ΟΙ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ. Τετάρτη :15 πμ ΕΠΙΜΕΛΕΙΑ LISARI TEAM. ΘΕΜΑΤΑ Α + Β Βελαώρας Γιάννης Κάκανος Γιάννης ΘΕΜΑ Γ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΟΙ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ. Τετάρτη 20 05 15 10:15 πμ ΕΠΙΜΕΛΕΙΑ LISARI TEAM. ΘΕΜΑΤΑ Α + Β Βελαώρας Γιάννης Κάκανος Γιάννης ΘΕΜΑ Γ"

Transcript

1 ΟΙ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Τετάρτη 0 0 0: πμ ΕΠΙΜΕΛΕΙΑ LISARI TEAM ΘΕΜΑΤΑ Α + Β Βελαώρας Γιάννης Κάκανος Γιάννης ΘΕΜΑ Γ Βοσκάκης Σήφης Σπλήνης Νίκος ΘΕΜΑ Δ Παπαμικρούλης Δ. Σίσκας Χρήστος Σκορμπής Νίκος ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0

2 Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου η έκδοση: (συνεχής ανανέωση) Οι λύσεις διατίθεται αποκλειστικά από το μαθηματικό blog

3 Πρόλογος Στο παρόν αρχείο περιλαμβάνονται οι λύσεις των Πανελλαδικών Εξετάσεων στο μάθημα Μαθηματικά και Στοιχεία Στατιστικής. Η παρουσίαση των λύσεων είναι πλήρης και αναλυτική στο μέγιστο δυνατό, προκειμένου οι μαθητές να μπορούν να μελετήσουν και να επεξεργαστούν εύκολα το αρχείο. Η εργασία αυτή εκπονήθηκε αποκλειστικά από τη γνωστή διαδικτυακή ομάδα Μαθηματικών από διάφορα μέρη της Ελλάδος, τη lisari team. Προσπάθησαν και τα κατάφεραν να δώσουν πρώτοι διαδικτυακά τις πλήρεις λύσεις σε ένα αρχείο pdf!! Την αρχική συγγραφή των λύσεων ακολούθησαν ενδελεχείς έλεγχοι, διορθώσεις και βελτιώσεις με στόχο μια πληρέστερη και πιο ποιοτική παρουσίαση. Ζητούμε συγνώμη για τυχόν παραλείψεις, λάθη ή αστοχίες που ενδεχομένως θα έχουν διαφύγει της προσοχής μας, γεγονός αναπόφευκτο δεδομένων των στενών χρονικών περιθωρίων. Θα ακολουθήσουν επόμενες εκδόσεις, όπου η εν λόγω παρουσίαση θα βελτιωθεί, ίσως εμπλουτιστεί και με εναλλακτικές λύσεις. Οποιαδήποτε σχόλια, παρατηρήσεις, διορθώσεις και βελτιώσεις επί των λύσεων είναι ευπρόσδεκτα στην ηλεκτρονική διεύθυνση Με εκτίμηση lisari team 0 0 0

4 lisari team Αντωνόπουλος Νίκος (Ιδιοκτήτης Φροντιστηρίου Κατεύθυνση - Άργος) Αυγερινός Βασίλης (Ιδιοκτήτης Φροντιστηρίου ΔΙΑΤΑΞΗ - Ν. Σμύρνη και Νίκαια) Βελαώρας Γιάννης (Φροντιστήριο ΒΕΛΑΩΡΑΣ - Λιβαδειά Βοιωτίας) Βοσκάκης Σήφης (Φροντιστήριο Ευθύνη - Ρέθυμνο) Γιαννόπουλος Μιχάλης (Αμερικάνικη Γεωργική Σχολή) Γκριμπαβιώτης Παναγιώτης (Φροντιστήριο Αστρολάβος - Άρτα) Δούδης Δημήτρης (3 ο Λύκειο Αλεξανδρούπολης) Ζαμπέλης Γιάννης (Φροντιστήρια Πουκαμισάς Γλυφάδας) Κακαβάς Βασίλης (Φροντιστήριο Ώθηση - Αργυρούπολη) Κάκανος Γιάννης (Φροντιστήριο Παπαπαναγιώτου Παπαπαύλου - Σέρρες) Κανάβης Χρήστος (Διδακτορικό στο ΕΜΠ ο ΣΔΕ φυλακών Κορυδαλλού) Καρδαμίτσης Σπύρος (Πρότυπο Λύκειο Αναβρύτων) Κοπάδης Θανάσης (Ιδιοκτήτης Φροντιστηρίων 9+ - Πολύγωνο) Κουλούρης Αντρέας (3 ο Λύκειο Γαλατσίου) Κουστέρης Χρήστος (Φροντιστήριο Στόχος - Περιστέρι) Μανώλης Ανδρέας (Φροντιστήριο Ρηγάκης - Κοζάνη) Μαρούγκας Χρήστος (3 ο ΓΕΛ Κηφισιάς) Νάννος Μιχάλης ( ο Γυμνάσιο Σαλαμίνας) Νικολόπουλος Θανάσης (Λύκειο Κατασταρίου, Ζάκυνθος) Παγώνης Θεόδωρος (Φροντιστήριο Φάσμα - Αγρίνιο) Παντούλας Περικλής (Φροντιστήρια Γούλα-Δημολένη - Ιωάννινα) Παπαδομανωλάκη Μαρία (Ιδιοκτήτρια Πρότυπου Κέντρου Μάθησης ΔΙΑΚΡΙΣΙΣ - Ρέθυμνο) Παπαμικρούλης Δημήτρης (Εκπαιδευτικός Οργανισμός Ρόμβος) Πορίχης Λευτέρης (Γυμνάσιο Λιθακιάς Ζάκυνθος) Ράπτης Γιώργος (6 ο ΓΕΛ Βόλου) Σίσκας Χρήστος (Φροντιστήριο Μπαχαράκης - Θεσσαλονίκη) Σκομπρής Νίκος (Συγγραφέας ο Λύκειο Χαλκίδας) Σπλήνης Νίκος (Φροντιστήριο ΟΡΙΖΟΝΤΕΣ - Ηράκλειο Κρήτης) Σπυριδάκης Αντώνης (Γυμνάσιο Βιάννου - Λασίθι) Σταυρόπουλος Παύλος (Ιδιωτικά Εκπαιδευτήρια Δούκα) Σταυρόπουλος Σταύρος (Γραμματέας Ε.Μ.Ε Κορινθίας - Γυμνάσιο Λ.Τ. Λέχαιου Κορινθίας) Τηλέγραφος Κώστας (Φροντιστήριο Θεμέλιο - Αλεξανδρούπολη) Τρύφων Παύλος ( ο Εσπερινό ΕΠΑΛ Περιστερίου) Φιλιππίδης Χαράλαμπος (Ελληνογαλλική Σχολή Καλαμαρί) Χαραλάμπους Σταύρος (Μουσικό Σχολείο Λαμίας) Χατζόπουλος Μάκης (Υπουργείο Παιδείας και Θρησκευμάτων)

