COMPLEX NUMBERS. 1. A number of the form.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "COMPLEX NUMBERS. 1. A number of the form."

Transcript

1 COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called imaginary part. 4. If z = x +iy then modulus of z is z = x 2 +y 2 where

2 5. If z and z are any two complex z1 z2 numbers, then z1z2 = z 1 z 2 and z 1 = z 1 z 2 z 2 7) π α 0 α -(π α) - α Amplitude at the origin is not defined.

3 8) arg(z z... z ) = arg z +argz 1 2 n argz n arg z z1 =argz arg z 1 2 Z2 iθ 9) e iθ = cosθ + isinθ 10) )(1 +i) 2 = 2i ω 3n = 1 (1-i) 2 = -2i 11) (sinθ +icosθ) n = sinnθ +icosnθ only when n = 1 (mod4)

4 Q.1) If 1) INTERGAL POWER OF IOTA, EQUALITY OF COMPLEX NUMBERS 200 = a + ib a) a = 2 b = -1 b) a = 1 b = 0 c) a = 0 b = 1 d) a = -1 b = 2 Sol: (-i) 200 = a +ib (i 4 ) 50 = a +ib 1=a+ib 1 + 0i = a +ib a=1 & b=0

5 2) The sum of the series i 2 + i 4 + i (2n + 1 ) terms is a) 0 b) n c) 1 d) -1 sol: (2n+1)terms 1 1)terms (odd number of terms) = -1

6 Q. 3) If ( x + iy ) 1/3 = 2 + 3i, then 3x + 2y is equal to a) -20 b) -60 c) -120 d) 60 Sol : x +iy=(2+3i) 3 = -46+9i 3x+2y= =-120

7 n Q.4) The value of is n=0 a) 9+6i b) 9 6i c) )9+6i d) 9 6i 13 3 Sol = 1 1-2i 3 = 9 +6i 13

8 Q.5) The complex number 2 n + (1 + i) 2n, nє I is equal to (1 + i) 2n 2 n a) 0 b) 2 c) {1 + (-1) n } i n d) {1 - (-1) n }i n Sol: 2 n + 2 n i n 2 n i n 2 n = i n + i n i 2n =i n [(-1) n +1]

9 (II) Conjugate, Modules and Argument of complex numbers. 6) The argument of the complex number 13 5i is 4 9i a) π b) π c) π d) π Sol: 13-5i x 4 +9i 4-9i 4 +9i = i 97 z= 1+i Argz = tan -1 1 =π/4

10 7) If z = 3 + i, then the argument of z 2 e z-i is equal lto a) π b) π c) e π/6 d) π Sol: 2argz +arge 3 2.π/6 +0 = π/3

11 8) The modulus of the complex number z,such that and arg z = π is equal to a) 1 b) 3 c) 9 d) 4 Sol: (x+3) 2 +(y-1) 2 = 1 and argz = π y =0 X = - 3 & =3

12 9)The solution of the equation - z = 1 +2i is a) b) c) 3 2i d) 3 + 2i Sol: x 2 +y 2 x -iy = 1+2i x 2 +y 2 x = 1 & y = -2 x 2 +y 2 =1 + x x = z = 2i

13 10) If is purely imaginary, then the value of is a) 37 b) 2 c) 1 d) 3 33

14 Sol: 5z 2 = iy 11z 1 z 2 = 11iy z 1 5 = 2 +3(11/5)iy 2-3(11/5)iy = 1 Hence c is the correct answer

15 11) If z is any complex number and z is its conjugate, then z = z 2 a) 1 b) -1 c) 1 4) 1 z z z z Sol: z = z = 1 z 2 zz z

16 12) The complex number sinx +icos2x and Cosx -isin2x are conjugate to each other for a) x = nπ b) x = (n+1/2)π c) x = 0 d) No value of x. Sol: sin x+icos2x = cosx -isin2x tanx =1 & tan2x = 1 Which is not possible for any values of x

17 13) If z = r [cosө +isinө], then the value of z + z is z z a) cos2ө b) 2cos2ө c) 2cosө d) 2sinө Sol: z + z = re iθ +re -iθ z z re -iθ re iθ =e i(2θ) +e -i(2θ) = cos2θ+isin2θ +cos2θ -isin2θ = 2cos2θ

