Elektrooptični pojav

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Elektrooptični pojav"

Transcript

1 Elektrooptični pojav Uvod Močno zunanje električno polje znatno vpliva na strukturo snovi. V kristalih se denimo spremeni oblika osnovne celice, v tekočinah pride do orientacijskega urejanja molekul (podolgovate molekule se poravnajo v smeri polja), pogosto pa se spremeni tudi oblika posameznih molekul. Vse te spremembe se odražajo tudi na optičnih lastnostih snovi, ki jih imenujemo elektrooptični efekti in jih razlagamo v okviru nelinearne optike [1]. Polje, ki je statično ali pa se spreminja z bistveno nižjo frekvenco kot vpadna svetloba, spremeni lomni količnik snovi. Predstavimo enostaven primer, kjer imamo homogeno, izotropno in prosojno snov skozi katero posvetimo s svetlobo valovne dolžine λ in variiramo zunanje električno polje jakosti E. Za svetlobo lahko določimo lomni količnik za svetlobo polarizirano vzporedno s smerjo polja n in pravokotno glede na smer polja n. Če snov ne poseduje centra inverzije, potem se z večanjem polja razlika količnikov povečuje v prvem redu linearno n n = p E, (1) kjer je p Pockelsova konstanta, in govorimo o linearnem elektrooptičnem pojavu oz. Pockelsovem efektu, ki ga je odkril Friedrich Pockels leta Vrednosti Pockelsove konstante za nekatere snovi, kjer se ta efekt izkorišča so KDP (kalijev dihidrogen fosfat) p = m/v, z devterijem obogaten KDP (KD*P) m/v, litijev niobij (LiNb 3 ) 3.7E-10 m/v. Ce pa snov ima center simetrije, je sprememba lomnega količnika sorazmerna s kvadratom zunanjega polja in je govor o kvadratnem elektrooptičnem pojavu oz. Kerrovem efektu, kjer je n n = BλE, () Efekt je poimenovan po odkritelju Johnu Kerru (1875), ki je opazil, da postane tudi steklo pri visokih napetostih dvolomno. Sorazmernostno konstanto B imenujemo Kerrova konstanta. V kristalih so njene tipične vrednosti od B = 10 1 do 10 8 mv, v tekočinah pa od do 10 1 mv. Tipični predstavnik slednjih je nitro-benzen (C 6 H 5 NO ), ki pa je zelo strupen in za jasno indikacijo efekta potrebuje polja nekaj kv/mm. Nelinearni elektrooptični pojav je osnova za številne naprave, s katerimi kontroliramo optične žarke s pomočjo nizkofrekvenčnega zunanjega električnega polja. Mednje spadajo elektrooptični modulatorji, atenuatorji in preklopniki, optične leče z električno nastavljivo goriščno razdaljo ter različni elementi za spreminjanje polarizacije svetlobe. Uporabljamo jih v laserjih, v sistemih optičnih komunikacij, pri optičnem obdelovanju in zapisovanju informacij ter v različnih drugih optičnih sistemih. Kvadratni elektrooptični pojav pa je pomemben predvsem v napravah, s katerimi kontroliramo optične žarke s pomočjo visokofrekvenčnih zunanjih polj, med drugim tudi s pomočjo drugih optičnih žarkov. Mednje prištevamo na primer razne opto-optične preklopnike ter optične spominske elemente. Kerrovo konstanto B neke snovi določimo tako, da vzorec snovi postavimo med dva prekrižana polarizatorja, katerih prepustna smer oklepa kot 45 s smerjo električnega polja, ki ga z ustreznimi elektrodami ustvarimo v vzorcu. Merimo intenziteto prepuščene svetlobe v odvisnosti od električne napetosti na vzorcu. Če na vzorcu ni napetosti, elopt.tex september 010

