RADIAN IAS ACADEMY ( UPSC,TNPSC,BANK,SSC,RAILWAYS,TRB EXAMS) For our centres visit ( 1 )

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "RADIAN IAS ACADEMY ( UPSC,TNPSC,BANK,SSC,RAILWAYS,TRB EXAMS) For our centres visit ( 1 )"

Transcript

1 RADIAN IAS ACADEMY ( UPSC,TNPSC,BANK,SSC,RAILWAYS,TRB EXAMS) For our centres visit ( ) 0 TN TET PAPER - & MATHS : NUMBERS etc TEST CODE : TPM ) ம ட வ ற மற ற ம ச ழல தன மய ள ள தசம வ rவ னப பற ற ள ள எண? Non-Ending and Recurring decimal number is known as A) ஒர ம ழ எண (A Whole number) B) ஒர வ க தம ற எண (A Rational Number) C) ஒர வ க தம ற எண (An Irrational Number) ஒர ம ழ வண (An Integer) ) If th term of AP is 0, then what is the sum of first terms of the same AP ஒர க ட ட த த டrன வத உற ப ப 0 என ல ம தல உற ப ப கள ன க ட தல என ன? A) 0 B) 0 C) 00 ) What is the number of divisors of one billion? ஒர ம ல ல ய ன வக க க ம எண கள எத த ன? A) B) 90 C) 00 ) What are the proper divisors of () 0 () 0 என ற எண ண வக க க ம ம றய ன(தக ) க ரண கள ய வ? A) 00 B) 9 C) 9 ) Find the unit digit of () 9 () 9 என ற எண ண ன ஒன ற லக க எண என ன? A) B) C) 9 ) Find the number of zeroes at the end of 00! 00! என ற எண எத த ன ப ஜ யங கள ல ம ட ய ம? A) B) C) ) [(0 +) (0 -) ] A) 0000 B) 9999 C) ) + then A) 9 B) C) 9). 0. A) B) C) 0 0) A farm has contain hens and goats only, totally in number. Total legs are 0. Find the number of hens? ஒர பண ணய ல க ழ கள, மற ற ம ச ல ஆட கள மட ட ம இர க க றத. ம த த க ல கள 0 என ல க ழ கள ம த தம எத த ன? A) B) C) ) ம ட வ ற மற ற ம ச ழல தன மயற ற தசம வ rவ னப பற ற ள ள எண Non-Ending and Non-Recurring decimal number is known as A) ஒர வ க தம ற எண (A Rational Number) B) ஒர இயல எண (An Integer) C) ஒர வ க தம ற எண (An Irrational Number) ஒர ம ழ வண (An Integer) p ) 0. ன வட வம. q A) B) 0 is equal to C) ) ப ன வர வனவற ற ல எத உண மயல ல? Which of the following is not true? A) ஒவ வ ர இயல எண ண ம ஒர வ க தம ற எண ண க ம. Every natural number is rational number. B) ஒவ வ ர மய யண ண ம ஒர வ க தம ற எண ண க ம Every real number is rational number C) ஒவ வ ர ம ழ வண ண ம ஒர வ க தம ற எண ண க ம Every Integer is rational number. ஒவ வ ர ம ழ வ ம ஒர வ க தம ற எண ண க ம Every whole number is Rational number. ) ப ன வர வனவற ற ல எத ம ட வ ற தசம வ r வப பற ற ள ளத?.Which one of the following Non-Recurring number? A) B) 9 C) ) ப ன வர வனவற ற ல எத வ க தம ற எண ண க ம? Which one of the following is irrational number? A) π B) 9 C) ) ப ன வர வனவற ற ள எ வ வ க தம ற எண கள? Which of the following are irrational numbers? i) + ii) + iii) + iv) A) (ii), (iii) மற ற ம (iv) B) (i), (ii) மற ற ம (iv) C) (i), (ii) மற ற ம (iii) (i), (iii) மற ற ம (iv) ) - -+ என ற பல ல ற ப ப க க வய ல மற ற ம ன கழ க கள ம ற ய.What is the coefficient of and in - -+ A), B) -, - C) -, -, - ) - ++ என ற பல ல ற ப ப க க வய ன பட What is the degree of - -+ A) B) C) 0 9) - 0 என ற பல ல ற ப ப க க வச சமன ப ட ட ன ம லம What is the root of - 0? A) B) C) 0) + 0 என ற பல ல ற ப ப க க வச சமன ப ட ட ன ம லங கள What are the roots of + 0 A) 0, B), C), - 0, - EVR Road, Anna Arch, NSK Nagar, Arumbakkam, CHENNAI-000. Ph , r.rajaboopathy@gmail.com