18 14) If z = re iθ, then e iz = 0 a) e r sinθ b) e -r sinθ c) e -r cosθ d) e r cosθ Sol: z=r[cosθ +isinθ] iz=r[-sinθ+icosθ] icosθ] e iz =e -rsinθ.e rcosθi z = e -rsinθ

19 15) If ( 5 + 3i ) 33 = 2 49 z, then modulus of the complex number z is equal to a) 1 b) 2 c) 2 2 d) 4 Sol: 2 99/2 =2 49 z z = 2

20 Real and imaginary parts of complex numbers 16) If z = z then a) z is purely real b) z is purely imaginary c) Real part of z = imaginary part of z d) z is a complex number. Sol: z = z y =0 z = x is purely real.

21 e iθ 17) The imaginary part of e is a) θ c) e cosθ cos(sinθ) e iθ b) e cosθ sin(sinθ) d) e Sol: ecosθ +isinθ = e cosθ [cos(sinθ)+isin(sinθ)]

22 18)Let z = 11 3i, If α is real numbers, such 1 + i that z-iα is real, then the value of α is a) 4 b) -4 c) 7 d) -7 Sol: z = 4 7i Since z iα is real 4-7i - iα is real If α =-7

23 19)If z is a complex number such that Re(z) = Im(z), then a) Rez 2 = 0 b) Imz 2 = 0 c) Rez 2 = Imz 2 d) Rez 2 = - Imz 2 Sol: z = x+iy z 2 =(x 2 -y 2 ) + 2xyi If x = y Rez 2 =0

24 20) Real part of log (1 i 3) a) 1 b) log 2 c) - π/3 d) π/2 Sol: log2e -π/3i = log2-π/3i

25 DE MOIVRE'S THEOREM AND ROOTS OF UNITY 21) If z r = cos rα + isin rα, where n 2 n 2 r =1,2...n Lim z 1 z 2 z 3...z n = n

26 a) cosα + isinα b) cosα isinα 2 2 c) e iα/2 d) 3 e iα Sol: lim cisα(n 2 +n) n 2n 2 =cisα(1) 2

27 22) (sinθ + icosθ) 17 = a) sin17θ icos17θ b) cos17θ + isin17θ c) sin17θ + icos17θ d) cos17θ - isin17θ Sol:

28 23) The product of 10 th roots of 7 is a) 7 cis π b) 7 c) -7 d) Sol: (-1) n+1 z =-7

29 24) If α is the cube roots of -1 then a) 1 +α +α 2 = 0 b) α 2 α + 1 = 0 c) α 2 + 2α + 1 d) α 2 + 2α -1 = 0 Sol:α =0 (α +1)(α 2 -α+1)=0

30 25) 1 + cosπ + isinπ = 1+ cosπ - ii isinπ 8 8 a) -1 b) 0 c) 1 d)2 Sol: z =(cisπ ) 80 8

31 26) If ω is a complex cube roots of unity, then the value of ω +ω 1/2+3/8+9/32+27/ /128 a) 1 b) ω c) ω2 d) -1 Sol: ½ = G.E =ω+ ω 2 = -1

32 27) if iz 4 +1= 0 then z can take the value a) 1 +I b) cisπ c) 1 d) i 2 8 4i Sol: z 4 =i Z =(cisπ/2) 1/4

33 28) If x = α +β, y = αω + βω 2, z =αω 2 + βω Where ω is cube roots of unity, then value of xyz is a) α 2 + β 2 b) α 2 β 2 c) α 3 + β 3 d) α 3 - β 3 Sol: xyz = (α +β)(αω +βω 2 )(αω 2 +βω) = (α +β)(α 2 -αβ+ββ β 2 )

34 29) The complex numbers 1, -1, i 3 form a triangle which is a) right angled b) isosceles c) equilaterial d) isosceles right angled Sol: The given complex numbers are represented by the points A(1,0),B(-1,0) & C(0, 3) AB=BC=AC=2

35 30) If z 2 = 2 represents a circle, then its z - 3 radius is equal to a) 1 b) 3 c) 2 d) S0l: z= x+iy z-2 2 =4z-3 2 x 2 +y 2-20x +32 =0 3 3 Radius = 2 3

