Συνεχή στο χρόνο δυναμικά συστήματα Διαφορικές εξισώσεις
|
|
- Στέφανος Βαρσαββάς Μεταξάς
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Βιομαθηματικά BIO-156 Συνεχή στο χρόνο δυναμικά συστήματα Διαφορικές εξισώσεις Ντίνα Λύκα Εαρινό Εξάμηνο, 2018
2 Συνεχή στο χρόνο δυναμικά συστήματα Τα συνεχή στο χρόνο δυναμικά συστήματα περιγράφουν φαινόμενα που μεταβάλλονται συνεχώς στο χρόνο. Η μαθηματική περιγραφή τέτοιων συστημάτων γίνεται με διαφορικές εξισώσεις οι οποίες περιγράφουν το ρυθμό μεταβολής των μεταβλητών κατάστασης.
3 Παραδείγματα Αν το μέγεθος ενός πληθυσμού τη χρονική στιγμή t είναι Ν (t), και ο ρυθμός μεταβολής του είναι ίσος με το διπλάσιο της τρέχουσας τιμής του Ν, τότε γράφουμε dn 2N Έστω ότι η ταχύτητα ενός αντικειμένου είναι μια συνάρτηση του χρόνου t, ν(t), τότε η θέση του αντικειμένου, p(t), θα πρέπει να ικανοποιεί την εξίσωση dp v(t) οι ποσότητες Ν και p είναι άγνωστες και είναι οι εξαρτημένες μεταβλητές ενώ ο χρόνος t είναι η ανεξάρτητη μεταβλητή
4 Ορισμοί Διαφορική εξίσωση Κάθε εξίσωση που περιέχει μια άγνωστη συνάρτηση, κάποιες από τις παραγώγους της και την ανεξάρτητη μεταβλητή. Τάξη μιας διαφορικής εξίσωσης η μεγαλύτερη από τις τάξεις των παραγώγων της άγνωστης συνάρτησης που εμφανίζονται στην εξίσωση. Γραμμική διαφορική εξίσωση περιλαμβάνει μόνο πρωτοβάθμιους όρους της εξαρτημένης μεταβλητής και των παραγώγων της και δεν περιλαμβάνει γινόμενα της εξαρτημένης μεταβλητής και των παραγώγων της. Μη αυτόνομη διαφορική εξίσωση περιλαμβάνει την ανεξάρτητη μεταβλητή ως όρο. Αυτόνομη διαφορική εξίσωση δεν περιλαμβάνει στη διατύπωσή της άμεσα την ανεξάρτητη μεταβλητή.
5 Διαφορικές εξισώσεις πρώτης τάξης Θεωρούμε τη διαφορική εξίσωση dy Το πρόβλημα που θα μας απασχολήσει είναι να βρούμε όλες τις συναρτήσεις οι οποίες ικανοποιούν τη διαφορική εξίσωση. f ( y, t (1) Θα λέμε ότι η οικογένεια των συναρτήσεων ) y ( t, c), c R (2) είναι η γενική λύση της διαφορικής εξίσωσης (1) όταν για κάθε c η (2) επαληθεύει τη διαφορική εξίσωση. Η λύση που παίρνουμε για κάποια συγκεκριμένη τιμή της c, ονομάζεται μερική λύση.
6 Πρόβλημα αρχικών τιμών dy f ( y, t ) y ( t y 0 ) 0 Ζητάμε τη μερική λύση που περνά από κάποιο συγκεκριμένο σημείο (t 0, y 0 ) Η σταθερά c προσδιορίζεται από την αρχική συνθήκη y(t 0 )= y 0..
7 Διαφορικές εξισώσεις της μορφής dy f (t) Η συνάρτηση f είναι μια γνωστή συνάρτηση και εξαρτάται μόνο από την ανεξάρτητη μεταβλητή t. Η γενική λύση της διαφορικής εξίσωσης είναι y ( t) f ( t) c, c R Αν επιπλέον ζητάμε η λύση να ικανοποιεί την αρχική συνθήκη y(t 0 )=y 0 μπορούμε να προσδιορίσουμε την αυθαίρετη σταθερά c. Διαφορετικά για προβλήματα αρχικών τιμών: y( t) t y f ( s) ds 0 t 0 Αρχική τιμή Μεταβολή της y στο διάστημα [t 0,t]
8 Παράδειγμα Να λυθεί η δ.ε. dy sin t με y(0) 3 Λύση: y( t) y(0) t sin udu 0 3 ( cosu) t 0 4 cost ή y( t) cost c, cr (γενική λύση) Η σταθερά c προσδιορίζεται από την αρχική συνθήκη: 3 1 c y ( t) cost 4
9 Διαφορικές εξισώσεις χωριζόμενων μεταβλητών Αν μια διαφορική εξίσωση μπορεί να γραφτεί στη μορφή τότε ονομάζονται δ.ε. χωριζόμενων μεταβλητών. dy f ( y, t) dy h( y) g( t) Παραδείγματα: dy t, y 2 y 0 dy k( y a)
10 Επίλυση της h(y) y =g(t) Έστω H μια αντιπαράγωγος της h (δηλαδή H (y)=h(y)) και G μια αντιπαράγωγος της g (δηλαδή G (t)=g(t)) Από τον κανόνα της αλυσίδας έχουμε dh dh dy dy dy h( y) Επομένως, η διαφορική εξίσωση h(y) y =g(t) γράφεται d d [ H ( y( t)] [ G( t)] H(y(t)) = G(t)+c (Γενική λύση) Αν λύσουμε ως προς y παίρνουμε την y σαν συνάρτηση του t και της σταθεράς c.
11 Στην πράξη γράφουμε τη διαφορική εξίσωση h(y) dy/ = g(t) ολοκληρώνουμε και τα δύο μέρη ως προς t h( y) dy g( t) H( y) G( t) c όπου H και G αντιπαράγωγοι, αντίστοιχα, των h και g
12 Παράδειγμα Να λυθεί η διαφορική εξίσωση dy Για y 1, γράφουμε: Ολοκληρώνοντας y 1 dy y 1 dy y 1 ln y 1 t c c t y e e t y c e, c e 2 2 c 1, c 2 R {0} y=1 είναι λύση της δ.ε.. Άρα, η γενική λύση της είναι y 1 ce t, c R
13 Ασκήσεις Να λυθούν οι διαφορικές εξισώσεις
14 Ποιοτική ανάλυση αυτόνομων διαφορικών εξισώσεων dy ( y) Υποθετικό διάγραμμα φάσης Γραφική παράσταση της f(y) (δηλαδή παράγωγος τη y ως προς t) ως προς y. f f(y)
15 Συμπεράσματα που προκύπτουν από το διάγραμμα φάσης Αν y=y 1 ή y=y 2 ο ρυθμός μεταβολής του y είναι μηδέν, δηλαδή το y δεν μεταβάλλεται. Αν y<y 1 ο ρυθμός μεταβολής του y είναι αρνητικός και το y μειώνεται συνεχώς. Αν y>y 2 ο ρυθμός μεταβολής του y είναι αρνητικός και το y μειώνεται συνεχώς έως ότου φτάσει στο y 2. Αν y 1 <y<y 2 ο ρυθμός μεταβολής του y είναι θετικός και το y αυξάνει συνεχώς έως ότου φτάσει στο y 2. ασταθές y1 ευσταθές y2 y Τα σημεία y 1 και y 2 είναι σημεία ισορροπίας
16 Σημεία ισορροπίας Έστω ότι ένα βιολογικό σύστημα περιγράφεται από την αυτόνομη διαφορική εξίσωση Η τιμή y* της μεταβλητής κατάστασης ονομάζεται σημείο ισορροπίας (ή σταθερό σημείο) της αυτόνομης διαφορικής εξίσωσης αν f dy f ( y * ) (y) 0 Ένα σημείο ισορροπίας λέμε ότι είναι τοπικά ευσταθές αν οι λύσεις που ξεκινάνε αρκετά κοντά στο σημείο ισορροπίας τελικά (t ) το πλησιάζουν. Ένα σημείο ισορροπίας λέμε ότι είναι ασταθές αν οι λύσεις που ξεκινάνε αρκετά κοντά στο σημείο ισορροπίας απομακρύνονται από αυτό.