2 RADIAN IAS ACADEMY ( UPSC,TNPSC,BANK,SSC,RAILWAYS,TRB EXAMS) For our centres visit ( ) ) --0 இன க ரண கள ல ஒன ற. ) The pair of numbers which is relatively prime to each One of the factors of --0 is other is A) - B) + C) - - க ழ க க ண ம எண ஜ ட ய ல ச பக எண ஜ ட ) ஒர எண ண ல ர ந த -ஐக கழ க க ம ப த, அத அந த எண ண ன /மடங க க க றக றத. அந த எண ண ன இலக கங கள ன க ட தல ய த? When is subtracted from a number, it reduces to its four-seventh. What is the sum of the digits of that number? A) B) 9 C) 0 ( ) of ) ன மத ப ப என ன? What is the value ( ) of of? A) 0.00 B) 0.0 C) ) A என பவ ர.0,000 த த ற க ஒர க த ர வ ங க அத ன B என பவர க க 0% இல பம வத த வ ற ற. B என பவ C என பவர க க 0% நஷ டத த க க வ ற ற. என ல C க ட த த த க A) ர.0,000 B) ர.9,900 C) ர.9,999 ர.,000 A bought a horse for Rs.0,000 and sold it to at 0% profit and B sold it to C at 0% loss. The amount paid by C is A) Rs.0000 B) Rs.9,900 C)Rs.9, ) +0+0 ±ýè ºÁýÀ ðêý ¾ ì ½õ The solution set of is A) {,} B) {, -} C) {-, } {-, -} ) y ±ýà ¾ò ¾ Å ì ñ¼ ºÁýÀ Î Which equation has y as solution? A) y + 0 B) y - C) y + y + 0 ) ý É ãäõ The cube root of is A) B) C) ) ÁüÚõ þý Á. À.Å The G.C.D. of and is A) B) C) 9) þõ ±ñ Ç ý Üξø 0. «ÅüÈ ý Å ò¾  ºõ ±É ø «ó¾ ±ñ û The sum of two numbers is 0 and their difference is. The numbers are A), B), C),, 0) ÓÊ Ç ý ºÃ º. Ó¾ø ÀýÉ ÃñÎ ÓÊ Ç ý ºÃ º ÁüÚõ þú¾ ÀýÉ ÃñÎ ÓÊ Ç ý ºÃ º. «ôàêâ É ø À¾ ýãýè ÅÐ ÓÊ ±ýé? The average of results is. The average of first twelve of them is and that of last twelve is. The thirteenth result is A) B) C) þåüúû ±Ð Á ø Ä ) The sum of place values of in is என ற எண ண ல என ற எண ண ன இலக க மத ப ப ன க ட தல A) B) 00 C) EVR Road, Anna Arch, NSK Nagar, Arumbakkam, CHENNAI-000. Ph , r.rajaboopathy@gmail.com எத? A) (, ) B) (, 9) C) (9, ) (0, ) ) What is the unit digit in ()? () இன ஒன ற வத இலக க எண? A) B) C) 9 ) What is the unit digits in இன ஒன ற வத இலக க எண A) B) C) 0 ) Find the sum of first odd numbers ம தல ஒற றப ப ட எண கள ன க ட தல A) 9 B) 9 C) ) The value of proper fraction A) Equal to B) Greater than C) less than none of the above தக ப ன னத த ன மத ப ப எப ப ழ த ம A) க க சமம B) வ ட அத கம C) வ ட க றவ இவற ற ல ஏத ம ல ல ) Find the value / மத ப ப க ண க. [(-) (-)] [(-) ] A) B) - C) - ) Difference between two consecutive even number is A) co-prime B) even prime C) non-prime odd prime அட த தட த த இரட ட ப ட எண கள க க இ டப பட ட வ த த ய சம A) ச பக B) இரட டப பக எண C) பக எண ஒற றப பக எண 9) Find the value: / மத ப ப க ண க A). B).0 C) ) Simplify: / ச ர க க க. + 9 A) B) C) 0 ) (-) - is equal to / (-) - என பத எதற க சமம A) B) - C) - ) Find the greatest number of digits which when divide by, 9, leaves as remainder in each case எந த ம ன ற இலக க பrய எண ண, 9, என ற எண கள ல வக த த ல ம த தர ம A) 9 B) 9 C) 90 99