36 31) Suppose z 1, z 2, z 3 are the vertices of an equilateral triangle inscribed in the circle z = 2 if z 1 = 1 + i 3 and z 1, z 2, z 3 are in Clock wise sense, then z 2 is a) 1-3i b) 2 c) i d) -1-3i

37 Sol: 1+ 3i Z 3 z 2 ampz 1 =amp(1+ 3i) = π/3 ampz 2 = π/3-2π/3=-π/3 & z = 2 z 2 =2cis(-π/3)=1-i 3

38 OTHER AND MIXED TYPES :- 32) ( 1 +i) 6 + (1-i) 3 = a) 2 + i b) 2-10i c)-2 + I d) 2-10i Sol: [(1 +i) 2 ] 3 + [(1 -i) 2 ](1-i) = (2i) 3 + (-2i)(1-i) = -2-10i

39 33) If x+iy = 1 then x 2 = 1 + cosθ+isinθ a) 1 b) 1 c) 1 d)

40 Sol: x+iy = 1 2Cos 2 θ/2 +2isinθ/2cosθ/2 = 1 2cosθ/2 [cosθ/2 +isinθ/2 ] x = 1 secθ/2 cosθ/2 = x 2 =1/4 Henc c is the correct answer.

41 34) If n is any integar, i n is a) 1, -1, i, -I b) i, -I c) 1,-11 d) i Sol: n = 1,2,3,4, so on. Then we get, 1, -1, i, -I

42 35)If n = 4m + 3, m is an integer the i n is a) i b) -i c) -1 d) 1 Sol: (i 4 ) m i 3 =-i

43 36) If z = 3 +i, then z 69 is equal to 2 a) -i b) i c) 1 d) -1

44 37) The value of 1+i i 3 6 is 1 i i 3 a) 2 b) -2 c) 1 d) 0

45 38) If ω is a complex cube roots of unity then Sin [(ω 10 + ω 23 ) π π/4] is equal to a) 1 b) 1i c) 1 d)

46 39) The square root of i is x + iy then x a) ±1 b) ± 2 c) ± 3 d) ± 4

47 40) The value of e 2 +iπ/3 +e 2-iπ/3 a) )1 b) e 2 c) )2e 2 d) i 3

48 42) If 1+icosə is purely real then ə = 2 + icosə a) nπ ± π/2 b) 2nπ ± π/2 c) nπ ±1 d) 2nπ ± π

49 43) If a = cisα, b= cisβ, c= cis γ and a + b +c = 1 b c a Then sin(α β) = a) 3 b) 1 c) 1 d) 0 2 2

50 44) If z 2-1 = z 2 + 1, then z lies on a) a circle b) x = 0 c) a parabola d) y = 0

51 45) The value of i 592 +i 590 +i is i i i 578 a) -1 b) 0 c) 1 d) 2i

52 46) The value of Σ (sin2πk icos2πk ) is K= a) 1 b) -1 c) i d) -i

53 47) The common roots of the equations z 3 +2z 2 + 2z + 1 =0 and z z =0 are a) -1, ω b) -1, ω 2 c) ω, ω 2 d) 1, ω 2

54 48) The equation (z-1) 2 +(z+1) 2 =4 represents on the argand plane a) a straight line b) an ellipse c) a circle with centre origin and radius 2 d) a circle with centre origin and radius unity

55 49) arg bi (b>0) is a) π b) π /2 c) -π/2 d) 0

56 50) For the +ve integer n, the expression (1 i) n 1-1 n = i a) 0 b) 2i n c) 2 n d) 4 n

57 51) ω 2 ω = 1 ω ω 2 a) 3 3i b) -3 3i c) i 3 d) 3

58 a =i (n+1) 2 52) Let an where i= -1 and values of n = 1, 2, 3... then the a 1 +a 2 +a a 25 is a) 13 b) 13 + i c) 13 -i d) 12

59 53) The additive inverse of 1 -i is a) 0 + 0i b) -1 + i c) -1 i d) 1 - i

60 54) one of the value of 1 +i 2/3 2 a) 3 +i b) -i c) i d) - 3 +i

61 55 (cos2ө +isin2ө) (cos75 +isin75) (cos10 +isin10) (sin15 - icos15) a) 0 b) -1 c) i d) 1

