On a five dimensional Finsler space with vanishing v-connection vectors

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "On a five dimensional Finsler space with vanishing v-connection vectors"

Transcript

1 South Asian Journal of Mathematics 2017, Vol. 7 ( 2): ISSN RESEARCH ARTICLE On a five dimensional Finsler space with vanishing v-connection vectors Anamika Rai 1, S. K. Tiwari 1 2 Department of Mathematics, K. S. Saket Post Graduate College, Ayodhya, Faizabad India. anamikarai2538@gmail.com Received: Feb ; Accepted: Mar *Corresponding author Abstract In 1977, M. Matsumoto and R. Miron [1] constructed an orthonormal frame for an n- dimensional Finsler space, called Miron frame. Gauree Shanker, G. C. Chaubey and Vinay Pandey [3] discussed five-dimensional Finsler space on the basis of Miron frame and find some interesting results. The aim of the present paper is to find sufficient condition for a five-dimensional Finsler space to be S-3 like and to obtain some fruitful results for a five-dimensional Finsler space with vanishing v-connection vectors. Key Words Finsler space, Miron frame, S-3 like space, v-connection vectors MSC B40, 53C05 1 Orthonormal Frame and Connection Vectors Let M 5 be a five-dimensional smooth manifold and F 5 = (M 5, L) be a five-dimensional Finsler space equipped with a metric function L(x, y) on M 5. The normalized supporting element, the metric tensor, the angular metric tensor and Cartan tensor are defined as l i = i L, g ij = 1 2 i j L 2, h ij = L i j L and C ijk = 1 2 k g ij respectively. The torsion vector C i is defined by C i = Cjk i gjk. Throughout this paper, we use the symbol i and i for y i and x i respectively. The Cartan connection in the Finsler space is given as CΓ = (F jk i, Gi j, Ci jk ). The h- and v-covariant derivatives of a covariant vector X i (x, y) with respect to the Cartan connection are given by X i j = j X i ( h X i )G h j F r ijx r, (1.1) and X i j = j X i C r ijx r. (1.2) The Miron frame for a five-dimensional Finsler space is constructed by the unit vectors (e i 1), ei 2), ei 3), ei 4), e i 5) ). The first vector ei 1) is the normalized supporting element li and the second e i 2) is the normalized Citation: Anamika Rai, S. K. Tiwari, On a five dimensional Finsler space with vanishing v-connection vectors, South Asian J Math, 2017, 7(2),

2 Anamika Rai, et al: On a five dimensional Finsler space with vanishing v-connection vectors torsion vector m i = C i /C, where C is the length of the vector C i. The third vector e i 3) = ni, the fourth e i 4) = pi and the fifth vector e i 5) = qi are constructed by the Method of Matsumoto and Miron [1]. With respect to this frame, the scalar components of an arbitrary tensor Tj i are defined by T αβ = Tj i e α)i e j β), (1.3) then we get T i j = T αβe i α) e β)j, (1.4) where summation convention is also applied to Greek indices. The scalar components of the metric tensor g ij are δ αβ. Therefore, we get g ij = l i l j + m i m j + n i n j + p i p j + q i q j. (1.5) Let H α)βγ and V α)βγ /L be scalar components of the h and v covariant derivatives e i α))j and ei α) j respectively of the vectors e i α), then e i α) j = H α)βγ e i β) e γ)j, (1.6) and L e i α) j = V α)βγ e i β) e γ)j, (1.7) H α)βγ and V α)βγ are called h and v connection scalars respectively and are positively homogeneous of degree zero in y. Orthogonality of the Miron frame yields [2] H α)βγ = H β)αγ and V α)βγ = V β)αγ. Also, we have H 1)βγ = 0 and V 1)βγ = δ βγ δ 1β δ 1γ. Now, we define Finsler vector fields: h i = H 2)3γ e γ)i, J i = H 2)4γ e γ)i, k i = H 2)5γ e γ)i, h i = H 3)4γ e γ)i, J i = H 3)5γ e γ)i, k i = H 4)5γ e γ)i, and u i = V 2)3γ e γ)i, v i = V 2)4γ e γ)i, w i = V 2)5γ e γ)i, u i = V 3)4γ e γ)i, v i = V 3)5γ e γ)i, w i = V 4)5γ e γ)i. The vector fields h i, J i, k i, h i, J i, k i are called h connection vectors and the vector fields u i, v i, w i, u i, v i, w i are called v connection vectors. The scalars H 2)3γ, H 2)4γ, H 2)5γ, H 3)4γ, H 3)5γ, H 4)5γ and V 2)3γ, V 2)4γ, V 2)5γ, V 3)4γ, V 3)5γ, V 4)5γ are considered as the scalar components h γ, J γ, k γ, h γ, J γ, k γ and u γ, v γ, w γ, u γ, v γ, w γ of the h and v connection vectors respectively. From (1.7), we get (a) Le i 1) j = Ll i j = m i m j + n i n j + p i p j + q i q j = h i j (b) Le i 2) j = Lm i j = l i m j + n i u j + p i v j + q i w j, (c) Le i 3) j = Ln i j = l i n j m i u j + p i u j + q i v j, (1.8) (d) Le i 4) j = Lp i j = l i p j m i v j n i u j + qi w j, (e) Le i 5) j = l i q j m i w j n i v j p i w j. 74

3 South Asian J. Math. Vol. 7 No. 2 Since m i, n i, p i, q i are homogeneous function of degree zero in y i, we have Lm i j l j = Ln i j l j = Lp i j l j = Lq i j l j = 0. These imply u 1 = v 1 = w 1 = u 1 = v 1 = w 1 = 0. Consequently, we have Proposition 1.1. The first scalar components u 1, v 1, w 1, u 1, v 1, w 1 of v connection vectors u i, v i, w i, u i, v i, w i vanish identically. 2 Scalar Derivatives Taking h covariant differentiation of both sides of (1.4), we get Tj k i = (δ kt αβ )e i α) e β)j + T αβ e i α) k e β)j + T αβ e i α) e β)j k. (2.1) If T αβ,γ are the scalar components of Tj k i, i.e., Tj k i = T αβ,γ e i α) e β)j e γ)k, (2.2) then, we obtain Similarly, if we put T αβ,γ = (δ k.t αβ )e k γ) + T µβh µ)αγ + T αµ H µ)βγ. (2.3) LT i j k = T αβ;γ e i α) e β)j e γ)k, (2.4) then the scalar components T αβ;γ of LTj i k are given by T αβ;γ = L( k T αβ )e k γ) + T µβv µ)αγ + T αµ V µ)βγ. (2.5) The scalar components T αβ,γ and T αβ;γ respectively are called h and v scalar derivatives of the scalar components T αβ of Tj i. From (1.7), it follows that L 2 e i α) j k + Le i α) j l k = L(Le i α) j) k = V α)βγ;δ e i β) e γ)j e δ)k, which implies L 2 e i α) j k = (V α)βγ;δ V α)βγ δ 1δ )e i β) e γ)j e δ)k. (2.6) According to the formula (2.5), V α)βγ;δ are given by V α)βγ;δ = L( k V α)βγ )e k δ) + V α)µγv µ)βδ + V α)βµ V µ)γδ. For α = 2, β = 3, we get V 2)3γ;δ = L( k V 2)3γ )e k δ) + V 2)µγV µ)3δ + V 2)3µ V µ)γδ = L( k V 2)3γ )e k δ) + V 2)1γV 1)3δ + V 2)4γ V 4)3δ + V 2)5γ V 5)3δ + V 2)3µ V µ)γδ V 2)3γ;δ = L( k u γ )e k δ) V 1)2γV 1)3δ v γ u δ w γ v δ + u µ V µ)γδ V 2)3γ;δ = L( k u γ )e k δ) δ 2γδ 3δ v γ u δ w γv δ + u µv µ)γδ V 2)3γ;δ = u γ;δ δ 2γ δ 3δ v γ u δ w γ v δ; 75