3 RADIAN IAS ACADEMY ( UPSC,TNPSC,BANK,SSC,RAILWAYS,TRB EXAMS) For our centres visit ( ) ) Find the correct relationship between GCD and LCM ) If +, the value of + is ம ப பர ப.வ மற ற ம ம.ச.ம வ ன சrய ன த ட ப எத? A) GCD LCM B) GCD LCM C) LCM GCD LCM > GCD ) Closure property is not satisfy below operation A) Addition B) Subtraction C) Multiplication Division அ டவ ப பண ப க ழ க ண ம எந த அட ப ப டச சயல கள க க ப ர ந த த A) க ட டல B) கழ த தல C) பர க கல வக த தல ) The decimal method of rupees and paise was introduced ர ப ய மற ற ம பச என ற ந ணய ம ற எந த ஆண ட ம தல ந டம றக க வந தத A) 9 B) 9 C) 9 9 ) Emperor of mathematics studied in his primary school A) Kumbakonam B) Kanchepuram C) England Germany கண த சக ரவ த த தனத த டக க கல வ ய பய ன ற இடம A) க ம ப க ணம B) க ஞ ச ப ரம C) இங க ல ந த ஜ மன ) LCM of fractions is an integer when A) LCM of numerators is unity B) LCM of denominators is unity C) HCF of numerators is unity HCF of denominators is unity ஒர ப ன னத த ன ம ச ச ற. ப.வ ம ழ க கள என ல A) ம.ச.ம இன த க த என பத ஒன ற B) ம.ச.ம இன பக த என பத ஒன ற C) ம. ப.வ இன த க த என பத ஒன ற ம. ப.வ இன பக த என பத ஒன ற ) The number A0 is eactly divided by 9. Then find the least value of A. A0 என ற எண 9ஆல ம த ய ன ற வக பட ம என ல A ன க றந தபட ச மத ப ப A) B) C) 0 9) Find the smallest number of two digits which on being divided by,, and leaves 0,, and as remainder respectively எந த ச ற ய இரண ட இலக க எண ண,, மற ற ம ஆல வக க க ம ப த ம த ம ற ய 0,, மற ற ம வர ம A) B) C) 0 0) Find the value of: + A) 0 B) C) ) Find the value of / மத ப ப க ண க: என ல A). B). C). A) 0.00 B) C) ) A) B).09 C).0 EVR Road, Anna Arch, NSK Nagar, Arumbakkam, CHENNAI-000. Ph , r.rajaboopathy@gmail.com + ன மத ப ப A) B) 0 C) ) If is equal to then + என ல + எதற க சமம A) B) C) ) Evaluate: மத ப ப க ண க. of +? + 9 A) C) B) ) The total number of digits used in numbering the pages of a book having pages is பக கங கள க ண ட ஒர ப த தகத த அச ச ட த வப பட ம இலக கங கள ன எண ண க க A) B) 990 C) 09 0 ) A student was asked to find the value of of a number. The student made a mistake by dividing the number by and thus got an answer which eceeded the correct answer by. The correct answer. ஒர ம ணவன ஒர எண ண ன ஐ கண ட ப ட க க ச ன னதற க ஆல வக த த வ ட ட. அதன ல அவர க க வர வண ட ய வ ட ய வ ட அத கம க வந தத என ல சrய ன வ ட என ன? A) 9 B) C) ) Simplifies: / ச ர க க க: + A) (- ) B) (+ ) C) (+ ) (- ) 9) The average of,, and is and the average of,,, and y is 0. What is value of y,,, இன சர சr மற ற ம,,, மற ற ம y ன சர சr 0 என ல y ன மத ப ப க ண க. A) B) 0 C) 0 0 0) The average of first 0 natural number is 0 இயல எண கள ன சர சr க ண க.

