5.6 evaluating, checking, comparing Chris Parrish July 3, 2016
|
|
- Λυσάνδρα Μανιάκης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 5.6 evaluating, checking, comparing Chris Parrish July 3, 2016 Contents residuals 1 evaluating, checking, comparing 1 data model fit figure 5.13a figure 5.13b figure 5.14a figure 5.14b log transformation 9 model fit plot 5.15a plot 5.15b error rate evaluating, checking, comparing reference: - ARM chapter 05, github library(rstan) rstan_options(auto_write = TRUE) options(mc.cores = parallel::detectcores()) library(ggplot2) residuals residual i = y i E(y i X i ) = y i logit 1 (X i β) evaluating, checking, comparing data # Data source("wells.data.r", echo = TRUE) > N < > switched <- c(1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
2 + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 0, 0, 1, 0, 1, 1, 0,... [TRUNCATED] > arsenic <- c(2.36, 0.71, 2.07, 1.15, 1.1, 3.9, 2.97, , 3.28, 2.52, 3.13, 3.04, 2.91, 3.21, 1.7, 1.8, 1.44, , 2.33, 2.83, 1.79,... [TRUNCATED] > dist <- c( , , , , , , , +... [TRUNCATED] > assoc <- c(0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, + 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, + 1, 0, 0, 1, 1, 0, 1, 0, 0,... [TRUNCATED] > educ <- c(0, 0, 10, 12, 14, 9, 4, 10, 0, 0, 5, 0, + 0, 0, 0, 7, 7, 7, 0, 10, 7, 0, 5, 0, 8, 8, 10, 16, 10, 10, + 10, 10, 0, 0, 0, 3, 0, [TRUNCATED] model wells_predicted.stan data { int<lower=0> N; int<lower=0,upper=1> switched[n]; vector[n] dist; vector[n] arsenic; vector[n] educ; transformed data { vector[n] c_dist100; vector[n] c_arsenic; vector[n] c_educ4; vector[n] da_inter; vector[n] de_inter; vector[n] ae_inter; c_dist100 = (dist - mean(dist)) / 100.0; c_arsenic = arsenic - mean(arsenic); // no log transformation c_educ4 = (educ - mean(educ)) / 4.0; da_inter = c_dist100.* c_arsenic; de_inter = c_dist100.* c_educ4; ae_inter = c_arsenic.* c_educ4; parameters { vector[7] beta; model { switched ~ bernoulli_logit(beta[1] + beta[2] * c_dist100 + beta[3] * c_arsenic + beta[4] * c_educ4 + beta[5] * da_inter + beta[6] * de_inter + 2
3 beta[7] * ae_inter); generated quantities { vector[n] pred; for (i in 1:N) pred[i] = inv_logit(beta[1] + beta[2] * c_dist100[i] + beta[3] * c_arsenic[i] + beta[4] * c_educ4[i] + beta[5] * da_inter[i] + beta[6] * de_inter[i] + beta[7] * ae_inter[i]); fit # Model: switched ~ c_dist100 + c_arsenic + c_educ4 + c_dist100:c_arsenic # + c_dist100:c_educ4 + c_arsenic:c_educ4 # c_dist100 <- (dist - mean(dist)) / 100 # c_arsenic <- arsenic - mean(arsenic) # c_educ4 <- (educ - mean(educ)) / 4 data.list <- c("n", "switched", "dist", "arsenic", "educ") wells_predicted.sf <- stan(file='wells_predicted.stan', data=data.list, iter=1000, chains=4) plot(wells_predicted.sf, pars = "beta") ci_level: 0.8 (80% intervals) outer_level: 0.95 (95% intervals) 3
4 beta[1] beta[2] beta[3] beta[4] beta[5] beta[6] beta[7] # pairs(wells_predicted.sf) print(wells_predicted.sf, pars = c("beta", "lp ")) Inference for Stan model: wells_predicted. 4 chains, each with iter=1000; warmup=500; thin=1; post-warmup draws per chain=500, total post-warmup draws=2000. mean se_mean sd 2.5% 25% 50% 75% 97.5% beta[1] beta[2] beta[3] beta[4] beta[5] beta[6] beta[7] lp n_eff Rhat beta[1] beta[2] beta[3] beta[4] beta[5] beta[6] beta[7] lp Samples were drawn using NUTS(diag_e) at Tue Jul 5 23:08: For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at 4
5 convergence, Rhat=1). The estimated Bayesian Fraction of Missing Information is a measure of the efficiency of the sampler with values close to 1 being ideal. For each chain, these estimates are figure 5.13a Residual Plot (Figure 5.13 (a)) prob.pred.1 <- colmeans(extract(wells_predicted.sf, "pred")$pred) wells_resid.ggdf.1 <- data.frame(prob = prob.pred.1, resid = switched - prob.pred.1) p1 <- ggplot(wells_resid.ggdf.1, aes(prob, resid)) + geom_point(shape = 20, color = "darkred") + scale_x_continuous("estimated Pr(switching)", limits = c(0, 1), breaks = seq(0, 1, 0.2)) + scale_y_continuous("observed - estimated", limits = c(-1, 1), breaks = seq(-1, 1, 0.5)) + ggtitle("residual plot") print(p1) 1.0 Residual plot 0.5 Observed estimated Estimated Pr(switching) figure 5.13b 5
6 Binned residual plot # Defining binned residuals binned.resids <- function (x, y, nclass = sqrt(length(x))) { breaks.index <- floor(length(x) * (1:(nclass-1)) / nclass) breaks <- c (-Inf, sort(x)[breaks.index], Inf) output <- NULL xbreaks <- NULL x.binned <- as.numeric(cut (x, breaks)) for (i in 1:nclass) { items <- (1:length(x))[x.binned == i] x.range <- range(x[items]) xbar <- mean(x[items]) ybar <- mean(y[items]) n <- length(items) sdev <- sd(y[items]) output <- rbind(output, c(xbar, ybar, n, x.range, 2 * sdev / sqrt(n))) colnames (output) <- c("xbar", "ybar", "n", "x.lo", "x.hi", "2se") return(list(binned = output, xbreaks = xbreaks)) # Binned residuals vs. estimated probability of switched (Figure 5.13 (b)) # dev.new() br <- binned.resids(prob.pred.1, switched - prob.pred.1, nclass = 40)$binned binned.ggdf.1 <- data.frame(x = br[,1], y = br[,2], disp = br[,6]) p2 <- ggplot(binned.ggdf.1, aes(x, y)) + geom_point(shape = 20, color = "darkred") + geom_line(aes(x = x, y = disp), color = "gray") + geom_line(aes(x = x, y = - disp), color = "gray") + geom_hline(yintercept = 0, color = "gray") + scale_x_continuous("estimated Pr(switching)", breaks = seq(0.3, 0.9, 0.1)) + scale_y_continuous("average residual") + ggtitle("binned residual plot") print(p2) 6
7 Binned residual plot Average residual Estimated Pr(switching) figure 5.14a Plot of binned residuals vs. inputs of interest # distance (Figure 5.13 (a)) # dev.new() br.dist <- binned.resids(dist, switched - prob.pred.1, nclass = 40)$binned binned.ggdf.2 <- data.frame(x = br.dist[,1], y = br.dist[,2], disp = br.dist[,6]) p3 <- ggplot(binned.ggdf.2, aes(x, y)) + geom_point(shape = 20, color = "darkred") + geom_line(aes(x = x, y = disp), color = "gray") + geom_line(aes(x = x, y = - disp), color = "gray") + geom_hline(yintercept = 0, color = "gray") + scale_x_continuous("distance to nearest safe well", breaks = seq(0, 150, 50)) + scale_y_continuous("average residual") + ggtitle("binned residual plot") print(p3) 7
8 0.15 Binned residual plot 0.10 Average residual Distance to nearest safe well figure 5.14b # arsenic (Figure 5.13 (b)) # dev.new() br.as <- binned.resids(arsenic, switched - prob.pred.1, nclass = 40)$binned binned.ggdf.3 <- data.frame(x = br.as[,1], y = br.as[,2], disp = br.as[,6]) p4 <- ggplot(binned.ggdf.3, aes(x, y)) + geom_point(shape = 20, color = "darkred") + geom_line(aes(x = x, y = disp), color = "gray") + geom_line(aes(x = x, y = - disp), color = "gray") + geom_hline(yintercept = 0, color = "gray") + scale_x_continuous("arsenic level", breaks = seq(0, 5)) + scale_y_continuous("average residual") + ggtitle("binned residual plot") print(p4) 8
9 Binned residual plot 0.1 Average residual Arsenic level log transformation model wells_predicted_log.stan data { int<lower=0> N; int<lower=0,upper=1> switched[n]; vector[n] dist; vector[n] arsenic; vector[n] educ; transformed data { vector[n] c_dist100; vector[n] log_arsenic; vector[n] c_log_arsenic; vector[n] c_educ4; vector[n] da_inter; vector[n] de_inter; vector[n] ae_inter; c_dist100 = (dist - mean(dist)) / 100.0; log_arsenic = log(arsenic); c_log_arsenic = log_arsenic - mean(log_arsenic); c_educ4 = (educ - mean(educ)) / 4.0; 9
10 da_inter = c_dist100.* c_log_arsenic; de_inter = c_dist100.* c_educ4; ae_inter = c_log_arsenic.* c_educ4; parameters { vector[7] beta; model { switched ~ bernoulli_logit(beta[1] + beta[2] * c_dist100 + beta[3] * c_log_arsenic + beta[4] * c_educ4 + beta[5] * da_inter + beta[6] * de_inter + beta[7] * ae_inter); generated quantities { vector[n] pred; for (i in 1:N) pred[i] = inv_logit(beta[1] + beta[2] * c_dist100[i] + beta[3] * c_log_arsenic[i] + beta[4] * c_educ4[i] + beta[5] * da_inter[i] + beta[6] * de_inter[i] + beta[7] * ae_inter[i]); fit # Log transformation: switched ~ c_dist100 + c_log_arsenic + c_educ4 # + c_dist100:c_log_arsenic + c_dist100:c_educ4 # + c_log_arsenic:c_educ4 # c_log_arsenic <- log(arsenic) - mean(log(arsenic)) wells_predicted_log.sf <- stan(file='wells_predicted_log.stan', data=data.list, iter=1000, chains=4) plot(wells_predicted_log.sf, pars = "beta") ci_level: 0.8 (80% intervals) outer_level: 0.95 (95% intervals) 10
11 beta[1] beta[2] beta[3] beta[4] beta[5] beta[6] beta[7] # pairs(wells_predicted_log.sf) print(wells_predicted_log.sf, pars = c("beta", "lp ")) Inference for Stan model: wells_predicted_log. 4 chains, each with iter=1000; warmup=500; thin=1; post-warmup draws per chain=500, total post-warmup draws=2000. mean se_mean sd 2.5% 25% 50% 75% 97.5% beta[1] beta[2] beta[3] beta[4] beta[5] beta[6] beta[7] lp n_eff Rhat beta[1] beta[2] beta[3] beta[4] beta[5] beta[6] beta[7] lp Samples were drawn using NUTS(diag_e) at Tue Jul 5 23:09: For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at 11
12 convergence, Rhat=1). The estimated Bayesian Fraction of Missing Information is a measure of the efficiency of the sampler with values close to 1 being ideal. For each chain, these estimates are beta.post <- extract(wells_predicted_log.sf, "beta")$beta beta.mean <- colmeans(beta.post) plot 5.15a Graph for log model (Figure 5.15 (a)) # dev.new() p5 <- ggplot(data.frame(switched, arsenic), aes(arsenic, switched)) + geom_jitter(position = position_jitter(width = 0.2, height = 0.01), shape = 20, color = "darkred") + stat_function(fun = function(x) 1 / (1 + exp( - cbind(1, 0, log(x), mean(educ / 4), 0 * log(x), 0 * mean(educ / 4), log(x) * mean(educ / 4)) %*% beta.mean))) + stat_function(fun = function(x) 1 / (1 + exp( - cbind(1, 0.5, log(x), mean(educ / 4), 0.5 * log(x), 0.5 * mean(educ / 4), log(x) * mean(educ / 4)) %*% beta.mean))) + annotate("text", x = c(1.7,2.5), y = c(0.82, 0.66), label = c("if dist = 0", "if dist = 50"), size = 4) + scale_x_continuous("arsenic concentration in well water", breaks = seq(from = 0, by = 2, length.out = 5)) + scale_y_continuous("pr(switching)", breaks = seq(0, 1, 0.2)) print(p5) 12
13 if dist = 0 Pr(switching) if dist = Arsenic concentration in well water plot 5.15b Graph of binned residuals for log model (Figure 5.15 (b)) # dev.new() prob.pred.2 <- colmeans(extract(wells_predicted_log.sf, "pred")$pred) br.log <- binned.resids(arsenic, switched - prob.pred.2, nclass = 40)$binned binned.ggdf.2 <- data.frame(x = br.log[,1], y = br.log[,2], disp = br.log[,6]) p6 <- ggplot(binned.ggdf.2, aes(x, y)) + geom_point(shape = 20, color = "darkred") + geom_line(aes(x = x, y = disp), color = "gray") + geom_line(aes(x = x, y = - disp), color = "gray") + geom_hline(yintercept = 0, color = "gray") + scale_x_continuous("arsenic level", limits = c(0, max(br.log[,1])), breaks = seq(0, 5)) + scale_y_continuous("average residual") + ggtitle("binned residual plot\nfor model with log(arsenic)") print(p6) 13
14 Binned residual plot for model with log(arsenic) 0.1 Average residual Arsenic level error rate # Error rate error.rate <- mean((prob.pred.2 > 0.5 & switched == 0) (prob.pred.2 < 0.5 & switched == 1)) error.rate [1]
5.1 logistic regresssion Chris Parrish July 3, 2016
5.1 logistic regresssion Chris Parrish July 3, 2016 Contents logistic regression model 1 1992 vote 1 data..................................................... 1 model....................................................
m4.3 Chris Parrish June 16, 2016
m4.3 Chris Parrish June 16, 2016 Contents!Kung model 1 data..................................................... 1 scatterplot with ggplot2....................................... 2 model....................................................
22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation
Supplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
Queensland University of Technology Transport Data Analysis and Modeling Methodologies
Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
.5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation rate.3
Artiste Picasso 9.1. Total Lumen Output: lm. Peak: cd 6862 K CRI: Lumen/Watt. Date: 4/27/2018
Color Temperature: 62 K Total Lumen Output: 21194 lm Light Quality: CRI:.7 Light Efficiency: 27 Lumen/Watt Peak: 1128539 cd Power: 793 W x: 0.308 y: 0.320 Test: Narrow Date: 4/27/2018 0 Beam Angle 165
1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5
Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed
Tables: Military Service Table 1: Military Service: Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed mili 0.489-0.014-0.044-0.044-1.469-2.026-2.026
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Bayesian Data Analysis, Midterm I
Bayesian Data Analysis, Midterm I Bugra Gedik bgedik@cc.gatech.edu October 3, 4 Q1) I have used Gibs sampler to solve this problem. 5, iterations with burn-in value of 1, is used. The resulting histograms
διαγνωστικούς ελέγχους MCMC diagnostics CODA
MCMC DIAGNOSTICS Πόσο πρέπει να περιμένουμε για να επιτευχθεί η στασιμότητα; Πόσο μεγάλο πρέπει να είναι το m (μετά την στασιμότητα για πόσο πρέπει να τρέξεις την αλυσίδα σου); Από που να ξεκινήσεις; Για
Supplementary Material for The Cusp Catastrophe Model as Cross-Sectional and Longitudinal Mixture Structural Equation Models
Supplementary Material for The Cusp Catastrophe Model as Cross-Sectional and Longitudinal Mixture Structural Equation Models Sy-Miin Chow Pennsylvania State University Katie Witkiewitz University of New
519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008
.. ( ) 2008 519.22(07.07) 78 : ( ) /.. ;. : -, 2008. 38 c. ( ) STATISTICA.,. STATISTICA.,. 519.22(07.07),.., 2008.., 2008., 2008 2 ... 4 1...5...5 2...14...14 3...27...27 3 ,, -. " ", :,,,... STATISTICA.,,,.
HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:
HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.
Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F
Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό
Introduction to Bayesian Statistics
Introduction to Bayesian Statistics Lecture 9: Hierarchical Models Rung-Ching Tsai Department of Mathematics National Taiwan Normal University May 6, 2015 Example Data: Weekly weights of 30 young rats
ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ ΔΙΑΤΡΙΒΗ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΔΗΜΗΤΡΙΟΥ Ν. ΠΙΤΕΡΟΥ
SECTION II: PROBABILITY MODELS
SECTION II: PROBABILITY MODELS 1 SECTION II: Aggregate Data. Fraction of births with low birth weight per province. Model A: OLS, using observations 1 260 Heteroskedasticity-robust standard errors, variant
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
waffle Chris Parrish June 18, 2016
waffle Chris Parrish June 18, 2016 Contents Waffle House 1 data..................................................... 2 exploratory data analysis......................................... 2 Waffle Houses.............................................
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
An Introduction to Splines
An Introduction to Splines Trinity River Restoration Program Workshop on Outmigration: Population Estimation October 6 8, 2009 An Introduction to Splines 1 Linear Regression Simple Regression and the Least
Biostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,
[2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar Radiation
References [1] B.V.R. Punyawardena and Don Kulasiri, Stochastic Simulation of Solar Radiation from Sunshine Duration in Srilanka [2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΕΛΕΓΧΟΥ ΠΟΙΟΤΗΤΑΣ Υ ΑΤΙΚΩΝ &Ε ΑΦΙΚΩΝ ΠΟΡΩΝ ΑΞΙΟΛΟΓΗΣΗ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΤΟΥ ΙΚΤΥΟΥ
Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.
ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει
Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
Modern Regression HW #8 Solutions
36-40 Modern Regression HW #8 Solutions Problem [25 points] (a) DUE: /0/207 at 3PM This is still a linear regression model the simplest possible one. That being the case, the solution we derived before
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Generalized additive models in R
www.nr.no Generalized additive models in R Magne Aldrin, Norwegian Computing Center and the University of Oslo Sharp workshop, Copenhagen, October 2012 Generalized Linear Models - GLM y Distributed with
Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1
Linear Regression A Short Course on Data Analysis Using R Software (2017) Wan Nor Arifin (wnarifin@usm.my), Universiti Sains Malaysia Website: sites.google.com/site/wnarifin Wan Nor Arifin under the Creative
2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ
1. ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS Το SPSS είναι ένα στατιστικό πρόγραμμα γενικής στατιστικής ανάλυσης αρκετά εύκολο στη λειτουργία του. Για να πραγματοποιηθεί ανάλυση χρονοσειρών με τη βοήθεια του SPSS θα πρέπει απαραίτητα
DirichletReg: Dirichlet Regression for Compositional Data in R
DirichletReg: Dirichlet Regression for Compositional Data in R Marco J. Maier Wirtschaftsuniversität Wien Abstract Full R Code for Maier, M. J. (2014). DirichletReg: Dirichlet Regression for Compositional
VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)
J. Comput. Chem. Jpn., Vol. 5, No. 1, pp. 29 38 (2006) Microsoft Excel, 184-8588 2-24-16 e-mail: yosimura@cc.tuat.ac.jp (Received: July 28, 2005; Accepted for publication: October 24, 2005; Published on
( ) ( ) STAT 5031 Statistical Methods for Quality Improvement. Homework n = 8; x = 127 psi; σ = 2 psi (a) µ 0 = 125; α = 0.
STAT 531 Statistical Methods for Quality Improvement Homework 3 4.8 n = 8; x = 17 psi; σ = psi (a) µ = 15; α =.5 Test H : µ = 15 vs. H 1 : µ > 15. Reject H if Z > Z α. x µ 17 15 Z = = =.88 σ n 8 Z α =
90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z
00 Chinese Journal of Applied Probability and Statistics Vol6 No Feb 00 Panel, 3,, 0034;,, 38000) 3,, 000) p Panel,, p Panel : Panel,, p,, : O,,, nuisance parameter), Tsui Weerahandi [] Weerahandi [] p
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
Stabilization of stock price prediction by cross entropy optimization
,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction
Description of the PX-HC algorithm
A Description of the PX-HC algorithm Let N = C c= N c and write C Nc K c= i= k= as, the Gibbs sampling algorithm at iteration m for continuous outcomes: Step A: For =,, J, draw θ m in the following steps:
Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts
/ / σ/σ σ/σ θ θ θ θ y 1 0.75 0.5 0.25 0 0 0.5 1 1.5 2 θ θ θ x θ θ Φ θ Φ θ Φ π θ /Φ γφ /θ σ θ π θ Φ θ θ Φ θ θ θ θ σ θ / Φ θ θ / Φ / θ / θ Normalized import share: (Xni / Xn) / (XII / XI) 1 0.1 0.01 0.001
Eight Examples of Linear and Nonlinear Least Squares
Eight Examples of Linear and Nonlinear Least Squares CEE 699.4, ME 99.4 Sstem Identification Fall, 21 c Henri P. Gavin, September 2, 21 1 Not polnomial, but linear in parameters. ŷ(t i ; a) = a 1 sin(t
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes
SUPPORTING INFORMATION Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes Eric J. Uzelac, Casey B. McCausland, and Seth C. Rasmussen*
ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΧΑΝΙΩΝ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΧΗΜΕΙΑΣ & ΒΙΟΧΗΜΙΚΩΝ ΙΕΡΓΑΣΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?
HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
Bayesian Estimation and Population Analysis. Objective. Population Data. 26 July Chapter 34 1
Bayesian Estimation and Population Analysis Objective To Understand the Use of Population Parameters Values in Nomograms and Bayesian Estimations To Understand Methods of Analysing Pharmacokinetic Population
Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXX XXXX Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation
Computing Gradient. Hung-yi Lee 李宏毅
Computing Gradient Hung-yi Lee 李宏毅 Introduction Backpropagation: an efficient way to compute the gradient Prerequisite Backpropagation for feedforward net: http://speech.ee.ntu.edu.tw/~tkagk/courses/mlds_05_/lecture/
1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1
Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25
ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ ΕΠΙΜΕΛΕΙΑ: ΑΡΜΕΝΑΚΑΣ ΜΑΡΙΝΟΣ ΧΑΝΙΑ
Fernanda Carvalho 1 Diamantino Henriques 1 Paulo Fialho 2
Aerosol Optical Depth measurements in the Azores Fernanda Carvalho Diamantino Henriques Paulo Fialho Instituto de Meteorologia Universidade dos Açores GA Global Atmosphere atch MO orld Meteorological Organisation
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
n n 1 n+1 2 2 Farmers in Random Insurance Group Farmers in Random Insurance Group Insured Plots Control Plots 1st Choice Plots Insured plot Adverse Selection Moral Hazard Control plot 1st Choice Plots
R & R- Studio. Πασχάλης Θρήσκος PhD Λάρισα
R & R- Studio Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr Εισαγωγή στο R Διαχείριση Δεδομένων R Project Περιγραφή του περιβάλλοντος του GNU προγράμματος R Project for Statistical Analysis Γραφήματα
Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology
2012 34 2 382-387 http / /xuebao. jxau. edu. cn Acta Agriculturae Universitatis Jiangxiensis E - mail ndxb7775@ sina. com 212018 105 W 42 2 min 0. 631 TS202. 3 A 1000-2286 2012 02-0382 - 06 Optimizing
Elements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science
Statistics & Research methods Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science 30 25 1,65 20 1,66 15 10 5 1,67 1,68 Κανονική 0 Height 1,69 Καμπύλη Κανονική Διακύμανση & Ζ-scores
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo
(absolute loss function)186 - (posterior structure function)163 - (a priori rating variables)25 (Bayes scale) 178 (bancassurance)233 - (beta distribution)203, 204 (high deductible)218 (bonus)26 ( ) (total
Supplementary Information 1.
Supplementary Information 1. Fig. S1. Correlations between litter-derived-c and N (percent of initial input) and Al-/Fe- (hydr)oxides dissolved by ammonium oxalate (AO); a) 0 10 cm; b) 10 20 cm; c) 20
Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση
Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση Γενική μορφή g( E[ Y X ]) Xb Κατανομή της Υ στην εκθετική οικογένεια Ανεξάρτητες παρατηρήσεις Ενας όρος για το σφάλμα g(.) Συνδετική συνάρτηση (link function)
Simon et al. Supplemental Data Page 1
Simon et al. Supplemental Data Page 1 Supplemental Data Acute hemodynamic effects of inhaled sodium nitrite in pulmonary hypertension associated with heart failure with preserved ejection fraction Short
Supplementary figures
A Supplementary figures a) DMT.BG2 0.87 0.87 0.72 20 40 60 80 100 DMT.EG2 0.93 0.85 20 40 60 80 EMT.MG3 0.85 0 20 40 60 80 20 40 60 80 100 20 40 60 80 100 20 40 60 80 EMT.G6 DMT/EMT b) EG2 0.92 0.85 5
Research on Economics and Management
36 5 2015 5 Research on Economics and Management Vol. 36 No. 5 May 2015 490 490 F323. 9 A DOI:10.13502/j.cnki.issn1000-7636.2015.05.007 1000-7636 2015 05-0052 - 10 2008 836 70% 1. 2 2010 1 2 3 2015-03
Supporting Information for Substituent Effects on the Properties of Borafluorenes
Supporting Information for Substituent Effects on the Properties of Borafluorenes Mallory F. Smith, S. Joel Cassidy, Ian A. Adams, Monica Vasiliu, Deidra L. Gerlach, David Dixon*, Paul A. Rupar* Department
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Quantifying the Financial Benefits of Chemical Inventory Management Using CISPro
of Chemical Inventory Management Using CISPro by Darryl Braaksma Sr. Business and Financial Consultant, ChemSW, Inc. of Chemical Inventory Management Using CISPro Table of Contents Introduction 3 About
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared
Electronic Supplementary Information:
Electronic Supplementary Information: 2 6 5 7 2 N S 3 9 6 7 5 2 S N 3 9 Scheme S. Atom numbering for thione and thiol tautomers of thioacetamide 3 0.6 0. absorbance 0.2 0.0 0.5 0.0 0.05 0.00 N 2 Ar km/mol
η πιθανότητα επιτυχίας. Επομένως, η συνάρτηση πιθανοφάνειας είναι ίση με: ( ) 32 = p 18 1 p
ΑΣΚΗΣΗ 1 ΣΕΜΦΕ 14-15 i. Έστω yi ο αριθμός των προσπαθειών κάθε μαθητή μέχρι να πετύχει τρίποντο. Ο αριθμός των προσπαθειών πριν ο μαθητής να πετύχει τρίποντο θα είναι xi = yi - 1, i = 1,,18. 2 2 3 2 1
Θέματα Στατιστικής στη γλώσσα R
Θέματα Στατιστικής στη γλώσσα R Ποσότητες οδηγοί και τα ποσοστιαία σημεία των αντίστοιχων κατανομών Ν(0,1) Student s t X 2, F Διαστήματα εμπιστοσύνης-έλεγχοι Υποθέσεων ένα δείγμα για τη μέση τιμή κανονικής
Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σπίγγος Γεώργιος
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ-ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΣΚΟΠΗΣΗΣ Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΟΛΟΚΛΗΡΩΜΕΝΗ ΑΝΑΠΤΥΞΗ & ΔΙΑΧΕΙΡΙΣΗ ΤΟΥ ΑΓΡΟΤΙΚΟΥ ΧΩΡΟΥ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Οικονομετρική διερεύνηση
Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis
Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis Xue Han, MPH and Matt Shotwell, PhD Department of Biostatistics Vanderbilt University School of Medicine March 14, 2014
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ Γηπισκαηηθή Δξγαζία ηνπ Φνηηεηή ηνπ ηκήκαηνο Ζιεθηξνιόγσλ Μεραληθώλ θαη Σερλνινγίαο Ζιεθηξνληθώλ
Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1
Poisson Regression A Short Course on Data Analysis Using R Software (2017) Wan Nor Arifin (wnarifin@usm.my), Universiti Sains Malaysia Website: sites.google.com/site/wnarifin Wan Nor Arifin under the Creative
Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u
.6.5. y = -.4x +.8 R =.9574 y = - x +.14 R =.9788 y = -.4 x +.7 R =.9896 Si + Al Fe + Mn +Ni y =.55 x.36 R =.9988.149.148.147.146.145..88 core rim.144 4 =.6 ±.6 4 =.6 ±.18.84.88 p.f.u..86.76 y = -3.9 x
ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΕΙΟ Τμήμα Μηχανικών Μεταλλείων-Μεταλλουργών ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Κιτσάκη Μαρίνα
Εργασία. στα. Γενικευμένα Γραμμικά Μοντέλα
Εργασία στα Γενικευμένα Γραμμικά Μοντέλα Μ. Παρζακώνης ΜΕΣ/ 06015 Ο παρακάτω πίνακας δίνει τα αποτελέσματα 800 αιτήσεων για δάνειο σε μία τράπεζα. Ο πίνακας παρουσιάζει τον αριθμό των δανείων που εγκρίθηκαν,
TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics
TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics Exploring Data: Distributions Look for overall pattern (shape, center, spread) and deviations (outliers). Mean (use a calculator): x = x 1 + x
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου και ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως προς δύο παράγοντες,
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. Γενικά στοιχεία Όνομα Επίθετο Θέση E-mail Πέτρος Μαραβελάκης Επίκουρος καθηγητής στο Πανεπιστήμιο Πειραιώς, Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων με αντικείμενο «Εφαρμογές Στατιστικής
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
1, +,*+* + +-,, -*, * : Key words: global warming, snowfall, snowmelt, snow water equivalent. Ohmura,,**0,**
1, +,*+* + +-,, + : /+* m,1+ m, -*, * +3132* : Key words: global warming, snowfall, snowmelt, snow water equivalent + IPCC,,**+ Inoue and,**2 Yokoyama,**- Ohmura,,**0,**0 +331 +332 + +2- **+, ++,* 14 1,
DOUGLAS FIR BEETLE TRAP-SUPPRESSION STUDY STATISTICAL REPORT
DOUGLAS FIR BEETLE TRAP-SUPPRESSION STUDY STATISTICAL REPORT Prepared for Dr. Robert Progar U.S. Forest Service Forest Sciences Laboratory Corvallis, Oregon January 2005 By Greg Brenner Pacific Analytics
Appendix A3. Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS Mean Square
Appendix A3 Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS F Value Pr > F Model 107 374.68 3.50 8573.07
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας άλ ιάλεξη :
Aluminum Electrolytic Capacitors
Aluminum Electrolytic Capacitors Snap-In, Mini., 105 C, High Ripple APS TS-NH ECE-S (G) Series: TS-NH Features Long life: 105 C 2,000 hours; high ripple current handling ability Wide CV value range (47
Luminaire Property. Photometric Results. Page 1 of 15 Pages. Report No.: 9 Test Time: 2017/5/18 09:59
Report No.: 9 Test Time: 2017/5/18 09:59 Page 1 of 15 Pages Luminaire Property Luminaire Manufacturer: Luminaire Description: VMC4911 Current: 0.2A Power Factor: 0.989 Voltage: 120 V Power: 54.0W Photometric
Supporting Information
Supporting Information Wiley-VCH 27 69451 Weinheim, Germany Supplementary Figure 1. Synthetic results as detected by XRD (Cu-Kα). Simulation pattern of MCM-68 Relative Intensity / a.u. YNU-2P Conventional
Parametric proportional hazards and accelerated failure time models
Parametric proportional hazards accelerated failure time models Göran Broström October 11, 2017 Abstract A unified implementation of parametric proportional hazards PH) accelerated failure time AFT) models