7. VAJA IZ MEHANIKE TRDNIH TELES. (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "7. VAJA IZ MEHANIKE TRDNIH TELES. (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji)"

Transcript

1 7. VAJA IZ MEHANIKE TRDNIH TELES (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Pomik deformabilnega telesa je glede na kartezijski koordinatni sistem z bazo e x, e y in e z opisan s translacijo u in majhnim zasukom ω referenčne točke T (5, 5, 1) u = 1 2 (2 e x 3 e y + e z ), ω = 1 2 (e x + 2 e y + 3 e z ). Predpostavi da so zasuki majhni. Pri določitvi pomikov poljubne točke T (x, y, z) uporabi približno Rodriguesovo enačbo kjer je r = x e x + y e y + z e z. u = u + ω (r r ), a) Določi komponente tenzorjev velikih in majhih deformacij v točki T. b) Določi komponente tenzorja majhih rotacij v točki T. c) Pojasni dobljene rezultate. Rešitev: a) Tenzor velikih deformacij v točki T je [E ij ] = a ) Tenzor majhih deformacij v točki T je [ε ij ] =. b) Tenzor majhih rotacij v točki T je ω z ω y 3 2 [ω ij ] = ω z ω x = ω y ω x 2 1 c) Ker smo vektor pomikov zapisali s približno Rodriguesovo enačbo u = u + ω (r r ), ki opisuje translacijo in majhno rotacijo telesa, je tenzor majhnih deformacij enak nič. Tenzor velikih deformacij ni enak nič, saj smo pri računu pomika uporabili približno enačbo. Iz tenzorja rotacij lahko preberemo rotacijski vektor ω = ω x e x + ω y e y + ω z e z = 1 2 (e x + 2 e y + 3 e z ) = ω.

2 NALOGA 2: Pomik deformabilnega telesa je glede na kartezijski koordinatni sistem z bazo e x, e y in e z opisan s translacijo u in majhnim zasukom ω referenčne točke T (5, 5, 1) u = 1 2 (2 e x 3 e y + e z ), ω = 1 2 (e x + 2 e y + 3 e z ). Pri določitvi pomikov poljubne točke T (x, y, z) uporabi točne enačbe u = u + u ω, ω = ω e ω ρ = cos(ω ) ρ + (1 cos(ω )) (e ω ρ) e ω + sin(ω ) e ω ρ, u ω = ρ ρ, ρ = r r. kjer je r = x e x + y e y + z e z. a) Določi komponente tenzorjev velikih in majhih deformacij v točki T. b) Določi komponente tenzorja majhih rotacij v točki T. c) Pojasni dobljene rezultate. Rešitev: a) Tenzor velikih deformacij v točki T je [E ij ] =. a ) Tenzor majhih deformacij v točki T je [ε ij ] = b) Tenzor majhih rotacij v točki T je ω z ω y [ω ij ] = ω z ω x = ω y ω x c) Ker smo vektor pomikov zapisali s točno Rodriguesovo enačbo je tenzor velikih deformacij enak nič. Tenzor majhnih deformacij ni enak nič, saj smo pri računu pomika uporabili točno enačbo. Iz tenzorja majhnih rotacij lahko dokaj natančno odčitamo rotacijski vektor ω = ω x e x + ω y e y + ω z e z = 1 2 (.9998 e x e y e z ) ω.

3 NALOGA 3: Predpostavi, da so deformacije po pravokotni plošči konstantne po prostornini plošče. Deformacijski tenzor je 1 2 [ε ij ] = Privzemi, da sta pomik in zasuk v točki A enaka nič. Določi spremembo dolžine diagonale pravokotne plošče na dva načina: (1) izračunaj pomik v točki C in določi deformirano dolžino diagonale. (2) določi deformacijo ε ξξ v smeri diagonale in iz nje izračunaj spremembo dolžine diagonale. Rešitev: Pri izračunu pomika lahko uporabimo rezultat naloge 7. Dobimo u C = 1 2 (e x e y ) [cm]. Od tu izračunamo d = d d = =.1826 cm, kjer smo z d označili dolžino diagonale v deformirani legi z d pa dolžino diagonale v začetni nedeformirani legi. Upoštevamo enačbi ε ξξ = ε xx e 2 ξx + ε yy e 2 ξy + 2 ε xy e ξx e ξy = in ε ξξ = d d in dobimo d =.182 cm. NALOGA 4: Homogen kvader se deformira tako, da se stranica AB translatorno premakne v smeri y za vrednost v B. Vse stranice ostanejo pri tem ravne (glej sliko). Določi vektor pomika poljubnega delca D(x, y, z) ter komponente tenzorja majhnih deformacij glede na prikazani kartezijski koordinatni sistem. Določi tudi velikosti in smeri glavnih normalnih deformacij.

4 Rešitev: Pri določitvi pomika si lahko pomagamo s spodnjo sliko. Velja (glej sliko) u y = v z c x in v = v B. Od tu dobimo u x z a y = v B in končno u(x, y, z) = v a c B x z e a c y. Z odvajanjem pomika dobimo α z [ε ij ] = α z α x. α x Izračunamo se glavne normalne deformacije in pripadajoče smeri ε 11 = α x 2 + z 2, ε 22 =, ε 33 = α x 2 + z 2 in e 1 = z 2 (x2 + z 2 ) e x + 1 x e y (x2 + z 2 ) e z, x e 2 = x2 + z e z 2 x + x2 + z e z, 2 e 3 = z 2 (x2 + z 2 ) e x 1 x e y (x2 + z 2 ) e z. NALOGA 5: Deformiranje telesa je opisano z vektorskim poljem pomikov u = 1 4 ((5 x 2 6 z) e x + 2 y 2 z e y + (x 2 3 y 2 z) e z ). V točki T (x, 4, 2), ki leži v ravnini Γ določi: a) specifično spremembo dolžine normale na ravnino Γ, b) specifično spremembo pravega kota γ, c) rezultirajoči vektor zasuka ω, vrednosti ω n in ω t tenzorja zasukov ter povprečni zasuk ω n okrog smeri normale na ravnino Γ, d) ugotovi ali v kakšni točki na črti AB vlada izohrono defomacijsko stanje (to pomeni, da je specifična sprememba prostornine v kakšni točki enaka ).

5 Rešitev: a) specifična sprememba dolžine normale na ravnino Γ je D nn ε nn = , b) specifična sprememba pravega kota γ je γ = D yt 2 ε yt = , c) rezultirajoči vektor zasuka ω = 1 4 ( 4 e x 6 e y ), ω n = ω e n = ( 6 e x + 4 e y + 12 e z ), ω t = ω e t = ( 12 e x + 8 e y 6 e z ), povprečni zasuk ω n okrog smeri normale na ravnino Γ je ω n = , d) v točki T ( 4 11, 4, 8 11) na črti AB vlada izohrono defomacijsko stanje. NALOGA 6: Polje pomikov je podano z enačbo u = 1 4 ((x z) 2 e x + (y + z) 2 e y x y e z ). V točki P (, 2, 1) določi: a) tenzor majhnih deformacij, b) tenzor majhnih zasukov, c) vektor zasuka ω. d) specifično spremembo dolžine v smeri e ξ = 1 (8 e 9 x e y + 4 e z ) e) spremembo pravega kota med vektorjema e ξ in e η = 1 (4 e 9 x + 4 e y 7 e z ). Rešitev: a) tenzor majhnih deformacij [ε ij ] = , 2 1

6 b) tenzor majhnih zasukov c) vektor zasuka ω = 1 4 e x. [ω ij ] = 1 4 1, 1 d) specifična sprememba dolžine v smeri e ξ = 1 9 (8 e x e y + 4 e z ) je D ξξ ε ξξ = e) sprememba pravega kota med vektorjema e ξ in e η = 1 9 (4 e x + 4 e y 7 e z ) znaša D ξη 2 ε ξη = NALOGA 7: Vzemimo, da so deformacije v ravninskem deformacijskem stanju linearne funkcije materialnih koordinat x in y: ε xx = a 1 x + b 1 y + c 1, ε yy = a 2 x + b 2 y + c 2, ε xy = a 3 x + b 3 y + c 3. Preveri, ali so koeficienti a 1, b 1, c 1, a 2, b 2, c 2, a 3, b 3, c 3 medsebojno neodvisni. Izračunaj pomik delca D z materialnimi koordinatami x = x 1, y = y 1, če vemo, da sta pomik in zasuk v točki T (, ) enaka nič (glej sliko). Rešitev: Neodvisnost koeficientov preverimo s kompatibilnostnim pogojem, ki ga v primeru RDS zapišemo z enačbo Izračunamo odvode in dobimo K zz = 2 ε xx y ε yy x ε xy x y =. 2 ε xy x y =, 2 ε xx y 2 =, 2 ε yy x 2 =. Kompatibilnostnemu pogoju je torej zadoščeno s poljubno izbiro koeficientov a 1, b 1, c 1, a 2, b 2, c 2, a 3, b 3, c 3. Pri izračunu pomikov uporabimo enačbi u T = u T + T T ((ε x + ω e x ) dx + (ε y + ω e y ) dy),

