*P101C10111* MATEMATIKA. Izpitna pola. Sobota, 5. junij 2010 / 120 minut SPOMLADANSKI IZPITNI ROK

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "*P101C10111* MATEMATIKA. Izpitna pola. Sobota, 5. junij 2010 / 120 minut SPOMLADANSKI IZPITNI ROK"

Transcript

1 Š i f r a k a n d i d a t a : Državni izpitni center *P101C10111* SPOMLADANSKI IZPITNI ROK MATEMATIKA Izpitna pola Sobota, 5. junij 010 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali kemični svinčnik, svinčnik, radirko, numerično žepno računalo brez grafičnega zaslona in možnosti simbolnega računanja, šestilo, trikotnik (geotrikotnik), ravnilo, kotomer in trigonir. Kandidat dobi dva konceptna lista in ocenjevalni obrazec. NAVODILA KANDIDATU Pazljivo preberite ta navodila. Ne odpirajte izpitne pole in ne začenjajte reševati nalog, dokler vam nadzorni učitelj tega ne dovoli. Prilepite oziroma vpišite svojo šifro v okvirček desno zgoraj na tej strani in na ocenjevalni obrazec ter na konceptna lista. Izpitna pola ima dva dela. Prvi del vsebuje 9 nalog. Drugi del vsebuje 3 naloge, izmed katerih izberite in rešite dve. Število točk, ki jih lahko dosežete, je 70, od tega 40 v prvem delu in 30 v drugem delu. Za posamezno nalogo je število točk navedeno v izpitni poli. Pri reševanju si lahko pomagate s formulami na. in 3. strani. V preglednici z "x" zaznamujte, kateri dve nalogi v drugem delu naj ocenjevalec oceni. Če tega ne boste storili, bo ocenil prvi dve nalogi, ki ste ju reševali. 1 3 POKLICNA MATURA Rešitve pišite z nalivnim peresom ali s kemičnim svinčnikom in jih vpisujte v izpitno polo v za to predvideni prostor; grafe funkcij, geometrijske skice in risbe pa rišite s svinčnikom. Če se zmotite, napisano prečrtajte in rešitev napišite na novo. Nečitljivi zapisi in nejasni popravki bodo ocenjeni z nič (0) točkami. Osnutke rešitev lahko napišete na konceptna lista, vendar se ti pri ocenjevanju ne upoštevajo. Pri reševanju nalog mora biti jasno in korektno predstavljena pot do rezultata z vsemi vmesnimi računi in sklepi. Če ste nalogo reševali na več načinov, jasno označite, katero rešitev naj ocenjevalec oceni. Zaupajte vase in v svoje zmožnosti. Želimo vam veliko uspeha. Ta pola ima 0 strani, od tega prazni. RIC 010

2 P101-C FORMULE 1. Pravokotni koordinatni sistem v ravnini, linearna funkcija Razdalja dveh točk v ravnini: dab (, ) = ( x x ) ( y y ) y y1 Linearna funkcija: fx ( ) = kx+ n Smerni koeficient: k = x x 1 k k1 Naklonski kot premice: k = tan ϕ Kot med premicama: tan ϕ = 1 + k k 1. Ravninska geometrija (ploščine likov so označene s S ) c v Trikotnik: S = c = 1 absin γ S = s( s a)( s b)( s c), s = a + b + c Polmera trikotniku očrtanega ( R) in včrtanega ( r) kroga: R = abc, r 4S S s =, ( s = a + b + c ) Enakostranični trikotnik: S = a 3, v = a 3, r = a 3, R = a e f Deltoid, romb: S = Trapez: S = a + c v Paralelogram: S = absin α Romb: S = a sin α Dolžina krožnega loka: l = πα r 180 Ploščina krožnega izseka: S = πr α 360 Sinusni izrek: a = b = c = R sin α sin β sin γ Kosinusni izrek: a = b + c bccosα 3. Površine in prostornine geometrijskih teles ( S je ploščina osnovne ploskve) Prizma: P = S + Spl, V = S v Valj: P = πr + πrv, V = πr v Piramida: P = S + Spl, Krogla: P = 4πr, V = 4πr 3 V = 1 S v Stožec: P = πr( r + s), V 3 3 = 1 3 πr v

3 P101-C sin α cos α 1 + = 4. Kotne funkcije tan α sin α cos α = 1+ tan α = 1 cos α sin( α± β) = sin αcos β ± cos αsin β cos( α± β) = cos αcos β sin αsin β sin α = sin α cos α cos α = cos α sin α 5. Kvadratna funkcija, kvadratna enačba ( ) f x = ax + bx + c Teme: Tpq, (,) + + = 0 Ničli: x b 1, = ± a ax bx c p = b, q = D, a 4a D D = b 4ac x 6. Logaritmi loga y = x a = y loga x = nloga x log ( x y) = log x + log y a a a log x log x log y = a a a y n loga x logb x = log b a 7. Zaporedja Aritmetično zaporedje: an = a1 + ( n 1) d, sn = n ( a1 + ( n 1) d) n 1 Geometrijsko zaporedje: an = a1 q n q 1, sn = a1 q 1 G0 n p Navadno obrestovanje: Gn = G0 + o, o = 100 n p Obrestno obrestovanje: Gn = G0r, r = Statistika x1 + x xn Srednja vrednost (aritmetična sredina): x = n f1x1+ fx fkxk x = f + f f 1 k