4 RADIAN IAS ACADEMY ( UPSC,TNPSC,BANK,SSC,RAILWAYS,TRB EXAMS) For our centres visit ( ) ) The difference of two numbers is and one fifth of their sum is 9. Find the numbers இரண ட எண கள ன வ த த ய சம மற ற ம அவற ற ன க ட தல ன பக த 9 என ல, அந த எண க ளக க ண க. A), B) 9, C), 9, ) If a, b, c are real numbers, then the value of a b. b c. c a a, b, c என பத மய எண கள என ல a b. b c. c A) abc B) abc C) abc a ) Find the value of / மத ப ப க ண க: A) B) C) ) If a + then a a + is equal to A) B) C) 9 0 ) If +, then find the value of + + என ல + A) B) + C) - ) Simplify: / ச ர க க க: [ { ( 0 ) }] A) 0 B) C) ) The average age of 0 girls is year. The average age of first girls is years. Find out the average age of the remaining girls 0 பண கள ன சர சr வயத. ம தல பண கள ன சர சr வயத என ல ம த பண கள ன வயத ன சர சr A) B) 0 C) 0. ) A) 9 B) 9 C) 9 9) a, ? A) a B) a C) a a 0) The seven digit number 9X9 is eactly divided by. Then find the value of X. 9X9 என ற ஏழ இழக க எண ஆல ம த ய ன ற வக பட ம என ல X ன மத ப ப A) B) C) 0 வ ழ வ னன ற ந னத த ய! தட ச ச ற ந தந த ன ற பல ச ன னஞ ச ற க தகள பச மனம வ ட த த ன ப ம க வ ழன ற ப ற வ டப பல சயல கள சய த ந ர க ட க க ழப பர வ மய த க ட ங க ற ற க க ர யன ப ன ம ய ம பல வட க க மன த ரப ப ல ந ன வ ழ வ னன ற ந னத த ய! ப ரத ய இப ப ட த ற க ன எப ப ட வல ல ம? 0 CURRENT RADIAN Students Whatsapp "Your name, Current Batch Name" with copy of (ID Card / Fee Receipt) to ALL THE VERY BEST Rajaboopathy R TO GET DAILY WHATSAPP ALERTS ONLY FOR CURRENT RADIAN Students. To get Daily Alerts, From your whatsapp mobile, whatsapp "YOUR NAME, COURSE NAME" to with ID/Receipt as Proof. EVR Road, Anna Arch, NSK Nagar, Arumbakkam, CHENNAI-000. Ph , r.rajaboopathy@gmail.com

5 RADIAN IAS ACADEMY ( UPSC,TNPSC,BANK,SSC,RAILWAYS,TRB EXAMS) For our centres visit ( ) TET - 0 ரட யன ன "எண கள " கண தத த வ வ rவ ன வ ளக கத த டன TEST CODE : TPM-T0 அ னத த கணக க கள க க ன வ ளக கங கள - IN ENGLISH FOR ENGLISH MEDIUM STUDENTS. TEST QUESTIONS ARE DISCUSSED IN THE CLASS by Mr. Rajaboopathy. ரட யன ன APTITUDE(கணக க ) ப த தகம தம ழ மற ற ம ஆங க லத த ல ஏப ரல ம த நட வ ல க டக க ம. ) 0 ( ) ம த த வக த த கள (க ரண கள ) ம றய ன / தக க ரண கள / வக த த கள என பத மற ற ம க ட க கப பட ட எண ணத தவ ர. என வ ம த த ம றய ன க ரண கள ) வ க தம ற எண ம ட ய ம தசம எண எ.க : 0. 0 வ க தம ற எண தன மய ள ள தசம எண. எ.க : ம ட வ ற மற ற ம ச ழல அ னத த ச ழல தன ம க ண ட தசம எண கள ) எண கள க ல அளவ (PERIO 0,,,, 9,,, ) 9 9 ( ) 9 வ க தம ற எண கள ) t n a + (n-)d t a+d t 0 a+d () n S n [ a+ ( n ) d] S [ a d] + S [9+d] 0 00 t t 0 00 ) ம ல ல யன 0 ட rல ல யன 0 ப ல ல யன 0 9 ( ) ம ட வ ல உள ள ம த த ப ஜ யங கள ) (a -b ) (a+b) (a-b) ( ) ( ) ( ) ( ) (0 ) () 0000 ம த த வக த த கள EVR Road, Anna Arch, NSK Nagar, Arumbakkam, CHENNAI-000. Ph , r.rajaboopathy@gmail.com