5 Γ Λυκείου ΘΕΜΑ Α lisari team / σχολικό έτος 04 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΤΕΤΑΡΤΗ 0 ΜΑΙΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7 ) ΣΕΛΙΔΕΣ Α. Σχολικό βιβλίο, σελίδα 3 A. Σχολικό βιβλίο, σελίδα Α3. Σχολικό βιβλίο, σελίδα, A4. α) Λάθος, σχολικό βιβλίο, σελίδα 40 β) Σωστό, σχολικό βιβλίο, σελίδα 4 γ) Λάθος, σχολικό βιβλίο, σελίδα 9 δ) Λάθος, σχολικό βιβλίο, σελίδα 97 ε) Σωστό, σχολικό βιβλίο, σελίδα 4 ΑΠΑΝΤΗΣΕΙΣ Πανελλαδικές Εξετάσεις 0: Αναλυτικές λύσεις από τη lisari team

6 Γ Λυκείου ΘΕΜΑ Β B. Έχουμε, (3x ) (8x 6x ) 0 3x 0 ή 8x 6x 0 Η διακρίνουσα της εξίσωσης β βαθμού είναι, Άρα, x Οπότε το σύνολο λύσεων είναι: Όμως ισχύει: ( 6) ,, 4 3 A B A A B 3 x ή 8x 6x 0 ( 6) και x οπότε: PA B P(A) PA B αλλά επομένως 4 3 PA B, 4 P(A) 3 και PA B Σχόλιο της lisari team: Στην εκφώνηση του θέματος αναφέρει ότι οι πιθανότητες των ενδεχομένων A,A B και Α Β ανήκουν στο σύνολο λύσεων της εξίσωσης και όχι είναι διαφορετικές μεταξύ τους Αυτό σημαίνει ότι μπορεί να είναι και όλες ίσες μεταξύ τους πχ αν A B. Θεωρούμε ότι υπάρχει ασάφεια στην εκφώνηση και έπρεπε να διευκρινιστεί ότι οι πιθανότητες είναι διαφορετικές μεταξύ τους. Β. Είναι και P(A' B') P(A' B) P(B A) P(B) P(B A) P( ) P (A B) P(A B) 4 4 Β3. Έχουμε, P(E) P (A B) (B A) P(A B) P(B A) ί P(A) P(A B) P(B) P(A B) P(A B) P(A B) 4 4 Πανελλαδικές Εξετάσεις 0: Αναλυτικές λύσεις από τη lisari team

7 Γ Λυκείου Β4. Λύνουμε την εξίσωση Άρα, 9x 3x ( ) x ( 3) ( 3) και x Επειδή ( ) [0,] και 0 άρα απορρίπτεται, οπότε: 3 ( ) 3 Θεωρούμε ότι τα Β, Γ είναι ασυμβίβαστα, τότε ισχύει ο απλός προσθετικός νόμος, δηλαδή P(B ) ( ) ( ) οπότε: Άρα, τα Β, Γ δεν είναι ασυμβίβαστα. 8 3 P(B ) ΑΤΟΠΟ 3 Πανελλαδικές Εξετάσεις 0: Αναλυτικές λύσεις από τη lisari team 3

8 Γ Λυκείου ΘΕΜΑ Γ Γ. Έχουμε από τα δεδομένα ότι f % 0% και f % 30% ακόμη, f f3 f 0 3 0,3 360 Άρα f 3% 30% Όμως ισχύει ότι f % f % f 3% f 4% f % 00% f % f 4% 30% () Ακόμη έχουμε, x 4 x f 4 9,9 f 3,9 f, 4 f f 4, () i i i 4 4 0,3 f f 4, 4f 0, f4 0, άρα f 4% 0% οπότε από την () έχουμε f % 0% Γ. Ο πίνακας κατανομής σχετικών συχνοτήτων είναι κλάσεις x i f% i x x f 8,0 9 0, 0, 0 0,9, ,3 4,6 0 0, 6,8 7 30,7 σύνολα 00 6,6 Η διασπορά του δείγματος είναι οπότε η τυπική απόκλιση του δείγματος είναι s xi x fi 6, 6 i s s 6,6,7 οπότε ο συντελεστής μεταβολής του δείγματος είναι s,7 CV% 00% 00% 8% x 4 Αφού CV% 0% το δείγμα είναι ανομοιογενές. i i Γ3. Έχουμε, 4 x xivi x xivi xv i i 4 x x v x v x 780 x f i ,3 8,9 v i i Πανελλαδικές Εξετάσεις 0: Αναλυτικές λύσεις από τη lisari team 4

9 Γ Λυκείου v 00 8,9 Γ4. Έχουμε, i i για i,,, οπότε από εφαρμογή του σχολικού βιβλίου έχουμε, s s 0 s s και S s s Β τρόπος Έχουμε, 3 4 i i 3 4 S S S S S v i 3 4 i 0 S S S και S i i i i S S S S S 3 4 S S S Άρα S S Πανελλαδικές Εξετάσεις 0: Αναλυτικές λύσεις από τη lisari team

10 Γ Λυκείου ΘΕΜΑ Δ Δ) To τρίγωνο ΑΔΒ είναι ορθογώνιο, άρα η γωνία Α βαίνει σε ημικύκλιο, οπότε η ΔΒ είναι διάμετρος, οπότε Πρέπει, 0 x 00 x 00 x Όμως x 0 λόγω ΑΒ = x, άρα 0 x 0 00 x 0 x 0,0 Δ) Έχουμε, f x x 00 x, x 0,0 ' x ' ' f x x 00 x x 00 x 00 x x 00 x x 00 x x 00 x x 00 x 00 x 00 x 00 x 00 x 00 x Όμως x 0 άρα x 0 ' f x 0 00 x 0 x 00 x 0 x 0 x f' + - f Η f παρουσιάζει ολικό μέγιστο για x Για x έχουμε Άρα ΑΔ = ΑΒ δηλαδή το ΑΒΓΔ τετράγωνο Δ3) Έχουμε, f x 99 f x f lim lim x0 98x x0 98 x f Πανελλαδικές Εξετάσεις 0: Αναλυτικές λύσεις από τη lisari team 6

