomul XLV, s.i a, Matematică, 1999, f.1. A THEORY OF THREE DIMENSIONAL FINSLER SPACES IN TERMS OF SCALARS AND ITS APPLICATIONS BY MAKOTO MATSUMOTO In
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
1. Introduction and Preliminaries.
Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano
235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Tutorial problem set 6,
GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant
The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog
Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where
A General Note on δ-quasi Monotone and Increasing Sequence
International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions
International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Lecture 15 - Root System Axiomatics
Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
n=2 In the present paper, we introduce and investigate the following two more generalized
MATEMATIQKI VESNIK 59 (007), 65 73 UDK 517.54 originalni nauqni rad research paper SOME SUBCLASSES OF CLOSE-TO-CONVEX AND QUASI-CONVEX FUNCTIONS Zhi-Gang Wang Abstract. In the present paper, the author
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
PHYS606: Electrodynamics Feb. 01, Homework 1. A νµ = L ν α L µ β A αβ = L ν α L µ β A βα. = L µ β L ν α A βα = A µν (3)
PHYS606: Electrodynamics Feb. 01, 2011 Instructor: Dr. Paulo Bedaque Homework 1 Submitted by: Vivek Saxena Problem 1 Under a Lorentz transformation L µ ν, a rank-2 covariant tensor transforms as A µν A
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2
Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
The k-α-exponential Function
Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,
Lecture 10 - Representation Theory III: Theory of Weights
Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ
Intuitionistic Fuzzy Ideals of Near Rings
International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Lecture 13 - Root Space Decomposition II
Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).
g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King
Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Homomorphism of Intuitionistic Fuzzy Groups
International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
5. Choice under Uncertainty
5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation
DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS
GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University
THE BIGRADED RUMIN COMPLEX. 1. Introduction
THE BIGRADED RUMIN COMPLEX JEFFREY S. CASE Abstract. We give a detailed description of the bigraded Rumin complex in dimensions three and five, including formulae for all of its constituent operators.
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
SOME PROPERTIES OF FUZZY REAL NUMBERS
Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical
Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points
Applied Mathematical Sciences, Vol. 2, 2008, no. 35, 1739-1748 Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points S. M. Khairnar and
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type
Noname manuscript No. will be inserted by the editor Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Victor Nijimbere Received: date / Accepted: date Abstract
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.
PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D