6 RADIAN IAS ACADEMY ( UPSC,TNPSC,BANK,SSC,RAILWAYS,TRB EXAMS) For our centres visit ( ) ) 0 + இரண ட பக கம ம ம ன ற ம அட க க எட க கவ ம வ ஞ ச ய எண கள π, e, e π, , sin, cos, tan அ னத த வ ஞ ச ய எண கள ம வ க தம ற எண கள க ம. ம ட வ ற மற ற ம ச ழல தன மயற ற தசம எண கள வ க தம ற ) ) ) H + G () H + G 0 () () () H + G 9 () -H - H ) வ க தம ற + வ க தம ற எண கள மய யண கள ஒர மய யண ஆன ல வ க தம ற எண அல ல ) ம தல எண கள ச ழல தன ம க ண டத ல D வ ட ) π வ க தம ற எண π ) + + ) வ க தம ற எண வ க தம ற எண ண க ம ம ட வ ற மற ற ம ச ழல தன மயற ற தசம எண E:,, 0, π, e, π,π,e... இயற கண த வ க தம ற எண கள,, 0, 0,. ) - -+ ன க ணகம கழ - ன க ணகம கழ - EVR Road, Anna Arch, NSK Nagar, Arumbakkam, CHENNAI-000. Ph , r.rajaboopathy@gmail.com

7 RADIAN IAS ACADEMY ( UPSC,TNPSC,BANK,SSC,RAILWAYS,TRB EXAMS) For our centres visit ( ) ) ஒர பல ல ற ப ப க க வய ன பட என பத பல ல ற ப ப க க வய ல உள ள ம ற ல ய ன அத கபட ச அட க க க ம. ம ற ல ஒர பட + இர பட + ம ப பட + ந ற பட + ஐம பட ( ) ) ) - 0 0) + 0 (+) 0 0 (or) (or) - ) (+) - (+) 0 (+) (-) 0-0 (-) (+) (-) & (+) ) - + ) A 0 %Pr ofit B 0 % Loss 9, 900 (,000) (0,000) 0, , ) (+) + (+) 0 (+) (+) (or) , - ) y + y ) ) + HCF GCD (, ) ம ன ற ஐ வக ப பத ல, ம. ப.வ EVR Road, Anna Arch, NSK Nagar, Arumbakkam, CHENNAI-000. Ph , r.rajaboopathy@gmail.com

8 RADIAN IAS ACADEMY ( UPSC,TNPSC,BANK,SSC,RAILWAYS,TRB EXAMS) For our centres visit ( ) 9) + y 0 y y ) [(-) (-) ] [(-) ] [ ] ( ) 0) ( + ) 0 (+) 0 ) ) மற ற ம இரண டய ம வக க க ம எண மற ற ம 9 இரண டய ம வக க க ம எண 0 மற ற ம இரண டய ம வக க க ம எண ஆன ல ஐத தவ ர எந த ஒர எண ண ம 9 மற ற ம இரண டய ம ஒர சர வக க க த என வ 9, இந த ச ட ச பக எண கள க ம. ம. ப.வ (9, ) ) இரண ட அட த தட த த இரட டப ப ட எண கள ன வ த த ய சம (இரட டப ப ட பக எண ) ஒர இரட டப ப ட பக எண 9) (+) (-) ) ( ) 9 9 ) எந த இரட டப ப ட எண ண டன பர க கப பட ட ல க டச இலக கம 0 வ க ம. 0 ) ம தல "n" ஒற றப ப ட இயல எண கள ன க ட தல n 9 (ஒ ர ஒர வ ட 9 ஆல ம ட ய ம ) p q ) தக ப ன னம < (or) p < q ) p q தக ப ன னம > (or) p > q EVR Road, Anna Arch, NSK Nagar, Arumbakkam, CHENNAI-000. Ph , r.rajaboopathy@gmail.com

9 RADIAN IAS ACADEMY ( UPSC,TNPSC,BANK,SSC,RAILWAYS,TRB EXAMS) For our centres visit ( ) ) ( ) ( ) +A A 0 ) 9) ம.ச.ம ம டல II ம.ச.ம (,,, ) 0 எண 0 ம.ச.ம (, 9, ) ப த வ ன எண k k ) எப ப ழ த ம LCM GCD ) இத அ டவ ப பண ப என ல a, b a b W W W ம ழ எண கள ) ஏப ரல, 9. ) கண த இளவரசன : க ல ப rட rக ஃக ஸ ( ஜ மன ) ) ப ன னத த ன ம.ச.ம த க த ய ன ம.ச.ம / பக த கள ன ம. ப.வ த க த கள ன ம. ப.வ பக த கள ன ம. ப.வ ஆக இர க க வண ட ம. ) A ஒrலக க எண A A + A is divisible by 9 A 0 (or) 9 க றந த மத ப ப 0 0) (9) (-) () 9 - ) ) a. b 0. a b a + b + ab a-b ( a b)( a + b + ab) ( a + b + ab) EVR Road, Anna Arch, NSK Nagar, Arumbakkam, CHENNAI-000. Ph , r.rajaboopathy@gmail.com

10 RADIAN IAS ACADEMY ( UPSC,TNPSC,BANK,SSC,RAILWAYS,TRB EXAMS) For our centres visit ( ) ) பக கங கள எழ த த க கள ) + ( + ) ) ( + )( ) ) of EVR Road, Anna Arch, NSK Nagar, Arumbakkam, CHENNAI-000. Ph , r.rajaboopathy@gmail.com ) 9 9 ( ) ) + ( + )( ) ( ) ( ) ( ) 9 ( + ) ( ) ) y y 0 +y 0 y ( ) y 0 y 0

11 RADIAN IAS ACADEMY ( UPSC,TNPSC,BANK,SSC,RAILWAYS,TRB EXAMS) For our centres visit ( ) ) வ க கம ம லம ) -y () +y 9 +y -y () y a-b a+b தற ப த க ட க கப பட ட ள ளத ல இர ந த உடனட ய க வ ட யக கண ட ப ட க கல ம. க ட ட ன ல, வ த த ய சம ) a b. b c. c a b c a a b c a b c abc b c a a b c ) ) a + a ( ) + ( + ) ( ) ( ) ( ) + ( + ) ( + ) 0 (a-b) + (a+b) (a +b ) ) + ( + ) ( + )( + ) ( + ) Similarly, EVR Road, Anna Arch, NSK Nagar, Arumbakkam, CHENNAI-000. Ph , r.rajaboopathy@gmail.com

12 RADIAN IAS ACADEMY ( UPSC,TNPSC,BANK,SSC,RAILWAYS,TRB EXAMS) For our centres visit ( ) 0) ஆல வக பட வண ட ம மற ற ம இரண ட ல ம ) [ { ( 0 ) }] [ { ( 0 ) }] ( ) [ { } ] [ ] ) பண கள ன ம த த வயத பண கள ன சர சr வயத 0 வக பட வண ட ம. A -(+A) A MATHS DETAILED SOLUTION by Rajaboopathy R Founder & Mentor RADIAN IAS ACADEMY ) n 0 n ( n+ )( n+ ) TO GET DAILY WHATSAPP ALERTS ONLY FOR CURRENT RADIAN Students. To get Daily Alerts, From your whatsapp mobile, whatsapp "YOUR NAME, COURSE NAME" to with ID/Receipt as Proof. 9) +++.+n a n a n( n+) ( n ) n + a EVR Road, Anna Arch, NSK Nagar, Arumbakkam, CHENNAI-000. Ph , r.rajaboopathy@gmail.com

Aptitude & Mental Ability Tnpsc Previous Questions With Answers

Aptitude & Mental Ability Tnpsc Previous Questions With Answers Aptitude & Mental Ability Tnpsc Previous Questions With Answers 1. Paulson spends 75% of his income. His income is increased by 20% and he increased his expenditures by 10%. Find the Percentage increase

Διαβάστε περισσότερα

Aptitude & Mental Ability Tnpsc Previous Questions With Explanation

Aptitude & Mental Ability Tnpsc Previous Questions With Explanation Aptitude & Mental Ability Tnpsc Previous Questions With Explanation Important Download Links Install Tnpsc Winmeen Mobile App Tnpsc Complete Maths Study Materials Link 1. Paulson spends 75% of his income.

Διαβάστε περισσότερα

8. f = {(-1, 2), (-3, 1), (-5, 6), (-4, 3)} - i.) ii)..

8. f = {(-1, 2), (-3, 1), (-5, 6), (-4, 3)} - i.) ii).. இர மத ப பண கள வ ன க கள 1.கணங கள ம ச ப கள ம 1. A ={4,6.7.8.9}, B = {2,4,6} C= {1,2,3,4,5,6 } i. A U (B C) ii. A \ (C \ B). 2.. i. (A B)' ii. A (BUC) iii. A U (B C) iv. A' B' v. A\ (B C) 3. A = { 1,4,9,16

Διαβάστε περισσότερα

2017 GROUP-1 EXAM RADIAN TEST SERIES FULL TEST S-19

2017 GROUP-1 EXAM RADIAN TEST SERIES FULL TEST S-19 RADIAN IAS ACADEMY CHENNAI - 9840400825 MADURAI - 98404955, For other branches visit www.radiannews.pbworks.com ( 1 ) 2017 GROUP-1 EXAM RADIAN TEST SERIES 12-02-2017 FULL TEST S-19 THIS TEST SERIES IS

Διαβάστε περισσότερα

SIDDHA MEDICINE Magazine of the Siddha Medical Students Association University of Jaffna SriLanka

SIDDHA MEDICINE Magazine of the Siddha Medical Students Association University of Jaffna SriLanka SIDDHA MEDICINE 2014-2015 Magazine of the Siddha Medical Students Association University of Jaffna SriLanka ,jopd; cs;ns.. Contents Jiwj; jiythpd; Mrpr; nra;jp kd;wj; jiytupd; kdjpypue;j,johrphpahpd;,jaj;jpypue;j...

Διαβάστε περισσότερα

PADASALAI.NET. vspjha;g; ngwitf;fyhk; 30 kjpg;ngz;fs;. 10Mk; tfg;g fw;wypy; gpd; jq;fpa khztu;fsf;f

PADASALAI.NET. vspjha;g; ngwitf;fyhk; 30 kjpg;ngz;fs;. 10Mk; tfg;g fw;wypy; gpd; jq;fpa khztu;fsf;f PADASALAI.NET vspjha;g; ngwitf;fyhk; 30 kjpg;ngz;fs;. 10Mk; tfg;g fw;wypy; gpd; jq;fpa khztu;fsf;f L.Sankaranarayanan.Assistant Headmaster(BT) G.S.Hindu HSS,Srivlliputtur 2015 G. S. H I N D U H I G H E

Διαβάστε περισσότερα

உ வள ள தவ சன ஸ மத ஸ ர ச ப ரமண ய ஸ வ ம ந நமஹ: ஸ ர ஜய வ ஷம ( ) Sri Jaya Varusham - Sri Thanigai Thirukanitha Tamil Panchangam. F¼ èeî õ ùmò ð ê ƒè

உ வள ள தவ சன ஸ மத ஸ ர ச ப ரமண ய ஸ வ ம ந நமஹ: ஸ ர ஜய வ ஷம ( ) Sri Jaya Varusham - Sri Thanigai Thirukanitha Tamil Panchangam. F¼ èeî õ ùmò ð ê ƒè உ வள ள தவ சன ஸ மத ஸ ர ச ப ரமண ய ஸ வ ம ந நமஹ: ஸ ர ஜய வ ஷம (2014-15) Sri Jaya Varusham - Sri Thanigai Thirukanitha Tamil Panchangam F¼ èeî õ ùmò ð ê ƒè ôýk Üòù ú ê Fóñ ù ªê óñ ù F¼ èeî Cˆî î ð ê ƒè Þ Fò

Διαβάστε περισσότερα

Q.NO SECTION-I MARKS 1,) CO + H2 1 2 M) 2> 1> 4> m) Nkhyhh; cufjy; ntg;gk; kw;wk; Nkhyhh; Mtpahjy; ntg;gk; Mfpatw;wpd; $Ljy;

Q.NO SECTION-I MARKS 1,) CO + H2 1 2 M) 2> 1> 4> m) Nkhyhh; cufjy; ntg;gk; kw;wk; Nkhyhh; Mtpahjy; ntg;gk; Mfpatw;wpd; $Ljy; i.ne tfg;g: XI = tpj;aghujp nkl;hpf; Nky;epiyg; gs;sp rf;fuhk;ghisak;> mfuk;(m)> vyr;rpg;ghisak;> jpur;nrq;nfhl(jh)> ehkf;fy;(kh) - 637202 Cell : 99655-31727, 94432-31727 fhyhz;lg; nghjj;njh;t nrg;lk;gh;

Διαβάστε περισσότερα

= tpj;aghujp nkl;hpf; Nky;epiyg;gs;sp>

= tpj;aghujp nkl;hpf; Nky;epiyg;gs;sp> = tpj;aghujp nkl;hpf; Nky;epiyg;gs;sp> rf;fuhk;ghisak;, mfuk; (m)>vyr;rpg;ghisak;. jpur;nrq;nfhl(jh)> ehkf;fy;(kh) - 6370 Cell : 99655-377, 9443-377 miuahz;lg; nghjj;njh;t - brk;gh; 08 tfg;g: XI 7..08

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Powered by TCPDF (

Powered by TCPDF ( Powered by TCPDF (www.tcpdf.org) gf> ø m [ V >tab_ gfs>µ AYIDHA EZHUTHU INTERNATIONAL JOURNAL OF TAMIL STUDIES ISSN : 2278-7550 UGC - _ÔÁÈ ÔwÔ \VMB zøs[ ˇÔV D ÿ u m UCG RECOGNIZED JOURNAL UGC NO : 42330

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

UNIT-1 SQUARE ROOT EXERCISE 1.1.1

UNIT-1 SQUARE ROOT EXERCISE 1.1.1 UNIT-1 SQUARE ROOT EXERCISE 1.1.1 1. Find the square root of the following numbers by the factorization method (i) 82944 2 10 x 3 4 = (2 5 ) 2 x (3 2 ) 2 2 82944 2 41472 2 20736 2 10368 2 5184 2 2592 2

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Model Test 5 (General Studies) - TNPSC Group 2 (A)

Model Test 5 (General Studies) - TNPSC Group 2 (A) Branches: Madurai, Trichy, Erode, Karur, Salem, Dindigul, Thanjore, Theni, Virudhunagar Website: www.dexteracademy.in Call or Whatsapp: 70555 1 Model Test 5 (General Studies) - TNPSC Group (A) 1. Ntiyapd;

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2017 Β & Γ ΛΥΚΕΙΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2017 Β & Γ ΛΥΚΕΙΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2017 30 ΑΠΡΙΛΙΟΥ 2017 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level * 6 3 1 7 7 7 6 4 0 6 * MATHEMATICS (SYLLABUS D) 4024/21 Paper 2 October/November 2013 Candidates answer

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2017 30 ΑΠΡΙΛΙΟΥ 2017 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

Z L L L N b d g 5 *  # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1  5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3  # Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Chapter 6 BLM Answers

Chapter 6 BLM Answers Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

CHAPTER FIVE NUMBER THEORY AND THE REAL NUMBER SYSTEM

CHAPTER FIVE NUMBER THEORY AND THE REAL NUMBER SYSTEM CHAPTER FIVE NUMBER THEORY AND THE REAL NUMBER SYSTEM Exercise Set.. Number theory is the study of numbers and their properties.. If a and b are factors of c, then c a is an integer and c b is an integer..

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

þÿ¼ ½ ±Â : ÁÌ» Â Ä Å ÃÄ ²µ þÿä Å ÃÇ»¹º Í Á³ Å

þÿ¼ ½ ±Â : ÁÌ» Â Ä Å ÃÄ ²µ þÿä Å ÃÇ»¹º Í Á³ Å Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿ ½»Åà Äɽ µ½½ ¹Î½ Ä Â þÿ±¾¹»ì³ à  º±¹ Ä Â þÿ±à ĵ»µÃ¼±Ä¹ºÌÄ Ä±Â

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Κ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2019

Κ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2019 ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Κ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2019 14 ΑΠΡΙΛΙΟΥ 2019 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΣΤΑ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ

Διαβάστε περισσότερα

COMPLEX NUMBERS. 1. A number of the form.

COMPLEX NUMBERS. 1. A number of the form. COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called

Διαβάστε περισσότερα

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem. 5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα [ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem. 5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα