d log w F = 1(i = k) + d log A k b Ψe k + b Ψ α d log w

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "d log w F = 1(i = k) + d log A k b Ψe k + b Ψ α d log w"

Transcript

1 B Proos Proo o Theorem 2.2. By Shephard s lemma, we now that, to a rst order, the productvty shoc A wll change the prces o any ndustry who purchases nputs, ether drectly or ndrectly, rom ndustry d log p = ( = ) + Rewrte ths n matrx orm to get F d log w F α F + Ω d log p. (36) d log p = (I Ω) ( α d log w e ) = Ψ( α d log w e ), (37) where e s the th standard bass vector. Let the household s aggregate consumpton good to be the numerare, so that the household s deal prce ndex P c s always equal to one. Then we now that Combne ths wth the prevous expresson to get Note that, b Ψ = λ and b Ψ α = Λ. Hence, d log P c = b d log p = 0. (38) b Ψe + b Ψ α d log w = 0. (39) λ + Λ d log w = 0. (40) Now, note that From ths, we now that Λ = w L P c C. (4) d log Λ = d log w + d log L d log C. (42) 76

2 Substtute ths nto the prevous expresson to get λ + Λ d log Λ Λ d log L + d log C = 0, (43) where we use the act that Λ =. Rearrange ths to get the desred result.to get an explct characterzaton or d log Λ / n terms o structural parameters o the model, wthout loss o generalty, assume that each good s produced rom a dstnct prmary actor (ths can be acheved by relabellng the nput-output matrx). Now note that λ = b + µ ω λ, (44) w = α p y µ G (w /P c ), (45) λ = p y P c C, (46) p = A C (p,..., p N, w )µ, (47) P c = p c C =. (48) We can derentate these to get to our answer. Denote the elastcty o substtuton between and or the total cost uncton o ndustry by ρ. Then we can wrte l d λ = d b + ρ d ω µ λ d λ + ω µ ω µ λ d log µ, (49) d b = b b ( ) ρ c d log p d log p, (50) d ω = ω ω ( ) d log p d log p + ω α ( ) d log p d log w, (5) d log w = ω ( ) d log w d log p + d log p + d log y d log µ, (52) ρ L ρ L 77

3 d log y = λ The proo or the case wth marups s very smlar. d λ d log p + d log P cc, (53) Proo o Proposton 2.6. Tae all dervatves wth respect to A and normalze P c =. In ths case, the system reduces to λ d λ = 0, (54) d log w = d log p + d log y (55) d log y = d log p + d log C (56) d log p = ( = ) + α d log w + ω d log p, (57) d log C = w l C d log w + π ( d log λ + d log C ). (58) C We also now that b d log p = 0 by normalzaton. Hence, combnng the second and thrd relatonshp we get that d log w = d log C, (59) n other words, all wages move together there s no pecunary externalty on the actors n response to a shoc. Next, we now the prcng equaton s d log p = (I Ω) (α d log C e ). (60) Combne ths wth b d log p = 0 to get the desred result that d log C = b (I Ω) e, (6) ollowng the act that b (I Ω) α = or, wthout marups, the sum o actor payments would add up to GDP snce there are no pure prots. Proo o Proposton 3.. Frst, observe that d log p = ( = ) + ω d log p + α d log w. (62) Hence, d log p = e (I Ω) α d log w e (I Ω) e = d log w ψ. (63) 78

4 Snce, b d log p = d log w λ = 0, ths s d log p = λ ψ. (64) Ths completely characterzes the eect on prces, and the real wage s equal to output, we are done. However, n equlbrum, the real wage s not equal to output. To get the eect on output, we need to tae nto account how the labor share o ncome changes. Denote the labor share by Λ L. Usng Theorem 2.2, we have that d log C = λ Λ L d Λ L. (65) Hence, we need to characterze d Λ L. We now that d Λ L = α µ λ ( θ ) [ d log w d log p ( = ) ] + Whch smples to Now, note that d Λ L = α µ λ ( θ ) ( ψ ( = ) ) + d λ = b ( θ 0 ) d log p + ω µ ( θ ) ( d log p d log p ( = ) ) + Substtute n prces, and solve ths lnear system n d λ to get α µ d λ. (66) α µ d λ. (67) ω µ d λ. d λ m = b ( θ 0 )( λ ψ ) + ω µ λ ( θ )( ψ ψ ) + ω µ λ (θ ) ψ m. Ths can be smpled to d λ m = b ( θ 0 ) λ ψ m b ( θ 0 )ψ m ψ + ω µ ( θ )λ ψ ψ m,, ω µ ( θ )λ ψ ψ m (68) (69) 79

5 Whch can be urther smpled to Hence, m + ω µ λ (θ )ψ m. (70) d λ m = λ m λ ( θ 0 ) b ( θ 0 )ψ m ψ + ω µ ( θ )λ ψ ψ m,, ω µ ( θ )λ ψ ψ m + λ (θ ) [ ψ m (m = ) ]. (7) = (θ 0 )cov b ( Ψ (), Ψ (m) ) + (θ )λ cov ( Ψ µ Ω (), Ψ (m) ) + (θ )λ ω ψ µ ω ψ m, ω µ (θ )λ ψ ψ m + λ (θ )(ψ m (m = )), = (θ 0 )cov b ( Ψ (), Ψ (m) ) + (θ )λ cov ( Ψ µ Ω (), Ψ (m) ). (72) α m µ m d λ m = (θ 0 )cov b ( Ψ (), Puttng ths altogether, we get d Λ L = α µ λ ( θ ) ( ψ ( = ) ) + (θ 0 )cov b ( Ψ (), α m µ m Ψ (m) ) + m m α m µ m Ψ (m) )+ To nsh the proo, note that m µ m α m Ψ m = Ψ L. Then d Λ L = α µ λ ( θ ) ( ψ ( = ) ) + (θ 0 )cov b ( Ψ (), α m µ m Ψ (m) ) + m (θ )λ cov ( Ψ µ Ω (), (θ )λ cov ( Ψ µ Ω (), m m α m µ m Ψ (m) ). (73) α m µ m Ψ (m) ). (74) (θ )λ cov ( Ψ µ Ω (), Ψ (L) ), (75) 80

6 = (θ 0 )cov b ( Ψ (), α m µ m Ψ (m) ) + m (θ )λ cov ( Ψ µ [Ω,a ] (), Ψ (L) ), (76) where note that Ψ LL =. Proo o Proposton 3.2. From Theorem 2.2, we now that d log C/ d log µ = λ Λ L d λ L. (77) For a quantty m, we have d λ m = b ( θ 0 )(d log p ) + Ω µ ( θ )λ [d log p d log p ] ( = )θ Ψ m. Note that Hence, Snce, b d log p = d log w + λ = 0, ths s (78) d log p = ( = ) + ω d log p + α d log w. (79) d log p = d log w + ψ. (80) d log p = λ + ψ. (8) Substtutng ths bac nto (78) and set m = L to get d λ L = b ( θ 0 )( ψ λ )ψ L + λ ( θ )µ Rearrange ths to get Ω [ ψ ψ ]Ψ L θ µ λ d λ L =( θ 0 )Cov b ( Ψ (), Ψ (L) ) + λ ( θ )µ Cov Ω ()( Ψ (), Ψ (L) ) µ ( θ )λ Ω Ψ L θ µ λ Ω Ψ L. Ω Ψ L. (82) Combne ths wth (77). 8

7 Proo o Proposton 3.3. By Shephard s lemma, d log p = ( = ) + Ω d log p + α d log w. (83) Invert ths system to get d log p = Ψe + Ψ d log w, (84) where Ψ = (I Ω) α s a N K matrx o networ-adusted actor ntenstes by ndustry. Now consder a actor L, we have d Λ L = b ( θ 0 )[ Ψ + Ψ d log w ]Ψ L, Smply ths to + ( θ )λ µ Ω [ Ψ + Ψ d log w + Ψ Ψ d log w ]Ψ L + (θ )λ µ Ω Ψ L. d Λ L =(θ 0 ) b Ψ Ψ L b Ψ L Ψ d log w, + (θ )λ µ Ω Ψ Ψ L Ω Ψ Ψ L ( ) + ( θ )λ µ Ω Ψ Ψ d log w Ψ L + (θ )λ µ Ω Ψ L, =(θ 0 ) b Ψ Ψ L b Ψ L Ψ d log w, + (θ )λ µ Ω Ψ Ψ L Ω Ψ L Ω Ψ + ( θ )λ µ ( ) Ω Ψ Ψ d log w Ψ L, 82

8 =(θ 0 ) b Ψ Ψ L b Ψ L Ψ d log w, + (θ )λ µ Cov Ω ()( Ψ (), Ψ (L) ) + ( θ )λ µ Ω Ψ Ψ L Ω Ψ L Ω Ψ d log w, =(θ 0 ) b Ψ Ψ L b Ψ L Ψ d log w, + (θ )λ µ Cov Ω ()( Ψ (), Ψ (L) ) + ( θ )λ µ Cov Ω ()( Ψ ( ), Ψ (L) ) d log w, =(θ 0 ) b Ψ Ψ L b Ψ L Ψ d log w, + (θ )λ µ Cov Ω ()( Ψ () Ψ ( ) d log w, Ψ (L) ) =(θ 0 ) b Ψ L Ψ Ψ d log w, + (θ )λ µ Cov Ω ()( Ψ () Ψ ( ) d log w, Ψ (L) ) =(θ 0 )Cov b ( Ψ () Ψ ( ) d log w, Ψ (L) ) + (θ 0 )( λ Λ d log w )λ L, + (θ )λ µ Cov Ω ()( Ψ () Ψ ( ) d log w, Ψ (L) ). Hence, or a productvty shoc, lettng Λ L be demand or actor L, and ndexng all actors by, we have d λ L =(θ 0 )Cov b Ψ () Ψ ( ) d log w, Ψ (L) + (θ )µ λ Cov [Ω,α ] Ψ () Ψ ( ) d log w, Ψ (L) 83

9 + (θ 0 ) λ λ d log w λ L. (85) Combne ths wth the observaton that λ L (d log w L + d log L L d log C) = d λ L. (86) Fnally, we now that d log C = λ + λ d log λ. (87) Set d L L = 0, and we have a lnear system wth F + equatons and F + unnowns where F s the total number o actors. Substtute bac nto networ ormula to get λ d λ + d log C = d log w (88) Λ L d log λ L =(θ 0 )Cov b Ψ () Ψ ( ) d log λ, Ψ (L) + (θ )µ λ Cov [Ω,α ] Ψ () Ψ ( ) d log λ, Ψ (L) + (θ 0 ) λ λ d log λ d log C λ L. (89) Use Theorem 2.2 to urther smply ths λ L d log λ L =(θ 0 )Cov b Ψ () Ψ ( ) d log λ, Ψ (L) + (θ )µ λ Cov [Ω,α ] Ψ () Ψ ( ) d log λ, Ψ (L). (90) 84

10 Proo o Proposton 3.4. From Theorem 2.2, we now that d log C/ d log µ = λ Λ L d λ L. (9) For a marup shoc, we can derentate demand or a quantty m to get d λ m = b ( θ 0 )(d log p ) + Ω µ ( θ )λ [d log p d log p ] ( = )θ Ψ m. By Shephard s lemma, (92) d log p = ( = ) + Ω d log p + α d log w. (93) Invert ths system to get d log p = Ψe + Ψ d log w, (94) where Ψ = (I Ω) α s a N K matrx o networ-adusted actor ntenstes by ndustry. Substtutng ths bac nto (92) and set m = L to get d Λ L = b ( θ 0 )[ Ψ + Ψ d log w ]Ψ L, + ( θ )λ µ Ω [ Ψ + Ψ d log w Ψ Ψ d log w ]Ψ L θ µ λ Ω Ψ L. Smply ths to d Λ L =( θ 0 ) b Ψ Ψ L + ( θ 0 ) b Ψ L Ψ d log w, + ( θ )λ µ Ω Ψ Ψ L Ω Ψ L Ψ + ( θ )λ µ Ω Ψ d log w Ψ L Ω Ψ L θ λ µ Ψ L, Ψ d log w 85

11 =( θ 0 ) ( ) Cov b ( Ψ (), Ψ (L) ) + λ Λ L ( ) + ( θ )λ µ CovΩ ()( Ψ (), Ψ (L) ) ( = )Ψ L + ( θ 0 ) Cov b Ψ ( ) d log w, Ψ (L) + Λ d log w Λ L + ( θ )λ µ Cov Ω Ψ () ( ) d log w, Ψ (L) ( = )Ψ L θ λ µ Ψ L, =( θ 0 ) Cov b( Ψ () + Ψ ( ) d log w, Ψ (L) ) + λ Λ L + ( θ )λ µ Cov Ω ()( Ψ () + Ψ ( ) d log w, Ψ (L) ) ( = )Ψ L + ( θ 0 ) λ + Λ d log w Λ L λ µ Ψ L, =( θ 0 ) Cov b( Ψ () + Ψ ( ) d log w, Ψ (L) ) + λ Λ L + ( θ )λ µ Cov Ω ()( Ψ () + Ψ ( ) d log w, Ψ (L) ) λ Ψ L. The nal lne ollows rom the act that ( λ + ) Λ d log w = b d log p = d log P c = 0. Fnally, substtute d log w = d log Λ + d log C nto the expresson above to get d Λ L =( θ 0 ) Cov b( Ψ () + Ψ ( ) (d log Λ + d log C), Ψ (L) ) + λ Λ L + ( θ )λ µ Cov Ω ()( Ψ () + Ψ ( ) (d log Λ + d log C), Ψ (L) ) λ Ψ L. 86

12 To complete the proo, note that d log C Ψ ( ) = d log C. (95) In other words, ths s a vector o all ones multpled by the scalar d log C, and hence t drops out o the covarance operators, snce the covarance o a vector o ones wth any other vector under any probablty dstrbuton s always equal to zero. Hence, d Λ L =( θ 0 ) Cov b( Ψ () + Ψ ( ) d log Λ, Ψ (L) ) + λ Λ L + ( θ )λ µ Cov Ω ()( Ψ () + Ψ ( ) d log Λ, Ψ (L) ) λ Ψ L. Ths can be combned wth Theorem 2.3 to complete the proo. Proo o Example 3.6. We start wth the matrces lsted n (25) and (26), so that ( θ 0 )Cov b ( Ψ (L), Ψ (L) ) ( θ 0 )Cov b ( Ψ (K), Ψ (L) ) Γ = ( θ 0 )Cov b ( Ψ (K), Ψ (L) ) ( θ 0 )Cov b ( Ψ (K), Ψ. (96) (K) δ () = ( θ 0 )Cov b ( Ψ (), Ψ (L) ) ( θ 0 )Cov b ( Ψ (), Ψ (K). (97) From the structure o the problem, we can explctly wrte the value o Γ as ollows: Γ = ( θ 0 ) b 3 (b µ + b 2 µ ) 2 b 3(b µ + b 2 µ ) 2 b 3 ( b 3 )µ 3 b 3 ( b 3 )µ 3. (98) Frst we loo at the cases or =, 2 (the case where a actor o producton s shared). We note that the case s symmetrc or =, 2 by the structure o the networ and the problem. For these values, we have that δ () = ( θ 0 ) b (µ (b µ + b 2 µ 2 )) b b 3 µ 3. (99) 87

13 Generally (or all cases), n order to solve the system n equaton (24), wrte (Λ Γ) = Invert ths to get (Λ Γ) = det Γ The determnant s (b µ + b 2 µ )( 2 0)b 3 ) ( θ 0 )b 3 (µ b + b 2 µ ) 2 ( θ 0 )b 3 ( b 3 )µ 3 b 3 µ ( 3 0)( b 3 )) b 3 µ ( 3 0)( b 3 )) ( θ 0 )b 3 (µ b + b 2 µ ) 2 ( θ 0 )b 3 ( b 3 )µ 3 (b µ + b 2 µ )( 2 0)b 3 ) det Γ =(b µ + b 2 µ 2 )( ( θ 0)b 3 )b 3 µ 3 ( ( θ 0)( b 3 )) ( θ 0 ) 2 b 2 3 ( b 3)µ 3 (µ b + b 2 µ 2 )), = Λ L Λ K (( ( θ 0 )b 3 )( ( θ 0 )( b 3 )) ( θ 0 ) 2 b 3 ( b 3 )). (00). (0) = Λ L Λ K ( ( θ 0 )b 3 ( θ 0 )( b 3 ) + ( θ 0 ) 2 b 3 ( b 3 ) ( θ 0 ) 2 b 3 ( b 3 )) = Λ L Λ K ( ( θ 0 )(b 3 + b 3 )) = Λ L Λ K θ 0. Plug ths bac nto (0) and smply, (Λ Γ) Λ K ( ( θ 0 )( b 3 )) ( θ 0 )b 3 Λ L = Λ L Λ K θ 0 Λ K ( θ 0 )( b 3 ) Λ L ( ( θ 0 )b 3 ). (02) Returnng to the specc case where =, (Λ Γ) δ () = ( ( θ 0 )( b 3 )) (θ 0 )b 3 θ 0 Λ L Λ K θ 0 ( θ 0)( b 3 ) ( θ 0 )b 3 θ 0 Λ L Λ K θ 0 b (θ 0 )(µ Λ L ) b (θ 0 )Λ K. (03) Multplyng the values n (03), and usng the dentty n (24), d log Λ =(Λ Γ) δ (), = b (θ 0 ) θ 0 ( µ Λ L )θ 0 + b 3 ( θ 0 ) µ Λ L + b 3 (θ 0 ) b 3 (θ 0 ) (θ 0 )( b 3 )( µ Λ L ) ( ( θ 0 )b 3 ). 88

14 Combne ths wth (3) gves ( θ 0 [ µ d log C = b ( b 3 )b ] ) θ 0 + b 3 ( θ 0 ) µ θ 0 Λ L Λ L [ θ 0 b 3 b (θ 0 )( b 3 ) ( µ θ 0 whch urther smples to Λ L ) ( ( θ 0 )b 3 ), d log C ] = b + b (θ 0 ) [ ( b 3 ) µ. (04) d log A Λ L Ths gves the desred result or rm. Note, as mentoned beore, a symmetrc result holds or rm 2. In the case o rm 3, we have that δ (3) = (θ 0 ) b 3 (b µ + b 2 µ 2 ) b 3 µ 3 ( b 3) ].. (05) The results rom (02) gve the blueprnt or solvng or the value o d log C d log A 3 ths, we can conclude that d log C = b 3 d log A 3 b + b 2 b 3 whch urther smples to T ( ( θ 0 )( b 3 )) θ 0 Λ L (θ 0 )b 3 Λ K θ 0 ( θ 0)( b 3 ) θ 0 Λ L ( θ 0 )b 3 Λ K θ 0 b 3 (b µ + b 2 µ 2 ) b 3 µ 3 ( b 3) as well. From, (06) = b 3 b 3 b 3 T [ b 3 ( θ 0 ) θ 0 ( θ0 )( b 3 ) ] + (θ 0 ) 2 θ 0 b 3 ( b 3 ) (θ 0 ) 2 θ 0 b 3 ( b 3 ) + [ ( θ 0 )( b 3 ) ] ( b 3 )(θ 0 ) θ 0. (07) Ths smples to gve the requred result d log C d log A 3 = b 3. (08) 89

15 Proo o Proposton 5.. The ndustry level prce s then gven by p = ( M M ( c(w, p) µ m = c(w, p) µ ( (m E A ) ε Φ(z, m ) d m d z A z ) ε. z ) ε ) ε, By Shephard s lemma, we now that, d log p = ( = ) + F d log w F α F + Ω d log p, (09) where α F and Ω are rm-level expendtures on actor F and ndustry as a share o costs (excludng entry costs). Rewrte ths n matrx orm to get d log p = (I Ω) ( α d log w e ) = Ψ( α d log w e ), (0) where e s the th standard bass vector. Let the household s aggregate consumpton good to be the numerare, so that the household s deal prce ndex P c s always equal to one. Then we now that Combne ths wth the prevous expresson to get Note that, b Ψ = λ and b Ψ α = Λ. Hence, d log P c = b d log p = 0. () b Ψe + b Ψ α d log w = 0. (2) λ + Λ d log w = 0. (3) Now, note that Λ = w L F P c C. (4) 90

16 From ths, we now that d log Λ = d log w + d log L d log C. (5) Substtute ths nto the prevous expresson to get λ + Λ d log Λ Λ d log L + d log C = 0, (6) where we use the act that Λ =. Proo o Proposton 5.2. Let the cost uncton o entrant n ndustry producng y unts be gven by c(w, p)h(y /A), (7) where A s ndustry level shoc and subscrpts have been suppressed. Free entry then mples that µc(w, p)h (y/a) y c(w, p)h(y/a) = c(w, p), (8) A where s the entry cost n unts o the nput good. We can smply ths to µh (y/a) y h(y/a) =. (9) A Ths equaton pns down the ecent scale o operaton y = Ay (, µ). The cost o producng q unts o ndustry output s then gven by nc(w, p) (y (µ, )) + n c(w, p), (20) such that ny = q. Substtute the constrant nto ths to get C(w, p) q A = Hence the ndustry s cost uncton s lnear q/a as needed. Fnally, q y A c(w, p) (y (µ, )) + q c(w, p). (2) Ay C(w, p)q/a = q c(w, p) (y (µ, )) + q c(w, p) = nl w y A w Ay + n l w. (22) 9

17 Thereore, the ndustry level cost uncton obeys Shephard s Lemma and we can replcate the rest o the proo rom Proposton 5. Proo o Proposton 5.3. ( ) d log p = ( = ) d log A + s (z) α (z) d F(z) d log w z ( ) ( ) + s (z) ω (z) d F(z) d log p + s (z) β (z) d log r (z) d F(z) z ε s (z) (z ) d log z. where s (z) s rm s share o sales n ndustry, and β (z) s the cost share o rm on ts cttous xed actor. We can solve ths system to get z d log p = (I Ω) ( e d log A + α d log w + ξ κ ), (23) where ξ = ( s z (z) β (z) d log r (z) d F(z) ) and κ = ε s (z) (z ) d log z, and the elements o Ω and α are dened approprately. Let output be the numerare so that b d log p = 0. (24) Hence, λ + Λ d log w + λ ξ λ κ = 0. (25) For each actor, we now that d log w = d log Λ + d log C. (26) Substtute ths n to get λ + Λ d log Λ + Λ d log C + λ z s (z) β (z) d log Λ r (z) d F(z) + Fnally, observe that Λ + λ z s (z) β (z) =. The proo or marup shocs s very smlar. z λ s (z) β (z) d log C λ κ = 0. Proposton B.. Consder an economy wth a cash-n-advance constrant, and nomnal rgdtes. 92

18 Then, where and d log C Λ d log L = λ d log A λ e s d log µ + d H( Λ, Λ), d log µ = (e s Ψe s ) e s Ψ(d log A α d log w), (27) d log w = d log Λ + d log M d log L. In the specal case where some racton δ n ndustry are lexble. Then, λ (s) d log µ = ( b (I Ω) b (I δ Ω) δ ) d log A ( b (I δω) δα) d log w, (28) = ( λ b (I δ Ω) δ ) d log A ( b (I δω) δα) d log w. Proo o Proposton B.. Order the producers so that the rst s producers are the ones wth stcy prces. For a vector x, denote x (s) = e sx. From the cash n advance constrant, we now that d log C = d log M d log P c, = d log M b d log p, = d log M b Ψ ( α d log w d log A ) + b Ψe s d log µ, = d log M Λ d log w + λ d log A λe s d log µ, = d log M Λ ( d log Λ + d log M d log L ) + λ d log A λe s d log µ, = d log M Λ ( d log Λ d log L ) d log M + λ d log A λe s d log µ, whch mples that d log C Λ d log L = λ d log A λ (s) d log µ Λ d log Λ. (29) To get the marups necessary to eep p (s) stcy, we mpose d log p (s) = d log µ + e s Ω log p d log A (s) = 0. (30) Ths mples d log µ = e s Ω d log p α (s) d log w + d log A (s). (3) 93

19 On the other hand, we have d log p = Ψ ( α d log w d log A ) + Ψe s d log µ. (32) Substtutng ths bac nto the prevous expresson gves d log µ = e s Ω Ψ α d log w e s Ω Ψe s d log µ + e s Ω Ψ d log A e s α d log w + e s d log A. (33) Solve ths to get d log µ = (e s(i + Ω Ψ)e s ) e s(i + Ω Ψ) ( d log A d log w ), = (e s Ψe s ) e s Ψ ( d log A d log w ). Proo o Proposton 4.. The labor-lesure condton and the cash-n-advance condton mply that Hence, or Thereore, L /(ν) = ( ) ( w w =. (34) P c C M) d log L = d log w d log M = d log Λ d log L + d log M d log M, (35) ν d log L = To nsh, apply Propostons 3. and 3.2. ν d log Λ. (36) + ν d log w = d log Λ + d log M (37) ν + Proo o Proposton 4.2. Wth log utlty n consumpton and nnte Frsch elastcty o labor supply we have that d log w d log P c = d log C, (38) or n other words, substtutng n the cash n advance constrant d log w = d log M. (39) 94

20 Furthermore, the cash n advance constrant mples that d log C = d log M d log P c, = d log M Λ d log w + λ d log A λ e s d log µ, = d log M d log M + λ d log A λ e s d log µ, = λ d log A λ e s d log µ, substtutng equaton (27) rom Proposton B. completes the proo = λ d log A λ (s) (e s Ψe s ) e s Ψ(d log A α d log w), = λ d log A λ (s) (e s Ψe s ) e s Ψ(d log A α d log M). In the specal case where some racton δ n ndustry are lexble. Then, λ (s) d log µ = ( b (I Ω) b (I δ Ω) δ ) d log A ( b (I δω) δα) d log w, (40) = ( λ b (I δ Ω) δ ) d log A ( b (I δω) δα) d log w. At the ndustry level, equaton (40) shows that the changes n marups can be nterpreted as some racton o the rms n each ndustry change ther marup n response to shocs. Proo o Proposton 5.4. On the other hand, On the other hand, d log A ( ) e ( = s = s µ ) = s µ 0. (4) d τ e d 2 2 log A ( = (σ )Var d τ 2 s (µ ) s µ )2 = (σ 2)Var s (µ ) s µ. (42) Consder an ndustry where: all rms use the same upstream nput bundle wth cost C; rms transorm ths nput nto a rm-specc varety o output usng constant return to returns to scale technology; each rm has productvty a and charges a marup µ ; the varetes are combned nto a composte good by a compettve downstream ndustry accordng to a CES producton uncton wth elastcty σ on rm. 95

21 We denote the quantty o composte good produced as Frm charges a prce Q = [ b σ The resultng demand or rm s varety s where the prce ndex s gven by Total prots are gven by p σ σ ] σ σ. (43) p = µ a C. (44) q = ( p P ) σ b Q, (45) P = [ ] b p σ σ. (46) Π = (p C)( p P ) σ b Q. (47) We solve out the prce ndex and prots explctly and get P = b ( µ a ) σ σ C, (48) σ ( µ Π = ) a a µ a [ ( ] ) σ σ µ b a b CQ. (49) For completeness we can also solve or the sales o each rm as a racton o the sales o the ndustry λ = p q PQ = b ( µ a ) σ b ( µ a ) σ. (50) We want to understand how to aggregate ths ndustry nto homogenous ndustry 96

22 wth productvty A and marup µ. These varables must satsy Π = P = µ C, (5) A ( µ A A) CQ. (52) Ths mples that A and µ are the solutons o the ollowng system o equatons µ A = b ( µ a ) σ σ, (53) σ ( µ A A) ( µ = ) a a µ a [ ( ] ) σ σ µ b a b. (54) The soluton s A = [ ( ] ) σ σ µ ( b a µ ) µ a ( ) σ µ σ b a σ µ a b, (55) µ = [ ( µ ) σ] σ b a [ ( ] ) σ σ µ ( b a µ ) µ a ( ) σ µ σ b a σ µ a b. (56) We can also rewrte ths n a useul way as A = [ ( ] ) σ σ µ b a µ ( µ a ) σ b b ( µ a ) σ = [ ( ] ) σ σ µ b a, (57) µ λ 97

23 µ = µ ( µ a ) σ b b ( µ a ) σ =. (58) µ λ Dene the ecency o each rm to be e = µ. Then, consder a steady state where s µ = s e =. Consder a transormaton e = τ + ( τ)e. Ths transormaton eeps µ constant. On the other hand, On the other hand, d log A ( ) e ( = s = s µ ) = s µ 0. (59) d τ e d 2 2 log A ( = (σ )Var d τ 2 s (µ ) s µ )2 = (σ 2)Var s (µ ) s µ. (60) C Relabellng As mentoned prevously, our results can be appled to any nested CES economy, wth any arbtrary pattern o nested substtutabltes and complementartes among ntermedate nputs and actors. For concreteness, we descrbe the relabelng or one specc example. Let the household s consumpton aggregator be C C = b ( c c ) σ σ σ σ. (6) Suppose each producer produces usng a CES aggregator o value-added VA and ntermedate nputs X: y y = A α ( VA VA ) θ θ + ( α ) ( X X θ ) θ θ θ. 98

24 Value-added conssts o derent actors VA VA = F l ν = where l s actor o type used by. Intermedate nput conssts o nputs rom other producers X X = N = l η η η η ε ( ) ε ε x ε ω x. Denote the matrx o ν usng V and the matrx o ω as Ω. We rewrte ths economy n the standard orm we requre, and put hats on the new expendture shares. The new nput-output matrx ˆΩ has dmenson (+3N+F) (+3N+F). The rst ndustry s the household s consumpton aggregator, the next N ndustres are the orgnal ndustres, the next N ndustres produce the value-added o the orgnal ndustres, the next N ndustres produce the ntermedate nputs o the orgnal ndustres, and the nal F ndustres correspond to the actors. Under the relabelng, we have ˆb = (, 0,..., 0),, ˆΩ = b dag(a) dag( a) V Ω , (62) wth and ˆθ = (σ, θ, ν, ε, ), (63) ˆµ = (, µ,,..., ). (64) 99

25 D Aggregaton o cost-based Domar weghts In ths Appendx we show that recoverng cost-based Domar weghts rom aggregated data s, n prncple, not possble. We also show how the Basu-Fernald decomposton can detect changes n msallocaton even n acyclc economes (where the equlbrum s ecent, and there s no possblty o reallocaton o resources). Example 2. also shows the alure o the aggregaton property mpled by Hulten s theorem. The easest way to see ths s to consder aggregatng the nput-output table or the economy n Example 2.. For smplcty, suppose that marups are the same everywhere so that µ = µ or all. Snce there s no possblty o reallocaton n ths economy, and snce marups are unorm, ths s our best chance o dervng an aggregaton result, but even n ths smplest example, such a result does not exst. Suppose that we aggregate the whole economy S = {,..., N}. Then, n aggregate, the economy conssts o a sngle ndustry that uses labor and nputs rom tsel to produce. In ths case, the nput-output matrx s a scalar, and equal to the ntermedate nput share o the economy Ω SS = µ N µ N, (65) and the aggregate marup or the economy s gven by µ. Thereore, λ S constructed usng aggregate data s λ S = (I µω) = µ N µ. (66) µ However, we now rom the example that d log C d log A = S λ = N λ S = µ N µ, (67) µ except n the lmtng case wthout dstortons µ. Thereore, even n ths smplest case, wth homogenous marups and no reallocaton, aggregated nput-output data cannot be used to compute the mpact o an aggregated shoc. To compare our decomposton wth that o Basu and Fernald (2002), consder the acyclc economy n Fgure 3 wth two actors L and L 2. Now, we now that d log C d log A 2 = λ 2 = ( α ). (68) 00

26 The Basu-Fernald decomposton or ths economy gves d log C d log A 2 = λ 2 + R M + µ v R M = α µ + µ v R M, (69) where the rst term (n ths case, the sales-share o 2) s the pure technology eect, and R M s the reallocaton o ntermedate nputs, even though n ths economy, there s no capacty or reallocatng resources and the equlbrum s ecent. L L 2 HH 2 Fgure 3: Acyclc economy where the sold arrows represent the low o goods. The low o prots and wages rom rms to households has been suppressed n the dagram. The two actors n ths economy are L and L 2. E Extra Examples Example E.. Next, consder the mnmal example wth two elastctes o substtuton, whch demonstrates the prncple that changes n msallocaton are drven by how each node swtches ts demand across ts supply chan n response to a shoc. To ths end, we apply Proposton 3. to the economy depcted n Fgure 4. d log C d log A 3 = λ 3 Λ L ( (θ0 ) [ b (ω 3 µ (ω 3µ 3 + ω 4 µ +(θ )µ λ [ ω3 µ 3 ω 3 ( ω3 µ 3 + ω 4 µ 4 4 )) ω 3b Λ L ] The term multplyng (θ 0 ) captures how the household wll sht ther demand across and 2 n response to the productvty shoc, and the relatve degrees o msallocaton n and 2 s supply chans. The term multplyng (θ ) taes nto account how wll sht ts demand across 3 and 4 and the relatve amount o msallocaton o labor between 3 and 0 )]).

27 L HH Fgure 4: An economy wth two elastctes o substtuton. 4. Not surprsngly, nstead we shoc ndustry, then only the household s elastcty o substtuton matters, snce ndustry wll not sht ts demand across ts nputs n response to the shoc to ndustry 2: d log C d log A =b Λ L (θ 0 ) [ b µ (ω 3µ 3 + ω 4 µ 4 ) b Λ L ]. Ths llustrates the general prncple n Proposton 3. that an elastcty o substtuton θ matters only s somewhere downstream rom. 02

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

Constant Elasticity of Substitution in Applied General Equilibrium

Constant Elasticity of Substitution in Applied General Equilibrium Constant Elastct of Substtuton n Appled General Equlbru The choce of nput levels that nze the cost of producton for an set of nput prces and a fed level of producton can be epressed as n sty.. f Ltng for

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα, ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Pricing of Options on two Currencies Libor Rates

Pricing of Options on two Currencies Libor Rates Prcng o Optons on two Currences Lbor Rates Fabo Mercuro Fnancal Models, Banca IMI Abstract In ths document we show how to prce optons on two Lbor rates belongng to two derent currences the ormer s domestc,

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Derivation for Input of Factor Graph Representation

Derivation for Input of Factor Graph Representation Dervaton for Input of actor Graph Representaton Sum-Product Prmal Based on the orgnal LP formulaton b x θ x + b θ,x, s.t., b, b,, N, x \ b x = b we defne V as the node set allocated to the th core. { V

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble

Διαβάστε περισσότερα

LECTURE 4 : ARMA PROCESSES

LECTURE 4 : ARMA PROCESSES LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Estimators when the Correlation Coefficient. is Negative

Estimators when the Correlation Coefficient. is Negative It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

8.323 Relativistic Quantum Field Theory I

8.323 Relativistic Quantum Field Theory I MIT OpenCourseWare http://ocwmtedu 8323 Relatvstc Quantum Feld Theory I Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocwmtedu/terms 1 The Lagrangan: 8323 Lecture

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Phasor Diagram of an RC Circuit V R

Phasor Diagram of an RC Circuit V R ESE Lecture 3 Phasor Dagram of an rcut VtV m snt V t V o t urrent s a reference n seres crcut KVL: V m V + V V ϕ I m V V m ESE Lecture 3 Phasor Dagram of an L rcut VtV m snt V t V t L V o t KVL: V m V

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

557: MATHEMATICAL STATISTICS II RESULTS FROM CLASSICAL HYPOTHESIS TESTING

557: MATHEMATICAL STATISTICS II RESULTS FROM CLASSICAL HYPOTHESIS TESTING Most Powerful Tests 557: MATHEMATICAL STATISTICS II RESULTS FROM CLASSICAL HYPOTHESIS TESTING To construct and assess the quality of a statistical test, we consider the power function β(θ). Consider a

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

2 Lagrangian and Green functions in d dimensions

2 Lagrangian and Green functions in d dimensions Renormalzaton of φ scalar feld theory December 6 Pdf fle generated on February 7, 8. TODO Examne ε n the two-pont functon cf Sterman. Lagrangan and Green functons n d dmensons In these notes, we ll use

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Examples of Cost and Production Functions

Examples of Cost and Production Functions Dvso of the Humates ad Socal Sceces Examples of Cost ad Producto Fuctos KC Border October 200 v 20605::004 These otes sho ho you ca use the frst order codtos for cost mmzato to actually solve for cost

Διαβάστε περισσότερα

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Solutions for Mathematical Physics 1 (Dated: April 19, 2015) Solutons for Mathematcal Physcs 1 Dated: Aprl 19, 215 3.2.3 Usng the vectors P ê x cos θ + ê y sn θ, Q ê x cos ϕ ê y sn ϕ, R ê x cos ϕ ê y sn ϕ, 1 prove the famlar trgonometrc denttes snθ + ϕ sn θ cos

Διαβάστε περισσότερα