7 T ω T = ω T + (( ε x ) dx + ( ε y ) dy). T Ugotovimo, da velja ω T = ω Tz e z. Najprej izračunamo zasuke v pomožnih točkah T in T (glej sliko). Dobimo ω T = (a z 3 b 1 ) x in ω T = (a z 3 b 1 ) x 1 + (a 2 b 3 ) y. Od tu sledi ( ) x 2 1 u T = a c 1 x 1 + b 1 x 1 y 1 + c 3 y 1 + b 3 y1 2 y1 2 a 2 e x 2 ( ) + a 3 x 2 x b c y1 2 3 x 1 + a 2 x 1 y 1 + c 2 y 1 + b 2 e y 2 NALOGA 8: Komponente tenzorja majhnih deformacij so podane v telesnih koordinatah x, y in z, in sicer v odvisnosti od konstantnega parametra K. Določi konstanto K tako, da bo iz deformacij mogoče enolično izračunati pomike. Telo je v točki A(,, ) togo vpeto v nepomično podlago. Določi prostorske koordinate in telesne bazne vektorje delca D(3, 4, ) po deformaciji telesa. Kako se med deformiranjem telesa spremenijo koordinate krajevnega vektorja r med delcema D in P (3.6, 4.2, ). Dolžine so podane v cm. 2 x 2 K y 2 x y (3 y 2) [ε ij ] = 1 4 x y (3 y 2) 3 K x 2 y. Rešitev: Kompatibilnostni pogoj, ki ga v primeru RDS zapišemo z enačbo K zz = 2 ε xx y ε yy x ε xy x y = 1 4 (K 2) (6 y 2) = bo izpolnjen, če bo K = 2. S tem je tenzor majhnih deformacij določen. Pri izračunu pomika in zasuka poljubne točke T (x, y, z) uporabimo enačbi u T = u T + T T ω T = ω T + ((ε x + ω e x ) dx + (ε y + ω e y ) dy), T T (( ε x ) dx + ( ε y ) dy). Z upoštevanjem robnega pogoja ω z (A) = po drugi enačbi izračunamo zasuk ω T = 1 4 (3 x y x y) e z in nato ob upoštevanju robnih pogojev u x (A) = in u y (A) = iz prve še pomik. Dobimo (( ) ) 2 x u T = x y2 e x + 3 x 2 y 2 e y. Prostorske koordinate točke D dobimo iz enačb x (D) = x(d) + u x (D) = 3.78 = cm, y (D) = y(d) + u y (D) = = cm. Nove bazne vektorje v točki D pa iz enačb e x(d) = e x + u x (D) =.9986 e x e y,

8 V nedeformiranem stanju velja V deformiranem pa e y(d) = e y + u y (D) =.48 e x e y. r = r(p ) r(d) =.6 e x +.2 e y. r = r (P ) r (D) = (r(p ) + u(p )) (r(d) + u(d)) =.5982 e x e y. NALOGA 9: Kot rešitev mehanskega problema ravninskega telesa po metodi napetosti smo dobili majhne deformacije ε ij kot funkcije telesnih koordinat x in z. Vse točke telesa se premikajo le v ravnini (x, z). Razen tega je točka T (,, ) nepomično vrtljivo podprta, v točki T 1 (1,, ) pa je preprečen pomik v smeri z. Določi pomika u x in u z ter zasuk ω y kot funkcije koordinat (x, z). Določi vrednost zasukov ω y v obeh podporah, pomik u x v točki T 1, ter vrednosti obeh pomikov in zasuka ω y v točki T (5,,.5). Dolžine so podane v m. ε xx = 8 x cos(2π z) 1 4, ε zz = 1 x z 1 4, ε zx = ε zx = ( x 2 (3 + 4 π sin(2 π z) 25 z x + 25) 1 4, ε yy = ε xy = ε zy =. u x (,, ) u x =, u z (,, ) u z =, u z (1,, ) u 1 z =. Rešitev: Zaradi enakosti 2 ε zz x 2 =, ε xx z 2 = 32 π 2 x cos(2 π z), ε xz z x = 16 π2 x cos(2 π z) je kompatibilnostni pogoj, ki ga v našem primeru zapišemo z enačbo identično izpolnjen. enačbi K yy = 2 ε zz x ε xx z ε xz z x = Pri izračunu pomika in zasuka poljubne točke T (x, y, z) uporabimo u T = u T + T T ω T = ω T + ((ε x + ω e x ) dx + (ε z + ω e z ) dz), T T (( ε x ) dx + ( ε z ) dz). Pri izračunu zasuka, za referenčno točko izberemo T, pa čeprav zasuka v tej točki zaenkrat še ne poznamo. Od nič različna je samo komponenta ω y. Dobimo ω y = ω y (T ) ( x 2 (3 4 π sin(2 π z) + 25 z 2 15 x) ).

9 Pri izračunu pomika upoštevamo robna pogoja u x (T ) = in u z (T ) = in tako dobimo u x = z ω y (T ) + 1 ( 4 4 x 2 cos(2 π z) + 25 z ), u z = x ω y (T ) + 1 ( 4 2 x x x (1 2 z 2 ) ). Ob upoštevanju robnega pogoja u z (T 1 ) = dobimo ω y (T ) = S tem so vsi pomiki in zasuki znani. NALOGA 1: Pri enakomerni torzijski obremenitvi ravnega nosilca z vzdolžno težiščno osjo z in krožnim prečnim prerezom je vektorsko polje pomikov v kartezijskem telesnem koordinatnem sistemu z bazo e x, e y, e z in koordinatami x, y, z podano z izrazom Pri tem je Ω konstanten obtežni faktor. u = Ω y z e x + Ω z x e y. Zapiši vektor pomikov in izračunaj komponente tenzorja majhnih deformacij v cilindričnih koordinatah. Rešitev: Vektor pomikov v cilindričnih koordinatah u = Ω z r e ϕ. Komponente tenzorja majhnih deformacij v cilindričnih koordinatah dobimo iz enačb ε rr = u r r =, ε ϕϕ = u r r + 1 r u ϕ ϕ =, ε zz = u z z =, ε rϕ = 1 ( 1 u r 2 r ϕ + u ϕ r u ) ϕ =, r ε ϕz = 1 ( uϕ 2 z + 1 ) u z = Ω r r ϕ 2, ε zr = 1 ( ur 2 ϕ + u ) z =. r Rezultat zapišemo krajše ε rr ε rϕ ε rz [ε αβ ] = ε ϕr ε ϕϕ ε ϕz = Ω r 2 ε zr ε zϕ ε zz 1. 1 NALOGA 11: Polje pomikov je v kartezijskem telesnem koordinatnem sistemu z bazo e x, e y, e z in koordinatami x, y, z podano z vektorjem u = 1 4 ((4 x y + 3 z) e x + (x + 7 y) e y + ( 3 x + 4 y + 4 z) e z ). Določi:

10 a) specifično spremembo volumna, b) tenzor majhnih deformacij, c) glavne normalne deformacije in pripadajoče smeri, d) ekstremne strižne deformacije in pripadajoče smeri, e) deviatorični del tenzorja majhnih deformacij, f) Rezultate prikaži z Mohrovimi krogi. Rešitev: a) specifična sprememba volumna ε V = 1 4 ( ), b) tenzor majhnih deformacij [ε ij ] = , 2 4 c) glavne normalne deformacije in pripadajoče smeri so ε 11 = 8 1 4, ε 22 = 4 1 4, ε 33 = 3 1 4, e 1 = 1 5 (2 e y + e z ), e 2 = e x, e 3 = 1 5 (e y 2 e z ). d) ekstremne strižne deformacije in pripadajoče smeri so γ 1 = 1 2 (ε 22 ε 33 ) = , γ 2 = 1 2 (ε 33 ε 11 ) = , γ 3 = 1 2 (ε 11 ε 22 ) = 2 1 4, e I = ± 2 2 (e 2 + e 3 ) = ±(.771 e x e y.6325 e z ), e II = ± 2 2 (e 3 + e 1 ) = ±(.9487 e y.3162 e z ), e III = ± 2 2 (e 1 + e 2 ) = ±(.771 e x e y e z ). e) deviatorični del tenzorja majhnih deformacij 1 [e ij ] = , 2 1 NALOGA 12: Polje pomikov je v kartezijskem telesnem koordinatnem sistemu z bazo e x, e y, e z in koordinatami x, y, z podano z vektorjem kjer so a, b in c zelo majhne konstante. u = ( c y + b z) e x + (c x a z) e y + ( b x + a y) e z, Pokaži, da vektor pomikov opisuje rotacijo telesa. Poišči tudi vektor rotacije ω. Rešitev: Vektor rotacije ω = a e x + b e y + c e z NALOGA 13: Polje pomikov je v kartezijskem telesnem koordinatnem sistemu z bazo e x, e y, e z in koordinatami x, y, z podano z vektorjem u = y 3 e z.

11 Poišči normalo ravnine, v kateri ni normalnih deformacij. Rešitev: Normali ravnin, v kateri ni normalnih deformacij sta e n = α e x + β e y, α 2 + β 2 = 1 in e n = α e x + β e z, α 2 + β 2 = 1. NALOGA 14: V kartezijskem koordinatnem sistemu z bazo e x, e y, e z in koordinatami x, y, z je podan kvader z oglišči A(,, ), B(a,, ), C(, b, ), D(a, b, ), E(,, c), G(a,, c), F (, b, c), H(a, b, c). Velja a : b : c = 2 : 3 : 5. Pri deformaciji ostanejo dolžine stranic AB AC in AE nespremenjene, pravi kot BAC se poveča na 9 3, pravi kot CAE se zmanjša na , pravi kot EAB pa preide na Določi specifično spremembo dolžine diagonale AH. Rešitev: Specifična sprememba dolžine diagonale ε ξξ = NALOGA 15: Valj na sliki je na levem krajišču vpet v steno, na desnem pa prost. Pri deformaciji se volumen valja ne spremeni, prav tako se ne spremeni premer valja. Razdalji AB in CD se med deformacijo ne spremenita (velja A B = AB, C D = CD ). Pač pa se spremeni kot, ki ga daljica AC oklepa z osjo z. Glej sliko. Pokaži, da velja γ zx = 2 ε zx tan(α). Namig: Za opis polja pomikov uporabi nastavek iz naloge 1 ali nastavek iz naloge 7 v vaji 6.

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z.

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z. 3. VAJA IZ TRDNOSTI (tenzor deformacij) (pomiki togega telesa, Lagrangev in Eulerjev opis, tenzor velikih deformacij, tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Gumijasti

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

TRDNOST (VSŠ) - 1. KOLOKVIJ ( )

TRDNOST (VSŠ) - 1. KOLOKVIJ ( ) TRDNOST (VSŠ) - 1. KOLOKVIJ (17. 12. 03) Pazljivo preberite besedilo vsake naloge! Naloge so točkovane enakovredno (vsaka 25%)! Pišite čitljivo! Uspešno reševanje! 1. Deformiranje telesa je podano s poljem

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

2. VAJA IZ TRDNOSTI. Napetostno stanje valja je določeno s tenzorjem napetosti, ki ga v kartezijskem koordinatnem. 3xy 5y 2

2. VAJA IZ TRDNOSTI. Napetostno stanje valja je določeno s tenzorjem napetosti, ki ga v kartezijskem koordinatnem. 3xy 5y 2 . VAJA IZ TRDNOSTI (tenzor napetosti) (napetostni vektor, transformacija koordinatnega sistema, glavne normalne napetosti, strižne napetosti, ravninsko napetostno stanje, Mohrovi krogi, ravnotežne enačbe)

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

primer reševanja volumskega mehanskega problema z MKE

primer reševanja volumskega mehanskega problema z MKE Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE p p RAK: P-XII//74 Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE L

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

1.4 Glavne normalne napetosti v nosilcu 145. Vzdolž nevtralne osi oklepajo normale ravnin glavnih napetosti s smerjo x naslednje kote

1.4 Glavne normalne napetosti v nosilcu 145. Vzdolž nevtralne osi oklepajo normale ravnin glavnih napetosti s smerjo x naslednje kote 1.4 Glavne normalne napetosti v nosilcu 145 Smeri glavnih normalnih napetosti vzdolž osi nosilca Vzdolž nevtralne osi oklepajo normale ravnin glavnih napetosti s smerjo x naslednje kote σ xx = M y z =

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 2. Vektorji

Vaje iz MATEMATIKE 2. Vektorji Študij AHITEKTURE IN URBANIZMA, šol. l. 06/7 Vaje iz MATEMATIKE. Vektorji Vektorji: Definicija: Vektor je usmerjena daljica. Oznake: AB, a,... Enakost vektorjev: AB = CD: če lahko vektor AB vzporedno premaknemo

Διαβάστε περισσότερα

Matematika 2. Diferencialne enačbe drugega reda

Matematika 2. Diferencialne enačbe drugega reda Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

4. VAJA IZ TRDNOSTI (linearizirana elastičnost, plastično tečenje)

4. VAJA IZ TRDNOSTI (linearizirana elastičnost, plastično tečenje) 4. VAJA IZ TRDNOSTI (linearizirana elastičnost, plastično tečenje) NALOGA 1: Eden izmed preizkusov za določanje mehanskih lastnosti materialov je strižni preizkus, s katerim določimo strižni modul G. Vzorec

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

Analiza 2 Rešitve 14. sklopa nalog

Analiza 2 Rešitve 14. sklopa nalog Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)

Διαβάστε περισσότερα

6.1.2 Togostna matrika linijskega elementa z ravno osjo po teoriji II. reda

6.1.2 Togostna matrika linijskega elementa z ravno osjo po teoriji II. reda 596 6 Geometrijska nelinearnost nosilcev varnost V E pa z enačbo V E = F E F dej 6.92) Z A x je označena ploščina prečnega prereza nosilca, količina i min je najmanjši vztrajnostni polmer, F dej pa je

Διαβάστε περισσότερα

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih. TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

1 3D-prostor; ravnina in premica

1 3D-prostor; ravnina in premica 1 3D-prostor; ravnina in premica 1. Razmisli, v kakšnih legah so lahko v prostoru: (a) premica in ravnina (b) dve ravnini (c) dve premici.ugotovitve zapiši.. 2. Ali sta premici v prostoru, ki nimata skupne

Διαβάστε περισσότερα

8. VAJA IZ MEHANIKE TRDNIH TELES (linearizirana elastičnost)

8. VAJA IZ MEHANIKE TRDNIH TELES (linearizirana elastičnost) 8. VAJA IZ MEHANIKE TRDNIH TELES (linearizirana elastičnost) NALOGA 1: Eden izmed preizkusov za določanje mehanskih lastnosti materialov je strižni preizkus, s katerim določimo strižni modul G. Vzorec

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim Študij AHITEKTURE IN URBANIZMA, šol l 06/7 Vaje iz MATEMATIKE 8 Odvod funkcije f( Definicija: Naj bo f definirana na neki okolici točke 0 Če obstaja lim 0 +h f( 0 h 0 h, pravimo, da je funkcija f odvedljiva

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa

Διαβάστε περισσότερα

386 4 Virtualni pomiki in virtualne sile. A 2 x E 2 = 0. (4.99)

386 4 Virtualni pomiki in virtualne sile. A 2 x E 2 = 0. (4.99) 386 4 Virtualni pomiki in virtualne sile oziroma Ker je virtualna sila δf L poljubna, je enačba 4.99) izpolnjena le, če je δf L u L F ) L A x E =. 4.99) u L = F L A x E. Iz prikazanega primera sledi, da

Διαβάστε περισσότερα

Pravokotni koordinatni sistem; ravnina in premica

Pravokotni koordinatni sistem; ravnina in premica Pravokotni koordinatni sistem; ravnina in premica 1. Razmisli, v kakšnih legah so lahko v prostoru: (a) premica in ravnina (b) dve ravnini (c) dve premici.ugotovitve zapiši.. 2. Ali sta premici v prostoru,

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok.

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok. 1 Rešene naloge Naloge iz vaj: Sistem togih teles 1. Tročleni lok s polmerom R sestavljen iz lokov in je obremenjen tako kot kaže skica. Določi sile podpor. Rešitev: Lok razdelimo na dva loka, glej skico.

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )

1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk ) VAJA IZ TRDNOSTI (lnearna algebra - ponovtev, Kroneckerev δ, permutacsk smbol e k ) NALOGA : Zapš vektor a = [, 2,5,] kot lnearno kombnaco vektorev e = [,,,], e 2 = [,2,3,], e 3 = [2,,, ] n e 4 = [,,,]

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

Bočna zvrnitev upogibno obremenjenih elementov s konstantnim prečnim prerezom

Bočna zvrnitev upogibno obremenjenih elementov s konstantnim prečnim prerezom D. Beg, študijsko gradivo za JK, april 006 KK FGG UL Bočna zvrnitev upogibno obremenjenih elementov s konstantnim prečnim prerezom Nosilnost na bočno zvrnitev () Elemente, ki niso bočno podprti in so upogibno

Διαβάστε περισσότερα

4. Zapiši Eulerjeve dinamične enačbe za prosto osnosimetrično vrtavko. ω 2

4. Zapiši Eulerjeve dinamične enačbe za prosto osnosimetrično vrtavko. ω 2 Mehanikateoretičnavprašanjainodgovori 1/12 Newtonovamehanika 1. Določiravninogibanjatočkevpoljucentralnesile. Ravninagibanjagreskozicentersileinimanormalovsmerivrtilne količine 2. Zapišiperiodogibanjapremočrtnegagibanjapodvplivompotenciala

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU Equatio n Section 6Vsebina poglavja: Navor kot vektorski produkt ročice in sile, magnetni moment, navor na magnetni moment, d'arsonvalov ampermeter/galvanometer.

Διαβάστε περισσότερα

ZBIRKA REŠENIH NALOG IZ MATEMATIKE II

ZBIRKA REŠENIH NALOG IZ MATEMATIKE II Univerza v Ljubljani Fakulteta za elektrotehniko Andrej Perne ZBIRKA REŠENIH NALOG IZ MATEMATIKE II Skripta za vaje iz Matematike II (UNI + VSP) Ljubljana, determinante Determinanta det A je število, prirejeno

Διαβάστε περισσότερα

UVOD V ENERGIJSKE METODE V MEHANIKI KONSTRUKCIJ

UVOD V ENERGIJSKE METODE V MEHANIKI KONSTRUKCIJ 1. UVOD V ENERGIJSKE METODE V MEHANIKI KONSTRUKCIJ Vosnovnemtečaju mehanike trdnih teles smo izpeljali sistem petnajstih osnovnih enačb, s katerimi lahko načeloma določimo napetosti, deformacije in pomike

Διαβάστε περισσότερα

Rešeni primeri iz elastomehanike

Rešeni primeri iz elastomehanike UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Daniel Svenšek Rešeni primeri iz elastomehanike delovna verzija (29. februar 2016) LJUBLJANA 2016 Kazalo 1 Uvod 5 1.1 Operacije nad matrikami in vektorji......................

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Tema 1 Osnove navadnih diferencialnih enačb (NDE)

Tema 1 Osnove navadnih diferencialnih enačb (NDE) Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer

Διαβάστε περισσότερα

1 Seštevanje vektorjev in množenje s skalarjem

1 Seštevanje vektorjev in množenje s skalarjem Poglavje I Vektorji Seštevanje vektorjev in množenje s skalarjem Za lažjo geometrično predstavo si najprej oglejmo, kaj so vektorji v ravnini. Vektor je usmerjena daljica, ki je natanko določena s svojo

Διαβάστε περισσότερα

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

VEKTORJI. Operacije z vektorji

VEKTORJI. Operacije z vektorji VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,

Διαβάστε περισσότερα

Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni izrek.

Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni izrek. DN#3 (januar 2018) 3A Teme, ki jih preverja domača naloga: Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni

Διαβάστε περισσότερα

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22 junij 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Veljale bodo samo rešitve na papirju, kjer

Διαβάστε περισσότερα

Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija

Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika 1 3. vaja B. Jurčič Zlobec 1 1 Univerza v Ljubljani, Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika FE, Ljubljana, Slovenija 2011 Določi stekališča zaporedja a

Διαβάστε περισσότερα

INŽENIRSKA MATEMATIKA I

INŽENIRSKA MATEMATIKA I INŽENIRSKA MATEMATIKA I REŠENE NALOGE za izredne študente VSŠ Tehnično upravljanje nepremičnin Marjeta Škapin Rugelj Fakulteta za gradbeništvo in geodezijo Kazalo Števila in preslikave 5 Vektorji 6 Analitična

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti

Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti Poglavje VII Linearne preslikave V tem poglavju bomo vektorske prostore označevali z U,V,W,... Vsi vektorski prostori bodo končnorazsežni. Zaradi enostavnosti bomo privzeli, da je pripadajoči obseg realnih

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Klasična mehanika 2 ELASTOMEHANIKA & HIDRODINAMIKA

Klasična mehanika 2 ELASTOMEHANIKA & HIDRODINAMIKA Klasična mehanika 2 ELASTOMEHANIKA & HIDRODINAMIKA Matej Ulčar predavanja pri prof. Primožu Ziherlu 18. avgust 2014 Povzetek O zapiskih: ti zapiski so nastajali v glavnem sproti po predavanjih z namenom

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika 1 Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 21. april 2008 102 Poglavje 4 Odvod 4.1 Definicija odvoda Naj bo funkcija f definirana na intervalu (a, b) in x 0 točka s tega intervala. Vzemimo

Διαβάστε περισσότερα

Odvode odvisnih spremenljivk po neodvisni spremenljivki bomo označevali s piko: Sistem navadnih diferencialnih enačb prvega reda ima obliko:

Odvode odvisnih spremenljivk po neodvisni spremenljivki bomo označevali s piko: Sistem navadnih diferencialnih enačb prvega reda ima obliko: 4 Sisemi diferencialnih enačb V prakičnih primerih večkra naleimo na več diferencialnih enačb, ki opisujejo določen pojav in so medsebojno povezane edaj govorimo o sisemih diferencialnih enačb V eh enačbah

Διαβάστε περισσότερα

Osnove matematične analize 2016/17

Osnove matematične analize 2016/17 Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja

Διαβάστε περισσότερα

Linearna algebra. Bojan Orel Fakulteta za računalništvo in informatiko

Linearna algebra. Bojan Orel Fakulteta za računalništvo in informatiko Linearna algebra Bojan Orel Fakulteta za računalništvo in informatiko 23. februar 205 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 52.64(075.8)(0.034.2) OREL, Bojan

Διαβάστε περισσότερα

DISKRETNA FOURIERJEVA TRANSFORMACIJA

DISKRETNA FOURIERJEVA TRANSFORMACIJA 29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,

Διαβάστε περισσότερα

Žiga Virk REŠENE NALOGE IZ UVODA V DIFERENCIALNO GEOMETRIJO

Žiga Virk REŠENE NALOGE IZ UVODA V DIFERENCIALNO GEOMETRIJO Žiga Virk REŠENE NALOGE IZ UVODA V DIFERENCIALNO GEOMETRIJO Ljubljana 2015 ii naslov: REŠENE NALOGE IZ UVODA V DIFERENCIALNO GEOME- TRIJO avtorske pravice: Žiga Virk izdaja: prva izdaja založnik: samozaložba

Διαβάστε περισσότερα

Fazni diagram binarne tekočine

Fazni diagram binarne tekočine Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,

Διαβάστε περισσότερα

Mehanika. L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS

Mehanika. L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS Mehanika L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS 2. januar 2004 Kazalo 1 Gibalne enačbe 4 1 Posplošene koordinate...............................

Διαβάστε περισσότερα

Matematika. Funkcije in enačbe

Matematika. Funkcije in enačbe Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana

Διαβάστε περισσότερα

3. AMPEROV ZAKON. SLIKA: Zanka v magnetnem polju. Integral komponente magnetnega polja v smeri zanke je sorazmeren toku, ki ga zanka oklepa.

3. AMPEROV ZAKON. SLIKA: Zanka v magnetnem polju. Integral komponente magnetnega polja v smeri zanke je sorazmeren toku, ki ga zanka oklepa. 3. AMPEROV ZAKON Equation Section 3 Vsebina poglavja: Integral polja po zaključeni zanki je sorazmeren toku, ki ga zanka objame. Izračuni polja s pomočjo Amperovega zakona za: tokovno premico, solenoid,

Διαβάστε περισσότερα

Afina in projektivna geometrija

Afina in projektivna geometrija fina in projektivna geometrija tožnice () kiciraj stožnico v evklidski ravnini R, ki je določena z enačbo 6 3 8 + 6 =. Rešitev: tožnica v evklidski ravnini je krivulja, ki jo določa enačba a + b + c +

Διαβάστε περισσότερα

slika: 2D pravokotni k.s. v ravnini

slika: 2D pravokotni k.s. v ravnini Koordinatni sistemi Dejstvo je, da živimo v tridimenzionalnem Evklidskem prostoru. To je aksiom, ki ga ni potrebno dokazovati. Da bi podali geometrijski položaj točke v prostoru je primerno sredstvo za

Διαβάστε περισσότερα

TEHNIŠKA MEHANIKA - sinopsis predavanj v šolskem letu 2014/2015

TEHNIŠKA MEHANIKA - sinopsis predavanj v šolskem letu 2014/2015 TEHNIŠKA MEHANIKA - sinopsis predavanj v šolskem letu 014/015 BF : Viskokošolski strokovni študij 6. 10. 14 KINEMATIKA IN DINAMIKA TOČKE Kinematika Položaj točke P, opazovalec O, kartezični koordinatni

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

11.5 Metoda karakteristik za hiperbolične PDE

11.5 Metoda karakteristik za hiperbolične PDE 11.5 Metoda karakteristik za hiperbolične PDE Hiperbolična kvazi linearna PDE ima obliko au xx + bu xy + cu yy = f, (1) kjer so a, b, c, f funkcije x, y, u, u x in u y, ter velja b 2 4ac > 0. Če predpostavimo,

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči

Διαβάστε περισσότερα

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9 .cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

Nekaj zgledov. J.Kozak Numerične metode II (IŠRM) / 21

Nekaj zgledov. J.Kozak Numerične metode II (IŠRM) / 21 Nekaj zgledov J.Kozak Numerične metode II (IŠRM) 2011-2012 1 / 21 V robnih problemih rešitev diferencialne enačbe zadošča dodatnim pogojem, ki niso vsi predpisani v isti točki. Že osnovna zahteva, kot

Διαβάστε περισσότερα

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki: NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več

Διαβάστε περισσότερα

Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik

Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik Univerza v Ljubljani Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Peter Škvorc Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik DIPLOMSKO DELO UNIVERZITETNI

Διαβάστε περισσότερα