62 56) i - -i is equal to a) ±i 2 b) 1 c) 0 d) ± 2 ±i 2

63 57) The value of i is a) -4 b) 4 c) 2 d) -2 i

64 58) If iz 3 +z 2 -z +i = 0 then z = a) 1 b) i c) -1 d) -i

65 59) If 60 -i 1 7 i -1 = x +iy then 7i 1 i a) x=3, y=1 b) x=1, y=3 c) x=0, y=3 d) x=0, y=0

66 60) If z r =cosπ +isinπ, r= 1, 2,3...then 3 r 3 r z 1,z 2,z 3... a) i b) -i c) 1 d) -1

67 61) The value of logi i is a) ω b) -ω 2 c) π/2 d) -π/2

68 62) -1 +i 3 65n i 3 65n = 2 2 a) 1 b) 2 c) 3 d) ω 2

69 63) Let z, ω be complex numbers, suchthat z + i ω =0 and argzω=π Then arg z = a) 5π/4 b) π/2 c) 3π/4 d) π/4

70 64) If ω is a complex cube root of unity,then (3 + ω +2ω 2 ) 4 equals a) 1 b) ω 2 c) 9ω d)9ω 2

71 65 The value of amp (i ω) +amp(iω ω 2 ) where i = -1 and ω = non zero real number a) 0 b) π/2 c) π d) - π

72 66) If x +1 = 2 cosθ, & y + 1 = 2 cosф Then 2cos(θ +Ф) = x y a) 1 b) xy + 1 c)(x+1 )(y+1) x 2 +xy xy x y d) xy 1 xy

73 67. If ω is an imaginary cube root of unity, then ( 1 +ω -ω 2 ) 7 = a) 128ω b) -128ω c) 128ω 2 d) -128ω 2

74 68). If α is the complex number such that α 2 +α+1=0 then α 31 is a) 1 b) 0 c) α 2 d) α

75 69).The curve represents Re(z 2 )=4is a parabola b) an ellipse c) circle d) a rectangular hyperbola.

76 69).The conjugate of (1+2i)(2-3i) is a) i b) -4 i c) 8 +i d) 8 - i

77 70).If 1+i 3-1 i 3 =x+iy 1 i 1 +i Then (x, y) = a) (0,2) b) (-2,0) c) (0,2) d) (0,0)

78 71). If x = -1- i 3 then x 3 is a) 8 b) -8 c) 1 d) -1

79 72). The value of 2i a) 1+i b) -1- i c) - 2i d)±(1+i)

80 73)Let z=x+iy and z.z =0 Then a) Re(z)=0 b) z=0 c) Ip(z)=0 d) z=-1

81 74) If ω 1, the least +ve value of n, for Which (1 +ω 2 ) n = (1 +ω 4 ) n a) 1 b) 2 c) 3 d) 4

82 75). The amp of (-i) 5 a) -π b)π c) π/2 d)-π/2

83 KEY ANSWERS Q1) Q.1) (B) Q.28) (C) Q55) Q.55) (B) Q.2) (D) Q.29) (C) Q.56) (A) Q.3) (C) Q.30) (C) Q.57) (A) Q.4) (A) Q.31) (A) Q.58) (A) Q.5) (C) Q.32) (D) Q.59) (D) Q.6)` Q6) (B) Q.33) (C) Q.60) (A) Q.7) (D) Q.34) (A) Q.61) (D) Q.8) (B) Q.35) (B) Q.62) (B) Q.9) (B) Q.36) (A) Q.63) (C) Q.10) (C) Q.37) (A) Q.64) (D) Q.11) (A) Q.38) (B) Q.65) (C) Q.12) (D) Q.39) (A) Q.66) (D) Q.13) (B) Q.40) (C) Q.67) (D) Q.14) (B) Q.41) (B) Q.68) (D) Q.15) (B) Q.42) (B) Q.69) (D) Q.16) (A) Q.43) (D) Q.70) (C) Q.17) (B) Q.44) (B) Q71) Q.71) (A) Q.18) (D) Q.45) (B) Q.72) (B) Q.19) (A) Q.46) (C) Q.73) (B) Q.20) (B) Q.47) (C) Q.74) (C) Q.21) (C) Q.48) (D) Q.75) (D) Q.22) (C) Q.49) (B) Q.23) (C) Q.50) (C) Q.24) (B) Q.51) (A) Q.25) (C) Q.52) (A) Q.26) (D) Q.53) (B) Q.27) (B) Q.54) (C)

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Chapter 1 Complex numbers

Chapter 1 Complex numbers Complex numbers MC Qld- Chapter Complex numbers Exercise A Operations on and representations of complex numbers a u ( i) 8i b u + v ( i) + ( + i) + i c u + v ( i) + ( + i) i + + i + 8i d u v ( i) ( + i)

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Not for reproduction

Not for reproduction COMPLEX NUMBERS Thomson Brooks-Cole copyright 7 _+i _-i FIGURE Complex numbers as points in the Argand plane i _i FIGURE i _i +i z=a+bi z=a-bi -i A complex number can be represented by an expression of

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

University College Cork: MA2008 Complex Numbers and Functions Exercises Prove:

University College Cork: MA2008 Complex Numbers and Functions Exercises Prove: University College Cork: MA8 Complex Numbers and Functions 5 Exercises. Show that (a) i, i i, i, i 5 i,... i i, i, i i,.... Let + i and 5i. Find in Cartesian form: (a) ( + ) (c) (d) (e) Im + i 7 i ( i)

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1 SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-8 PAPER II VERSION B [MATHEMATICS]. Ans: ( i) It is (cs5 isin5 ) ( i). Ans: i z. Ans: i i i The epressin ( i) ( ). Ans: cs i sin cs i sin

Διαβάστε περισσότερα

TRIGONOMETRIC FUNCTIONS

TRIGONOMETRIC FUNCTIONS Chapter TRIGONOMETRIC FUNCTIONS. Overview.. The word trigonometry is derived from the Greek words trigon and metron which means measuring the sides of a triangle. An angle is the amount of rotation of

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x. Appendix B: Solutions to Problems Problem 1.1 For y a + bx, y 4 when x, hence a 4. When x increases by 4, y increases by 4b, hence b 5 and y 4 + 5x. Problem 1. The plus sign indicates that y increases

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Chap 8 Mapping by Elementary Functions

Chap 8 Mapping by Elementary Functions Chap 8 Mapping b Elementar Fntions 68. Linear Transformations A, where A is a nonero onstant and iα iθ Let A= ae, = re i( α+ θ) ( ar) e rotate b α = arg A. epand or ontrat radis b a = A + B Let + iv =

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

MATRICES

MATRICES MARICES 1. Matrix: he arrangement of numbers or letters in the horizontal and vertical lines so that each horizontal line contains same number of elements and each vertical row contains the same numbers

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

Solved Examples. JEE Main/Boards. Similarly, Example 1: If x y 2x 3x + y 3z + 4w = 5 25, find x, y, z, w.

Solved Examples. JEE Main/Boards. Similarly, Example 1: If x y 2x 3x + y 3z + 4w = 5 25, find x, y, z, w. 6.6 Matrices Solved Examples JEE Main/Boards Example : If x y x + z x + y z + 4w 5 5 5, find x, y, z, w. Sol. We know that in equal matrices the corresponding elements are equal. Therefore, by equating

Διαβάστε περισσότερα

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve

Διαβάστε περισσότερα

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6) C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it

Διαβάστε περισσότερα

11.4 Graphing in Polar Coordinates Polar Symmetries

11.4 Graphing in Polar Coordinates Polar Symmetries .4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry y axis symmetry origin symmetry r, θ = r, θ r, θ = r, θ r, θ = r, + θ .4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry

Διαβάστε περισσότερα

Math 200 Problem Set VI. x 2 1 c 2 2 u

Math 200 Problem Set VI. x 2 1 c 2 2 u Math 00 Problem Set VI 1 Find all second partial derivatives of f, y = + y. Find all second order derivatives of gs, t = fs + t, s t. The wave equation u 1 c u = 0 arises in many models involving wave-like

Διαβάστε περισσότερα

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΘ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2018 22 ΑΠΡΙΛΙΟΥ 2018 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 10 - Representation Theory III: Theory of Weights Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ

Διαβάστε περισσότερα