11 Γ Λυκείου Δ4) Είναι A B A άρα f < 0, 0 P A B P A f P A B f P A PA B PA () P A B 00 P A B P A 00 P A 00 P A 00 P A B Όμως επίσης, 0 P A B () 0 P A 0 P A P A P A P A P A 00 P A (3) Πολλαπλασιάζοντας κατά μέλη () και (3) έχουμε P A B P A Όμοια αποδεικνύεται Έτσι λοιπόν () P A P A B f f < 0, P A B PA f 00 P A 00 PA B Πανελλαδικές Εξετάσεις 0: Αναλυτικές λύσεις από τη lisari team 7

ΟΙ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ. Τετάρτη 10 06 15 20:10. ΕΠΙΜΕΛΕΙΑ LISARI TEAM ΘΕΜΑ Α Μαρία Παπαδομανωλάκη ΘΕΜΑ Β ΘΕΜΑ Γ

ΟΙ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ. Τετάρτη 10 06 15 20:10. ΕΠΙΜΕΛΕΙΑ LISARI TEAM ΘΕΜΑ Α Μαρία Παπαδομανωλάκη ΘΕΜΑ Β ΘΕΜΑ Γ ΟΙ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Τετάρτη 10 06 15 0:10 ΕΠΙΜΕΛΕΙΑ LISARI TEAM ΘΕΜΑ Α Μαρία Παπαδομανωλάκη ΘΕΜΑ Β ΑΝΔΡΕΑΣ ΜΑΝΩΛΗΣ ΘΑΝΑΣΗΣ ΝΙΚΟΛΟΠΟΥΛΟΣ ΘΕΜΑ Γ Θεόδωρος Παγώνης Χαράλαμπος Φιλιππίδης

Διαβάστε περισσότερα

ΟΙ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Παρασκευή 12 06 15 20:30. ΕΠΙΜΕΛΕΙΑ LISARI TEAM ΘΕΜΑ Α Σήφης Βοσκάκης ΘΕΜΑ Β ΘΕΜΑ Γ

ΟΙ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Παρασκευή 12 06 15 20:30. ΕΠΙΜΕΛΕΙΑ LISARI TEAM ΘΕΜΑ Α Σήφης Βοσκάκης ΘΕΜΑ Β ΘΕΜΑ Γ ΟΙ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Παρασκευή 06 5 0:0 ΕΠΙΜΕΛΕΙΑ LISARI TEAM ΘΕΜΑ Α Σήφης Βοσκάκης ΘΕΜΑ Β Ανδρέας Μανώλης Θανάσης Νικολόπουλος Σταύρος Χαραλάμπους ΘΕΜΑ Γ Πάνος Γκριμπαβιώτης

Διαβάστε περισσότερα

(Έκδοση: 07 01 2015)

(Έκδοση: 07 01 2015) (Έκδοση: 07 0 05) Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr Έκδοση: 07 0 05 (συνεχής ανανέωση) Το βιβλίο διατίθεται

Διαβάστε περισσότερα

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεμάτων

Διαβάστε περισσότερα

(Έκδοση: 05 03 2015)

(Έκδοση: 05 03 2015) (Έκδοση: 05 03 05) Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr 4η έκδοση: 05 03 05 (συνεχής ανανέωση) Το βιβλίο διατίθεται

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΑΒΒΑΤΟ 4 MAΪΟΥ 0 Λύσεις των θεμάτων Έκδοση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεµάτων

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 008 ΘΕΜΑ o ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΜΑΪΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

(f(x)+g(x)) =f (x)+g (x), x R

(f(x)+g(x)) =f (x)+g (x), x R ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Αν οι συναρτήσεις, g είναι παραγωγίσιµες στο IR, να αποδείξετε ότι (()+g()) ()+g (), R Μονάδες 7 Α.

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

(Έκδοση: 06 12 2014)

(Έκδοση: 06 12 2014) (Έκδοση: 06 04) Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr η έκδοση: 06 04 (συνεχής ανανέωση) Το βιβλίο διατίθεται

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Να αποδείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ισχύει: Ρ(Α )=-Ρ(Α) Μονάδες 7 Α. Να ορίσετε το μέτρο διασποράς εύρος ή

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΕΙΑΣ ΘΕΜΑ Ο : Α. Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω να αποδειχθεί ότι: Ρ(Α-Β)=Ρ(Α)-

Διαβάστε περισσότερα

Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr

Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr 1η έκδοση: 30 11 014 (συνεχής ανανέωση) Το βιβλίο διατίθεται αποκλειστικά

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 20 ΜΑΪΟΥ 20 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 4 Λύσεις των θεμάτων Έκδοση η

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f()) =c f (), ΙR. B.α. Πότε δύο ενδεχόμενα

Διαβάστε περισσότερα

γ. Η διακύμανση είναι μέτρο διασποράς και είναι καθαρός αριθμός, δηλαδή δεν έχει μονάδες. Μονάδες 9

γ. Η διακύμανση είναι μέτρο διασποράς και είναι καθαρός αριθμός, δηλαδή δεν έχει μονάδες. Μονάδες 9 ΟΝΟΜΑΤΕΠΩΝΥΜΟ:........................................... ΤΜΗΜΑ:....... ΗΜΕΡΟΜΗΝΙΑ:.... / 0 / 20 ΘΕΜΑ A. Έστω μεταβλητή Χ, με τιμές x, x 2,...., x k, που αφορά τα άτομα ενός δείγματος μεγέθους ν, με k,

Διαβάστε περισσότερα

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ Α Α Σχολικό βιβλίο σελ Α Σχολικό βιβλίο σελ 6 Α Σχολικό βιβλίο σελ 9 Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ // - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 56)

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 56) ΓΕΝΙΚEΣ AΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Κώστας Βακαλόπουλος, Κώστας Παπαϊωάννου, Θανάσης Χριστόπουλος Άσκηση ( λ) λ λ 5 Δίνεται η συνάρτηση F(x) x λx. α) Να βρεθεί η F (x). Ν(Β) Άρα: Β = {5}, οπότε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α A Να αποδείξετε ότι η συνάρτηση f () είναι παραγωγίσιμη στο R με f () Α Αν είναι οι τιμές μιας μεταβλητής Χ ενός δείγματος παρατηρήσεων μεγέθους ν ( ) να ορίσετε την

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΘΕΜΑ Α Α. Έστω t,t,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 Πέµπτη, Ιουνίου 00 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α.. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι P(A B) P(A)

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 20 MAΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 20 MAΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΕΥΤΕΡΑ 0 MAΪΟΥ 0 Λύσεις των θεμάτων Έκδοση

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΔΕΥΤΕΡΑ, 22 ΑΠΡΙΛΙΟΥ 201 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,...

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,... Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 96) Άσκηση ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ Έστω οι παρατηρήσεις δυο δειγμάτων αντίστοιχα των μεταβλητών Χ και Ψ Δίνεται ότι η μέση τιμή

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 Ε_3.Μλ3Γ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 1 Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Α1. Για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους;

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους; ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΖΗΤΗΜ Α 1 Ο Α1. Τι είναι το ραβδόγραµµα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Α. Να αποδείξετε ότι η παράγωγος της ταυτοτικής συνάρτησης f είναι f, για κάθε. Μονάδες 7 Α. Έστω μια συνάρτηση f με πεδίο ορισμού Α.

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 20 ΜΑΪΟΥ 20 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΠΙΣΚΕΨΕΩΝ ΣΤΗ ΒΟΥΛΗ ΤΩΝ ΕΛΛΗΝΩΝ ΠΙΝΑΚΑΣ ΠΡΟΣΚΑΛΟΥΜΕΝΩΝ ΣΧΟΛΕΙΩΝ ΟΚΤΩΒΡΙΟΣ 2013 - ΔΕΚΕΜΒΡΙΟΣ 2013 ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ

ΠΡΟΓΡΑΜΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΠΙΣΚΕΨΕΩΝ ΣΤΗ ΒΟΥΛΗ ΤΩΝ ΕΛΛΗΝΩΝ ΠΙΝΑΚΑΣ ΠΡΟΣΚΑΛΟΥΜΕΝΩΝ ΣΧΟΛΕΙΩΝ ΟΚΤΩΒΡΙΟΣ 2013 - ΔΕΚΕΜΒΡΙΟΣ 2013 ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ 1 6ο ΓΥΜΝΑΣΙΟ ΓΑΛΑΤΣΙΟΥ Α ΑΘΗΝΑΣ 16/10/2013 10:00 50 2 51ο ΓΥΜΝΑΣΙΟ ΑΘΗΝΑΣ Α ΑΘΗΝΑΣ 8/11/2013 09:00 50 3 1ο ΓΥΜΝΑΣΙΟ ΚΑΙΣΑΡΙΑΝΗΣ Α ΑΘΗΝΑΣ 13/11/2013 09:00 50 4 1ο ΓΥΜΝΑΣΙΟ ΚΑΙΣΑΡΙΑΝΗΣ Α ΑΘΗΝΑΣ 13/11/2013

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α Πότε λέμε ότι η συνάρτηση είναι παραγωγίσιμη στο σημείο 0 του πεδίου ορισμού της; Α Αν οι συναρτήσεις και g είναι παραγωγίσιμες στο

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

(f(x) + g(x)) = f (x) + g (x).

(f(x) + g(x)) = f (x) + g (x). ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1o ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 1 ΙΟΥΛΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2 ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ

Διαβάστε περισσότερα

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες.

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 3 ου ΚΕΦΑΛΑΙΟΥ Άσκηση (Προτάθηκε από pito ) Για ένα φάρμακο σε πειραματικό στάδιο αποδείχθηκε ότι δημιουργεί δύο ειδών παρενέργειες. Η πιθανότητα να δημιουργήσει

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του

Διαβάστε περισσότερα

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής 2000-2015

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής 2000-2015 Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής 000-015 Περιεχόμενα Θέματα Επαναληπτικών 015.................................................. 3 Θέματα 015............................................................

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΠΙΣΚΕΨΕΩΝ ΣΤΗ ΒΟΥΛΗ ΤΩΝ ΕΛΛΗΝΩΝ ΠΙΝΑΚΑΣ ΠΡΟΣΚΑΛΟΥΜΕΝΩΝ ΣΧΟΛΕΙΩΝ ΟΚΤΩΒΡΙΟΣ 2013 - ΔΕΚΕΜΒΡΙΟΣ 2013 ΠΡΩΤΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ

ΠΡΟΓΡΑΜΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΠΙΣΚΕΨΕΩΝ ΣΤΗ ΒΟΥΛΗ ΤΩΝ ΕΛΛΗΝΩΝ ΠΙΝΑΚΑΣ ΠΡΟΣΚΑΛΟΥΜΕΝΩΝ ΣΧΟΛΕΙΩΝ ΟΚΤΩΒΡΙΟΣ 2013 - ΔΕΚΕΜΒΡΙΟΣ 2013 ΠΡΩΤΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ 1 6o ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΒΥΡΩΝΑ Α ΑΘΗΝΑΣ 1/10/2013 09:00 37 2 2ο ΔΗΜΟΤΙΚΟ ΝΕΑΣ ΧΑΛΚΗΔΟΝΑΣ Α ΑΘΗΝΑΣ 8/10/2013 09:00 46 3 109ο ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΑΘΗΝΑΣ "ΟΔΥΣΣΕΑΣ ΕΛΥΤΗΣ" Α ΑΘΗΝΑΣ 16/10/2013 09:00 39 4 88ο ΔΗΜΟΤΙΚΟ

Διαβάστε περισσότερα

ÈÅÌÁÔÁ 2007 ÏÅÖÅ ( ) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ÈÅÌÁÔÁ 2007 ÏÅÖÅ ( ) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ ο Α.Τι λέγεται δειγµατικός χώρος ενός πειράµατος τύχης; Μονάδες. Πώς ορίζεται η διάµεσος ενός δείγµατος ν παρατηρήσεων; (ν θετικός ακέραιος) Μονάδες 4 B. Αν η

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Ονοματεπώνυμα Σπουδαστριών: Μποτονάκη Ειρήνη (5422), Καραλή Μαρία (5601) Μάθημα: Β06Σ03 Στατιστική

Διαβάστε περισσότερα

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k.

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k. Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ ΘΕΜΑ Α A Να αποδείξετε ότι η συνάρτηση () είναι παραγωγίσιμη στο R με () Α Έστω k οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Κατάλογος Επιλεγμένων Σχολείων για Συμμετοχή στην Έρευνα PISA 2015

Κατάλογος Επιλεγμένων Σχολείων για Συμμετοχή στην Έρευνα PISA 2015 Κατάλογος Επιλεγμένων Σχολείων για Συμμετοχή στην Έρευνα PISA 2015 ΑΑ ΠΕΡΙΦΕΡΕΙΑ ΣΧΟΛΕΙΟ 1 ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ 4ο ΗΜΕΡΗΣΙΟ ΓΥΜΝΑΣΙΟ ΔΡΑΜΑΣ 2 ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΗΜΕΡΗΣΙΟ ΓΥΜΝΑΣΙΟ

Διαβάστε περισσότερα

ΔΙΕΥΘΥΝΣΗ ΟΡΓΑΝΩΣΗΣ. Πηγή δεδομένων:

ΔΙΕΥΘΥΝΣΗ ΟΡΓΑΝΩΣΗΣ. Πηγή δεδομένων: Πηγή δεδομένων: ΔΙΕΥΘΥΝΣΗ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΕΞΑΓΩΓΗΣ ΕΞΕΤΑΣΕΩΝ ΥΠΕΠΘ 2004, 2005 και 2006 Έργο : ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΠΡΟΣΒΑΣΗΣ ΣΤΗΝ ΤΡΙΤΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ Πηγή : Διεύθυνση Οργάνωσης και Διεξαγωγής Εξετάσεων

Διαβάστε περισσότερα

Κεφάλαιο 5 Δείκτες Διασποράς

Κεφάλαιο 5 Δείκτες Διασποράς Πανεπιστήµιο Κρήτης Σχολή Επιστηµών Αγωγής Παιδαγωγικό Τµήµα Δηµοτικής Εκπαίδευσης Β06 03. Στατιστική περιγραφική εφαρµοσµένη στην Ψυχοπαιδαγωγική Διδάσκων: Κωνσταντίνος Π. Χρήστου Κεφάλαιο 5 Δείκτες Διασποράς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Θέμα εξετάσεων 2000 Εξετάσαμε 50 μαθητές ως προς τα βιβλία που έχουν διαβάσει και διαπιστώσαμε ότι: 5 μαθητές δεν έχουν διαβάσει κανένα βιβλίο, 15 μαθητές έχουν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΟ φροντιστήριο ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Θέµα ο κ ΙΑΓΩΝΙΣΜΑ Α Α. ώστε τον ορισµό της υπερβολής και γράψτε τις εξισώσεις των ασύµπτωτων της ( C ): (Μονάδες 9) α β Β. Να διατυπώσετε τέσσερις

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. 1. Στον παρακάτω πίνακα δίνονται οι βαθμοί που πήραν είκοσι φοιτητές του Μαθηματικού τμήματος σ ένα μάθημα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. 1. Στον παρακάτω πίνακα δίνονται οι βαθμοί που πήραν είκοσι φοιτητές του Μαθηματικού τμήματος σ ένα μάθημα .. ΕΝΟΤΗΤΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 8 ου ΜΑΘΗΜΑΤΟΣ 1. Στον παρακάτω πίνακα δίνονται οι βαθμοί που πήραν είκοσι φοιτητές του Μαθηματικού τμήματος σ ένα μάθημα 9 3 1 7 5 3 6 5 7 5 7 3 6 1 5 1 3 5 α. Ποια είναι η

Διαβάστε περισσότερα

1. Αν για δύο ενδεχόμενα A και B ενός δειγματικού χώρου Ω ισχύουν P (A) = 0, 8 και P (B) =0, 4 να αποδείξετε ότι: Απαντηση

1. Αν για δύο ενδεχόμενα A και B ενός δειγματικού χώρου Ω ισχύουν P (A) = 0, 8 και P (B) =0, 4 να αποδείξετε ότι: Απαντηση ¾½ Ø Å Ñ Ø Ò È Ø Ì Ü Ã Ø ÆºËº Å ÙÖÓ ÒÒ ¾¼ Å ÓÙ ¾¼¼ 1. Αν για δύο ενδεχόμενα A και B ενός δειγματικού χώρου Ω ισχύουν P (A) 0, 8 και P (B) 0, 4 να αποδείξετε ότι: (αʹ) 0, P (A B) 0, 4 (βʹ) Τα A και B δεν

Διαβάστε περισσότερα

ΘΕΜΑ: «Αναπλήρωση διδακτικών ωρών στα Γυμνάσια, Γενικά Λύκεια και ΕΠΑΛ» Ο Περιφερειακός Διευθυντής Α/θμιας και Β/θμιας Εκπαίδευσης Αττικής

ΘΕΜΑ: «Αναπλήρωση διδακτικών ωρών στα Γυμνάσια, Γενικά Λύκεια και ΕΠΑΛ» Ο Περιφερειακός Διευθυντής Α/θμιας και Β/θμιας Εκπαίδευσης Αττικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Α/ΘΜΙΑΣ & Β/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΑΤΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΟΝΙΚΗΣ ΚΑΙ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΘΟΔΗΓΗΣΗΣ Δ.Ε. ----- Ταχ. Δ/νση

Διαβάστε περισσότερα

Ταυτότητα της έρευνας

Ταυτότητα της έρευνας GREEK PUBLIC OPINION Ταυτότητα της έρευνας Α Επωνυμία του διενεργήσαντος τη δημοσκόπηση: G.P.O. ΕΡΕΥΝΑ ΕΠΙΚΟΙΝΩΝΙΑ ΑΕ ΔΙΕΥΘΥΝΣΗ: Ν. ΠΛΑΣΤΗΡΑ 86 ΤΗΛΕΦΩΝΟ: 21-937419-1, ΦΑΞ: 21-9374192 Email: gpo-ae@otenet.gr

Διαβάστε περισσότερα

ΠΙΝΑΚΕΣ ΑΝΑ ΕΤΟΣ 2014-2020

ΠΙΝΑΚΕΣ ΑΝΑ ΕΤΟΣ 2014-2020 ΠΙΝΑΚΕΣ ΑΝΑ ΕΤΟΣ 2014-2020 1 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΔΙΟΙΚΟΥΣΑ ΕΠΙΤΡΟΠΗ ΠΡΟΤΥΠΩΝ ΠΕΙΡΑΜΑΤΙΚΩΝ ΣΧΟΛΕΙΩΝ (Δ.Ε.Π.Π.Σ) Σχεδιάζουμε την Ελλάδα του 2020 Πρότυπα Πειραματικά Σχολεία στην Ελλάδα του

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΠΙΣΚΕΨΕΩΝ ΣΤΗ ΒΟΥΛΗ ΤΩΝ ΕΛΛΗΝΩΝ ΠΙΝΑΚΑΣ ΠΡΟΣΚΑΛΟΥΜΕΝΩΝ ΣΧΟΛΕΙΩΝ ΟΚΤΩΒΡΙΟΣ 2012 - ΔΕΚΕΜΒΡΙΟΣ 2012 ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ

ΠΡΟΓΡΑΜΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΠΙΣΚΕΨΕΩΝ ΣΤΗ ΒΟΥΛΗ ΤΩΝ ΕΛΛΗΝΩΝ ΠΙΝΑΚΑΣ ΠΡΟΣΚΑΛΟΥΜΕΝΩΝ ΣΧΟΛΕΙΩΝ ΟΚΤΩΒΡΙΟΣ 2012 - ΔΕΚΕΜΒΡΙΟΣ 2012 ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ 1 42ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΑΘΗΝΑΣ Α ΑΘΗΝΑΣ 10/10/2012 9:00 44 2 42ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΑΘΗΝΑΣ Α ΑΘΗΝΑΣ 10/10/2012 11:00 42 3 42ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΑΘΗΝΑΣ Α ΑΘΗΝΑΣ 10/10/2012 12:00 50 4 51ο ΓΥΜΝΑΣΙΟ ΑΘΗΝΑΣ Α ΑΘΗΝΑΣ 18/10/2012

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013. Όνομα μαθητή /τριας: Τμήμα: Αρ.

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013. Όνομα μαθητή /τριας: Τμήμα: Αρ. ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΤΑΞΗ: B ΜΑΘΗΜΑ: Μαθηματικά ΔΙΑΡΚΕΙΑ: 2 ώρες ΗΜΕΡΟΜΗΝΙΑ: 12 / 6 / 2013 Βαθμός: Ολογράφως: Υπογραφή: Όνομα μαθητή

Διαβάστε περισσότερα

Συγκεκριμένα, κλειστά θα είναι: Παιδικοί σταθμοί: Τρίτη 1 Δεκεμβρίου 2009 ΔΕΛΤΙΟ ΤΥΠΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ν. Α ΑΘΗΝΩΝ-ΠΕΙΡΑΙΩΣ

Συγκεκριμένα, κλειστά θα είναι: Παιδικοί σταθμοί: Τρίτη 1 Δεκεμβρίου 2009 ΔΕΛΤΙΟ ΤΥΠΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ν. Α ΑΘΗΝΩΝ-ΠΕΙΡΑΙΩΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ν. Α ΑΘΗΝΩΝ-ΠΕΙΡΑΙΩΣ ΝΟΜΑΡΧΙΑ ΑΘΗΝΩΝ Προς τους Συντάκτες Αυτοδιοίκησης Τρίτη 1 Δεκεμβρίου 2009 ΔΕΛΤΙΟ ΤΥΠΟΥ Σύμφωνα με την ενημέρωση των Διευθυντών Πρωτοβάθμιας και Δευτεροβάθμιας Εκπαίδευσης

Διαβάστε περισσότερα

ΠΟΡΕΙΑ ΕΣΟ ΩΝ & ΦΠΑ 3 1125 5 ΚΑΤΟΙΚΩΝ ΕΞΩΤΕΡΙΚΟΥ 190.518 277.192-86.674-31,3% 511.742 0 0 0 0 Α'(Α'Β'Γ') ΑΘΗΝΩΝ (Α'-Β'-Γ'-ΙΕ'-ΚΒ' ΑΘΗΝΩΝ)

ΠΟΡΕΙΑ ΕΣΟ ΩΝ & ΦΠΑ 3 1125 5 ΚΑΤΟΙΚΩΝ ΕΞΩΤΕΡΙΚΟΥ 190.518 277.192-86.674-31,3% 511.742 0 0 0 0 Α'(Α'Β'Γ') ΑΘΗΝΩΝ (Α'-Β'-Γ'-ΙΕ'-ΚΒ' ΑΘΗΝΩΝ) ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΑΣ & ΟΙΚΟΝΟΜΙΚΩΝ ΓΕΝ. ΙΕΥΘΥΝΣΗ ΦΟΡ. ΕΛΕΓΧΩΝ & ΕΙΣΠΡ. ΗΜ. ΕΣΟ ΩΝ ΙΕΥΘΥΝΣΗ ΠΟΛΙΤΙΚΗΣ ΕΙΣΠΡΑΞΕΩΝ ΤΜΗΜΑ ΠΑΡΑΓΩΓΗ ΓΓΠΣ - 30 / ' Αναφορά D16-epit-stoxon-2013a Εκτύπωση: 20/08/2013 A/A TAXIS

Διαβάστε περισσότερα

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ ΑΣΚΗΣΗ η (Κατσίποδας Δημήτρης) Δίνονται οι συναρτήσεις f() = με a, β R και g() = 5.Αν η γραφική παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

ΑΠΡΙΛΙΟΣ 2014 ΠΙΝΑΚΕΣ ΑΝΑ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ ΕΚΠΑΙΔΕΥΣΗΣ

ΑΠΡΙΛΙΟΣ 2014 ΠΙΝΑΚΕΣ ΑΝΑ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ ΕΚΠΑΙΔΕΥΣΗΣ ΑΠΡΙΛΙΟΣ 2014 ΠΙΝΑΚΕΣ ΑΝΑ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ ΕΚΠΑΙΔΕΥΣΗΣ 1 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΔΙΟΙΚΟΥΣΑ ΕΠΙΤΡΟΠΉ ΠΡΟΤΥΠΩΝ ΠΕΙΡΑΜΑΤΙΚΩΝ ΣΧΟΛΕΙΩΝ (Δ.Ε.Π.Π.Σ) Σχεδιάζουμε την Ελλάδα του 2020 Πρότυπα Πειραματικά

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ Α. Να λυθούν οι παρακάτω εξισώσεις: 1. ( x 1) ( x) 5( x ). x ( x ) 6 x. x ( x) x 5( x 1) x 1 (1 x) x ( x) x x. 1 x 5. x 6 1 1 ( ) 1 1 6. x 1 x 7. 1 x

Διαβάστε περισσότερα

.. ,1-6-2007 . 57020/ 4 . & : 37 . : 151 80 : m. : 210 3443310

.. ,1-6-2007 . 57020/ 4 . & : 37 . : 151 80 : m. : 210 3443310 1 Να διατηρηθεί µέχρι.. ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΙΟΙΚ. Π.Ε. &.Ε. ΙΕΥΘΥΝΣΗ ΙΟΙΚΗΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ ΤΜΗΜΑ Β Ταχ. /νση : Ανδρέα Παπανδρέου 37 Τ.Κ. : 151

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. ΘΕΜΑ (ΙΟΥΝΙΟΣ 000) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. Τιμές Μεταβλητής Συχνότητα σχετική Σχετική Αθροιστική f % f N 0

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011

ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011 ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011 ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΠΡΩΤΟΒΑΘΜΙΑΣ ΚΑΙ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΤΜΗΜΑ Β Τηλ: 210 344 2478 FAX:

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

μοιράστηκε Μ.Ε.Υ. Μαθητές Παπαλεωνίδας Αντώνης Γονείς σπουδαστές 250 φυλλάδια Μ.Ε.Υ. μαθητές Παπαλεωνίδας Αντώνης

μοιράστηκε Μ.Ε.Υ. Μαθητές Παπαλεωνίδας Αντώνης Γονείς σπουδαστές 250 φυλλάδια Μ.Ε.Υ. μαθητές Παπαλεωνίδας Αντώνης Tτίτλος παρουσίασης θέμα Μέρος, ημερομηνία Νο συμμετεχόντων ανά κατηγορία (γονείς, παιδιά, εκπαιδευτικοί, γιατροί, κ.λπ) Ομάδες στόχοι Νο υλικού που μοιράστηκε Ποιος έκανε την παρουσίαση 1.Σχολείο Αργυρούπολη

Διαβάστε περισσότερα

ΘΕΜΑ Α. α) Αν x>0, τότε ( x ) = x

ΘΕΜΑ Α. α) Αν x>0, τότε ( x ) = x ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΙΟΥΝΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

Διαβάστε περισσότερα

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς Διασπορά Μέτρηση Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς ομάδες έχουν μέση βαθμολογία 6. συνέχεια

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΠΙΣΚΕΨΕΩΝ ΣΤΗ ΒΟΥΛΗ ΤΩΝ ΕΛΛΗΝΩΝ ΠΙΝΑΚΑΣ ΠΡΟΣΚΑΛΟΥΜΕΝΩΝ ΣΧΟΛΕΙΩΝ ΑΠΡΙΛΙΟΣ - ΙΟΥΝΙΟΣ 2015 ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ

ΠΡΟΓΡΑΜΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΠΙΣΚΕΨΕΩΝ ΣΤΗ ΒΟΥΛΗ ΤΩΝ ΕΛΛΗΝΩΝ ΠΙΝΑΚΑΣ ΠΡΟΣΚΑΛΟΥΜΕΝΩΝ ΣΧΟΛΕΙΩΝ ΑΠΡΙΛΙΟΣ - ΙΟΥΝΙΟΣ 2015 ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ 1 68ο ΓΥΜΝΑΣΙΟ ΑΘΗΝΑΣ Α ΑΘΗΝΑΣ 20/4/2015 10:00 50 2 68ο ΓΥΜΝΑΣΙΟ ΑΘΗΝΑΣ Α ΑΘΗΝΑΣ 20/4/2015 11:00 50 3 5ο ΓΥΜΝΑΣΙΟ ΑΘΗΝΑΣ Α ΑΘΗΝΑΣ 19/5/2015 16:00 45 4 8ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΑΘΗΝΑΣ Α ΑΘΗΝΑΣ 14/6/2015 10:00 50

Διαβάστε περισσότερα

Σημείωση: Οι ημερομηνίες ενδέχεται να αλλάξουν και να προστεθούν νέες. 17, Πέμπτη Αθήνα, Θεσσαλονίκη

Σημείωση: Οι ημερομηνίες ενδέχεται να αλλάξουν και να προστεθούν νέες. 17, Πέμπτη Αθήνα, Θεσσαλονίκη Σημείωση: Οι ημερομηνίες ενδέχεται να αλλάξουν και να προστεθούν νέες. 3, Πέμπτη Θεσσαλονίκη 4, Παρασκευή Αθήνα 10, Πέμπτη Θεσσαλονίκη 11, Παρασκευή Αθήνα 17, Πέμπτη Αθήνα, Θεσσαλονίκη Ιανουάριος 18, Παρασκευή

Διαβάστε περισσότερα

ΑΠΑΡΑΙΤΗΤΑ ΣΤΟΙΧΕΙΑ ΥΠΟΛΟΓΙΣΜΟΥ ΑΠΩΛΕΙΩΝ

ΑΠΑΡΑΙΤΗΤΑ ΣΤΟΙΧΕΙΑ ΥΠΟΛΟΓΙΣΜΟΥ ΑΠΩΛΕΙΩΝ 1 ΑΠΑΡΑΙΤΗΤΑ ΣΤΟΙΧΕΙΑ ΥΠΟΛΟΓΙΣΜΟΥ ΑΠΩΛΕΙΩΝ Θα πρέπει να γνωρίζουμε: 1. τις επιφάνειες του χώρου στις οποίες γίνεται μετάβαση της θερμότητας. 2. τις διαστάσεις των επιφανειών αυτών. 3. τη διαφορά θερμοκρασίας

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) o ΘΕΜΑ A. Aν n

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.α) ίνεται η συνάρτηση F() f() + g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F () f () + g

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΠΙΣΚΕΨΕΩΝ ΣΤΗ ΒΟΥΛΗ ΤΩΝ ΕΛΛΗΝΩΝ ΠΙΝΑΚΑΣ ΠΡΟΣΚΑΛΟΥΜΕΝΩΝ ΣΧΟΛΕΙΩΝ ΙΑΝΟΥΑΡΙΟΣ - ΜΑΡΤΙΟΣ 2015 ΠΡΩΤΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ

ΠΡΟΓΡΑΜΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΠΙΣΚΕΨΕΩΝ ΣΤΗ ΒΟΥΛΗ ΤΩΝ ΕΛΛΗΝΩΝ ΠΙΝΑΚΑΣ ΠΡΟΣΚΑΛΟΥΜΕΝΩΝ ΣΧΟΛΕΙΩΝ ΙΑΝΟΥΑΡΙΟΣ - ΜΑΡΤΙΟΣ 2015 ΠΡΩΤΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ 1 1ο ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΑΣ Α ΑΘΗΝΑΣ 11/1/2015 9:00 25 2 106o ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΑΘΗΝΑΣ Α ΑΘΗΝΑΣ 13/1/2015 9:00 28 3 106o ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΑΘΗΝΑΣ Α ΑΘΗΝΑΣ 13/1/2015 10:00

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση 00-0 4 o Γενιό Λύειο Χανίων Γ τάξη Μαθηματιά Γενιής Παιδείας γ Ασήσεις για λύση Επιμέλεια: Μ. Ι. Παπαγρηγοράης http://users.sch.gr/mipapagr 4 ο Γενιό Λύειο Χανίων 00 0 ΣΥΝΔΙΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗ

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 2o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδες Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΠΙΣΚΕΨΕΩΝ ΣΤΗ ΒΟΥΛΗ ΤΩΝ ΕΛΛΗΝΩΝ ΠΙΝΑΚΑΣ ΠΡΟΣΚΑΛΟΥΜΕΝΩΝ ΣΧΟΛΕΙΩΝ ΙΑΝΟΥΑΡΙΟΣ - ΜΑΡΤΙΟΣ 2015 ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ

ΠΡΟΓΡΑΜΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΠΙΣΚΕΨΕΩΝ ΣΤΗ ΒΟΥΛΗ ΤΩΝ ΕΛΛΗΝΩΝ ΠΙΝΑΚΑΣ ΠΡΟΣΚΑΛΟΥΜΕΝΩΝ ΣΧΟΛΕΙΩΝ ΙΑΝΟΥΑΡΙΟΣ - ΜΑΡΤΙΟΣ 2015 ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ 1 2ο ΓΥΜΝΑΣΙΟ ΚΑΙΣΑΡΙΑΝΗΣ Α ΑΘΗΝΑΣ 27/1/2015 10:00 50 2 2ο ΓΥΜΝΑΣΙΟ ΚΑΙΣΑΡΙΑΝΗΣ Α ΑΘΗΝΑΣ 27/1/2015 11:00 50 3 1ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΥΜΗΤΤΟΥ Α ΑΘΗΝΑΣ 12/2/2015 9:00 50 4 1ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΥΜΗΤΤΟΥ Α ΑΘΗΝΑΣ 12/2/2015

Διαβάστε περισσότερα

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013 Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013 Απαντήσεις Θεμάτων Θεμα Α Α1. Θεωρία σχολικού βιβλίου σελ. 334-335

Διαβάστε περισσότερα

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ ΑΣΚΗΣΗ η (Κατσίποδας Δημήτρης) Δίνονται οι συναρτήσεις f() = με a, β R και g() = 5.Αν η γραφική παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

ÑÏÕËÁ ÌÁÊÑÇ. Εποµένως η συνάρτηση είναι γνησίως αύξουσα και άρα δεν έχει ακρότατα. δ. Με x 1 είναι

ÑÏÕËÁ ÌÁÊÑÇ. Εποµένως η συνάρτηση είναι γνησίως αύξουσα και άρα δεν έχει ακρότατα. δ. Με x 1 είναι ΘΕΜΑ ο Α.. Βλέπε σχολικό βιβλίο σελίδα 9.. Βλέπε σχολικό βιβλίο σελίδα 87. Β. Βλέπε σχολικό βιβλίο σελίδα 0. Γ. Σ, Σ, Σ, 4 Σ, Λ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο α. Πρέπει x > 0,

Διαβάστε περισσότερα

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α.

Διαβάστε περισσότερα

ΕΠΙΤΥΧΟΝΤΕΣ 2014. Το Φροντιστήριο Παλμός είναι το μοναδικό φροντιστήριο στο Ωραιόκαστρο με: Εκπληκτικά Ποσοστά Επιτυχίας!!!

ΕΠΙΤΥΧΟΝΤΕΣ 2014. Το Φροντιστήριο Παλμός είναι το μοναδικό φροντιστήριο στο Ωραιόκαστρο με: Εκπληκτικά Ποσοστά Επιτυχίας!!! ΕΠΙΤΥΧΟΝΤΕΣ 2014 Την εισαγωγή τους σε σχολές υψηλής ζήτησης πέτυχαν οι μαθητές μας στις Πανελλαδικές εξετάσεις 2014. Σε σύνολο 80 επιτυχόντων μαθητών 65 μαθητές πέτυχαν την εισαγωγή τους σε ΑΕΙ (80%).

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία Μιχαήλογλου Στέλιος Παπαθανάση Κέλλυ Πατσιμάς Ανδρέας Πατσιμάς Δημήτρης Ραμαντάνης Βαγγέλης

Διαβάστε περισσότερα

ΜΙS Τίτλος Δικαιούχοι Ημ/νία έναρξης Ημ/νία λήξης Π/Υ (ΕΥΔΕ-ΕΤΑΚ) ΕΥΔ & ΕΦΑΡ. ΔΡΑΣΕΩΝ ΣΤΟΥΣ ΤΟΜΕΙΣ ΕΡΕΥΝΑΣ, ΤΕΧΝ. ΑΝ/ΞΗΣ & ΚΑΙΝΟΤΟΜΙΑΣ

ΜΙS Τίτλος Δικαιούχοι Ημ/νία έναρξης Ημ/νία λήξης Π/Υ (ΕΥΔΕ-ΕΤΑΚ) ΕΥΔ & ΕΦΑΡ. ΔΡΑΣΕΩΝ ΣΤΟΥΣ ΤΟΜΕΙΣ ΕΡΕΥΝΑΣ, ΤΕΧΝ. ΑΝ/ΞΗΣ & ΚΑΙΝΟΤΟΜΙΑΣ 446938 Δράσεις Υποστήριξης Ανάπτυξης της Λειτουργίας της Ηλεκτρονικής Πλατφόρμας- e-valuation 300560 συναφούς εξοπλισμού στην τάξη - 101η Σχολική Επιτροπή 20ου Γυμνασίου Αθηνών (ΑΠ2) συναφούς εξοπλισμού

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟ ΚΕΦΑΛΑΙΟ «ΣΤΑΤΙΣΤΙΚΗ»

ΑΣΚΗΣΕΙΣ ΣΤΟ ΚΕΦΑΛΑΙΟ «ΣΤΑΤΙΣΤΙΚΗ» 1. Να αντιστοιχίσετε κάθε μεταβλητή της αριστερής στήλης του παρακάτω πίνακα με την κατηγορία που βρίσκεται στη δεξιά στήλη: ΜΕΤΑΒΛΗΤΗ ΚΑΤΗΓΟΡΙΑ 1. ΦΥΣΙΚΗ ΚΑΤΑΣΤΑΣΗ 2. ΜΙΣΘΟΣ 3.ΑΡΙΘΜΟΣ ΤΗΛΕΦΩΝΟΥ Α. ΠΟΙΟΤΙΚΗ

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός 0 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παραπάνω φυλλάδιο φτιάχτηκε για να προσφέρει βοήθεια κυρίως στους μαθητές

Διαβάστε περισσότερα