4 4 P101-C Prazna stran

5 P101-C del Rešite vse naloge. 1. a) Število 1008 zapišite kot produkt praštevil. b) Število 1008 delno korenite. (4 točke)

6 6 P101-C Poenostavite izraz: 1 1 a 1 a. (4 točke)

7 P101-C Ana, Boris in Lovro so si razdelili nagrado v višini 6100 evrov. Ana in Boris sta dobila enak znesek, Lovro pa 31 % nagrade. Koliko je dobil vsak? (4 točke)

8 8 P101-C Dana je premica z enačbo 3x 7y + 1= 0. Izračunajte presečišči premice s koordinatnima osema in premico narišite v dani koordinatni sistem. (4 točke) y x

9 P101-C Natančno narišite pravokotni trikotnik ABC s pravim kotom pri oglišču C ter s stranicama AC = 5 cm in BC = 6 cm. Izračunajte kot pri oglišču B. (4 točke)

10 10 P101-C Enaki pravokotni deščici s širino 1 cm oklepata kot 35 (glejte sliko). Izračunajte ploščino osenčenega romba. (5 točk) 1 cm 35

11 P101-C Rešite enačbi: a) x 11 = 7 x + b) log9 3 = x (5 točk)

12 1 P101-C Izračunajte ničle polinoma 3 px ( ) = x 5x + 7x 3. (5 točk)

13 P101-C Dolžine stranic trikotnika predstavljajo prve tri člene aritmetičnega zaporedja. Obseg tega trikotnika meri 1 cm, najkrajša stranica pa 4 cm. Izračunajte dolžine stranic trikotnika. (5 točk)

14 14 P101-C del Izberite dve nalogi, obkrožite njuni zaporedni številki in ju rešite. 1. Dani sta kvadratni funkciji 1 f ( x) = x in g( x) = x 3x. a) Narišite grafa obeh funkcij v dani koordinatni sistem. b) Izračunajte presečišči grafov danih funkcij. c) Izračunajte f () g( 1). (Skupaj 15 točk) (6 točk) (6 točk) (3 točke) y x

15 P101-C

16 16 P101-C Iz valja in stožca sestavimo telo na sliki. Kot pri vrhu osnega preseka stožca meri cm 9 cm a) Izračunajte višino telesa. b) Izračunajte polmer osnovne ploskve valja. c) Izračunajte površino in prostornino telesa. (Skupaj 15 točk) (5 točk) (3 točke) (7 točk)

17 P101-C

18 18 P101-C Cena kilograma solate se je v enem letu gibala, kakor prikazuje razpredelnica: Mesec jan. feb. mar. apr. maj jun. jul. avg. sep. okt. nov. dec. Cena za kg solate [ ] 4,50 4,50 3,00 3,00 1,0 1,0 0,60 0,60 0,60 1,10 1,10 3,0 a) Izračunajte povprečno ceno kilograma solate od januarja do decembra. b) Za koliko odstotkov je povprečna cena kilograma solate nižja od najvišje cene? c) Izračunajte zaslužek od prodane solate v celotnem letu, če mesečno prodajo prikazuje naslednji diagram: količina [kg] (Skupaj 15 točk) (3 točke) (5 točk) (7 točk) jan. feb. mar. apr. maj jun. jul. avg. sep. okt. nov. dec. meseci

19 P101-C

20 0 P101-C Prazna stran

*P093C10111* MATEMATIKA. Izpitna pola. Četrtek, 11. februar 2010 / 120 minut ZIMSKI IZPITNI ROK

*P093C10111* MATEMATIKA. Izpitna pola. Četrtek, 11. februar 2010 / 120 minut ZIMSKI IZPITNI ROK Š i f r a k a n d i d a t a : Državni izpitni center *P093C10111* ZIMSKI IZPITNI ROK MATEMATIKA Izpitna pola Četrtek, 11. februar 010 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno

Διαβάστε περισσότερα

*P103C10111* MATEMATIKA. Izpitna pola. Četrtek, 10. februar 2011 / 120 minut ZIMSKI IZPITNI ROK

*P103C10111* MATEMATIKA. Izpitna pola. Četrtek, 10. februar 2011 / 120 minut ZIMSKI IZPITNI ROK Š i f r a k a n d i d a t a : Državni izpitni center *P03C0* ZIMSKI IZPITNI ROK MATEMATIKA Izpitna pola Četrtek, 0. februar 0 / 0 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali

Διαβάστε περισσότερα

*P091C10111* MATEMATIKA. Izpitna pola. Sobota, 6. junij 2009 / 120 minut SPOMLADANSKI IZPITNI ROK

*P091C10111* MATEMATIKA. Izpitna pola. Sobota, 6. junij 2009 / 120 minut SPOMLADANSKI IZPITNI ROK Š i f r a k a n d i d a t a : Državni izpitni center *P09C0* SPOMLADANSKI IZPITNI ROK MATEMATIKA Izpitna pola Sobota, 6. junij 009 / 0 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero

Διαβάστε περισσότερα

Državni izpitni center. Višja raven MATEMATIKA. Izpitna pola 2. Sobota, 4. junij 2011 / 90 minut

Državni izpitni center. Višja raven MATEMATIKA. Izpitna pola 2. Sobota, 4. junij 2011 / 90 minut Š i f r a k a n d i d a t a : Državni izpitni center *M111401* Višja raven MATEMATIKA Izpitna pola SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 011 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese

Διαβάστε περισσότερα

*P113C10111* MATEMATIKA. Izpitna pola. Torek, 7. februar 2012 / 120 minut ZIMSKI IZPITNI ROK

*P113C10111* MATEMATIKA. Izpitna pola. Torek, 7. februar 2012 / 120 minut ZIMSKI IZPITNI ROK Š i f r a k a n d i d a t a : Državni izpitni center *P113C10111* ZIMSKI IZPITNI ROK MATEMATIKA Izpitna pola Torek, 7. februar 01 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero

Διαβάστε περισσότερα

Državni izpitni center. Osnovna raven MATEMATIKA. Izpitna pola 1. Sobota, 4. junij 2011 / 120 minut

Državni izpitni center. Osnovna raven MATEMATIKA. Izpitna pola 1. Sobota, 4. junij 2011 / 120 minut Š i f r a k a n d i d a t a : Državni izpitni center *M11140111* Osnovna raven MATEMATIKA Izpitna pola 1 SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 011 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat

Διαβάστε περισσότερα

Državni izpitni center. Višja raven MATEMATIKA. Izpitna pola 1. Torek, 25. avgust 2009 / 90 minut

Državni izpitni center. Višja raven MATEMATIKA. Izpitna pola 1. Torek, 25. avgust 2009 / 90 minut Š i f r a k a n d i d a t a : Državni izpitni center *M094011* Višja raven MATEMATIKA Izpitna pola 1 JESENSKI IZPITNI ROK Torek, 5. avgust 009 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese

Διαβάστε περισσότερα

Dr`avni izpitni center MATEMATIKA. Izpitna pola. Sobota, 2. junij 2007 / 120 minut brez odmora

Dr`avni izpitni center MATEMATIKA. Izpitna pola. Sobota, 2. junij 2007 / 120 minut brez odmora [ifra kandidata: Dr`avni izpitni center *P071C10111* SPOMLADANSKI ROK MATEMATIKA Izpitna pola Sobota,. junij 007 / 10 minut brez odmora Dovoljeno dodatno gradivo in pripomo~ki: kandidat prinese s seboj

Διαβάστε περισσότερα

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola 1. Četrtek, 5. junij 2014 / 90 minut

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola 1. Četrtek, 5. junij 2014 / 90 minut Š i f r a k a n d i d a t a : Državni izpitni center *M477* SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA Izpitna pola Četrtek, 5. junij 04 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno

Διαβάστε περισσότερα

Državni izpitni center. Izpitna pola 2. Četrtek, 2. junij 2016 / 90 minut

Državni izpitni center. Izpitna pola 2. Četrtek, 2. junij 2016 / 90 minut Š i f r a k a n d i d a t a : Državni izpitni center *M1617711* SPOMLADANSKI IZPITNI ROK Izpitna pola Četrtek,. junij 016 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali kemični

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Državni izpitni center. Izpitna pola

Državni izpitni center. Izpitna pola Š i f r a k a d i d a t a : Državi izpiti ceter *P43C0* ZIMSKI IZPITNI ROK Izpita pola Dovoljeo gradivo i pripomočki: Kadidat priese alivo pero ali kemiči svičik, svičik, radirko, umeričo žepo račualo

Διαβάστε περισσότερα

Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni izrek.

Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni izrek. DN#3 (januar 2018) 3A Teme, ki jih preverja domača naloga: Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni

Διαβάστε περισσότερα

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola. Ponedeljek, 30. avgust 2010 / 180 minut ( )

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola. Ponedeljek, 30. avgust 2010 / 180 minut ( ) Š i f r a k a n d i d a t a : Državni izpitni center *M10277111* JESENSKI IZPITNI ROK ELEKTROTEHNIKA Izpitna pola Ponedeljek, 30. avgust 2010 / 180 minut (45 + 135) Dovoljeno gradivo in pripomočki: Kandidat

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

*M * ELEKTROTEHNIKA. Izpitna pola. Četrtek, 29. maj 2008 / 180 minut ( ) SPOMLADANSKI IZPITNI ROK

*M * ELEKTROTEHNIKA. Izpitna pola. Četrtek, 29. maj 2008 / 180 minut ( ) SPOMLADANSKI IZPITNI ROK Š i f r a k a n d i d a t a : Državni izpitni center *M08177111* SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA Izpitna pola Četrtek, 9. maj 008 / 180 minut (45 + 135) Dovoljeno gradivo in pripomočki: Kandidat

Διαβάστε περισσότερα

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola Š i f r a k a n d i d a t a : Državni izpitni center *M09177111* SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA Izpitna pola Sreda, 7. maj 009 / 180 minut (45 + 135) Dovoljeno gradivo in pripomočki: Kandidat

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

Matematika. Predmetni izpitni katalog za poklicno maturo

Matematika. Predmetni izpitni katalog za poklicno maturo Predmetni izpitni katalog za poklicno maturo Matematika Predmetni izpitni katalog se uporablja od spomladanskega roka 009, dokler ni dolo~en novi. Veljavnost kataloga za leto, v katerem bo kandidat opravljal

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

Matematika. Predmetni izpitni katalog za poklicno maturo

Matematika. Predmetni izpitni katalog za poklicno maturo Predmetni izpitni katalog za poklicno maturo Matematika Predmetni izpitni katalog se uporablja od spomladanskega roka 0, dokler ni določen novi. Veljavnost kataloga za leto, v katerem bo kandidat opravljal

Διαβάστε περισσότερα

ŠOLSKI CENTER NOVO MESTO

ŠOLSKI CENTER NOVO MESTO ŠOLSKI CENTER NOVO MESTO Srednja elektro šola in tehniška gimnazija M A T E M A T I K A USTNA VPRAŠANJA S PRIMERI ZA POKLICNO MATURO 006/007 NARAVNA ŠTEVILA Katera števila imenujemo naravna števila? Naštejte

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Državni izpitni center MATEMATIKA PREIZKUS ZNANJA. Ponedeljek, 8. maj 2017 / 60 minut

Državni izpitni center MATEMATIKA PREIZKUS ZNANJA. Ponedeljek, 8. maj 2017 / 60 minut Š i f r a u č e n c a : Državni izpitni center *N17140131* 9. razred MATEMATIKA PREIZKUS ZNANJA Ponedeljek, 8. maj 017 / 60 minut Dovoljeno gradivo in pripomočki: Učenec prinese modro/črno nalivno pero

Διαβάστε περισσότερα

*M * K E M I J A. Izpitna pola 2. Četrtek, 30. avgust 2007 / 90 minut JESENSKI ROK

*M * K E M I J A. Izpitna pola 2. Četrtek, 30. avgust 2007 / 90 minut JESENSKI ROK Š i f r a k a n d i d a t a : Državni izpitni center *M07243112* JESENSKI ROK K E M I J A Izpitna pola 2 Četrtek, 30. avgust 2007 / 90 minut Dovoljeno dodatno gradivo in pripomočki: Kandidat prinese s

Διαβάστε περισσότερα

3.letnik - geometrijska telesa

3.letnik - geometrijska telesa .letnik - geometrijska telesa Prizme, Valj P = S 0 + S pl S 0 Piramide, Stožec P = S 0 + S pl S0 Pravilna -strana prizma P = a a + av 1 Pravilna -strana prizma P = a + a a Pravilna 6-strana prizma P =

Διαβάστε περισσότερα

Državni izpitni center MATEMATIKA PREIZKUS ZNANJA. Sreda, 4. maj 2016 / 60 minut

Državni izpitni center MATEMATIKA PREIZKUS ZNANJA. Sreda, 4. maj 2016 / 60 minut Š i f r a u č e n c a : Državni izpitni center *N16140131* 9. razred MATEMATIKA PREIZKUS ZNANJA Sreda, 4. maj 016 / 60 minut Dovoljeno gradivo in pripomočki: Učenec prinese modro/črno nalivno pero ali

Διαβάστε περισσότερα

Predmetni izpitni katalog za poklicno maturo Matematika

Predmetni izpitni katalog za poklicno maturo Matematika Predmetni izpitni katalog za poklicno maturo Matematika Predmetni izpitni katalog se uporablja od spomladanskega izpitnega roka 09, dokler ni določen novi. Veljavnost kataloga za leto, v katerem bo kandidat

Διαβάστε περισσότερα

Predmetni izpitni katalog za poklicno maturo Matematika

Predmetni izpitni katalog za poklicno maturo Matematika Predmetni izpitni katalog za poklicno maturo Matematika Predmetni izpitni katalog se uporablja od spomladanskega izpitnega roka 07, dokler ni določen novi. Veljavnost kataloga za leto, v katerem bo kandidat

Διαβάστε περισσότερα

Matematika. Predmetni izpitni katalog za poklicno maturo

Matematika. Predmetni izpitni katalog za poklicno maturo Predmetni izpitni katalog za poklicno maturo Matematika Predmetni izpitni katalog se uporablja od spomladanskega izpitnega roka 0, dokler ni določen novi. Veljavnost kataloga za leto, v katerem bo kandidat

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 2. Vektorji

Vaje iz MATEMATIKE 2. Vektorji Študij AHITEKTURE IN URBANIZMA, šol. l. 06/7 Vaje iz MATEMATIKE. Vektorji Vektorji: Definicija: Vektor je usmerjena daljica. Oznake: AB, a,... Enakost vektorjev: AB = CD: če lahko vektor AB vzporedno premaknemo

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih. TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij

Διαβάστε περισσότερα

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola. Petek, 31. avgust 2007 / 180 minut

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola. Petek, 31. avgust 2007 / 180 minut Š i f r a k a n d i d a t a : Državni izpitni center *M0777111* JESENSKI ROK ELEKTROTEHNIKA Izpitna pola Petek, 31. avgust 007 / 180 minut Dovoljeno dodatno gradivo in pripomočki: Kandidat prinese s seboj

Διαβάστε περισσότερα

Predmetni izpitni katalog za poklicno maturo Matematika

Predmetni izpitni katalog za poklicno maturo Matematika Predmetni izpitni katalog za poklicno maturo Matematika Predmetni izpitni katalog se uporablja od spomladanskega izpitnega roka 04, dokler ni določen novi. Veljavnost kataloga za leto, v katerem bo kandidat

Διαβάστε περισσότερα

6. Kako razstavimo razliko kvadratov a2 - b2? Ali se vsota kvadratov a2 + b2 da razstaviti v množici realnih števil?

6. Kako razstavimo razliko kvadratov a2 - b2? Ali se vsota kvadratov a2 + b2 da razstaviti v množici realnih števil? USTNA VPRAŠANJA IZ MATEMATIKE šolsko leto 2005/2006 I. NARAVNA IN CELA ŠTEVILA 1. Naštejte lastnosti operacij v množici naravnih števil. Primer: Izračunajte na dva načina vrednosti izrazov 2. Opišite vrstni

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

PREDMETNI IZPITNI KATALOG ZA POKLICNO MATURO MATEMATIKA

PREDMETNI IZPITNI KATALOG ZA POKLICNO MATURO MATEMATIKA PREDMETNI IZPITNI KATALOG ZA POKLICNO MATURO MATEMATIKA Predmetni izpitni katalog je določil Strokovni svet RS za splošno izobraževanje na 60. seji 27. 8. 2003 in se uporablja v programih za pridobitev

Διαβάστε περισσότερα

= Števila 264, 252, 504 zapiši kot produkt praštevil in poišči njihov skupni največji delitelj in

= Števila 264, 252, 504 zapiši kot produkt praštevil in poišči njihov skupni največji delitelj in PRIPRAVA NA POM REALNA ŠTEVILA in PKS. Izračunaj: ( ( ) ( )) (( ) ) [ ] ( ( ) ) 4 0 ( ) ( ) 4 + 6 7 4 + + 4 + = 0 4 0 ( + ) 5 + ( 0) ( ) + (( 5) + ( ) ( ) ) = [ ]. Poenostavi in rezultat razstavi: ( +

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

*P173C10113* MATEMATIKA NAVODILA ZA OCENJEVANJE ZIMSKI IZPITNI ROK. Ponedeljek, 5. februar Državni izpitni center POKLICNA MATURA

*P173C10113* MATEMATIKA NAVODILA ZA OCENJEVANJE ZIMSKI IZPITNI ROK. Ponedeljek, 5. februar Državni izpitni center POKLICNA MATURA Državni izpitni center *P7C0* ZIMSKI IZPITNI ROK MATEMATIKA NAVODILA ZA OCENJEVANJE Ponedeljek, 5. februar 08 POKLICNA MATURA Državni izpitni center Vse pravice pridržane. P7-C0-- NAVODILA ZA OCENJEVANJE

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

D f, Z f. Lastnosti. Linearna funkcija. Definicija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k,

D f, Z f. Lastnosti. Linearna funkcija. Definicija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k, Linearna funkcija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k, n ᄀ. k smerni koeficient n začetna vrednost D f, Z f Definicijsko območje linearne funkcije so vsa realna števila. Zaloga

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA NPZ

PONOVITEV SNOVI ZA NPZ PONOVITEV SNOVI ZA NPZ ENAČBE 1. naloga : Ugotovi ali sta dani enačbi ekvivalentni! 5x 5 = 2x 2 in 5 ( x - 1 ) = 2 ( x 1 ) da ne 2. naloga : Reši linearni enačbi in napravi preizkusa! a) 5 4x = 2 3x PR:

Διαβάστε περισσότερα

VAJE IZ MATEMATIKE za študente gozdarstva. Martin Raič

VAJE IZ MATEMATIKE za študente gozdarstva. Martin Raič VAJE IZ MATEMATIKE za študente gozdarstva Martin Raič OSNUTEK Kazalo 1. Ponovitev 2 2. Ravninska in prostorska geometrija 5 3. Linearna algebra 7 4. Ponavljanje pred kolokvijem 8 M. RAIČ: VAJE IZ MATEMATIKE(GOZDARSTVO)

Διαβάστε περισσότερα

SEMINARSKA NALOGA Funkciji sin(x) in cos(x)

SEMINARSKA NALOGA Funkciji sin(x) in cos(x) FAKULTETA ZA MATEMATIKO IN FIZIKO Praktična Matematika-VSŠ(BO) Komuniciranje v matematiki SEMINARSKA NALOGA Funkciji sin(x) in cos(x) Avtorica: Špela Marinčič Ljubljana, maj 2011 KAZALO: 1.Uvod...1 2.

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

TRDNOST (VSŠ) - 1. KOLOKVIJ ( )

TRDNOST (VSŠ) - 1. KOLOKVIJ ( ) TRDNOST (VSŠ) - 1. KOLOKVIJ (17. 12. 03) Pazljivo preberite besedilo vsake naloge! Naloge so točkovane enakovredno (vsaka 25%)! Pišite čitljivo! Uspešno reševanje! 1. Deformiranje telesa je podano s poljem

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

1 MNOŽICE ŠTEVIL. NARAVNA, CELA, RACIONALNA, REALNA ŠTEVILA

1 MNOŽICE ŠTEVIL. NARAVNA, CELA, RACIONALNA, REALNA ŠTEVILA 1 MNOŽICE ŠTEVIL. NARAVNA, CELA, RACIONALNA, REALNA ŠTEVILA 1. Naštej lastnosti osnovnih računskih operacij v množici naravnih števil. 2. Kakšen je vrstni red računskih operacij v množici celih števil?

Διαβάστε περισσότερα

*P172C10113* MATEMATIKA NAVODILA ZA OCENJEVANJE JESENSKI IZPITNI ROK. Petek, 25. avgust Državni izpitni center POKLICNA MATURA

*P172C10113* MATEMATIKA NAVODILA ZA OCENJEVANJE JESENSKI IZPITNI ROK. Petek, 25. avgust Državni izpitni center POKLICNA MATURA Državni izpitni center *P7C0* JESENSKI IZPITNI ROK MATEMATIKA NAVODILA ZA OCENJEVANJE Petek, 5. avgust 07 POKLICNA MATURA Državni izpitni center Vse pravice pridržane. P7-C0-- NAVODILA ZA OCENJEVANJE nalog

Διαβάστε περισσότερα

*P171C10113* MATEMATIKA NAVODILA ZA OCENJEVANJE SPOMLADANSKI IZPITNI ROK. Sobota, 3. junij Državni izpitni center POKLICNA MATURA

*P171C10113* MATEMATIKA NAVODILA ZA OCENJEVANJE SPOMLADANSKI IZPITNI ROK. Sobota, 3. junij Državni izpitni center POKLICNA MATURA Državni izpitni center *P7C0* SPOMLADANSKI IZPITNI ROK MATEMATIKA NAVODILA ZA OCENJEVANJE Sobota,. junij 07 POKLICNA MATURA Državni izpitni center Vse pravice pridržane. P7-C0-- NAVODILA ZA OCENJEVANJE

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim Študij AHITEKTURE IN URBANIZMA, šol l 06/7 Vaje iz MATEMATIKE 8 Odvod funkcije f( Definicija: Naj bo f definirana na neki okolici točke 0 Če obstaja lim 0 +h f( 0 h 0 h, pravimo, da je funkcija f odvedljiva

Διαβάστε περισσότερα

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola Š i f r a k a n d i d a t a : Državni izpitni center *M07177111* SPOMLADANSKI ROK ELEKTROTEHNIKA Izpitna pola Sobota, 9. junij 2007 / 180 minut Dovoljeno dodatno gradivo in pripomočki: Kandidat prinese

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Matematika za 4. letnik srednjega strokovnega izobraževanja -interno gradivo-

Matematika za 4. letnik srednjega strokovnega izobraževanja -interno gradivo- LJUDSKA UNIVERZA NOVA GORICA Matematika za 4. letnik srednjega strokovnega izobraževanja -interno gradivo- Avtor: Samo Žerjal Nova Gorica, november 016 KAZALO 1 Trigonometrija... 3 1.1 Grafi in lastnosti

Διαβάστε περισσότερα

Sproščeno srečanje in izmenjava prvih vtisov. Režim v novem šolskem letu:

Sproščeno srečanje in izmenjava prvih vtisov. Režim v novem šolskem letu: 1. ura Tema: Uvodna ura Oblika: Poglavje: 1. Prva ura po poletnih počitnicah: Sproščeno srečanje in izmenjava prvih vtisov. Režim v novem šolskem letu: 2. Učbeniki. kontrolne naloge spraševanje 3. Hiter

Διαβάστε περισσότερα

LJUDSKA UNIVERZA NOVA GORICA MATEMATIKA

LJUDSKA UNIVERZA NOVA GORICA MATEMATIKA LJUDSKA UNIVERZA NOVA GORICA MATEMATIKA Matematika za drugi letnik srednjega strokovnega izobraževanja -interno gradivo- Avtor: Samo Žerjal Nova Gorica, februar 016 KAZALO 1 Potenčna funkcija... 1.1 Kvadratna

Διαβάστε περισσότερα

MODERIRANA RAZLIČICA

MODERIRANA RAZLIČICA Državni izpitni center *N10140122* REDNI ROK MATEMATIKA PREIZKUS ZNANJA Torek, 4. maj 2010 NAVODILA ZA VREDNOTENJE NACIONALNO PREVERJANJE ZNANJA ob koncu 2. obdobja MODERIRANA RAZLIČICA RIC 2010 2 N101-401-2-2

Διαβάστε περισσότερα

INŽENIRSKA MATEMATIKA I

INŽENIRSKA MATEMATIKA I INŽENIRSKA MATEMATIKA I REŠENE NALOGE za izredne študente VSŠ Tehnično upravljanje nepremičnin Marjeta Škapin Rugelj Fakulteta za gradbeništvo in geodezijo Kazalo Števila in preslikave 5 Vektorji 6 Analitična

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

GEOMETRIJA V RAVNINI DRUGI LETNIK

GEOMETRIJA V RAVNINI DRUGI LETNIK GEOMETRIJA V RAVNINI DRUGI LETNIK 2 1 Geometrija v ravnini 1.1 Osnove geometrije Točka je tisto, kar nima delov. Črta je dolžina brez širine. Ploskev je tisto, kar ima samo dolžino in širino. Osnovni zakoni,

Διαβάστε περισσότερα

Περιεχόµενα. 1. Γενικό πλαίσιο. 2. Η ΚΑΠ σήµερα. 3. Γιατί χρειαζόµαστε τη µεταρρύθµιση; 4. Νέοι στόχοι, µελλοντικά εργαλεία και πολιτικές επιλογές

Περιεχόµενα. 1. Γενικό πλαίσιο. 2. Η ΚΑΠ σήµερα. 3. Γιατί χρειαζόµαστε τη µεταρρύθµιση; 4. Νέοι στόχοι, µελλοντικά εργαλεία και πολιτικές επιλογές Ανακοίνωση για το µέλλον της ΚAΠ «Η ΚΑΠπροςτο2020: αντιµετωπίζοντας τις προκλήσεις στον τοµέα των τροφίµων, στους φυσικούς πόρους και στις περιφέρειες» Γ Γεωργίας και Αγροτικής Ανάπτυξης Ευρωπαϊκή Επιτροπή

Διαβάστε περισσότερα

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22 junij 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Veljale bodo samo rešitve na papirju, kjer

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

ΕΓΓΡΑΦΟ ΕΡΓΑΣΙΑΣ ΤΩΝ ΥΠΗΡΕΣΙΩΝ ΤΗΣ ΕΠΙΤΡΟΠΗΣ. Εκθεση χώρας - Κύπρος 2015. {COM(2015) 85 final}

ΕΓΓΡΑΦΟ ΕΡΓΑΣΙΑΣ ΤΩΝ ΥΠΗΡΕΣΙΩΝ ΤΗΣ ΕΠΙΤΡΟΠΗΣ. Εκθεση χώρας - Κύπρος 2015. {COM(2015) 85 final} ΕΥΡΩΠΑΪΚΗ ΕΠΙΤΡΟΠΗ Βρυξέλλες, 26.2.2015 SWD(2015) 32 final ΕΓΓΡΑΦΟ ΕΡΓΑΣΙΑΣ ΤΩΝ ΥΠΗΡΕΣΙΩΝ ΤΗΣ ΕΠΙΤΡΟΠΗΣ Εκθεση χώρας - Κύπρος 2015 {COM(2015) 85 final} Το παρόν έγγραφο δεν συνιστά επίσημη θέση της Ευρωπαϊκής

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

KOTNI FUNKCIJI SINUS IN COSINUS

KOTNI FUNKCIJI SINUS IN COSINUS Univerza v Ljubljani Fakulteta za matematiko in fiziko KOTNI FUNKCIJI SINUS IN COSINUS Seminarska naloga pri predmetu Komuniciranje v matematiki Avtor: Zalka Selak Mentor: prof. dr. Tomaţ Pisanski KAZALO:

Διαβάστε περισσότερα

Državni izpitni center MATEMATIKA PREIZKUS ZNANJA. Torek, 8. maja 2007 / 60 minut. NACIONALNO PREVERJANJE ZNANJA ob koncu 2. obdobja NAVODILA U^ENCU

Državni izpitni center MATEMATIKA PREIZKUS ZNANJA. Torek, 8. maja 2007 / 60 minut. NACIONALNO PREVERJANJE ZNANJA ob koncu 2. obdobja NAVODILA U^ENCU Š i f r a u ~ e n c a: Državni izpitni center *N0710121* REDNI ROK MATEMATIKA PREIZKUS ZNANJA Torek, 8. maja 2007 / 60 minut Dovoljeno gradivo in pripomo~ki: u~enec prinese s seboj modro/~rno nalivno pero

Διαβάστε περισσότερα

Računski del izpita pri predmetu MATEMATIKA I

Računski del izpita pri predmetu MATEMATIKA I Kemijska tehnologija Visokošolski strokovni program Računski del izpita pri predmetu MATEMATIKA I 29. 8. 2013 Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument. Ugasni in odstrani mobilni telefon.

Διαβάστε περισσότερα

MODERIRANA RAZLIČICA

MODERIRANA RAZLIČICA Dr`avni izpitni center *N07143132* REDNI ROK KEMIJA PREIZKUS ZNANJA Maj 2007 NAVODILA ZA VREDNOTENJE NACIONALNO PREVERJANJE ZNANJA b kncu 3. bdbja MODERIRANA RAZLIČICA RIC 2007 2 N071-431-3-2 NAVODILA

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

1 3D-prostor; ravnina in premica

1 3D-prostor; ravnina in premica 1 3D-prostor; ravnina in premica 1. Razmisli, v kakšnih legah so lahko v prostoru: (a) premica in ravnina (b) dve ravnini (c) dve premici.ugotovitve zapiši.. 2. Ali sta premici v prostoru, ki nimata skupne

Διαβάστε περισσότερα

Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija

Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika 1 3. vaja B. Jurčič Zlobec 1 1 Univerza v Ljubljani, Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika FE, Ljubljana, Slovenija 2011 Določi stekališča zaporedja a

Διαβάστε περισσότερα

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija.

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija. 1 / 46 Univerza v Ljubljani, FE Potenčna Korenska Melita Hajdinjak Matematika I (VS) Kotne 013/14 / 46 Potenčna Potenčna Funkcijo oblike f() = n, kjer je n Z, imenujemo potenčna. Število n imenujemo eksponent.

Διαβάστε περισσότερα

*M * FIZIKA. Izpitna pola 2. Sobota, 28. avgust 2010 / 105 minut JESENSKI IZPITNI ROK

*M * FIZIKA. Izpitna pola 2. Sobota, 28. avgust 2010 / 105 minut JESENSKI IZPITNI ROK Š i f r a k a n d i d a t a : Državni izpitni center *M14111* JESENSKI IZPITNI ROK FIZIKA Izpitna pola Sobota, 8. avgust 1 / 15 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali

Διαβάστε περισσότερα

VPRAŠANJA ZA POKLICNO MATURO IZ MATEMATIKE

VPRAŠANJA ZA POKLICNO MATURO IZ MATEMATIKE VPRAŠANJA ZA POKLICNO MATURO IZ MATEMATIKE ŠTEVILSKE MNOŽICE NARAVNA ŠTEVILA 1. Naštej lastnosti osnovnih računskih operacij v N. Osnovne računske operacije so seštevanje in množenje (+, *): a) ZAKON O

Διαβάστε περισσότερα

Pravokotni koordinatni sistem; ravnina in premica

Pravokotni koordinatni sistem; ravnina in premica Pravokotni koordinatni sistem; ravnina in premica 1. Razmisli, v kakšnih legah so lahko v prostoru: (a) premica in ravnina (b) dve ravnini (c) dve premici.ugotovitve zapiši.. 2. Ali sta premici v prostoru,

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

PRIMER UPORABE FUNKCIJ 2. FUNKCIJE ENE SPREMENLJIVKE DEFINICIJA IN LASTNOSTI FUNKCIJE. Upogibni moment. M(X )=F A x qx2 2

PRIMER UPORABE FUNKCIJ 2. FUNKCIJE ENE SPREMENLJIVKE DEFINICIJA IN LASTNOSTI FUNKCIJE. Upogibni moment. M(X )=F A x qx2 2 3 4 PRIMER UPORABE FUNKCIJ Upogibni moment 2. FUNKCIJE ENE SPREMENLJIVKE T (x) =F A qx M(X )=F A x qx2 2 1 2 DEFINICIJA IN LASTNOSTI FUNKCIJE Naj bosta A in B neprazni množici. Enolična funkcija f : A

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα