1 3D-prostor; ravnina in premica

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1 3D-prostor; ravnina in premica"

Transcript

1 1 3D-prostor; ravnina in premica 1. Razmisli, v kakšnih legah so lahko v prostoru: (a) premica in ravnina (b) dve ravnini (c) dve premici.ugotovitve zapiši.. 2. Ali sta premici v prostoru, ki nimata skupne točke, vzporedni? 3. Naj bo premica p vzporedna q, premica q pa ni vzporedna r? Ali je lahko premica r vzporedna s premico p? 4. Naj bosta ravnini π 1 in π 2 vzporedni. Ravnina π 1 naj seka vzporedni ravnini v premicah p 1 in p 2. Ali sta premici vzporedni? Pojasni. 5. Premici p in q sta mimobežni, Koliko je ravni, v kateri leži premica p in ki so vzporedne s premico q? 6. Dokaži ali ovrzi: π 1 in π 2 sta poljubni nevzporedni ravnini v prostoru. Potem obstaja premica p, ki je skupna obem ravninam. 7. Dokaži ali ovrzi: tri paroma nevzporedne ravnine imajo skupno premico. 8. Dokaži ali ovrzi: Tri različne, paroma nevzporedne premice v prostoru, ki se paroma sekajo, ležijo v isti ravnini. 9. Dokaži ali ovrzi: če je π 1 π 2 in π 1 π 3, potem velja π 1 π Dokaži ali ovrzi: obstaja natanko ena pravokotnica na ravnino. 11. Kaj je lahko pravokotna projekcija daljica na ravnino? 12. Kaj je lahko pravokotna projekcija premice na ravnino? 13. Kaj je lahko pravokotna projekcija ravnine na ravnino? 14. Ali se pri pravokotni projekciji ohranja dolžina? 15. Premica p seka ravnino π. Na premici je daljica CD z dolžino 7 enot. Točka C je od ravnine oddaljena za 5 enot, točka D pa za 8 enot. Kolikšna je dolžina pravokotne projekcije daljice CD na ravnini? 16. V središču pravilnega šestkotnika ABCDEF s stranico a = 4 stoji pravokotnica ST na ravnino šestkotnika ( ST = 4). (a) Kolikšen je naklonski kot premice skozi A in T na ravnino osnovne ploskve? (b) Kolikšen je kot med ravnino osnovne ploskve in ravnino trikotnika BCT? 17. Naj premica p seka ravnino π v točki A. Dokaži ali ovrzi: (a) premica, pravokotna na normalo ravnine, je vzporedna z ravnino. (b) premica, pravokotna na premico, ki je vzporedna ravnini, je normala na to ravnino. 18. Naj bo v ravnini podano n premic, ki se vse sekajo v isti točki in velja, da poljubne tri izmed njih ne ležijo v isti ravnini. Koliko ravnin določa teh n premic? Razmisli za n = 3, 4, 5... in rezultat posploši (opomba: vsota prvih n števil je n = n(n+1) 2 ). 19. Naj bo v ravnini podano n točk, po tri skupaj nekolinearne. Koliko premic določajo? Razmisli za n = 3, 4, 5... in rezultat posploši. 20. V prostoru naj bo podanih 5 točk, po tri skupaj nekolinearne, po štiri nekomplanarne.koliko ravnin v prostoru določa 5 točk? Razmisli še za 6, 7,..., n. (Opomba: tri elemente lahko izmed n elementov izbremo na (n 1)(n 2)n 6 načinov; kaj kšno povezavo ima to z zastavljenim problemom?)

2 21. (projekcija) V oglišču D kvadrata ABCD s stranico a = 8 je postavljena pravokotnica na ravnino kvadrata. Točka E je na pravokotnici, tako da je DE = 10.enot. Kolikšen je kot med ravnino kvadrata in ravnino DCE? Nariši ustrezno sliko. 22. (projekcija) V središču S pravokotnika ABCD je postavljena pravokotnica na ravnino pravokotnika. Na pravokotnici je točka T, pri tem merijo : AB = 7, BC = 4, T S = 12. Kolikšen je naklonski kot daljice BT glede na ravnino pravokotnika? Kolikšen je kot med ravnino pravokotnika in ravnino trikotnika BCT? 23. (projekcija) V središču S enakostraničnega trikotnika ABC s stranico 8 je postavljena pravokotnica na ravnino trikotnika. Na pravokotnici je točka T, tako da je ST = 8. Izračunaj naklonski kot daljice AT glede na ravnino trikotnika in kot med ravninnama ABC in BCT. 24. (projekcija) Na ravnini je kvadrat ABCD s stranico a = 6 enot. Točka T je zunaj ravnine v takšni legi, da je njena pravokotna projekcija središče S kvadrata. Koliko je točka T oddaljena od ravnine, če je od vsakega oglišča kvadrata oddaljena za 6 enot? Kolikšen je naklonski kot premice, ki poteka skozi točki A in T proti ravnini? Kolikšen je kot med ravnino kvadrata in ravnino skozi točke B, C, T? 25. (projekcija) V presečišču diagonal e = 8 in f = 6 romba ABCD je postavljena pravokotnica ST na ravnino romba ( ST = 10). Kolikšna sta naklonska kota premic AT in BT proti ravnini romba? 26. (projekcija) V ravnini je enakostranični trikotnik ABC s stranico a = 8 enot. V oglišču A je postavljena pravokotnica AT z dolžino a. Izračunaj naklonski kot daljice BT proti ravnini trikotnika in kot med ravninama,ki določa trikotnik ABC in ravnino, ki določa trikotnik BCT? 2 Vektorji 2.1 Definicija vektorja, osnovne lastnosti 1. S čim je določen vektor? 2. Kdaj sta dva vektorja enaka? 3. V ravnini je podan kvadrat ABCD. (a) Zapiši vse vektorje, ki jih določajo oglišča kvadrata. (b) Zapiši vse vektorje, ki so med sabo enaki. (c) Zapiši vse vektorje, nasprotne vektorju AB. 4. (enakost vektorjev, nasprotni vektorji, premik z vektorjem) V ravnini je podan pravilni šestkotnik ABCDEF. (a) Naj bo S sečišče glavnih diagonal šestkotnika. Zapiši vse vektorje, ki jih določajo oglišča šestkotnika in so enaka vektorju. F S. (b) Zapiši vse vektorje,ki jih določajo oglišča šestkotnika in so nasprotni vektorju DE. (c) Premakni šestkotnik za vektor AS. Kam se preslika točka F. 5. (enakost vektorjev, vsota, razlika, lega premic in ravnin v prostoru) V ravnini je podana kocka ABCDA B C D (A nad A). (a) Zapiši vse vektorje, enake vektorju CC. (b) Kakšna je lega premice p, ki poteka A in C, ter premice q, ki poteka skozi B in D? Pojasni. (c) Kakšna je lega premice q in premice r, ki poteka skozi D in C? Pojasni. (d) Kakšna je lega premice r in ravnine π, ki poteka skozi ABC D? Pojasni. (e) Izračunaj: i. AD + DC ii. AA + A D

3 iii. DC + BA iv. AB AC v. DD + D A + AG vi. BD + DB DE 6. (enakost vektorjev, nasprotni vektorji) Dan je trikotnik ABC. Točke D, E, F po vrsti razpolavljajo stranice AB, BC, CA.Ugotovi, kateri pari vektorjev so med seboj enaki, vzporedni, nasprotni in različni: (a) AD, F E (b) DE, CA (c) DF, EB (d) BF, EC (e) F C, AC (f) EF, DA (g) DE, CF 7. (operacije z vektorji...) Izračunaj: (a) ( a b ) + ( b c ) ( a c )) (b) ( a + b c ) ( b c ) (c) ( a ( b c )) ( c ( b a )) 8. (izražanje vektorja...) Iz vektorske enačbe izrazi vektor x : (a) b + a x = d a (b) AB + x CD = DC BA (c) x ( AB BC) = BA 9. (načrtna naloga lin. komb. vektorjev v liku) Dan je romb ABCD. Načrtaj: (a) AB + BD (b) BD + DC (c) AC BC (d) BC + BD + DA 10. Nariši tri nekolinearne točke v ravnini. (a) Nariši vektor AB BC CA. (b) Pokaži, da velja: 2 AB = AB BC CA 2.2 Produkt vektorja s skalarjem 1. Dan je vektor a.nariši 2 a in 3 a. 2. Nariši dva nekolinearne vektorja a in b.nariši a + b + ( 2 a ) in 3 a 1 2 (3 a b ). 3. (iskanje skalarja) Diagonali paralelograma se sekata v točki S. Poišči število m,da velja: (a) AB = mcd (b) AC = m AS (c) BD = m SB (d) SC = m CA 4. (uporaba vektorskih enačb v fiziki) Pospešek in hitrost vektorski količini. Kateri skalar ju povezuje? Zapiši enačbo v vektorski obliki. 5. Pot in hitrost vektorski količini. Kateri skalar ju povezuje? Zapiši enačbo v vektorski obliki. 6. Teža visečega telesa raztegne vzmet. Poveži silo teže in razetzek v vektorski obliki z enačbo (Hookov zakon).. 7. (linearna komb. vektorjev v liku) Dan je pravilni šestkotnik ABCDEF, AB = a, BC = b. Izrazi z vektorjema a in b vektorje AD, AE, AC, BE, BF, DF. 8. (risanje enotskega vektorja) Podan je vektor z lastnostjo a = 4. Nariši enotki vektor, ki je vzporeden vektorju a. 9. (izračun skalarja v vektorski enačbi) Dan je vektor a 0. Kakšno vrednost ima skalar m, če je: (a) 2 a + 3 a m = 5 a (b) 3 a + 2m a = (m 1) a (c) 3m a (m + 2) a = 2(m 1) a (d) (m + 1) a + (m 1) a = 4 a

4 2.3 Premik z vektorjem 1. Premakni kvadrat ABCD v ravnini za vektor AS, kjer je S sečišče diagonal kvadrata. 2. V koordinatnem sistemu (vzporedno) premakni: (a) koordinatno izhodišče O(0, 0) z vektorjem a v točko A(2, 3); nariši. (b) Isti vektor uporabi za premik točke T (3, 1). Kam se premakne točka T? (c) Izrazi koordinate novih točk s starimi točkami 3. V kaj se preslika premica pri premiku z vektorjem premika? 4. V kaj se preslika parabola pri premiku z vektorjem premika? 5. Razmisli, ali drži: (a) pri premiku za neničelni vektor se premakne vsaka točka prostora; premik za ničelni vektor pusti vse točke pri miru (b) pri premiku se ohranjajo razdalje. 6. Naj bo podan paralelogram ABCD z ostrim kotom pri A. Točka M naj bo pravokotna projekcija točke D na stranico AB. Premakni trikotnik za vektor AB.(Razmisli o ploščini lika, ki ga dobiš s premikom). 2.4 Linearna kombinacija vektorjev, neodvisnost vektorjev, baza 1. Nariši dva vzporedna vektorja v ravnini. Ali sta linearno neodvisna? 2. Nariši dva nevzporedna vektorja.v ravnini Ali sta linearno neodvisna? 3. Nariši tri komplanarne vektorje. Ali so lin. neodvisni? 4. Podani so trije nekomplanarni vektorji. Ali so lin. neodvisni? 5. Kaj sestavlja bazo v dvodimenzionalnem prostoru? 6. Kaj sestavlja bazo v trodimenzionalnem prostoru? 7. V trikotniku ABC naj stranice predstavljajo vektorje a, b, c,tako da velja a + b + c = 0. Načrtaj linearno kombinacijo vektorjev 3 a + 2 b c. 8. (lin. komb. treh neodvisnih vektorjev v prostoru) V piramidi ABCD je točka E razpolovišče roba BC in točka F razpolovišče roba AD. Zapiši vektor EF kot linearno kombinacijo vektorjev a = AB, b = BC, c = CD. 9. (risanje vektorjev V ravnini izberi bazna vektorja a in b s skupnim začetkom O in vektor c z začetkom v O tako, da (a) c leži med vektorjema a in b.načrtaj lin. kombinacijo vektorjev a in b, da dobiš c. (b) c ne leži med vektorjema a in b. S sliko izrazi c kot linearno kombinacijo vektorjev a in b (pravimo, da smo c razstavili na komponente v smeri vektorjev a in b ). 10. (ničelna lin. kombinacija dveh neodvisnih vektorjev v ravnini) Naj bosta a in b linearno neodvisna vektorja. Določi vrednost skalarjev m in n, če velja (a) m(2 a b ) + a = n( a + b ) 4 b (b) (m + n) a + (m 1) b = 2( a + n b ) (c) m(2 a 3 b ) = 4 a n( a 2 b ) 6 b 11. Robovi kvadra naj bodo podani z vektorji a = AB, b = AD, c = AE. Določi vsoto vektorjev, ki leže na diagonalah mejnih ploskev kvadra in gredo iz oglišča A. 12. (razpolovišče daljice) V prostoru je dana daljica AB. Točka C ne leži na daljici AB.Točka S pa leži na razpolovišču daljice. Izrazi vektor CS z vektorjema CA in CB.

5 13. (lin. kombinacija vektorjev v trikotniku) Točka D je razpolovišče trikotnikove stranice BC. Z vektorjema AB in AC zapiši vektorje AD, BE, DC, DB. 14. (lin. kombinacija vektorjev v kocki)v ravnini je podana kocka ABCDA B C D (A nad A) z baznimi vektorji AB = a, AD = b, AA = c. (a) Naj bo M razpolovišče roba CC, P pa razpolovišče A D.Izrazimo vektorje AC, AM in CP z baznimi vektorji. (b) K je središče kvadrata BCC B, L pa razpolovišče robe CD. Izrazi vektor LK z baznimi vektorji. (c) Na robu BC je točka M, tako da je BM : M C = 3 : 2. S je središče kvadrata CDD C. Izrazi vektor SM z baznimi vektorji. 15. (paralelogram; računanje razmerja delitve stranic z baznimi vektorji) Dan je paralelogram ABCD. Iz točke E, ki deli stranico AB v razmerju AE : EB = 1 : 2,načrtajmo daljico ED, ki seka diagonalo v točki F. V kolikšnem razmerju deli točka F diagonalo AC?(Namig: postavi poljubno bazo vektorjev a = AB, b = AD,izrazi vektorje AE, ED, AC z baznimi vektorji in potem vektor AF na dva načina izrazi z baznima vektorjema...). 16. Prejšnjo nalogo posploši za pšoljubno razmerje AE : EB = m : n; ali pa vsaj za primere AE : EB = 3 : 4, AE : EB = 5 : (delitev težiščnice v trikotniku)v trikotniku ABC naj bo CD težiščnica na stranico c. Razpolovišče daljice CD označimo z E. Dokažimo, da premica skozi točki A in B odreže od stranice BC točno eno tretjino. 18. (uporaba naloge z vektorjem težišča) V trikotniku ABC naj bo T težišče. Izrazimo vektor AT z vektorjema AB = c, AC = b. 19. V paralelogramu ABCD točka P deli daljico DC v razmerju DP : P C = 3 : 2 in točka Q daljico AD v razmerju AQ : QD = 2 : 1. Nariši daljici AP in BG, ki se sekata v točki S. V kakšnem razmerju deli točka S daljico AP? 20. V prostoru imamo štiri nekomplanarne točke (sestavljajo četverec, tetraeder). Točka T 1 naj bo težišče trikotnika ABC in točka T 2 naj bo težišče trikotnika ABD. Pokažimo, da sta daljici T 1 T 2 vzporedni (pomagaj si z nalogo. o težišču trikotnika). 21. Tetraeder ABCD je določen z vektorji AB = a, AC = b, AD = c. Na robu CD je točka M, tako da je CD : MD = 4 : 3. Točka P je razpolovišče roba BC. Izrazimo vektor MP z danimi vektorji. 22. Točke A, B, C razpolavljajo stranice BC,CA, AB trikotnika ABC. (a) Preveri, ali veljajo naslednje enačbe: AB + AC = 2 AA, BA + BC = BB, CA + CB = 2CC. (b) Dokaži, da imata trikotnika ABC in A B C skupno težišče. 23. Dana sta paralelograma ABCD in EF GH. Naj bodo K, L, M in N zapored razpolovišča daljic AE, BF, CG, DH. Dokaži, da je KLMN paralelogram. (Namig: izrazi krajevne vektorje r B, r L, r M, r N,potem dokažemo enakost vektorjev KL = NM (izrazimo vektorjaad in BC s krajevnimi vektorji oglišč prvega paralelograma in vektorja EH in F G s krajevnimi vektorji oglišč drugega paralelograma ter dokažemo, da je KL = NM ) in KN = LM (podobno). 24. V petkotniku ABCDE so M, N, P in Q zapored središča stranic AB, BC, CD, DE. Točki R in S ta zapored središči daljic NQ in MP. Dokaži, da je RS = AE 4 in RS AE. (Namig: postavi bazo v petkotnikunpr: AB = a, AE = b. Izrazi vektorju

6 AP, AS, AQ, AN, AR in RS z baznimi vektorji, od tod sledi enostaven sklep do rešitve...). 2.5 Skalarni produkt.kosinusni izrek. Ortonormirana baza vektorskega prostora. 1. Nariši dva nekolinearna vektorja a in b s skupnim izhodiščem in določi pravokotno projekcijo vektorja a na b. Kaj je pravokotna projekcija, če je kot med vektorjema top? 2. Pokaži, da za dva vektorja velja proj c ( a + b ) = projc a + projc b (skiciraj grafično). 3. Enotskima vektorjema e 1 in e 2 določi velikost projekcije vektorja e 1 na e 2, če je med njima kot. (a) 30 (b) 45 (c) 90 (d) Vektor a ima dolžino 6 enot. Koliko mora biti kot med a in b, če je dolžina vektorja b 10 enot in njegova projekcija na a enaka (a) 2 enoti (b) 10 enot (c) 5 enot (d) 0 enot 5. Vektor a in b sta pravokotna in velja a = 2 2, b = 3. Izračunaj: (a) (2a + 3b)(2a 3b) (b) (a + 3b) 2 (c) (3 a 2 b )(4 a + 5 b ) 6. Izračunaj notranje kote trikotnikov: (a) a = 6cm, b = cm, c = 8.2cm (b) a = 4.5cm, b = 3.4cm, c = 7.2cm 7. Z vektorjema a = (5, 0) in b = (3, 4) določimo paralelogram. Izračunaj stranici paralelograma ter kot med njima. Kako bi izračunal ploščino paralelograma? 8. Premici iz enega oglišča pravokotnika s stranicama 6cm in 4cm razpolavljata nasprotni stranici. Določi kot med njima. 9. Kateri vektorji tvorijo ortonormirano bazo v ravnini, kateri v prostoru? Kakšen je skalarni produkt med temi baznimi vektorji? 10. Vektorji i, j, k tvorijo ortonormirano bazo. Določi (a) i j (b) (4 j ) (2 k ) (c) (5 j ) 2 (d) (3 i + 6 j )(2 j k ) 11. Katera točka je določena z linearno kombinacijo ortonormiranih vektorjev 3 i +3 j 4 k v prostoru? 12. Podana sta vektorja a = (1, 2, 2) in b = ( 3, 4, 0) v pravokotnem koordinatnem sistemu: (a) seštej oba vektorja (b) izračunaj 2a+b (c) 1 2 a b (d) Določi skalarni produkt med a in b? Ali sta vektorja pravokotna? 13. Čemu je enak skalarni produkt dveh vektorjev, ki sta (a) pravokotna, (b) vzporedna? 14. Vektorju a določi neznano komponento x vektorja b, da bosta a in b pravokotna: (a) a = (3, 4), b = (x, 3) (b) a = (7, 1), b = ( 2, x)

7 (c) a = (1, 0), b = (x, 3) (d) a = ( 3, 2 2), b = (4, x) 15. Zapiši linearno kombinacijo vektorjev s = 2a+ 3b 1 2c, če je (a) a = ( 1, 1, 2), b = (4, 3, 0), c = (3, 2, 1), (b) a = ( 1 2, 2 3, 1), b = (0, 2, 1 2 ), c = ( 2 3, 0, 1). 16. Ali sta naslednja vektorja vzporedna oziroma pravokotna: (a) a = (1, 3), b = ( 2, 2 3 ); nariši (b) a = (1, 2, 3), b = ( 2, 3), (c) a = ( 1 3, 2 3, 1), b = ( 1 2, 1, 3 2 ). 17. V koordinatnem sistemu nariši par vektorjev a in b ter izračunaj njihovo dolžino, kot med njima ter vrednost skalarnega produkta a b : (a) a = ( 4, 4), b = (4, 1) (b) a = (2, 1), b = ( 1, 3) (c) a = ( 1, 5), b = (4, 5). 18. Trikotnik ABC z oglišči A(1, 1, 1), B(2, 7, 9) in C(2, 5, 6) projiciraj na: (a) xy ravnino (b) yz ravnino (c) yz ravnino.

Pravokotni koordinatni sistem; ravnina in premica

Pravokotni koordinatni sistem; ravnina in premica Pravokotni koordinatni sistem; ravnina in premica 1. Razmisli, v kakšnih legah so lahko v prostoru: (a) premica in ravnina (b) dve ravnini (c) dve premici.ugotovitve zapiši.. 2. Ali sta premici v prostoru,

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 2. Vektorji

Vaje iz MATEMATIKE 2. Vektorji Študij AHITEKTURE IN URBANIZMA, šol. l. 06/7 Vaje iz MATEMATIKE. Vektorji Vektorji: Definicija: Vektor je usmerjena daljica. Oznake: AB, a,... Enakost vektorjev: AB = CD: če lahko vektor AB vzporedno premaknemo

Διαβάστε περισσότερα

GEOMETRIJA V RAVNINI DRUGI LETNIK

GEOMETRIJA V RAVNINI DRUGI LETNIK GEOMETRIJA V RAVNINI DRUGI LETNIK 2 1 Geometrija v ravnini 1.1 Osnove geometrije Točka je tisto, kar nima delov. Črta je dolžina brez širine. Ploskev je tisto, kar ima samo dolžino in širino. Osnovni zakoni,

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA NPZ

PONOVITEV SNOVI ZA NPZ PONOVITEV SNOVI ZA NPZ ENAČBE 1. naloga : Ugotovi ali sta dani enačbi ekvivalentni! 5x 5 = 2x 2 in 5 ( x - 1 ) = 2 ( x 1 ) da ne 2. naloga : Reši linearni enačbi in napravi preizkusa! a) 5 4x = 2 3x PR:

Διαβάστε περισσότερα

Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni izrek.

Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni izrek. DN#3 (januar 2018) 3A Teme, ki jih preverja domača naloga: Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni

Διαβάστε περισσότερα

1 Seštevanje vektorjev in množenje s skalarjem

1 Seštevanje vektorjev in množenje s skalarjem Poglavje I Vektorji Seštevanje vektorjev in množenje s skalarjem Za lažjo geometrično predstavo si najprej oglejmo, kaj so vektorji v ravnini. Vektor je usmerjena daljica, ki je natanko določena s svojo

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z.

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z. 3. VAJA IZ TRDNOSTI (tenzor deformacij) (pomiki togega telesa, Lagrangev in Eulerjev opis, tenzor velikih deformacij, tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Gumijasti

Διαβάστε περισσότερα

VEKTORJI. Operacije z vektorji

VEKTORJI. Operacije z vektorji VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Linearna algebra. Bojan Orel Fakulteta za računalništvo in informatiko

Linearna algebra. Bojan Orel Fakulteta za računalništvo in informatiko Linearna algebra Bojan Orel Fakulteta za računalništvo in informatiko 23. februar 205 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 52.64(075.8)(0.034.2) OREL, Bojan

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

VAJE IZ MATEMATIKE za študente gozdarstva. Martin Raič

VAJE IZ MATEMATIKE za študente gozdarstva. Martin Raič VAJE IZ MATEMATIKE za študente gozdarstva Martin Raič OSNUTEK Kazalo 1. Ponovitev 2 2. Ravninska in prostorska geometrija 5 3. Linearna algebra 7 4. Ponavljanje pred kolokvijem 8 M. RAIČ: VAJE IZ MATEMATIKE(GOZDARSTVO)

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK

MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK abc MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK ŠTEVILA PRIBLIŽNO RAČUNANJE PRIBLIŽNO RAČUNANJE Ta fosil dinozavra je star 7 milijonov in šest let, pravi paznik v muzeju.??? Ko sem

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

INŽENIRSKA MATEMATIKA I

INŽENIRSKA MATEMATIKA I INŽENIRSKA MATEMATIKA I REŠENE NALOGE za izredne študente VSŠ Tehnično upravljanje nepremičnin Marjeta Škapin Rugelj Fakulteta za gradbeništvo in geodezijo Kazalo Števila in preslikave 5 Vektorji 6 Analitična

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Univerza na Primorskem Pedagoška fakulteta Koper. Geometrija. Istvan Kovacs in Klavdija Kutnar

Univerza na Primorskem Pedagoška fakulteta Koper. Geometrija. Istvan Kovacs in Klavdija Kutnar Univerza na Primorskem Pedagoška fakulteta Koper Geometrija Istvan Kovacs in Klavdija Kutnar Koper, 2007 PREDGOVOR Pričujoče študijsko gradivo je povzeto po naslednjih knigah Richard S. Millman, George

Διαβάστε περισσότερα

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne

Διαβάστε περισσότερα

Osnove matematične analize 2016/17

Osnove matematične analize 2016/17 Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja

Διαβάστε περισσότερα

ZBIRKA REŠENIH NALOG IZ MATEMATIKE II

ZBIRKA REŠENIH NALOG IZ MATEMATIKE II Univerza v Ljubljani Fakulteta za elektrotehniko Andrej Perne ZBIRKA REŠENIH NALOG IZ MATEMATIKE II Skripta za vaje iz Matematike II (UNI + VSP) Ljubljana, determinante Determinanta det A je število, prirejeno

Διαβάστε περισσότερα

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

!!  &' ':  /.., c #$% & - & ' (),..., * +,.. * ' + * - - * (),...(. ..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

7. VAJA IZ MEHANIKE TRDNIH TELES. (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji)

7. VAJA IZ MEHANIKE TRDNIH TELES. (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) 7. VAJA IZ MEHANIKE TRDNIH TELES (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Pomik deformabilnega telesa je glede na kartezijski koordinatni sistem

Διαβάστε περισσότερα

Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti

Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti Poglavje VII Linearne preslikave V tem poglavju bomo vektorske prostore označevali z U,V,W,... Vsi vektorski prostori bodo končnorazsežni. Zaradi enostavnosti bomo privzeli, da je pripadajoči obseg realnih

Διαβάστε περισσότερα

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih. TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij

Διαβάστε περισσότερα

AFINA IN PROJEKTIVNA GEOMETRIJA

AFINA IN PROJEKTIVNA GEOMETRIJA Aleš Vavpetič AFINA IN PROJEKTIVNA GEOMETRIJA Ljubljana 2011 ii naslov: AFINA IN PROJEKTIVNA GEOMETRIJA avtorske pravice: Aleš Vavpetič izdaja: prva izdaja založnik: samozaložba Aleš Vavpetič, Ljubljana

Διαβάστε περισσότερα

Opisna geometrija II. DVO^RTNI POSTOPEK

Opisna geometrija II. DVO^RTNI POSTOPEK Opisna geometrija II. DVO^RTNI POSTOPEK 1 Dvo~rtni postopek Pridru`ni ortogonalni projekciji na: - tlorisno ravnino π 1, - narisno ravnino π 2, - prese~na os x 12. Imena: - Monge-ov postopek (Gaspard Monge,

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

2. VAJA IZ TRDNOSTI. Napetostno stanje valja je določeno s tenzorjem napetosti, ki ga v kartezijskem koordinatnem. 3xy 5y 2

2. VAJA IZ TRDNOSTI. Napetostno stanje valja je določeno s tenzorjem napetosti, ki ga v kartezijskem koordinatnem. 3xy 5y 2 . VAJA IZ TRDNOSTI (tenzor napetosti) (napetostni vektor, transformacija koordinatnega sistema, glavne normalne napetosti, strižne napetosti, ravninsko napetostno stanje, Mohrovi krogi, ravnotežne enačbe)

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

LJUDSKA UNIVERZA NOVA GORICA MATEMATIKA

LJUDSKA UNIVERZA NOVA GORICA MATEMATIKA LJUDSKA UNIVERZA NOVA GORICA MATEMATIKA Matematika za drugi letnik srednjega strokovnega izobraževanja -interno gradivo- Avtor: Samo Žerjal Nova Gorica, februar 016 KAZALO 1 Potenčna funkcija... 1.1 Kvadratna

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )

1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk ) VAJA IZ TRDNOSTI (lnearna algebra - ponovtev, Kroneckerev δ, permutacsk smbol e k ) NALOGA : Zapš vektor a = [, 2,5,] kot lnearno kombnaco vektorev e = [,,,], e 2 = [,2,3,], e 3 = [2,,, ] n e 4 = [,,,]

Διαβάστε περισσότερα

Deljivost naravnih števil

Deljivost naravnih števil Deljivost naravnih števil. D = {,,, 4, 6, }, V = {, 4, 6, 48, 60 }. (A) in (E). a) S številom so deljiva števila:, 0, 0 in 060. S številom so deljiva števila: 0, 460, 000 in 46. c) S številom 4 so deljiva

Διαβάστε περισσότερα

Vektorski prostori s skalarnim produktom

Vektorski prostori s skalarnim produktom Poglavje IX Vektorski prostori s skalarnim produktom Skalarni produkt dveh vektorjev v R n smo spoznali v prvem poglavju. Sedaj bomo pojem skalarnega produkta razširili na poljuben vektorski prostor V

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι

Διαβάστε περισσότερα

Letnik 0, številka 5

Letnik 0, številka 5 Brihtnež Elektronska revija za mlade matematike Letnik 0, številka 5 c Društvo matematikov, fizikov in astronomov Slovenije http://www.dmfa.si/brihtnez/brihtnezindex.html Vsebina Vsebina Olimpijski kotiček:

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim Študij AHITEKTURE IN URBANIZMA, šol l 06/7 Vaje iz MATEMATIKE 8 Odvod funkcije f( Definicija: Naj bo f definirana na neki okolici točke 0 Če obstaja lim 0 +h f( 0 h 0 h, pravimo, da je funkcija f odvedljiva

Διαβάστε περισσότερα

Afina in projektivna geometrija

Afina in projektivna geometrija fina in projektivna geometrija tožnice () kiciraj stožnico v evklidski ravnini R, ki je določena z enačbo 6 3 8 + 6 =. Rešitev: tožnica v evklidski ravnini je krivulja, ki jo določa enačba a + b + c +

Διαβάστε περισσότερα

SEMINARSKA NALOGA Funkciji sin(x) in cos(x)

SEMINARSKA NALOGA Funkciji sin(x) in cos(x) FAKULTETA ZA MATEMATIKO IN FIZIKO Praktična Matematika-VSŠ(BO) Komuniciranje v matematiki SEMINARSKA NALOGA Funkciji sin(x) in cos(x) Avtorica: Špela Marinčič Ljubljana, maj 2011 KAZALO: 1.Uvod...1 2.

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

Način dostopa (URL): cabello/gradiva/vajeracgeom.pdf

Način dostopa (URL):   cabello/gradiva/vajeracgeom.pdf Vaje iz računske geometrije Sergio Cabello 9. november 2010 naslov: Vaje iz računske geometrije avtorske pravice: Sergio Cabello izdaja: prva izdaja založnik: samozaložba avtor: Sergio Cabello leto izida:

Διαβάστε περισσότερα

Emilija Krempuš. Osnovne planimetrijske konstrukcije. Priročnik

Emilija Krempuš. Osnovne planimetrijske konstrukcije. Priročnik Emilija Krempuš Osnovne planimetrijske konstrukcije Priročnik 2 OSNOVNE PLANIMETRIJSKE KONSTRUKCIJE Osnovne planimetrijske konstrukcije Priročnik Priročnik Osnovne planimetrijske konstrukcije je nastal

Διαβάστε περισσότερα

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant. Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,

Διαβάστε περισσότερα

3.letnik - geometrijska telesa

3.letnik - geometrijska telesa .letnik - geometrijska telesa Prizme, Valj P = S 0 + S pl S 0 Piramide, Stožec P = S 0 + S pl S0 Pravilna -strana prizma P = a a + av 1 Pravilna -strana prizma P = a + a a Pravilna 6-strana prizma P =

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

6. Kako razstavimo razliko kvadratov a2 - b2? Ali se vsota kvadratov a2 + b2 da razstaviti v množici realnih števil?

6. Kako razstavimo razliko kvadratov a2 - b2? Ali se vsota kvadratov a2 + b2 da razstaviti v množici realnih števil? USTNA VPRAŠANJA IZ MATEMATIKE šolsko leto 2005/2006 I. NARAVNA IN CELA ŠTEVILA 1. Naštejte lastnosti operacij v množici naravnih števil. Primer: Izračunajte na dva načina vrednosti izrazov 2. Opišite vrstni

Διαβάστε περισσότερα

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU Equatio n Section 6Vsebina poglavja: Navor kot vektorski produkt ročice in sile, magnetni moment, navor na magnetni moment, d'arsonvalov ampermeter/galvanometer.

Διαβάστε περισσότερα

Koordinatni sistemi v geodeziji

Koordinatni sistemi v geodeziji Koordinatni sistemi v geodeziji 14-1 Koordinatni sistemi v geodeziji Koordinatni sistemi v geodeziji 2 Vrste koordinatnih sistemov Vzpostavitev koordinatnega sistema je potrebna zaradi pridobitve primernega

Διαβάστε περισσότερα

1. izpit iz Diskretnih struktur UNI Ljubljana, 17. januar 2006

1. izpit iz Diskretnih struktur UNI Ljubljana, 17. januar 2006 1. izpit iz Diskretnih struktur UNI Ljubljana, 17. januar 2006 1. Dana je množica predpostavk p q r s, r t, s q, s p r, s t in zaključek t r. Odloči, ali je sklep pravilen ali napačen. pravilen, zapiši

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

22. Kdaj sta dva vektorja vzporedna? FGG geodezija UNI Matematika I, 2005/ Kdaj so vektorji a 1, a 2,..., a n linearno neodvisni?

22. Kdaj sta dva vektorja vzporedna? FGG geodezija UNI Matematika I, 2005/ Kdaj so vektorji a 1, a 2,..., a n linearno neodvisni? FGG geodezija UNI Matematika I, 2005/06 1. Definicija enakosti množic (funkcij, kompleksnih števil, urejenih n teric)? 2. Definicija kartezičnega produkta množic A in B. Definicija množice R n. 3. Popolna

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

LJUDSKA UNIVERZA NOVA GORICA

LJUDSKA UNIVERZA NOVA GORICA LJUDSKA UNIVERZA NOVA GORICA MATEMATIKA 1 1. del EKONOMSKI TEHNIK PTI gradivo za interno uporabo Pripravila: Mateja Strnad Šolsko leto 2011/12 KAZALO 1 ŠTEVILA... 1 1.1 NARAVNA IN CELA ŠTEVILA... 1 1.1.1

Διαβάστε περισσότερα

Sheet H d-2 3D Pythagoras - Answers

Sheet H d-2 3D Pythagoras - Answers 1. 1.4cm 1.6cm 5cm 1cm. 5cm 1cm IGCSE Higher Sheet H7-1 4-08d-1 D Pythagoras - Answers. (i) 10.8cm (ii) 9.85cm 11.5cm 4. 7.81m 19.6m 19.0m 1. 90m 40m. 10cm 11.cm. 70.7m 4. 8.6km 5. 1600m 6. 85m 7. 6cm

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Univerza v Mariboru. Uporaba matematičnih metod v logistiki 1 Priročnik

Univerza v Mariboru. Uporaba matematičnih metod v logistiki 1 Priročnik Univerza v Mariboru Fakulteta za logistiko Uporaba matematičnih metod v logistiki 1 Priročnik BOJANA ZALAR Celje 2009 Izdala: Fakulteta za logistiko Univerze v Mariboru Naslov: Uporaba matematičnih metod

Διαβάστε περισσότερα

B) VEKTORSKI PRODUKT 1. 1) Pravilo desnega vijaka

B) VEKTORSKI PRODUKT 1. 1) Pravilo desnega vijaka B) VEKTORSKI PRODUKT 1 1) Prvilo desneg vijk Vsi smo že videli vijk, nekteri kkšneg privili, tisti, ki teg še niste storili, p prosite kog, ki se n vijke spozn, d vm pokže privijnje vijk. Večin vijkov

Διαβάστε περισσότερα

= Števila 264, 252, 504 zapiši kot produkt praštevil in poišči njihov skupni največji delitelj in

= Števila 264, 252, 504 zapiši kot produkt praštevil in poišči njihov skupni največji delitelj in PRIPRAVA NA POM REALNA ŠTEVILA in PKS. Izračunaj: ( ( ) ( )) (( ) ) [ ] ( ( ) ) 4 0 ( ) ( ) 4 + 6 7 4 + + 4 + = 0 4 0 ( + ) 5 + ( 0) ( ) + (( 5) + ( ) ( ) ) = [ ]. Poenostavi in rezultat razstavi: ( +

Διαβάστε περισσότερα

!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

ŠOLSKI CENTER NOVO MESTO

ŠOLSKI CENTER NOVO MESTO ŠOLSKI CENTER NOVO MESTO Srednja elektro šola in tehniška gimnazija M A T E M A T I K A USTNA VPRAŠANJA S PRIMERI ZA POKLICNO MATURO 006/007 NARAVNA ŠTEVILA Katera števila imenujemo naravna števila? Naštejte

Διαβάστε περισσότερα

Skripta za matematiko v 2. letniku srednjega poklicnega, srednjega strokovnega in poklicno tehniškega izobraževanja INTERNO GRADIVO

Skripta za matematiko v 2. letniku srednjega poklicnega, srednjega strokovnega in poklicno tehniškega izobraževanja INTERNO GRADIVO Srednja poklicna in strokovna šola Bežigrad - Ljubljana Ptujska ulica 6 1000 Ljubljana Slovenija Nikolaj Lipič in Mojca Rožič 1. naloga: Poimenujte geometrijske like in telesa: pravokotnik romb trikotnik

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

VPRAŠANJA ZA POKLICNO MATURO IZ MATEMATIKE

VPRAŠANJA ZA POKLICNO MATURO IZ MATEMATIKE VPRAŠANJA ZA POKLICNO MATURO IZ MATEMATIKE ŠTEVILSKE MNOŽICE NARAVNA ŠTEVILA 1. Naštej lastnosti osnovnih računskih operacij v N. Osnovne računske operacije so seštevanje in množenje (+, *): a) ZAKON O

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Lastne vrednosti in lastni vektorji

Lastne vrednosti in lastni vektorji Poglavje VIII Lastne vrednosti in lastni vektorji V tem poglavju bomo privzeli, da so skalarji v vektorskih prostorih, koeficienti v matrikah itd., kompleksna števila. Algebraične operacije seštevanja,

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

1.(a) Kdaj ima A R 2 mero 0? (b) Naj bo D enotski krog in f : D R taka, da je f ds = 0. Kaj lahko rečeš o funkciji f?

1.(a) Kdaj ima A R 2 mero 0? (b) Naj bo D enotski krog in f : D R taka, da je f ds = 0. Kaj lahko rečeš o funkciji f? Test iz Analize II (. semester), 2.2.2008 Priimek, ime, šifra:.(a) Kdaj ima A R 2 mero 0? (b) Naj bo D enotski krog in f : D R taka, da je f ds = 0. Kaj lahko rečeš o funkciji f? D 2. a) Formuliraj izrek

Διαβάστε περισσότερα

Poliedri Ines Pogačar 27. oktober 2009

Poliedri Ines Pogačar 27. oktober 2009 Poliedri Ines Pogačar 27. oktober 2009 Pri linearnem programiranju imamo opravka s končnim sistemom neenakosti in končno spremenljivkami, torej je množica dopustnih rešitev presek končno mnogo polprostorov.

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

POLINOMI ČETRTE STOPNJE IN ZLATI REZ

POLINOMI ČETRTE STOPNJE IN ZLATI REZ UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Smer (Matematika UN-BO) - 1. stopnja Belma Delić POLINOMI ČETRTE STOPNJE IN ZLATI REZ Delo seminarja 1 Mentor: prof. dr. Milan Hladnik Ljubljana,

Διαβάστε περισσότερα

TRDNOST (VSŠ) - 1. KOLOKVIJ ( )

TRDNOST (VSŠ) - 1. KOLOKVIJ ( ) TRDNOST (VSŠ) - 1. KOLOKVIJ (17. 12. 03) Pazljivo preberite besedilo vsake naloge! Naloge so točkovane enakovredno (vsaka 25%)! Pišite čitljivo! Uspešno reševanje! 1. Deformiranje telesa je podano s poljem

Διαβάστε περισσότερα