4 Anamika Rai, et al: On a five dimensional Finsler space with vanishing v-connection vectors where u γ;δ = L( k u γ )e k δ) + u µv µ)γδ. Similarly, we get V 2)4γ;δ = V γ;δ δ 2γ δ 4δ w γ w δ + u γ u δ V 2)5γ;δ = w γ;δ δ 2γ δ 5δ + u γ v δ + v γw δ V 3)4γ;δ = u γ;δ δ 3γ δ 4δ u γ v δ v γw δ V 3)5γ;δ = V γ;δ δ 3γδ 5δ u γ w δ + u γ w δ V 4)5γ;δ = w γ;δ δ 4γ δ 5δ v γ w δ u γv δ. 3 v-curvature Tensor The v curvature tensor is defined by S hijk = C r hkc ijr C r hjc ikr. The scalar components S αβγδ of L 2 S hijk are written as L 2 S hijk = S αβγδ e α)h e β)i e γ)j e δ)k. (3.1) Since S hijk is skew-symmetric in h and i as well as j and k and S 0ijk = S hi0k = 0, the surving independent components of S αβγδ are twenty two and these are S 2323, S 2324, S 2325, S 2334, S 2335, S 2424, S 2434, S 2435, S 3434, S 3435, S 4545, S 2425, S 3525, S 3535, S 3545, S 3425, S 3445, S 4523, S 4524, S 4525, S 4535, S A Finsler space F n (n 4) is called S-3 like, if there exists a scalar S such that the curvature tensor S hijk of F n is written in the form L 2 S hijk = S(h hj h ik h hk h ij ), (3.2) where h ij = g ij l i l j is the angular metric tensor. In terms of scalar components, the Ricci identity e i α) j k e i α) k j = e r α) Si rjk, may be written as (V α)βγ;δ V α)βγ δ 1δ ) (V α)βδ;γ V α)βδ δ 1γ ) = S αβγδ. 76

5 South Asian J. Math. Vol. 7 No. 2 For different values of α and β, we get (u γ;δ δ 2γ δ 3δ v γ u δ w γv δ u γδ 1δ ) (u δ;γ δ 2δ δ 3γ v δ u γ w δ v γ u δ δ 1γ ) = S 23γδ (v γ;δ δ 2γ δ 4δ w γ w δ + u γu δ v γδ 1δ ) (v δ;γ δ 2δ δ 4γ w δ w γ + u δ u γ v δ δ 1γ ) = S 24γδ (w γ;δ δ 2γ δ 5δ + u γ v δ + v γw δ w γδ 1δ ) (w δ;γ δ 2δ δ 5γ + u δ v γ + v δ w γ w δ δ 1γ ) = S 25γδ (u γ;δ δ 3γ δ 4δ u γ v δ v γw δ u γδ 1δ ) (u δ;γ δ 3δ δ 4γ u δ v γ (3.3) which gives us v δ w γ u δ δ 1γ) = S 34γδ (V γ;δ δ 3γ δ 5δ u γ w δ + u γw δ v γδ 1δ ) (V δ;γ δ 3δ δ 5γ u δ w γ + u δ w γ v δ δ 1γ) = S 35γδ (w γ;δ δ 4γ δ 5δ v γ w δ u γv δ w γδ 1δ ) (w δ;γ δ 4δ δ 5γ v δ w γ u δ v γ w δ δ 1γ) = S 45γδ S 2323 = (u 2;3 u 3;2 v 2 u 3 w 2v 3 + v 3u 2 + w 3v 2 ) 1 S 2324 = (u 2;4 u 4;2 v 2 u 4 w 2v 4 + v 4u 2 + w 4v 2 ) S 2325 = (u 2;5 u 5;2 v 2 u 5 w 2 v 5 + v 5 u 2 + w 5 v 2) S 2334 = (u 3;4 u 4;3 v 3 u 4 w 3v 4 + v 4u 3 + w 4v 3 ) S 2335 = (u 3;5 u 5;3 v 3 u 5 w 3 v 5 + v 5 u 3 + w 5 v 3) S 2424 = (V 2;4 V 4;2 w 2 w 4 + u 2u 4 + w 4w 2 u 4u 2 ) 1 S 2434 = (V 3;4 V 4;3 w 3 w 4 + u 3 u 4 + w 4 w 3 u 4 u 3) S 2435 = (V 3;5 V 5;3 w 3 w 5 + u 3 u 5 + w 5 w 3 u 5 u 3) S 3434 = (u 3;4 u 4;3 u 3v 4 v 3 w 4 + u 4v 3 + v 4 w 3 ) 1 S 3435 = (u 3;5 u 5;3 u 3 v 5 v 3w 5 + u 5 v 3 + v 5w 3) S 4545 = (w 4;5 w 5;4 v 4w 5 u 4 v 5 + v 5w 4 + u 5 v 4 ) 1 S 2425 = (V 2;5 w 2 w 5 + u 2 u 5 V 5;2 + w 5 w 2 u 5 u 2) S 3525 = (V 2;5 V 5;2 u 2w 5 + u 2 w 5 + u 5w 2 u 5 w 2 ) S 3535 = (V 3;5 V 5;3 u 3w 5 + u 3 w 5 + u 5w 3 u 5 w 3 ) 1 S 3545 = (V 4;5 V 5;4 u 4 w 5 + u 4w 5 + u 5 w 4 u 5w 4) S 3425 = (u 2;5 u 5;2 u 2v 5 v 2 w 5 + u 5v 2 + v 5 w 2 ) S 3445 = (u 4;5 u 5;4 u 4 v 5 v 4w 5 + u 5 v 4 + v 5w 4) S 4523 = (w 2;3 w 3;2 v 2w 3 u 2 v 3 + v 3w 2 + u 3 v 2 ) S 4524 = (w 2;4 w 4;2 v 2 w 4 u 2v 4 + v 4 w 2 + u 4v 2) (3.4) 77

6 Anamika Rai, et al: On a five dimensional Finsler space with vanishing v-connection vectors S 4525 = (w 2;5 w 5;2 v 2w 5 u 2 v 5 + v 5w 2 + u 5 v 2 ) S 4535 = (w 3;5 w 5;3 v 3 w 5 u 3v 5 + v 5 w 3 + u 5v 3) S 2545 = (w 4;5 w 5;4 + u 4 v 5 + v 4w 5 u 5v 4 v 5w 4 ). If the Finsler space F 5 is S 3 like then L 2 S hijk = S(h hj h ik h hk h ij ), i.e. L 2 S hijk = S{m i m k n h n j + m i m k p h p j + m i m k q h q j + m h m j n i n k + n i n j n k n h + n i n k p h p j + n i n k q h q j + p i p k m h m j + p i p k n h n j + p i p k p h p j + p i p k q h q j + q i q k m h m j + q i q k n h n j + q i q k p h p j + q i q k q h q j m i m j n h n k m i m j p h p k m i m j q h q k m h m k n i n j n i n j n k n h n i n j p h p k n i n j q h q k p i p j m h m k p i p j n h n k p i p j p h p k p i p j q h q k q i q j m h m k q i q j n h n k q i q j p h p k q i q j q h q k } which implies S 2323 = S, S 2324 = 0, S 2325 = 0, S 2334 = 0, S 2335 = 0, S 2424 = S, S 2434 = 0, S 2435 = 0, S 3434 = S, S 3435 = 0, S 4545 = S, S 2425 = 0 S 3525 = 0, S 3535 = S, S 3545 = 0, S 3425 = 0, S 3445 = 0, S 4523 = 0, S 4524 = 0, S 4525 = 0, S 4535 = 0, S 2525 = S. (3.5) From (3.4) and (3.5), we get u 2;3 u 3;2 v 2 u 3 w 2v 3 + v 3u 2 + w 3v 2 = S + 1 u 2;4 u 4;2 v 2 u 4 w 2 v 4 + v 4 u 2 + w 4 v 2 = 0 u 2;5 u 5;2 v 2 u 5 w 2 v 5 + v 5 u 2 + w 5 v 2 = 0 u 3;4 u 4;3 v 3 u 4 w 3v 4 + v 4u 3 + w 4v 3 = 0 u 3;5 u 5;3 v 3 u 5 w 3 v 5 + v 5 u 3 + w 5 v 3 = 0 v 2;4 v 4;2 w 2 w 4 + u 2u 4 + w 4w 2 u 4u 2 = S + 1 v 3;4 v 4;3 w 3 w 4 + u 3 u 4 + w 4 w 3 u 4 u 3 = 0 v 3;5 v 5;3 w 3 w 5 + u 3u 5 + w 5w 3 u 5u 3 = 0 u 3;4 u 4;3 u 3v 4 v 3 w 4 + u 4v 3 + v 4 w 3 = S + 1 u 3;5 u 5;3 u 3 v 5 v 3w 5 + u 5 v 3 + v 5w 3 = 0 w 4;5 w 5;4 v 4w 5 u 4 v 5 + v 5w 4 + u 5 v 4 = S + 1 v 2;5 w 2 w 5 + u 2 u 5 v 5;2 + w 5 w 2 u 5 u 2 = 0 v 2;5 v 5;2 u 2w 5 + u 2 w 5 + u 5w 2 u 5 w 2 = 0 v 3;5 v 5;3 u 3 w 5 + u 3w 5 + u 5 w 3 u 5w 3 = S + 1 (3.6) 78

7 South Asian J. Math. Vol. 7 No. 2 v 4;5 v 5;4 u 4w 5 + u 4 w 5 + u 5w 4 u 5 w 4 = 0 u 2;5 u 5;2 u 2 v 5 v 2w 5 + u 5 v 2 + v 5w 2 = 0 u 4;5 u 5;4 u 4v 5 v 4 w 5 + u 5v 4 + v 5 w 4 = 0 w 2;3 w 3;2 v 2 w 3 u 2v 3 + v 3 w 2 + u 3v 2 = 0 w 2;4 w 4;2 v 2w 4 u 2 v 4 + v 4w 2 + u 4 v 2 = 0 w 2;5 w 5;2 v 2w 5 u 2 v 5 + v 5w 2 + u 5 v 2 = 0 w 3;5 w 5;3 v 3 w 5 u 3v 5 + v 5 w 3 + u 5v 3 = 0 w 2;5 w 5;2 + u 2 v 5 + v 2w 5 u 5v 2 v 5w 2 = S + 1. Thus, we have: Theorem 3.1. A five-dimensional Finsler space is S 3 like if and only if the conditions (3.6) are satisfied. Corollary 3.1. A five-dimensional Finsler space is S 3 like if u γ;δ = v γ;δ = w γ;δ = u γ;δ = v γ;δ = w γ;δ = 0, v γ u δ + w γv δ v δ u γ + w δv γ = u γw δ + u δw γ u γ w δ + u δ w γ = u γu δ + w γ w δ w γ w δ + u δu γ = v γw δ + u γv δ v δ w γ + u δ v γ = v γu δ + v δ w γ u γ v δ + v γ w δ = u γv δ + v γw δ u δ v γ + v δ w γ. Corollary 3.2. A five-dimensional Finsler space with vanishing v-connection vectors is S 3 like v curvature 1. From Corollary 3.2, we have L 2 S hijk = 1(h hj h ik h hk h ij ). Taking h covariant differentiation on both sides and using L r = 0 and h ij r = 0, we get S hijk r = 0, and then the identity P hijk P hikj = S hijk r y r reduce to P hijk = P hikj, where P hijk is the hv curvature tensor defined by P hijk = C ijk h C hjk i + Chj r C rik s y s Cij r C rhk s y s. Thus, we have: Theorem 3.2. The hv curvature tensor P hijk of a five-dimensional Finsler space with vanishing v connection vectors is symmetric in j and k. A Finsler space is said to be a Landsberg space if hv curvature tensor P hijk vanishes. A P Finsler space is characterized by C ijk r y r = λc ijk, while a Finsler space is said to be a P 2 like Finsler space if P hijk = P h C ijk P i C hjk, where P i is a covariant vector field. M. Matsumoto [2] proved that if the hv curvature tensor P hijk is symmetric in j and k in a P Finsler space then either P hijk = 0 or S hijk = 0. Therefore, in view of theorem 3.2, P hijk = 0 or S hijk = 0 in a five-dimensional P Finsler space with vanishing v connection vectors. But for such 79

8 Anamika Rai, et al: On a five dimensional Finsler space with vanishing v-connection vectors space S hijk 0 in view of corollary 3.2. Therefore, P hijk = 0. Hence the space is a Landsberg space. Thus, we have: Theorem 3.3. A five-dimensional P Finsler space with vanishing v connection vectors is a Landsberg space. Since a P 2 like Finsler space is P Finsler space, we may conclude: Theorem 3.4. A five-dimensional P 2 like Finsler space with vanishing v connection vector is a Landsberg space. References 1 M. Matsumoto and R. Miron : On an invariant theory of Finsler spaces, Period. Math. Hunger, 8 (1977), M. Matsumoto : Foundations of Finsler geometry and special Finsler spaces, Kaiseisha press, Saikawa, Ostu, 520 (1986), Japan. 3 Gauree Shanker, G. C. Chaubey and Vinay Pandey : On the main scalars of a five-dimensional Finsler space, International Electronic J. Pure and Applied Math., 5 (2012),

On the conformal change of five-dimensional Finsler spaces

On the conformal change of five-dimensional Finsler spaces On the conformal change of five-dimensional Finsler spaces Gauree Shanker 1 2 3 4 5 6 7 8 Abstract. The purpose of the present paper is to deal with the theory of conformal change in five-dimensional Finsler

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

A THEORY OF THREE DIMENSIONAL FINSLER SPACES IN TERMS OF SCALARS AND ITS APPLICATIONS

A THEORY OF THREE DIMENSIONAL FINSLER SPACES IN TERMS OF SCALARS AND ITS APPLICATIONS ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII AL.I.CUZA IAŞI Tomul XLV, s.i a, Matematică, 1999, f.1. A THEORY OF THREE DIMENSIONAL FINSLER SPACES IN TERMS OF SCALARS AND ITS APPLICATIONS BY MAKOTO MATSUMOTO In

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor Annales Mathematicae et Informaticae 43 (2014) pp. 13 17 http://ami.ektf.hu On geodesic mappings of Riemannian spaces with cyclic Ricci tensor Sándor Bácsó a, Robert Tornai a, Zoltán Horváth b a University

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2 Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar Homework 3 Solutions 3.1: U(1) symmetry for complex scalar 1 3.: Two complex scalars The Lagrangian for two complex scalar fields is given by, L µ φ 1 µ φ 1 m φ 1φ 1 + µ φ µ φ m φ φ (1) This can be written

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

Riemannian Curvature

Riemannian Curvature Riemannian Curvature February 6, 013 We now generalize our computation of curvature to arbitrary spaces. 1 Parallel transport around a small closed loop We compute the change in a vector, w, which we parallel

Διαβάστε περισσότερα

Tutorial problem set 6,

Tutorial problem set 6, GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology. Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

THE BIGRADED RUMIN COMPLEX. 1. Introduction

THE BIGRADED RUMIN COMPLEX. 1. Introduction THE BIGRADED RUMIN COMPLEX JEFFREY S. CASE Abstract. We give a detailed description of the bigraded Rumin complex in dimensions three and five, including formulae for all of its constituent operators.

Διαβάστε περισσότερα

Smarandache Curves According to Bishop Frame in Euclidean 3-Space

Smarandache Curves According to Bishop Frame in Euclidean 3-Space Gen. Math. otes, Vol. 0, o., February 04, pp.50-66 ISS 9-784; Copyright c ICSRS Publication, 04 www.i-csrs.org Available free online at http://www.geman.in Smarache Curves According to Bishop Frame in

Διαβάστε περισσότερα

Θ αβ = i. Θ αβjk dz j dz k.

Θ αβ = i. Θ αβjk dz j dz k. Kobayashi-Lübke inequalities for Chern classes of Hermite-Einstein vector bundles and Guggenheimer-Yau-Bogomolov-Miyaoka inequalities for Chern classes of Kähler-Einstein manifolds Let (X, ω) be a compact

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ) IFSCOM016 1 Proceeding Book No. 1 pp. 155-161 (016) ISBN: 978-975-6900-54-3 SOME RESULTS ON S α,β AND T α,β INTUITIONISTIC FUZZY MODAL OPERATORS GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Symmetric Stress-Energy Tensor

Symmetric Stress-Energy Tensor Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα