Linear Programming. Linear Programming
|
|
- Ἀράχνη Αθανασιάδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Lnear Programmng Loucks et al., 5 Chapter, secton 5 Lnear Programmng The objectve functon and constrants of an optmzaton model are all lnear Many models of comple water resources systems are or can be made, lnear. Because of the power and avalablty of computer programs that can solve large lnear programmng problems, a varety of methods have been developed to appromate non-lnear functons wth lnear ones. ١
2 Lnear Programmng In spte of ts power and popularty, for most realworld water resources plannng and management problems, lnear programmng, lke the other optmzaton methods already dscussed n ths chapter, s best vewed as a prelmnary screenng tool. Its value s more for reducng the number of alternatves for further more detaled smulatons than for fndng the best decson. Lnear Programmng (our frst tool, and probably the most mportant one.) mnmze or mamze a lnear objectve subject to lnear equaltes and nequaltes mamze + y subject to 5 + 8y, y ; Non-negatvty Condton A feasble soluton satsfes all of the constrants. =, y = s feasble; =, y = s nfeasble. An optmal soluton s the best feasble soluton. The optmal soluton s =.8, y =. ٢
3 Termnology Decson varables: e.g., and y. In general, there are quanttes you can control to mprove your objectve whch should completely descrbe the set of decsons to be made. Constrants: e.g., 5 + 8y,, y Lmtatons on the values of the decson varables. Objectve Functon. e.g., + y Value measure used to rank alternatves Seek to mamze or mnmze ths objectve eamples: mamze NPV, mnmze cost Lnear Programmng The general structure of a lnear programmng model s: ٣
4 Reservors Storage Yeld relatons S t Q t K R t Q t K S t R t Storage-Yeld relaton Increase yeld buld a reservor Storage-yeld relatonshp gves Capacty for varous yelds, or Yeld for varous capactes Comple methods Math Programmng Yeld, R Capacty, K ۴
5 Water Resources Systems Plannng Lnear Programmng R = Release S = Storage Q = Inflow SP = Spllway K = Reservor capacty t = tme step T = Total number of tme step - : - Ma. R s.t.: S t+ =S t + Q t R SP t ; t=,,...,t T+= S t K ; t=,,...,t Mn K, Gven R Q t S t K R SP t Mnmze storage capacty gven constant release and nflows: Mnmze subject to K S t + S K t = S + Q SP R t =,...,T ; T + = t t t t =,...,T ۵
6 Mn K, Gven R Q t S t K R RE t Inflow Storage Release Yeld t Q(t) S(t) sp(t) R Mnmze K, Gven R Q(t) S(t) RE(t) R Ma R, Gven K Mamze constant release gven capacty and nflows Q t Inflows to the reservor S t Storage volumes n the reservor R Constant release (yeld) from the reservor RE t Total release from the reservor (Spllway+R) K Capacty of the reservor Mamze subject to S t+ R R RE S K t = S + Q RE t t t t t =,..., T t =,..., T Q t t =,..., T; T + = S t K R RE t ۶
7 Ma R, Gven K Q t S t K R RE t t Q(t) S(t) RE(t) R sp(t) Mamze R, Gven K Q(t) S(t) R RE(t) ٧
8 Lnear Programmng Smple LP Model and Graphcal Soluton Eample: A Pant Factory - Mamze gross ncome Produces both nteror and eteror house pant Two basc raw materals, A and B are used Ma. avalablty of A s 6 tons/day Ma. avalablty of B s 8 tons/day Daly requrements of the raw materals per ton n table below P E = $/ton P I = $/ton Market survey: Interor pant cannot eceed Eteror by one Mamum demand for nteror pant s lmted to tons daly Tons of raw materal per ton of pant Eteror Interor Mamum Avalablty (tons) Raw materal A 6 Raw materal B 8 ٨
9 Water Resources Systems Plannng - LP Eample: Manufacturng-Waste Treatment System ھدف: حداكثر نمودن درآمد خالص قيمت فروش ھر واحد محصول توليدي= $ ھزينه ھر واحد محصول توليد شده = $ ھزينه ھر واحد زباله تصفيه شده = $.6 ماليات ھر واحد زباله تخليه شده = $ راندمان تصفيه خانه = %8 درآمد خالص: Z = -{ +.6( - ) +[ +.( - )]} Z = 5 - Water Resources Systems Plannng (LP) Eample: Manufacturng-Waste Treatment System Ma. Z = 5 - : - قيود : ١- محدوديت ظرفيت تصفيهخانه: ٢- محدوديت مقدار تخليه زباله: +.( - ) =. +.8 ٣- محدوديت مثبت بودن زباله تصفيه شونده: - or - + ٩
10 Water Resources Systems Plannng (LP) Eample: Manufacturng-Waste Treatment System Graphcal Soluton: Water Resources Systems Plannng (LP) Eample: Water Qualty Management Model Ste: Estng Qual. Desred Qual. 7 6 Fnd: The level of wastewater treatment (waste removed) at stes and requred to acheve the desred concentratons at stes and at a mnmum cost. ١٠
11 Water Resources Systems Plannng (LP) Eample: Water Qualty Management Model a w j (a j = The mprovement n the qualty nde at ste j per unt of waste removed at ste = Amount of waste to be treated at ste = Fracton of waste removed by treatment at ste )(w ) = Qualty mprovement at ste jdue to w Q = Desred qualty unts of waste removed at ste q = Estng Qualty s.t. Mn.C q q + a + a ( w w ) + C + a Q ( w ) Q Water Resources Systems Plannng (LP) Eample: Water Qualty Management Model. =, <=.95 =, a a w w = a =.5 mg/l =.5 mg/l = unts/day = unts/day + (.5)().8 + (.5)() + (.5)() ١١
12 Water Resources Systems Plannng (LP) Eample: Water Qualty Management Model Graphcal Soluton Two Lnear Cost Functons Water Resources Systems Plannng (LP) Eample: Manufacturng-Waste Treatment System آلگوريتم حل برنامهنويسي خطي Algorthm for Solvng LP O.F. : Cons. : Cons. : Cons. : Z s + s + s + s + s + s + s + s : + s + s + s + s = = = = Z =. با انتخاب = s و = قدم اول شروع از يك نقطه نھايي (= ),= كداميك از متغيرھاي و يا را افزايش دھيم در قيد اول: =/ + / s / = 5 s =, s =, Z=5 ١٢
13 Some Basc Solutons to the Eample Problem X X S S S Z - Inf Inf Inf Water Resources Systems Plannng Eample: Manufacturng-Waste Treatment System Algebra of Smple Method Basc Z s s s Sol. Z -5 s s s Z 5 + s s s = (n-m) :. :. :. :. :( ). : ١٣
14 Water Resources Systems Plannng Eample: Manufacturng-Waste Treatment System Algebra of Smple Method عمليات سطري Sol. Basc Z s s s Z -5 (+)(5)( ) s s s ( ) : ικ > = b /a k :. α ικ = b / a = / = 5 = b / a = /. = ( )() (+)(-.)( ) (+)()( ) k mn = mn(, ) = mn(5, ) = 5 s = Water Resources Systems Plannng Eample: Manufacturng-Waste Treatment System Algebra of Smple Method Basc Z s s s Sol. Z s s a kl = (a kl a j a kj a l ) / a j Basc Z s s s Sol. Z..5 8 s ١۴
15 Water Resources Systems Plannng روشھاي متغير مصنوعي Artfcal Varable Methods كاربرد: مصداق: موارديكه حل پايهاي قابل قبول با اضافه نمودن متغيرھاي slack بدست نميآيند. - s = مدلھايي كه شامل قيود از نوع ) ) و يا (=) ھستند. s s s - Σa j j s + R = b Σa j j + R = b راه حل: الف) براي قيود از نوع ) ) : ( براي قيود از نوع ) = ( : R ب بطوريكه روشھاي حل مدلھاي LP با متغيرھاي مصنوعي: روش M بزرگ Method) (Bg-M -١ روش دو فازي Method) (Two-Phase ٢- Water Resources Systems Engneerng(LP) روشھاي متغير مصنوعي Artfcal Varable Methods + s = روش M بزرگ Method) (Bg-M معادالت قيود مثال قبل را مي توان به اين صورت نوشت: s = ;,, s, s, s, R s + R = R = s بطوريكه s, s, R متغيرھاي پايهاي شروع كننده ميباشند. نكته: براي تبديل متغير مصنوعي به متغير غير پايهاي و نگه داشتن آن در ھمان حالت منفي و يا مثبت بزرگي مانند (M+ M-) or ضرب و به تابع ھدف اضافه ميكنيم. آنرا در ضريب Ma. Z = n c m j j j= = MR ; Mn. Z = n j= c j j + m = MR Ma. Z = 5 Ma. Z = 5 Z (5 + M) + s + s M( + ( + M) + s + + s + Ms MR ) = تابع ھدف مثال قبل را مي توان چنين نوشت: ١۵
16 Basc Z s s s R Sol. Z -(5+M) (+M) M s s R Z M s s Z M 5 s s Z..5 M 8 s Water Resources Systems Plannng Artfcal Varable Methods روشھاي متغير مصنوعي روش دو فازي Method) :(Two-Phase دو اشكال اساسي روش M بزرگ: ١- در صورت عدم وجود حل قابل قبول آلگوريتم تا مرحله نھايي ميبايست انجام شود (<R). ٢- در كاريرد كامپيوتري اين روش اختصاص عدد بزرك به M توليد خطاھاي محاسباتي ميكند. در روش دو فازي محاسبات را در دو مرحله انجام ميدھيم: مرحله اول:اھتمام بر اينكه بتوان متغير(متغيرھاي) مصنوعي را از حل خارج نمود. براي ھر دو مسائل بيشينه و كمينه سازي مجموع متغيرھاي مصنوعي را مينيمم (صفر) مينمائيم. Mn. r = K R k k= در صورتيكه در حالت بھينه r باشد مسئله داراي فضاي قابل قبول نميباشد. تابع ھدف فوق به انضمام معادالت قيود در فاز اول بھينهسازي (كمينه) گرديده و در صورت احراز شرائط الزم ( = r) جدول نھايي اين فاز در مرحله بعدي جھت بھينهسازي تابع ھدف اصلي استفاده ميشود. ١۶
17 s.t.: Water Resources Systems Plannng Artfcal Varable Methods روشھاي متغير مصنوعي Method) (Two-Phase روش دو فازي Mn. r = R Mn. r = + + s s s + + s = = R = Basc r s s s R Sol. r - - s s R r - s s Phase I مرحله دوم: بھينهسازي با متغيرھاي مصنوعي غيرپايهاي( صفر) شروع ميشود. Ma. Z = 5 Z 5 + = s.t. :.5 Basc Z s s s Sol. Z -5 s s Z s s Z s s Z..5 8 s s s + s +.s + -.5s = = = Phase II (5)+ 5 6 ١٧
18 An educatonal ste unt/lnear/subunts/prmal/nde.html ١٨
ﻞﻜﺷ V لﺎﺼﺗا ﺎﻳ زﺎﺑ ﺚﻠﺜﻣ لﺎﺼﺗا هﺎﮕﺸﻧاد نﺎﺷﺎﻛ / دﻮﺷ
1 مبحث بيست و چهارم: اتصال مثلث باز (- اتصال اسكات آرايش هاي خاص ترانسفورماتورهاي سه فاز دانشگاه كاشان / دانشكده مهندسي/ گروه مهندسي برق / درس ماشين هاي الكتريكي / 3 اتصال مثلث باز يا اتصال شكل فرض كنيد
( ) x x. ( k) ( ) ( 1) n n n ( 1) ( 2)( 1) حل سري: حول است. مثال- x اگر. يعني اگر xها از = 1. + x+ x = 1. x = y= C C2 و... و
معادلات ديفرانسيل y C ( ) R mi i كه حل سري يعني جواب دقيق ميخواهيم نه به صورت صريح بلكه به صورت سري. اگر فرض كنيم خطي باشد, اين صورت شعاع همگرايي سري فوق, مينيمم اندازه است جواب معادله ديفرانسيل i نقاط
( ) قضايا. ) s تعميم 4) مشتق تعميم 5) انتگرال 7) كانولوشن. f(t) L(tf (t)) F (s) Lf(t ( t)u(t t) ) e F(s) L(f (t)) sf(s) f ( ) f(s) s.
معادلات ديفرانسيل + f() d تبديل لاپلاس تابع f() را در نظر بگيريد. همچنين فرض كنيد ( R() > عدد مختلط با قسمت حقيقي مثبت) در اين صورت صورت وجود لاپلاس f() نامند و با قضايا ) ضرب در (انتقال درحوزه S) F()
روش محاسبه ی توان منابع جریان و منابع ولتاژ
روش محاسبه ی توان منابع جریان و منابع ولتاژ ابتدا شرح کامل محاسبه ی توان منابع جریان: برای محاسبه ی توان منابع جریان نخست باید ولتاژ این عناصر را بدست آوریم و سپس با استفاده از رابطه ی p = v. i توان این
در اين آزمايش ابتدا راهاندازي موتور القايي روتور سيمپيچي شده سه فاز با مقاومتهاي روتور مختلف صورت گرفته و س سپ مشخصه گشتاور سرعت آن رسم ميشود.
ك ي آزمايش 7 : راهاندازي و مشخصه خروجي موتور القايي روتور سيمپيچيشده آزمايش 7: راهاندازي و مشخصه خروجي موتور القايي با روتور سيمپيچي شده 1-7 هدف آزمايش در اين آزمايش ابتدا راهاندازي موتور القايي روتور
هدف:.100 مقاومت: خازن: ترانزيستور: پتانسيومتر:
آزمايش شماره (10) تقويت كننده اميتر مشترك هدف: هدف از اين آزمايش مونتاژ مدار طراحي شده و اندازهگيري مشخصات اين تقويت كننده جهت مقايسه نتايج اندازهگيري با مقادير مطلوب و در ادامه طراحي يك تقويت كننده اميترمشترك
a a VQ It ميانگين τ max =τ y= τ= = =. y A bh مثال) مقدار τ max b( 2b) 3 (b 0/ 06b)( 1/ 8b) 12 12
مقاومت مصالح بارگذاري عرضي: بارگذاري عرضي در تيرها باعث ايجاد تنش برشي ميشود كه مقدار آن از رابطه زير قابل محاسبه است: كه در اين رابطه: - : x h q( x) τ mx τ ( τ ) = Q I برش در مقطع مورد نظر در طول تير
O 2 C + C + O 2-110/52KJ -393/51KJ -283/0KJ CO 2 ( ) ( ) ( )
به كمك قانون هس: هنري هس شيميدان و فيزيكدان سوي يسي - روسي تبار در سال ۱۸۴۰ از راه تجربه دريافت كه گرماي وابسته به يك واكنش شيمياي مستقل از راهي است كه براي انجام ا ن انتخاب مي شود (در دماي ثابت و همچنين
ﻴﻓ ﯽﺗﺎﻘﻴﻘﺤﺗ و ﯽهﺎﮕﺸﻳﺎﻣزﺁ تاﺰﻴﻬﺠﺗ ﻩﺪﻨﻨﮐ
دستوركارآزمايش ميز نيرو هدف آزمايش: تعيين برآيند نيروها و بررسي تعادل نيروها در حالت هاي مختلف وسايل آزمايش: ميز مدرج وستون مربوطه, 4 عدد كفه وزنه آلومينيومي بزرگ و قلاب با نخ 35 سانتي, 4 عدد قرقره و پايه
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and
:نتوين شور شور هدمع لکشم
عددی آناليز جلسه چھارم حل معادلات غير خطي عمده روش نيوتن: مشکل f ( x را در f ( x و برای محاسبه ھر عضو دنباله باید ھر مرحله محاسبه کرد. در روشھای جایگزین تقریبی f ( x x + = x f جایگزین میکنم کنيم. ( x مشتق
1 ﺶﻳﺎﻣزآ ﻢﻫا نﻮﻧﺎﻗ ﻲﺳرﺮﺑ
آزمايش 1 بررسي قانون اهم بررسي تجربي قانون اهم و مطالعه پارامترهاي مو ثر در مقاومت الكتريكي يك سيم فلزي تي وري آزمايش هر و دارند جسم فيزيكي داراي مقاومت الكتريكي است. اجسام فلزي پلاستيك تكه يك بدن انسان
هدف: LED ديودهاي: 4001 LED مقاومت: 1, اسيلوسكوپ:
آزمايش شماره (1) آشنايي با انواع ديود ها و منحني ولت -آمپر LED هدف: هدف از اين آزمايش آشنايي با پايه هاي ديودهاي معمولي مستقيم و معكوس مي باشد. و زنر همراه با رسم منحني مشخصه ولت- آمپر در دو گرايش وسايل
سبد(سرمايهگذار) مربوطه گزارش ميكند در حاليكه موظف است بازدهي سبدگردان را جهت اطلاع عموم در
بسمه تعالي در شركت هاي سبدگردان بر اساس پيوست دستورالعمل تاسيس و فعاليت شركت هاي سبدگردان مصوب هيي ت مديره سازمان بورس بانجام مي رسد. در ادامه به اراي ه اين پيوست مي پردازيم: چگونگي محاسبه ي بازدهي سبد
α & β spatial orbitals in
The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We
آزمایش 8: تقویت کننده عملیاتی 2
آزمایش 8: تقویت کننده عملیاتی 2 1-8 -مقدمه 1 تقویت کننده عملیاتی (OpAmp) داراي دو یا چند طبقه تقویت کننده تفاضلی است که خروجی- هاي هر طبقه به وروديهاي طبقه دیگر متصل شده است. در انتهاي این تقویت کننده
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار
محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: نادر قاسمی جلسه 2 در این درسنامه به مروري کلی از جبر خطی می پردازیم که هدف اصلی آن آشنایی با نماد گذاري دیراك 1 و مباحثی از
مقدمه دسته بندي دوم روش هاي عددي دامنه محدود اهداف: هاي چندجمله اي رهيافت هاي محاسباتي: سعي و خطا دامنه نامحدود
اهداف: محاسبه ريشه دستگاه دسته عدم وابسته معادالت ريشه هاي چندجمله اي معادالت غيرخطي بندي وابستگي به روش به مشتق مشتق تابع مقدمه غير خطي هاي عددي تابع دسته بندي دوم روش هاي عددي دامنه محدود دامنه نامحدود
حل J 298 كنيد JK mol جواب: مييابد.
تغيير ا نتروپي در دنياي دور و بر سيستم: هر سيستم داراي يك دنياي دور و بر يا محيط اطراف خود است. براي سادگي دنياي دور و بر يك سيستم را محيط ميناميم. محيط يك سيستم همانند يك منبع بسيار عظيم گرما در نظر گرفته
محاسبه ی برآیند بردارها به روش تحلیلی
محاسبه ی برآیند بردارها به روش تحلیلی برای محاسبه ی برآیند بردارها به روش تحلیلی باید توانایی تجزیه ی یک بردار در دو راستا ( محور x ها و محور y ها ) را داشته باشیم. به بردارهای تجزیه شده در راستای محور
V. Finite Element Method. 5.1 Introduction to Finite Element Method
V. Fnte Element Method 5. Introducton to Fnte Element Method 5. Introducton to FEM Rtz method to dfferental equaton Problem defnton k Boundary value problem Prob. Eact : d d, 0 0 0, 0 ( ) ( ) 4 C C * 4
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
در اين ا زمايش ابتدا راهاندازي موتور القايي رتور سيمپيچي شده سه فاز با مقاومت مختلف بررسي و س سپ مشخصه گشتاور سرعت ا ن رسم ميشود.
ا زمايش 4: راهاندازي و مشخصه خروجي موتور القايي با رتور سيمپيچي شده 1-4 هدف ا زمايش در اين ا زمايش ابتدا راهاندازي موتور القايي رتور سيمپيچي شده سه فاز با مقاومت مختلف بررسي و س سپ مشخصه گشتاور سرعت ا
آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ(
آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ( فرض کنید جمعیت یک دارای میانگین و انحراف معیار اندازه µ و انحراف معیار σ باشد و جمعیت 2 دارای میانگین µ2 σ2 باشند نمونه های تصادفی مستقل از این دو جامعه
آزمایش 2: تعيين مشخصات دیود پيوندي PN
آزمایش 2: تعيين مشخصات دیود پيوندي PN هدف در اين آزمايش مشخصات ديود پيوندي PN را بدست آورده و مورد بررسي قرار مي دهيم. وسايل و اجزاي مورد نياز ديودهاي 1N4002 1N4001 1N4148 و يا 1N4004 مقاومتهاي.100KΩ,10KΩ,1KΩ,560Ω,100Ω,10Ω
+ Δ o. A g B g A B g H. o 3 ( ) ( ) ( ) ; 436. A B g A g B g HA است. H H برابر
ا نتالپي تشكيل پيوند وا نتالپي تفكيك پيوند: ا نتالپي تشكيل يك پيوندي مانند A B برابر با تغيير ا نتالپي استانداردي است كه در جريان تشكيل ا ن B g حاصل ميشود. ( ), پيوند از گونه هاي (g )A ( ) + ( ) ( ) ;
مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) X"Y=-XY" X" X" kx = 0
مثال( مساله الپالس در ناحیه داده شده را حل کنید. (,)=() > > < π () حل: به کمک جداسازی متغیرها: + = (,)=X()Y() X"Y=-XY" X" = Y" ثابت = k X Y X" kx = { Y" + ky = X() =, X(π) = X" kx = { X() = X(π) = معادله
مقاطع مخروطي 1. تعريف مقاطع مخروطي 2. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره
مقاطع مخروطي فصل در اين فصل ميخوانيم:. تعريف مقاطع مخروطي. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره ث. طول مماس و طول وتر مينيمم ج. دورترين و نزديكترين
خطا انواع. (Overflow/underflow) (Negligible addition)
محاسبات عدديپي پيشرفته فصل اوليه مفاهيم خطا انواع با افزايش دقت از جمع تعداد محدود ارقام حاصل ميشود. (Truncation برش: error) خطاي (Precision) اين خطا كم مي شود. در نمايش يا ذخيره نمودن مقادير عددي با تعداد
Constant Elasticity of Substitution in Applied General Equilibrium
Constant Elastct of Substtuton n Appled General Equlbru The choce of nput levels that nze the cost of producton for an set of nput prces and a fed level of producton can be epressed as n sty.. f Ltng for
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
را بدست آوريد. دوران
تجه: همانطر كه در كلاس بارها تا كيد شد تمرينه يا بيشتر جنبه آمزشي داشت براي يادگيري بيشتر مطالب درسي بده است مشابه اين سه تمرين كه در اينجا حل آنها آمده است در امتحان داده نخاهد شد. m b الف ماتريس تبديل
8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.
8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
e r 4πε o m.j /C 2 =
فن( محاسبات بوهر نيروي جاذبه الکتروستاتيکي بين هسته و الکترون در اتم هيدروژن از رابطه زير قابل محاسبه F K است: که در ا ن بار الکترون فاصله الکترون از هسته (يا شعاع مدار مجاز) و K ثابتي است که 4πε مقدار
چكيده. Keywords: Nash Equilibrium, Game Theory, Cournot Model, Supply Function Model, Social Welfare. 1. مقدمه
اثرات تراكم انتقال بر نقطه تعادل بازار برق در مدل هاي كورنات و Supply Function منصوره پيدايش * اشكان رحيمي كيان* سيد محمدحسين زندهدل * مصطفي صحراي ي اردكاني* *دانشكده مهندسي برق و كامپيوتر- دانشگاه تهران
روش عملكردي استاندارد (SOP) AOBB95/SOP11/01. ا زمايش Rh(D) به روش لوله اي
AOBB95/SOP11/01 روش عملكردي استاندارد (SOP) ا زمايش Rh(D) به روش لوله اي هدف/ اصول: 1) تعيين گروه Rh(D) گلبول قرمز خون بصورت فنوتيپ Rh-Positive و Rh-Negative با توجه به حضور و عدم حضور ا نتيژن D در سطح
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
10 ﻞﺼﻓ ﺶﺧﺮﭼ : ﺪﻴﻧاﻮﺘﺑ ﺪﻳﺎﺑ ﻞﺼﻓ ﻦﻳا يا ﻪﻌﻟﺎﻄﻣ زا ﺪﻌﺑ
فصل چرخش بعد از مطالعه اي اين فصل بايد بتوانيد : - مكان زاويه اي سرعت وشتاب زاويه اي را توضيح دهيد. - چرخش با شتاب زاويه اي ثابت را مورد بررسي قرار دهيد. 3- رابطه ميان متغيرهاي خطي و زاويه اي را بشناسيد.
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
1) { } 6) {, } {{, }} 2) {{ }} 7 ) { } 3) { } { } 8) { } 4) {{, }} 9) { } { }
هرگاه دسته اي از اشیاء حروف و اعداد و... که کاملا"مشخص هستند با هم در نظر گرفته شوند یک مجموعه را به وجود می آورند. عناصر تشکیل دهنده ي یک مجموعه باید دو شرط اساسی را داشته باشند. نام گذاري مجموعه : الف
بررسي علل تغيير در مصرف انرژي بخش صنعت ايران با استفاده از روش تجزيه
79 نشريه انرژي ايران / دوره 2 شماره 3 پاييز 388 بررسي علل تغيير در مصرف انرژي بخش صنعت ايران با استفاده از روش تجزيه رضا گودرزي راد تاريخ دريافت مقاله: 89//3 تاريخ پذيرش مقاله: 89/4/5 كلمات كليدي: اثر
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).
Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,
چكيده SPT دارد.
ارايه يك روش چيدمان خلاقانه جديد براي زمانبندي دسترسي به شبكه جهت كاهش انجام درخواستها سهراب خانمحمدي سولماز عبدالهي زاد استاد گروه مهندسي كنترل دانشگاه تبريز تبريز ايران Khamohammadi.sohrab@tabrizu.ac.ir
مربوطند. با قراردادن مقدار i در معادله (1) داريم. dq q
مدارهاي تا بحال به مدارهايي پرداختيم كه در ا نها اجزاي مدار مقاومت بودند و در ا نها جريان با زمان تغيير نميكرد. در اينجا خازن را به عنوان يك عنصر مداري معرفي ميكنيم خازن ما را به مفهوم جريانهاي متغير با
( Δ > o) است. ΔH 2. Δ <o ( ) 6 6
تغييرات انرژي ضمن انحلال: اكثر مواد در موادي مشابه خود حل ميشوند و اين پديده را با برهمكنشهاي ميكروسكوپي بررسي كرديم. براي بررسي ماكروسكوپي اين پديده بايد تغييرات انرژي (ا نتالپي) و تغييرات بينظمي (ا نتروپي)
نيمتوان پرتو مجموع مجموع) منحني
شبيه سازي مقايسه و انتخاب روش بهينه پيادهسازي ردگيري مونوپالس در يك رادار آرايه فازي عباس نيك اختر حسن بولوردي صنايع الكترونيك شيراز Abbas.nikakhtar@Gmail.com صنايع الكترونيك شيراز hasan_bolvardi@yahoo.com
اراي ه روشي نوين براي حذف مولفه DC ميراشونده در رلههاي ديجيتال
o. F-3-AAA- اراي ه روشي نوين براي حذف مولفه DC ميراشونده در رلههاي ديجيتال جابر پولادي دانشكده فني و مهندسي دانشگاه ا زاد اسلامي واحد علوم و تحقيقات تهران تهران ايران مجتبي خدرزاده مهدي حيدرياقدم دانشكده
P = P ex F = A. F = P ex A
محاسبه كار انبساطي: در ترموديناميك اغلب با كار ناشي از انبساط يا تراكم سيستم روبرو هستيم. براي پي بردن به اين نوع كار به شكل زير خوب توجه كنيد. در اين شكل استوانهاي را كه به يك پيستون بدون اصطكاك مجهز
آزمايش (٤) موضوع آزمايش: تداخل به وسيلهي دو شكاف يانگ و دو منشور فرنل
آزمايش (٤) موضوع آزمايش: تداخل به وسيلهي دو شكاف يانگ و دو منشور فرنل وسايل مورد نياز: طيف سنج دو شكاف يانگ لامپ سديم و منبع تغذيه ليزر هليوم نئون دو منشور فرنل دو عدد عدسي خط كش چوبي كوليس ريل اپتيكي
سازی SIMULATION سازی
ھفته اول آشناﯾی با اصول شبيه سازی اصول شبيه سازی 1 تمرين شخصي ھر روز براي دويدن از خانه خارج مي شود. ھنگام ترك خانه با شانس مساوي از درب جلو يا درب عقب خانه خارج مي شود و بطور مشابه وقتي كه از دويدن باز
1- مقدمه است.
آموزش بدون نظارت شبكه عصبي RBF به وسيله الگوريتم ژنتيك محمدصادق محمدي دانشكده فني دانشگاه گيلان Email: m.s.mohammadi@gmail.com چكيده - در اين مقاله روشي كار آمد براي آموزش شبكه هاي عصبي RBF به كمك الگوريتم
HMI SERVO STEPPER INVERTER
راهنماي راهاندازي سريع درايوهاي مخصوص ا سانسور كينكو (سري (FV109 سري درايوهاي FV109 كينكو درايوهاي مخصوص ا سانسور كينكو ميباشد كه با توجه به نيازمنديهاي اساسي مورد نياز در ايران به بازار عرضه شدهاند. به
رياضي 1 و 2. ( + ) xz ( F) خواص F F. u( x,y,z) u = f = + + F = g g. Fx,y,z x y
رياضي و رياضي و F,F,F F= F ˆ ˆ ˆ i+ Fj+ Fk)F ديورژانس توابع برداري ديورژانس ميدان برداري كه توابع اسكالر و حقيقي هستند) به صورت زير تعريف ميشود: F F F div ( F) = + + F= f در اين صورت ديورژانس گراديان,F)
تحلیل مدار به روش جریان حلقه
تحلیل مدار به روش جریان حلقه برای حل مدار به روش جریان حلقه باید مراحل زیر را طی کنیم: مرحله ی 1: مدار را تا حد امکان ساده می کنیم)مراقب باشید شاخه هایی را که ترکیب می کنید مورد سوال مسئله نباشد که در
Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population
Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton
است). ازتركيب دو رابطه (1) و (2) داريم: I = a = M R. 2 a. 2 mg
دستوركارآزمايش ماشين آتوود قانون اول نيوتن (قانون لختي يا اصل ماند): جسمي كه تحت تا ثيرنيروي خارجي واقع نباشد حالت سكون يا حركت راست خط يكنواخت خود را حفظ مي كند. قانون دوم نيوتن (اصل اساسي ديناميك): هرگاه
آزمایش 1 :آشنایی با نحوهی کار اسیلوسکوپ
آزمایش 1 :آشنایی با نحوهی کار اسیلوسکوپ هدف در اين آزمايش با نحوه كار و بخشهاي مختلف اسيلوسكوپ آشنا مي شويم. ابزار مورد نياز منبع تغذيه اسيلوسكوپ Function Generator شرح آزمايش 1-1 اندازه گيري DC با اسيلوسكوپ
تي وري آزمايش ششم هدف: بررسي ترانزيستور.UJT
ب- پ- آزمايشگاه الكترونيك - درس دكتر سبزپوشان تي وري آزمايش ششم هدف: بررسي ترانزيستور.UJT *لطفا قبل از آمدن به آزمايشگاه با مراجعه به كتابهاي درسي تي وري ترانزيستورهاي UJT را مطالعه فرماي يد. Uni )يكي
هر عملگرجبر رابطه ای روی يک يا دو رابطه به عنوان ورودی عمل کرده و يک رابطه جديد را به عنوان نتيجه توليد می کنند.
8-1 جبررابطه ای يک زبان پرس و جو است که عمليات روی پايگاه داده را توسط نمادهايی به صورت فرمولی بيان می کند. election Projection Cartesian Product et Union et Difference Cartesian Product et Intersection
- 1 مقدمه كنند[ 1 ]:
مكانيابي منابع توليد پراكنده در شبكه فوق توزيع با استفاده از الگوريتم ژنتيك غيرمسلط( NSGAII ) 2 1 ري وف قادري محمد رضا بسمي 1 دانشگاه شاهد دانشكده فني مهندسي Raof.ghaderi@yahoo.com 2 دانشگاه شاهد دانشكده
محدوديتهاي غيرخطي 1- دانشكده مهندسي برق كامپيوتر دانشگاه محقق اردبيلي اردبيل ايران.
پخشبار اقتصادي مبتني بر روش بهبود يافته ABC با اعمال محدوديتهاي غيرخطي * علي قاسمي مرزبالي سيد جلال سيد شنوا رضا بازيار اويس عابدي نيا علي يوسفي حسين غلام علي تبار Iranan Electrc Industry Journal of Qualty
جلسه 3 ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک کوانتمی بیان. d 1. i=0. i=0. λ 2 i v i v i.
محاسبات کوانتمی (671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: محمد جواد داوري جلسه 3 می شود. ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک
: O. CaCO 3 (1 CO (2 / A 11 بوده و مولكولي غيرقطبي ميباشد. خصوصيتهاي
شيمي آلي مدرسان شريف رتبه يك كارشناسي ارشد شيمي آلي شيمي موادي تركيبها را در آزمايشگاه نميتوان فصل اول «مباني شيمي آلي» است كه با موجودات زنده ارتباط دارد. تا اواسط قرن نوزدهم ميلادي اعتقاد بر اين بود
سايت ويژه رياضيات درسنامه ها و جزوه هاي دروس رياضيات
سايت ويژه رياضيات درسنامه ها و جزوه هاي دروس رياضيات دانلود نمونه سوالات امتحانات رياضي نمونه سوالات و پاسخنامه كنكور دانلود نرم افزارهاي رياضيات و... کانال سایت ریاضی سرا در تلگرام: https://telegram.me/riazisara
98-F-TRN-596. ترانسفورماتور بروش مونيتورينگ on-line بارگيري. Archive of SID چكيده 1) مقدمه يابد[
و 98-F-TRN-596 محاسبه جهشهاي حرارتي و عمر از دست رفته ترانسفورماتور بروش مونيتورينگ n-line بارگيري آرش آقايي فر- حسين عزيزي موسسه تحقيقات ترانسفورماتور ايران واژه هاي كليدي: بارگيري ترانسفورماتور قدرت
جريان ديفرانسيلي CDBA
پياده سازي فيلترهاي آنالوگ مد جرياني با استفاده از DTA محرم حسين پور و بابك قصاب زاده اهرابي گروه مهندسي برق الكترونيك- دانشگاه آزاد اسلامي واحد تبريز babakahrabi@gmail.com m.hosseinpour.n@gmail.com چكيده
Phasor Diagram of an RC Circuit V R
ESE Lecture 3 Phasor Dagram of an rcut VtV m snt V t V o t urrent s a reference n seres crcut KVL: V m V + V V ϕ I m V V m ESE Lecture 3 Phasor Dagram of an L rcut VtV m snt V t V t L V o t KVL: V m V
ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ ΕΠΙΜΕΛΕΙΑ: ΑΡΜΕΝΑΚΑΣ ΜΑΡΙΝΟΣ ΧΑΝΙΑ
1 Complete Set of Grassmann States
Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ
R = V / i ( Ω.m كربن **
مقاومت مقاومت ويژه و رسانندگي اگر سرهاي هر يك از دو ميله مسي و چوبي را كه از نظر هندسي مشابهند به اختلاف پتانسيل يكساني وصل كنيم جريانهاي حاصل در ا نها بسيار متفاوت خواهد بود. مشخصهاي از رسانا كه در اينجا
5 TTGGGG 3 ميگردد ) شكل ).
تكميل انتهاهاي مولكولهاي خطي DNA با توجه به اينكه RNA هاي پرايمر بايد از انتهاي مولكولهاي DNA برداشته شوند سي وال اين است در اين صورت انتهاي DNA هاي خطي چگونه تكميل ميگردد. در هنگام همانندسازي نه تنها
یﺭﺎﺘﻓﺭ یﺭﺎﺘﻓﺭ یﺎﻫ یﺎﻫ ﻑﺪﻫ ﻑﺪﻫ
دهم فصل اندازه گذارى ساعات آموزش نظری عملی جمع ٤ ٣ ١ فصل دهم كند. های رفتاری هدف پس از پايان اين فصل از هنرجو انتظار می رود: 1 لزوم اندازه گذاری را تعريف كند. 2 علايم اندازه گذاری را طبق استاندارد شناسايی
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
آزمایش 1: پاسخ فرکانسی تقویتکننده امیتر مشترك
آزمایش : پاسخ فرکانسی تقویتکننده امیتر مشترك -- مقدمه هدف از این آزمایش بدست آوردن فرکانس قطع بالاي تقویتکننده امیتر مشترك بررسی عوامل تاثیرگذار و محدودکننده این پارامتر است. شکل - : مفهوم پهناي باند تقویت
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
ﺪ ﻮﻴﭘ ﻪﻳﻭﺍﺯ ﺯﺍ ﻪﻛ ﺖﺳﺍ ﻂﺧ ﻭﺩ ﻊﻃﺎﻘﺗ ﺯﺍ ﻞﺻﺎﺣ ﻲﻠﺧﺍﺩ ﻪﻳﻭﺍﺯ ﺯﺍ ﺕﺭﺎﺒﻋ ﺪﻧﻮﻴﭘ ﻪﻳﻭﺍﺯ ﻪﻛ ﺪﻫﺩ ﻲﻣ ﻥﺎﺸﻧ ﺮﻳﺯ ﻞﻜﺷ ﻥﺎﺳﻮﻧ ﻝﺎﺣ ﺭﺩ ﹰﺎﻤﺋﺍﺩ ﺎﻬﻤﺗﺍ ﻥﻮﭼ
طول پيوند Bond lengths همواره در مولكولها اتمهاي متشكله داراي حركت نوساني نسبت به يكديگر ميباشند اگرچه در اثر نوسان اتمها فاصله پيوند ا نها هميشه متغير است با وجود اين در همه پيوندها فاصله متوسطي بين هسته
پايداری Stability معيارپايداری. Stability Criteria. Page 1 of 8
پايداری Stility اطمينان از پايداری سيستم های کنترل در زمان طراحی ا ن بسيار حاي ز اهمييت می باشد. سيستمی پايدار محسوب می شود که: بعد از تغيير ضربه در ورودی خروجی به مقدار اوليه ا ن بازگردد. هر مقدار تغيير
آزمايشگاه ديناميك ماشين و ارتعاشات آزمايش چرخ طيار.
` آزمايشگاه ديناميك ماشين و ارتعاشات dynlab@jamilnia.ir www.jamilnia.ir/dynlab ١ تئوري آزمايش چرخ طيار يا چرخ ل نگ (flywheel) صفحه مدوري است كه به دليل جرم و ممان اينرسي زياد خود قابليت بالايي در ذخيرهسازي
بررسي وقوع پديده فرورزنانس بر اثر كليدزني ناقص در شبكه هاي توزيع نيروي برق عبدالامير ياقوتي برق منطقه اي تهران-دانشگاه تربيت مدرس E_mail:a_a_yaghooti@yahoo.com (١ چكيده:پديده فرورزنانس يك رزنانس غير خطي
تمرینات درس ریاض عموم ٢. r(t) = (a cos t, b sin t), ٠ t ٢π. cos ٢ t sin tdt = ka۴. x = ١ ka ۴. m ٣ = ٢a. κds باشد. حاصل x٢
دانش اه صنعت شریف دانش ده ی علوم ریاض تمرینات درس ریاض عموم سری دهم. ١ سیم نازک داریم که روی دایره ی a + y x و در ربع اول نقطه ی,a را به نقطه ی a, وصل م کند. اگر چ ال سیم در نقطه ی y,x برابر kxy باشد جرم
برخوردها دو دسته اند : 1) كشسان 2) ناكشسان
آزمايش شماره 8 برخورد (بقاي تكانه) وقتي دو يا چند جسم بدون حضور نيروهاي خارجي طوري به هم نزديك شوند كه بين آنها نوعي برهم كنش رخ دهد مي گوييم برخوردي صورت گرفته است. اغلب در برخوردها خواستار اين هستيم
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University
A Study on Predctve Control Usng a Short-Term Predcton Method Based on Chaos Theory (Predctve Control of Nonlnear Systems Usng Plural Predcted Dsturbance Values) Noryasu MASUMOTO, Waseda Unversty, 3-4-1
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل
مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل شما باید بعد از مطالعه ی این جزوه با مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل کامال آشنا شوید. VA R VB به نظر شما افت ولتاژ مقاومت R چیست جواب: به مقدار عددی V A
هلول و هتسوپ لدب م ١ لکش
دوفازي با كيفيت صورت مخلوط به اواپراتور به 1- در اواپراتور كولر يك اتومبيل مبرد R 134a با دبي 0.08kg/s جريان دارد. ورودي مبرد مي شود و محيط بيرون در دماي 25 o C وارد از روي اواپراتور از بخار اشباع است.
طراحي و شبيه سازي آرايه اي از آنتن هاي ميكرواستريپ دو فركانسي براي يك ميكرو ماهواره كوچك مرتضي كازروني- دكتر احمد چلداوي دانشجوي دكتراي دانشگاه علم و صنعت ايران و هيي ت علمي دانشگاه صنعتي مالك اشتر- دانشيار
هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه
آزما ی ش شش م: پا س خ فرکا نس ی مدا رات مرتبه اول هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه و پاسخ فاز بررسی رفتار فیلتري آنها بدست
V o. V i. 1 f Z c. ( ) sin ورودي را. i im i = 1. LCω. s s s
گزارش کار ا زمايشگاه اندازهگيري و مدار ا زمايش شمارهي ۵ مدار C سري خروجي خازن ۱۳ ا بانماه ۱۳۸۶ ي م به نام خدا تي وري ا زمايش به هر مداري که در ا ن ترکيب ي از مقاومت خازن و القاگر به کار رفتهشده باشد مدار
راهنمای کاربری موتور بنزینی )سیکل اتو(
راهنمای کاربری موتور بنزینی )سیکل اتو( هدف آزمایش : شناخت و بررسی عملکرد موتور بنزینی تئوری آزمایش: موتورهای احتراق داخلی امروزه به طور وسیع برای ایجاد قدرت بکار می روند. ژنراتورهای کوچک پمپ های مخلوط
مقدمه -1-4 تحليلولتاژگرهمدارهاييبامنابعجريان 4-4- تحليلجريانمشبامنابعولتاژنابسته
مقدمه -1-4 تحليلولتاژگرهمدارهاييبامنابعجريان -2-4 بامنابعجريانوولتاژ تحليلولتاژگرهمدارهايي 3-4- تحليلولتاژگرهبامنابعوابسته 4-4- تحليلجريانمشبامنابعولتاژنابسته 5-4- ژاتلو و 6-4 -تحليلجريانمشبامنابعجريان
فصل اول آشنايي با Excel
فصل اول آشنايي با Excel 1 هدفهاي رفتاري پس از پايان اين فصل هنرجو بايد در Excel بتواند : 1- قسمتهاي مختلف محيط كار Excel را بشناسد. 2- كاربرد شكلهاي مختلف حالت ماوس را بشناسد. 3- با كاربرد روبانهاي مختلف
رياضي 1 و 2 تابع مثال: مثال: 2= ميباشد. R f. f:x Y Y=
رياضي و رياضي و تابع تعريف تابع: متغير y را تابعي از متغير در حوزه تعريف D گويند اگر به ازاي هر از اين حوزه يا دامنه مقدار معيني براي متغير y متناظر باشد. يا براي هر ) y و ( و ) y و ( داشته باشيم ) (y
d) هيچكدام a) فشار b) حجم c) سرعت صفحه 3 از 9
آزمون دوره مديريت انرژي تخصصي برق نمونه سوالات بخش (1) سي والات تستي 1 مطابق استاندارد IEEE يك موتور الكتريكي در كداميك از شرايط زير در توان نامي خود عمل ميكند a) تغييرات ولتاژ ±%6 و تغييرات فركانس %3
دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم
آزمون پایان ترم درس: هندسه منیفلد 1 زمان آزمون 120 دقیقه نیمسال: اول 95-94 رشته تحصیلی : ریاضی محض 1. نشان دهید X یک میدان برداري روي M است اگر و فقط اگر براي هر تابع مشتقپذیر f روي X(F ) M نیز مشتقپذیر
یک روش بهینه سازی ترکیبی بر مبنای الگوریتم pso برای حل مسئله زمان بندی
یک روش بهینه سازی ترکیبی بر مبنای الگوریتم pso برای حل مسئله زمان بندی خالصه: مسئله هاي زمان بندي و برنامه ريزي سازگارسازي و هماهنگ نمودن مجموعه اي از نهادها مانند رخدادها فعاليتها افراد ابزار و دستگاهها
مقاومت مصالح 2 فصل 9: خيز تيرها. 9. Deflection of Beams
مقاومت مصالح فصل 9: خيز تيرها 9. Deflection of eams دکتر مح مدرضا نيرومند دااگشنه ايپم نور اصفهان eer Johnston DeWolf ( ) رابطه بين گشتاور خمشی و انحنا: تير طره ای تحت بار متمرکز در انتهای آزاد: P انحنا