2 izhodni polarizator (analizator) ne prepušča svetlobe, ker se polarizacija valovanja pri prehodu skozi vzorec ne spremeni. Ko priključimo električno napetost, postane vzorec dvolomen in vpadajoče linearno polarizirano valovanje se v njem pretvori v eliptično polarizirano valovanje. Tedaj analizator prepušča del vpadne svetlobe. Iz razmerja med intenziteto prepuščene in vpadne svetlobe lahko izračunamo razliko lomnih količnikov pri danem polju. Računski postopek je sledeč: denimo, da polarizator prepušča svetlobo polarizirano v vertikalni smeri, ki jo označimo kot smer P in ji pripišemo enotski vektor e y, analizator pa v horizontalni smeri, ki jo označimo kot smer A in ji pripišemo enotski vektor e x. Električno polje svetlobe, ki po prehodu polarizatorja pada na vzorec, je enako E(t) = E 0 cos(ωt) e y, pri čemer je E 0 amplituda vpadnega optičnega električnega polja, ω pa krožna frekvenca svetlobe. Valovanje je linearno polarizirano. Konica vektorja E v časovni sliki popisuje daljico z dolžino E 0 v smeri e y. Lastne smeri lomnega količnika v vzorcu, ki ju označimo kot smeri e ξ in e η sta nagnjeni pod kotom θ = 45 glede na osi e x in e y. Os e ξ sovpada s smerjo zunanjega električnega polja E. V sistemu e ξ, e η vpadno optično polje vzdolž vzorca dolžine L zapišemo kot E(x, t) = E 0 cos(ωt k x) e ξ + E 0 cos(ωt k x) e η, pri čemer k = πn /λ in k = πn /λ označujeta valovna vektorja posameznih komponent. Komponenti E ξ in E η valovanja potujeta skozi snov z različnima hitrostima, zato se med seboj zakasnita. Izstopno optično polje E(L, t) je v splošnem eliptično polarizirano. Krivulja, ki jo v časovni sliki popisuje konica vektorja E(L) je elipsa, katere glavni osi sta nagnjeni pod kotom α = 45 glede na osi e ξ in e η. Slika 1: Oznake pomembnih smeri v sistemu. Glavni osi elipse torej sovpadata s smermi e x in e y. Izstopni analizator prepušča le optično polje v e x smeri. Amplitudo tega polja dobimo tako, da poiščemo projekcijo polja E(L) na os e x. Velikost projekcije je E(L, t) e x = E 0 sin( kl/) sin(ωt kl), kjer smo zaradi lažjega pisanja uvedli k = k k in k = 1 (k + k ). Optično polje po prehodu analizatorja potem zapišemo kot E A (t) = ( E(L, t) e x ) e x. Intenziteta prepuščene svetlobe, ki jo zaznavamo z merilnikom svetlobnega toka, je enaka časovnemu povprečju t kvadrata tega polja I A = ɛ 0 E A(t) t = 1 ɛ 0 [E 0 sin( kl/)]. (3) elopt.tex 17. september 010

3 V prej opisanem primeru Kerrovega efekta velja kl/ = (k k )L/ = πlbe in na merilniku dobimo I A = I 0 [ sin(πlbe ) ], pri čemer I 0 = 1 ɛ 0E 0 označuje intenziteto vpadne svetlobe. Potrebščine He-Ne plinski laser, λ = 63, 8nm, navpično linearno polariziran svetlobni modulator s PLZT keramiko, izvor visoke napetosti V, voltmeter (multimeter) fotodioda kot merilnik svetlobnega toka - mikroampermeter (multimeter) dva polarizatorja (polaroidna filtra) pritrjena na vrtljivih nosilcih dvolomna celica iz tekočega kristala v nosilcu, ki omogoča vrtenje, merilo Naloga 1. Določi Kerrovo konstanto PLZT keramike.. Izmeri prepustnost dveh zaporedno postavljenih polarizatorjev v odvisnosti od medsebojnega kota. 3. Analiziraj polarizacijo svetlobe po prehodu skozi dvolomno snov. Navodilo 1. Kerrova celica je sestavljena iz PLZT keramike med dvema elektrodama, kot to prikazuje slika. Razmak med elektrodama je d = 1.4 mm. Debelina ploščice L pa je 1.5 mm. PLZT je oznaka za spojino cirkonijevih in titanovih oksidov s svincem in lantanom (Pb, La, Zr, Ti). Z ustreznim razmerjem sestavin dosežemo, da je spojina v odsotnosti zunanjega električnega polja optično izotropna, čemur je v našem primeru le približno zadoščeno. Hitro se lahko prepričamo, da je celica v našem primeru že v odsotnosti polja nekoliko dvolomna. Slednje upoštevamo tako, da v formuli () dodamo še konstanten člen k razliki med lomnima količnikoma v lastnih smereh n = n 0 + BλE, Kerrova celico pritrjeno tako, da je njena os nagnjena za 45 glede na vertikalo, postavimo med dva prekrižana polarizatorja kot to kaže slika. Intenziteta prepuščenega svetlobnega toka ima naslednjo funkcijsko obliko I A = I 0 [sin(φ)], kjer uvedemo fazo φ = π n 0 λ ( ) U + πlb. d elopt.tex september 010

4 Fotodioda Polarizator Kerrova celica Polarizator Laser stekleni plosci PLZT keramika E U elektrodi Kanadski balzam d L=1.5mm d=1.4 mm zarek laserja Slika : Shema postavitve aparature pri merjenju Kerrove konstante PLZT keramike. Kanadski balzam, ki je v našem primeru rumenkaste barve, se uporablja kot optično lepilo, saj je optično zelo čist in ima lomni količnik n = 1.55 zelo blizu krovnega stekla (angl. crown glass). Pri tem je I 0 maksimalen tok, ki ga zaznamo na fotodetektorju. Nato na celico priključimo zunanjo napetost. Velikost napetosti odčitavamo na voltmetru, ki je priklopljen na merilni izhod visokonapetostnega izvira. Zaradi vmesnega delilnika je napetost, ki jo odčitamo na voltmetru, 1000 krat manjša od dejanske napetosti na vzorcu. Napetost na celici počasi povečuj do maksimalne vrednosti (1000 V) in opazuj kaj se godi. Poravnaj laserski snop, da vpada na sredino fotodiode. Vključi mikroampermeter (multimeter) s katerim meriš električni tok na fotodiodi. Ta tok je sorazmeren z intenziteto vpadne svetlobe I A. Preden začneš s sistematičnim merjenjem, preveri, da laserski žarek ne zadeva v elektrode na vzorcu in da izhodna svetloba pada v sredino fotodiode. Napetost U na vzorcu v enakomernih korakih postopoma znižuj in si zapisuj tok I(U) na mikroampermetru. Nariši graf U(I) kot je na sliki in iz njega odčitaj maksimalno vrednost prepuščenega svetlobnega toka I 0, ki ustreza faznim zakasnitvam π/ + nπ, kjer je n = 0, 1,,.... Nato nariši še vrednosti izraza arcsin I A /I 0 v odvisnosti od kvadrata zunanjega polja na vzorcu (U/d). Na podlagi slednjega skonstruiraj potek faze φ kot funkcije kvadrata zunanjega polja na vzorcu (U/d), kjer upoštevaš naslednje. Faza φ je do konstante in predznaka enaka arcsin I A /I 0 in je zvezna funkcija U. Matematično je določena po formuli φ = πn ± arcsin I A /I 0. kjer sta celoštevilski n in predznak pred arcsin za vsako vrednost napetosti U izbrana tako, da je faza φ zvezna funkcija napetosti U in za velike U monotono narašča. Takšni transformaciji rečemo razvijanje (angl. unfolding) funkcije v njeno zvezno različico. Primer rezultata transformacije arcsin I A /I 0 v odvisnosti od (U/d) v zvezno fazo φ je prikazan na sliki (3). Iz strmine in zamika dobljene premice določi Kerrovo konstanto B in dvolomnost v odsotnosti polja n 0 za PLZT keramiko v uporabi. Za I 0 pri tem elopt.tex september 010

5 vstavi maksimalno vrednost prepuščenega svetlobnega toka, ki ustreza fazni zakasnitvi π/. Podrobneje je teorija in realizacija elektrooptičnega eksperimenta s PLZT keramiko opisana v članku []. arcsin(i/i 0 ) 1.6 meritve φ meritve lin. regresija (U/d) [10 11 V/m] (U/d) [10 11 V/m] (a) (b) Slika 3: Primer odvisnosti arcsin( I A /I 0 ) od kvadrata električne poljske jakosti (U/d) (a) in iz nje razvite faze φ (b), kjer smo izbrali, da je U = n = 0..1 Izklopi visokonapetostni usmernik in odmakni PLZT celico. Laserski žarek usmeri direktno na fotodiodo. Zapiši si vrednost toka na mikroampermetru. Po potrebi zmanjšaj njegovo občutljivost. Nato v žarek postavi prvi polarizator Pol.-1. Zasuči ga v takšno lego, da dobiš na izhodu maksimalno intenziteto prepuščene svetlobe. Takrat je prepustna smer polarizatorja vzporedna s polarizacijo laserskega žarka. Zmanjšanje intenzitete žarka pa je posledica absorpcije v polaroidu. Zapiši si vrednost toka na mikroampermetru. Nato med polarizator Pol.-1 in fotocelico postavi še drugi polarizator Pol.- (analizator). Tudi tega zasuči v lego, pri kateri dobiš na izhodu maksimalno intenziteto. Nato postopoma, v korakih po 5, vrti drugi polarizator Pol.- in si zapisuj vrednost toka na mikroampermetru v odvisnosti od kota zasuka β. Doma preveri, da za intenziteto prepuščene svetlobe skozi dva polarizatorja velja Malusov zakon I A = T I 0 (cos β), pri čemer je β kot med prepustnima smerema polarizatorjev, T pa transmitivnost posameznega polarizatorja v prepustni smeri. Kadar sta polarizatorja prekrižana (β = 90 ), ne prepuščata svetlobe.. Prvi polarizator Pol.-1 zasuči v izbrano, denimo vertikalno, lego. Drugi polarizator Pol.- zasuči v lego, pri kateri dobiš na fotodiodi minimalni tok. Takrat sta smer polarizacije Pol.-1 in prepustna smer polarizatorja Pol.- med seboj ortogonalni. Nato med Pol.- in Pol.-1 vstavi še polarizator Pol.-3 in tudi njega zasuči v lego, pri kateri dobiš na fotodiodi minimalni tok. Potem postopoma, v korakih po 5, vrti polarizator Pol.-3 in si zapisuj vrednost toka na mikroampermetru v odvisnosti od kota zasuka β. Preveri, da v tem primeru za intenziteto prepuščene svetlobe velja zveza I A = T I 0 (sin β). Zakaj? 3. Umakni Pol.-3. Polarizator Pol.-1 zasuči tako, da njegova prepustna smer oklepa kot 45 z ozirom na vertikalo. Analizator Pol.- pa zasuči v prekrižano lego glede na Pol.- 1. Med prekrižana polarizatorja nato postavi dvolomno celico iz tekočega kristala (glej sliko 4). Tekoči kristali so vmesna faza med tekočinami in trdnimi snovmi. Sestavljeni elopt.tex september 010

6 so iz podolgovatih molekul, ki se zaradi medsebojnih sil orientacijsko poravnajo druga z drugo. Tipična vrednost za razliko lomnih količnikov n n je okoli Indeksa in se pri tem nanašata na smer dolgih osi molekul. V orientacijsko urejenem vzorcu, ki ga uporabljamo pri vaji, je tekoči kristal zalepljen med dve stekleni ploščici pravokotne oblike. Ploščici sta razmaknjeni za L = 50 µm. Smer dolgih osi molekul in s tem tudi optična os vzorca sovpada s smerjo daljše stranice steklenih ploščic. Vzorec je montiran v vrtljivem nosilcu, tako da ga lahko vrtimo okoli optične osi. Slika 4: Orientacija osi pri vzorcu tekočega kristala. Na začetku naj bo ravnina vzorca pravokotna na vpadni žarek. Svetloba, ki izhaja iz vzorca je eliptično polarizirana. Lastne osi elipse oklepajo kot α = 45 z lastnimi smermi vzorca. Ležijo torej, tako kot smer Pol.-1, pod kotom 45 glede na vertikalo. Eliptičnost polarizacije otipamo s tem, da merimo intenziteto prepuščene svetlobe v odvisnosti od zasuka analizatorja, kar je shematično prikazano na sliki 5. V smereh lastnih osi (a) (b) Slika 5: Shematični prikaz elipse, ki jo oriše vektor polja E(t) v prostoru skozi eno periodo časa pri faznem zamiku ϕ = 0.5 (a), in relativne intenzitete I/I 0 kot funkcije kota zasuka drugega polarizatorja φ (b). Oštevilčene točke na obeh slikah označujejo skrajne lege elipse, ki jo z vrtenjem polarizatorja otipamo. elopt.tex september 010

7 elipse ima prepuščena intenziteta maksimum oz. minimum. Razmerje med maksimalno in minimalno intenziteto je odvisno od fazne zakasnitve ϕ = (k k )L = π(n n )L/λ delnih žarkov v vzorcu. Če se delna žarka zakasnita za ϕ = 90, sta lastni osi elipse enako dolgi in je izhodna polarizacija cirkularna. Tak vzorec deluje kot λ/4 ploščica. Postopoma (v korakih po 5 ) vrti analizator Pol.- in si zapisuj vrednost toka na mikroampermetru v odvisnosti od kota zasuka. Določi smer lastnih osi polarizacijske elipse in eliptičnost prepuščene polarizacije. Eliptičnost dobiš iz razmerja I A /I 0 v smeri e x oziroma e y. Med vpadni polarizator Pol.-1 in vzorec tekočega kristala postavi še ravnilo montirano na enakem nosilcu kot vzorec, tako da je čim bližje slednjemu. Analizator Pol.- pa zasuči v prekrižano lego glede na Pol.-1. Z vrtenjem vzorca okoli navpične osi izmeri odvisnost intenzitete prepuščene svetlobe I A od vpadnega kota α laserskega žarka glede na vzorec (glej sliko 6). Meri tudi pri večjih kotih, ko odbiti žarek več ne doseže ravnila. Ustrezni zasuk vzorca določi s tem, da med vrtenjem vzorca na ravnilu opazuješ žarek, ki se odbije s površine vzorca (refleks). Meritev ponovi še pri vzporedni legi Pol.-1 in Pol.-. Rezultate obeh meritev nariši na isto sliko. Slika 6: Potek delnih žarkov v zasukanem vzorcu. Z vrtenjem vzorca okoli optične osi e ξ se spreminja dolžina poti delnih žarkov v vzorcu L 1 in L, lomna količnika pa ostaneta konstantna. Žarka se lomita pod različnima lomnima kotoma β 1 in β, ki ju določata zvezi sin β 1 = sin α/n, sin β = sin α/n Pri potovanju skozi vzorec se žarka zakasnita za fazno razliko ϕ = k 1 L 1 k L k 0 L 3 = πd λ [ ] n sin α n sin α pri čemer k 1 in k označujeta valovna vektorja svetlobe v vzorcu, k 0 valovni vektor v vakuumu, L 3 razliko optičnih poti žarkov izven vzorca, d pa debelino vzorca, ki je v našem primeru okoli 50 µm. Na podlagi izpeljav v uvodu in enačbe (3)) lahko napovemo, da se pri prekrižanih polarizatorjih intenziteta prepuščene svetlobe v odvisnosti od ϕ spreminja kot I A (sin( ϕ/)), pri vzporednih pa kot I A (cos( ϕ/)). elopt.tex september 010

8 Literatura [1] R. W. Boyd. Nonlinear Optics (3. izdaja, Academic Press, 007) [] H. Ofer, H. J. Jodl and G. Theysohn, Experiments on electro-optics effects with cheramical dielectric, Eur. J. Phys 6 (1985) elopt.tex september 010

Polarizacija laserske svetlobe

Polarizacija laserske svetlobe Polarizacija laserske svetlobe Optični izolator izvedba z uporabo λ/4 retardacijske ploščice Odboj polarizirane svetlobe na meji zrak-steklo; Brewster-ov kot Definicija naloge predstavitev teoretičnega

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

Slika 1: Piezoelektrični vžigalnik za plin in visokonapetostni piezoelement (levo); piezozvočnik/piezomikrofon

Slika 1: Piezoelektrični vžigalnik za plin in visokonapetostni piezoelement (levo); piezozvočnik/piezomikrofon 4 Piezoelektričnost Pri nekaterih snoveh pride ob njihovi deformaciji zaradi stiska ali natega do kopičenja naboja nasprotnih predznakov na nasproti ležečih stranicah. Ta pojav, pri katerem se spremeni

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU Equatio n Section 6Vsebina poglavja: Navor kot vektorski produkt ročice in sile, magnetni moment, navor na magnetni moment, d'arsonvalov ampermeter/galvanometer.

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih. TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

VALOVANJE UVOD POLARIZACIJA STOJEČE VALOVANJE ODBOJ, LOM IN UKLON INTERFERENCA

VALOVANJE UVOD POLARIZACIJA STOJEČE VALOVANJE ODBOJ, LOM IN UKLON INTERFERENCA VALOVANJE 10.1. UVOD 10.2. POLARIZACIJA 10.3. STOJEČE VALOVANJE 10.4. ODBOJ, LOM IN UKLON 10.5. INTERFERENCA 10.6. MATEMATIČNA OBDELAVA INTERFERENCE IN STOJEČEGA VALOVANJA 10.1. UVOD Valovanje je širjenje

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

17. Električni dipol

17. Električni dipol 17 Električni dipol Vsebina poglavja: polarizacija prevodnika (snovi) v električnem polju, električni dipolni moment, polarne in nepolarne snovi, dipol v homogenem in nehomogenem polju, potencial in polje

Διαβάστε περισσότερα

MERJENJE LOMNEGA KOLIČNIKA IZ BREWSTER-JEVEGA KOTA

MERJENJE LOMNEGA KOLIČNIKA IZ BREWSTER-JEVEGA KOTA VAJA 3. Merjeje lomega količika iz Brewster-jevega kota VAJA 3. - MERJENJE LOMNEGA KOLIČNIKA IZ BREWSTER-JEVEGA KOTA 3.1. Odboj svetlobe a površii stekla Povezavo med koti vpadega, odbitega i lomljeega

Διαβάστε περισσότερα

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO SAGNACOV POJAV. Alenka Bajec

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO SAGNACOV POJAV. Alenka Bajec UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO SAGNACOV POJAV Alenka Bajec Mentor: prof. dr. Andrej Čadež 29. november 2007 1 NALOGA 1 1 Naloga Opiši Sagnacov pojav. 2 Uvod Sagnacov

Διαβάστε περισσότερα

2.1. MOLEKULARNA ABSORPCIJSKA SPEKTROMETRIJA

2.1. MOLEKULARNA ABSORPCIJSKA SPEKTROMETRIJA 2.1. MOLEKULARNA ABSORPCJSKA SPEKTROMETRJA Molekularna absorpcijska spektrometrija (kolorimetrija, fotometrija, spektrofotometrija) temelji na merjenju absorpcije svetlobe, ki prehaja skozi preiskovano

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

VEKTORJI. Operacije z vektorji

VEKTORJI. Operacije z vektorji VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,

Διαβάστε περισσότερα

EMV in optika, izbrane naloge

EMV in optika, izbrane naloge EMV in optika, izbrane naloge iz različnih virov 1 Elektro magnetno valovanje 1.1 Električni nihajni krogi 1. (El. nihanje in EMV/8) (nihajni čas) Nihajni krog sestavljata ploščati kondenzator s ploščino

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Vaje: Električni tokovi

Vaje: Električni tokovi Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete

Διαβάστε περισσότερα

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa

Διαβάστε περισσότερα

ODBOJNOSTNI SENZOR Z OPTIČNIMI VLAKNI

ODBOJNOSTNI SENZOR Z OPTIČNIMI VLAKNI ODBOJNOSTNI SENZOR Z OPTIČNIMI VLAKNI Spoznavanje osnovnih vlakensko-optičnih (fiber-optičnih) komponent, Vodenje svetlobe po optičnem vlaknu, Spoznavanje načela delovanja in praktične uporabe odbojnostnega

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim Študij AHITEKTURE IN URBANIZMA, šol l 06/7 Vaje iz MATEMATIKE 8 Odvod funkcije f( Definicija: Naj bo f definirana na neki okolici točke 0 Če obstaja lim 0 +h f( 0 h 0 h, pravimo, da je funkcija f odvedljiva

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

Vaje: Slike. 1. Lomni količnik. Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc. Naloga: Določite lomna količnika pleksi stekla in vode.

Vaje: Slike. 1. Lomni količnik. Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc. Naloga: Določite lomna količnika pleksi stekla in vode. Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc Vaje: Slike. Lomni količnik Naloga: Določite lomna količnika pleksi stekla in vode. Za izvedbo vaje potrebujete optično klop, svetilo z ozko režo,

Διαβάστε περισσότερα

VAJE-Elektrooptika 2002/2003

VAJE-Elektrooptika 2002/2003 VAJE-Elektrooptika 2002/2003 1) Pokaži, da je Fraunhoferjeva uklonska slika reže, katere prepustnost se v radialni smeri spreminja kot Gaussova funkcija t(x',y')=exp(-(x'+y') 2 /w 0 2 ), podana z Gausovo

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Fizikalne osnove svetlobe in fotometrija

Fizikalne osnove svetlobe in fotometrija Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo 2. letnik Aplikativna elektrotehnika - 64627 Električne inštalacije in razsvetljava Fizikalne osnove svetlobe

Διαβάστε περισσότερα

S53WW. Meritve anten. RIS 2005 Novo Mesto

S53WW. Meritve anten. RIS 2005 Novo Mesto S53WW Meritve anten RIS 2005 Novo Mesto 15.01.2005 Parametri, s katerimi opišemo anteno: Smernost (D, directivity) Dobitek (G, gain) izkoristek (η=g/d, efficiency) Smerni (sevalni) diagram (radiation pattern)

Διαβάστε περισσότερα

50 odtenkov svetlobe

50 odtenkov svetlobe 50 odtenkov svetlobe Evgenija Burger, Katharina Pavlin, Tamara Pogačar, Mentor: Žiga Krajnik Povzetek Za vsakim dežjem posije sonce. Je pojav mavrice res tako preprost kot ta rek? Kakšna fizikalno-matematična

Διαβάστε περισσότερα

11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune

11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune 11. Valovanje Frekvenca ν = 1 t 0 hitrost valovanja c = λ t 0 = λν λ [m] - Valovna dolžina hitrost valovanja na napeti vrvi frekvence lastnega nihanja strune interferenca valovanj iz dveh enako oddaljenih

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 2. Vektorji

Vaje iz MATEMATIKE 2. Vektorji Študij AHITEKTURE IN URBANIZMA, šol. l. 06/7 Vaje iz MATEMATIKE. Vektorji Vektorji: Definicija: Vektor je usmerjena daljica. Oznake: AB, a,... Enakost vektorjev: AB = CD: če lahko vektor AB vzporedno premaknemo

Διαβάστε περισσότερα

1. kolokvij iz predmeta Fizika 2 (VSŠ)

1. kolokvij iz predmeta Fizika 2 (VSŠ) 0 0 0 4 2 5 9 0 0 0 0 0 2 ime in priimek: vpisna št.: Fakulteta za elektrotehniko, Univerza v Ljubljani primeri števk: 1. kolokvij iz predmeta Fizika 2 (VSŠ) 4.4.2013 1. Kolikšen je napetost med poljubno

Διαβάστε περισσότερα

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov

Διαβάστε περισσότερα

Kvantni delec na potencialnem skoku

Kvantni delec na potencialnem skoku Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:

Διαβάστε περισσότερα

Pisni izpit iz predmeta Fizika 2 (UNI)

Pisni izpit iz predmeta Fizika 2 (UNI) 0 0 0 0 3 4 0 0 0 0 0 0 5 Pisni izpit iz predmeta Fizika (UNI) 301009 1 V fotocelici je električni tok posledica elektronov, ki jih svetloba izbija iz negativne elektrode (katode) a) Kolikšen električni

Διαβάστε περισσότερα

Michelsonov interferometer

Michelsonov interferometer Michelsonov interferometer Uvod Michelsonov interferometer [1] je sestavljen iz treh osnovnih elementov: dveh ravnih zrcal ter polprepustnega zrcala. Shema interferometra je prikazana na sliki 1. Interferenčno

Διαβάστε περισσότερα

11. Vaja: BODEJEV DIAGRAM

11. Vaja: BODEJEV DIAGRAM . Vaja: BODEJEV DIAGRAM. Bodejev diagram sestavljata dva grafa: a) amplitudno frekvenčni diagram in b) fazno frekvenčni diagram Decibel je enota za razmerje dveh veličin. Definicija: B B 0log0 A A db Bodejeve

Διαβάστε περισσότερα

MERITVE LABORATORIJSKE VAJE

MERITVE LABORATORIJSKE VAJE UNIVERZA V MARIBORU FAKULTETA ZA ELEKTROTEHNIKO, RAČUNALNIŠTVO IN INFORMATIKO 000 Maribor, Smetanova ul. 17 Študijsko leto: 011/01 Skupina: 9. MERITVE LABORATORIJSKE VAJE Vaja št.: 10.1 Merjenje z digitalnim

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q

Διαβάστε περισσότερα

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z.

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z. 3. VAJA IZ TRDNOSTI (tenzor deformacij) (pomiki togega telesa, Lagrangev in Eulerjev opis, tenzor velikih deformacij, tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Gumijasti

Διαβάστε περισσότερα

Teoretične osnove za poučevanja naravoslovja za 6. in 7. razred devetletke

Teoretične osnove za poučevanja naravoslovja za 6. in 7. razred devetletke Teoretične osnove za poučevanja naravoslovja za 6. in 7. razred devetletke T. Kranjc, PeF 6. marca 2009 Kazalo 1 Modul 7: Svetloba in slike 1 1.1 Uvod................................ 1 2 Odboj svetlobe

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

7 Lastnosti in merjenje svetlobe

7 Lastnosti in merjenje svetlobe 7 Lastnosti in merjenje svetlobe Pri tej vaji se bomo seznanili z valovno in delčno naravo svetlobe ter s pojmi spekter, uklon in interferenca. Spoznali bomo, kako se določi valovne dolžine in izmeri gostoto

Διαβάστε περισσότερα

EMV in optika, zbirka nalog

EMV in optika, zbirka nalog Barbara Rovšek EMV in optika, zbirka nalog z rešitvami 1 Električni nihajni krogi in EMV 1.1 Električni nihajni krogi, lastno nihanje 1. Električni nihajni krog z lastno frekvenco 10 5 s 1 je sestavljen

Διαβάστε περισσότερα

7 Lastnosti in merjenje svetlobe

7 Lastnosti in merjenje svetlobe 7 Lastnosti in merjenje svetlobe Pri tej vaji se bomo seznanili z valovno in delčno naravo svetlobe ter s pojmi spekter, uklon in interferenca. Spoznali bomo, kako se določi valovne dolžine, katere valovne

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Fazni diagram binarne tekočine

Fazni diagram binarne tekočine Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,

Διαβάστε περισσότερα

CO2 + H2O sladkor + O2

CO2 + H2O sladkor + O2 VAJA 5 FOTOSINTEZA CO2 + H2O sladkor + O2 Meritve fotosinteze CO 2 + H 2 O sladkor + O 2 Fiziologija rastlin laboratorijske vaje SVETLOBNE REAKCIJE (tilakoidna membrana) TEMOTNE REAKCIJE (stroma kloroplasta)

Διαβάστε περισσότερα

Afina in projektivna geometrija

Afina in projektivna geometrija fina in projektivna geometrija tožnice () kiciraj stožnico v evklidski ravnini R, ki je določena z enačbo 6 3 8 + 6 =. Rešitev: tožnica v evklidski ravnini je krivulja, ki jo določa enačba a + b + c +

Διαβάστε περισσότερα

INDUCIRANA NAPETOST (11)

INDUCIRANA NAPETOST (11) INDUCIRANA NAPETOST_1(11d).doc 1/17 29.3.2007 INDUCIRANA NAPETOST (11) V tem poglavju bomo nadgradili spoznanja o magnetnih pojavih v stacionarnih razmerah (pri konstantnem toku) z analizo razmer pri časovno

Διαβάστε περισσότερα

1 Michelsonov interferometer

1 Michelsonov interferometer 1 Michelsonov interferometer Dva žarka laserske svetlobe, ki ju ustvarimo s polprepustno stekleno ploščo, po odboju od zrcal interferirata, kar opazimo kot svetle ali temne krožne lise na sredini zaslona.

Διαβάστε περισσότερα

Osnove matematične analize 2016/17

Osnove matematične analize 2016/17 Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

3. AMPEROV ZAKON. SLIKA: Zanka v magnetnem polju. Integral komponente magnetnega polja v smeri zanke je sorazmeren toku, ki ga zanka oklepa.

3. AMPEROV ZAKON. SLIKA: Zanka v magnetnem polju. Integral komponente magnetnega polja v smeri zanke je sorazmeren toku, ki ga zanka oklepa. 3. AMPEROV ZAKON Equation Section 3 Vsebina poglavja: Integral polja po zaključeni zanki je sorazmeren toku, ki ga zanka objame. Izračuni polja s pomočjo Amperovega zakona za: tokovno premico, solenoid,

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

7. VAJA IZ MEHANIKE TRDNIH TELES. (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji)

7. VAJA IZ MEHANIKE TRDNIH TELES. (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) 7. VAJA IZ MEHANIKE TRDNIH TELES (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Pomik deformabilnega telesa je glede na kartezijski koordinatni sistem

Διαβάστε περισσότερα

Slika 1.120: Frekvenčne omejitve za različne fotopretvornike. Slika 1.121: Diagram relativnih občutljivosti v primerjavi s spektralno emisijo žarnice

Slika 1.120: Frekvenčne omejitve za različne fotopretvornike. Slika 1.121: Diagram relativnih občutljivosti v primerjavi s spektralno emisijo žarnice Optoelektronske komponente 1.7 OPTOELEKTRONSKE KOMPONENTE Splošno Foto-električni efekt je pojav, pri katerem svetloba vpliva ali spremeni fizikalne oz. kemične lastnosti neke snovi. V kolikor je komponenta

Διαβάστε περισσότερα

1 Seštevanje vektorjev in množenje s skalarjem

1 Seštevanje vektorjev in množenje s skalarjem Poglavje I Vektorji Seštevanje vektorjev in množenje s skalarjem Za lažjo geometrično predstavo si najprej oglejmo, kaj so vektorji v ravnini. Vektor je usmerjena daljica, ki je natanko določena s svojo

Διαβάστε περισσότερα

Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni izrek.

Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni izrek. DN#3 (januar 2018) 3A Teme, ki jih preverja domača naloga: Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni

Διαβάστε περισσότερα

1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )

1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk ) VAJA IZ TRDNOSTI (lnearna algebra - ponovtev, Kroneckerev δ, permutacsk smbol e k ) NALOGA : Zapš vektor a = [, 2,5,] kot lnearno kombnaco vektorev e = [,,,], e 2 = [,2,3,], e 3 = [2,,, ] n e 4 = [,,,]

Διαβάστε περισσότερα

TRDNOST (VSŠ) - 1. KOLOKVIJ ( )

TRDNOST (VSŠ) - 1. KOLOKVIJ ( ) TRDNOST (VSŠ) - 1. KOLOKVIJ (17. 12. 03) Pazljivo preberite besedilo vsake naloge! Naloge so točkovane enakovredno (vsaka 25%)! Pišite čitljivo! Uspešno reševanje! 1. Deformiranje telesa je podano s poljem

Διαβάστε περισσότερα

Analiza 2 Rešitve 14. sklopa nalog

Analiza 2 Rešitve 14. sklopa nalog Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)

Διαβάστε περισσότερα

INŽENIRSKA MATEMATIKA I

INŽENIRSKA MATEMATIKA I INŽENIRSKA MATEMATIKA I REŠENE NALOGE za izredne študente VSŠ Tehnično upravljanje nepremičnin Marjeta Škapin Rugelj Fakulteta za gradbeništvo in geodezijo Kazalo Števila in preslikave 5 Vektorji 6 Analitična

Διαβάστε περισσότερα

Matematika 2. Diferencialne enačbe drugega reda

Matematika 2. Diferencialne enačbe drugega reda Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:

Διαβάστε περισσότερα

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči

Διαβάστε περισσότερα

6 NIHANJE 105. (c) graf pospe²ka v odvisnosti od asa. Slika 32: Graf hitrosti, odmika in pospe²ka v odvisnosti od asa.

6 NIHANJE 105. (c) graf pospe²ka v odvisnosti od asa. Slika 32: Graf hitrosti, odmika in pospe²ka v odvisnosti od asa. 6 NIHANJE 105 6 nihanje 6.1 mehanska 1. Hitrost nekega nihala se spreminja po ena bi: v(t) = 5 cm/s cos(1, 5s 1 t). Nari²i in ozna i kako se spreminjajo odmik hitrost in pospe²ek v odvisnosti od asa! Rp:

Διαβάστε περισσότερα