17 Κριτήριο τοπικής ευστάθειας Αν y* είναι σημείο ισορροπίας της αυτόνομης διαφορικής εξίσωσης dy f (y) τότε το σημείο ισορροπίας y* είναι τοπικά ευσταθές αν f (y *)<0 και ασταθές αν f (y *)>0
18 Πληθυσμιακά μοντέλα Μεταβολές στο μέγεθος του πληθυσμού ΔΝ = (γεννήσεις-θάνατοι) + (εποικισμός-μετανάστευση)
19 Εκθετική αύξηση πληθυσμών Μεταβολές ενός πληθυσμού σε ιδεατό περιβάλλον (χωρίς εποικισμό/μετανάστευση) Υπόθεση: δεν υπάρχουν περιορισμοί στην αύξηση του πληθυσμού dn B D b (σταθερά): κατά κεφαλή ρυθμός γεννήσεων d (σταθερά): κατά κεφαλή ρυθμός θανάτων Β=bN (συνολικός αριθμός γεννήσεων) D=dN (συνολικός αριθμός θανάτων) 1 N dn r b d ή dn rν
20 Ανάλυση ισορροπίας της εξίσωσης dn rn rt Λύση: N ( t) N0e f ( N) rn και f '( N) r Σημείο ισορροπίας : Ν*=0 Στο Σ.Ι. : f (N * )= r Ν*=0 είναι ασταθές για r>0 (f (N * )>0) και ευσταθές για r<0 (f (N * )<0). Εκθετική αύξηση Εκθετική μείωση
21 Λογιστική αύξηση πληθυσμών Μεταβολές ενός πληθυσμού σε συνθήκες ενδοπληθυσμιακού ανταγωνισμού Υπόθεση: ο κατά κεφαλή ρυθμός μεταβολής μειώνεται γραμμικά με το μέγεθος του πληθυσμού 1 dn N r(1 ) N K r (ενδογενής ρυθμός αύξησης) και Κ (φέρουσα ικανότητα) θετικές σταθερές. dn rn(1 N K Λογιστική Εξίσωση )
22 Ανάλυση ισορροπίας της Λογιστική εξίσωση f ( N ) dn rn(1 N K ) rn(1 Τα σημεία ισορροπίας της λογιστικής εξίσωσης είναι οι λύσεις της εξίσωσης f (N * )=0 f N K ) ' ( N ) r 2r K N Σημεία ισορροπίας : Ν 1 *=0, Ν 2 *=Κ Στα Σ.Ι. : f (N 1* )= r και f (N 2* )= -r Επομένως, Ν 1 *=0 είναι ασταθές (f (N 1* )>0) και το σημείο ισορροπίας Ν 2 *=Κ είναι τοπικά ευσταθές (f (N 2* )<0).
23 Διάγραμμα φάσης της λογιστικής εξίσωσης f(n) Μονοτονία της Ν Ν =f (N) Καμπυλότητα της Ν Ν =f (N) f (Ν) 0 K/2 K f (N) f (N) + - -
24 Λύσεις της λογιστικής εξίσωσης N( t) 1 K N 0 K 1 e rt lim t N( t) K Το Σ. Ι. N 2* =K είναι και ολικά ευσταθές
25 Μοντέλο για την εξάπλωση μιας ασθένειας Μολυσμένα n Ρυθμός ανάρρωσης Μη Μολυσμένα N-n N:αριθμός ατόμων στον πληθυσμό (σταθερός) Ρυθμός μόλυνσης Κατά κεφαλή ρυθμός μόλυνσης: βn Κατά κεφαλή ρυθμός ανάρρωσης: μ Δυναμική των μολυσμένων: Ποσοστό του πληθυσμού είναι άρρωστοι: Ι=n/Ν (α=βν) Να βρείτε τα σημεία ισορροπίας της (*). Πότε είναι ευσταθή? Να σχεδιάσετε το διάγραμμα φάσης (*)
26 Προτεινόμενη Βιβλιογραφία C. Neuhauser Calculus for biology and medicine Pearson/Prentice Hall, 2004 Chapter 8: όχι 8.3 F. R. Adler. Modeling the dynamics of life: calculus and probability for life scientists. Brooks/Cole, Chapter 5: M. R. Cullen Mathematics for the biosciences. Techbooks, 1983 Sections: 33-37
Βιομαθηματικά BIO-156. Συνεχή στο χρόνο δυναμικά συστήματα. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017
Βιομαθηματικά BIO-156 Συνεχή στο χρόνο δυναμικά συστήματα Ντίνα Λύκα Εαρινό Εξάμηνο, 2017 lika@biology.uoc.gr Συνεχή στο χρόνο δυναμικά συστήματα Τα συνεχή στο χρόνο δυναμικά συστήματα περιγράφουν φαινόμενα
Βιομαθηματικά BIO-156
Βιομαθηματικά BIO-156 Συνεχή στο χρόνο δυναμικά συστήματα Ντίνα Λύκα Εαρινό Εξάμηνο, 2013 lika@biology.uoc.gr Συνεχή στο χρόνο δυναμικά συστήματα Τα συνεχή στο χρόνο δυναμικά συστήματα περιγράφουν φαινόμενα
4 ΣΥΝΕΧΗ ΣΤΟ ΧΡΟΝΟ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
4 ΣΥΝΕΧΗ ΣΤΟ ΧΡΟΝΟ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Τα συνεχή στο χρόνο δυναμικά συστήματα, γνωστά και ως συστήματα διαφορικών εξισώσεων, περιγράφουν φαινόμενα που μεταβάλλονται συνεχώς στο χρόνο.
Βιομαθηματικά BIO-156
Βιομαθηματικά BIO-156 Όρια και συνέχεια συναρτήσεων Ντίνα Λύκα Εαρινό Εξάμηνο, 213 lika@biology.uoc.gr Παράδειγμα Υποθετικός πληθυσμός βακτηρίων Ας υποθέσουμε ότι ένας πληθυσμός βακτηρίων αυξάνει με το
Βιομαθηματικά BIO-156. Όρια και συνέχεια συναρτήσεων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2019
Βιομαθηματικά BIO-156 Όρια και συνέχεια συναρτήσεων Ντίνα Λύκα Εαρινό Εξάμηνο, 19 lika@uoc.gr Παράδειγμα Υποθετικός πληθυσμός βακτηρίων Ας υποθέσουμε ότι ένας πληθυσμός βακτηρίων αυξάνει με το χρόνο σύμφωνα
Βιομαθηματικά BIO-156. Όρια και συνέχεια συναρτήσεων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016
Βιομαθηματικά BIO-156 Όρια και συνέχεια συναρτήσεων Ντίνα Λύκα Εαρινό Εξάμηνο, 216 lika@biology.uoc.gr Παράδειγμα Υποθετικός πληθυσμός βακτηρίων Ας υποθέσουμε ότι ένας πληθυσμός βακτηρίων αυξάνει με το
Βιομαθηματικά BIO-156
Βιομαθηματικά BIO-156 Διακριτά στο χρόνο δυναμικά συστήματα Ντίνα Λύκα Εαρινό Εξάμηνο, 2013 lika@biology.uoc.gr Διακριτά στο χρόνο δυναμικά συστήματα περιγράφουν φαινόμενα που μεταβάλλονται ασυνεχώς. Αν
Βιομαθηματικά BIO-156
Βιομαθηματικά BIO-156 Παραγώγιση Ντίνα Λύκα Εαρινό Εξάμηνο, 213 lika@biology.uoc.gr Μια συνάρτηση είναι παραγωγίσιμη στο αν και μόνο αν το όριο lim h + h h υπάρχει. Αν το όριο υπάρχει θα το ονομάζουμε
Βιομαθηματικά BIO-156. Ντίνα Λύκα. Εισαγωγικές έννοιες. Εαρινό Εξάμηνο, 2016
Βιομαθηματικά BIO-156 Εισαγωγικές έννοιες Ντίνα Λύκα Εαρινό Εξάμηνο, 2016 lika@biology.uoc.gr Μαθηματικά Μοντέλα στη Βιολογία Ένα μαθηματικό μοντέλο είναι ένα σύνολο υποθέσεων για κάποιο βιολογικό σύστημα
Βιομαθηματικά BIO-156. Ντίνα Λύκα. Εισαγωγή. Εαρινό Εξάμηνο, 2018
Βιομαθηματικά BIO-156 Εισαγωγή Ντίνα Λύκα Εαρινό Εξάμηνο, 2018 lika@uoc.gr Μαθηματικά Μοντέλα στη Βιολογία Ένα μαθηματικό μοντέλο είναι ένα σύνολο υποθέσεων για κάποιο βιολογικό σύστημα, εκφρασμένες με
Βιομαθηματικά BIO-156. Παραγώγιση. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017
Βιομαθηματικά BIO-156 Παραγώγιση Ντίνα Λύκα Εαρινό Εξάμηνο, 217 lika@biology.uoc.gr Φυσική ερμηνεία της παραγώγου Μέσος ρυθμός μεταβολής της στο διάστημα [, +] με Δ= + - =, Στιγμιαίος ρυθμός μεταβολής
ΔΙΑΚΡΙΤΑ ΣΤΟ ΧΡΟΝΟ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΑΣΚΗΣΕΙΣ
ΔΙΑΚΡΙΤΑ ΣΤΟ ΧΡΟΝΟ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΑΣΚΗΣΕΙΣ. Να λύσετε τις παρακάτω εξισώσεις διαφορών (α,5 4, με. Ποιο είναι lim ; (β, με (γ 3, με [Θέστε y l( ] (δ, με [Θέστε y / ]. Βρείτε τα σημεία ισορροπίας και
IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ
IV.3 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ης ΤΑΞΕΩΣ.Γενική λύση.χωριζόμενων μεταβλητών 3.Ρυθμοί 4.Γραμμικές 5.Γραμμική αυτόνομη 6.Bernoulli αυτόνομη 7.Aσυμπτωτικές ιδιότητες 8.Αυτόνομες 9.Σταθερές τιμές.διάγραμμα ροής.ασυμπτωτική
Βιομαθηματικά BIO-156. Ολοκλήρωση. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017
Βιομαθηματικά BIO-56 Ολοκλήρωση Ντίνα Λύκα Εαρινό Εξάμηνο, 07 lik@biology.uo.gr Ορισμός αντιπαραγώγου ή παράγουσας ή αρχικής συνάρτησης Μια συνάρτηση F ονομάζεται αντιπαράγωγος της σε ένα διάστημα Ι, αν
Βιομαθηματικά BIO-156
Βιομαθηματικά BIO-56 Ολοκλήρωση Ντίνα Λύκα Εαρινό Εξάμηνο, 03 lik@biology.uo.gr Ορισμός αντιπαραγώγου ή πρωτεύουσας ή αρχικής συνάρτησης Μια συνάρτηση F ονομάζεται αντιπαράγωγος της σε ένα διάστημα Ι,
Μαθηματικά Και Στατιστική Στη Βιολογία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά Και Στατιστική Στη Βιολογία Ενότητα : Λύση διαφορικών εξισώσεων & εξισώσεων διαφορών Μελέτη Ισορροπίας Στέφανος Σγαρδέλης Άδειες
Βιομαθηματικά BIO-156. Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017
Βιομαθηματικά BIO-156 Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 17 lika@biology.uoc.gr Τυχαία Μεταβλητή τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε απλό ενδεχόμενο
Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14
1 Λ. Ζαχείλας Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας Οικονομική Δυναμική 9 Συνεχή δυναμικά συστήματα Μέρος 1 ο Λουκάς Ζαχείλας Ορισμός Διαφορικής
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε όλες τις λύσεις της εξίσωσης Bernoulli x y = xy + y 3 καθορίζοντας προσεκτικά το διάστημα στο οποίο ορίζεται καθεμιά
ΜΑΣ 203: Συνήθεις Διαφορικές Εξισώσεις, Εαρινό Εξάμηνο 2017 ΑΣΚΗΣΕΙΣ
ΜΑΣ 3: Συνήθεις Διαφορικές Εξισώσεις, Εαρινό Εξάμηνο 17 ΑΣΚΗΣΕΙΣ 1. Να ταξινομηθούν οι πιο κάτω ΣΔΕ με βάση τα εξής: τάξη, γραμμική ή μή. Να δοθούν επίσης οι ανεξάρτητες και εξαρτημένες μεταβλητές. 3 d
1.1. Διαφορική Εξίσωση και λύση αυτής
Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα
ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.
ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει
Βιομαθηματικά BIO-156
Βιομαθηματικά BIO-156 Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 013 lika@biology.uoc.gr Τυχαία Μεταβλητή τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε απλό ενδεχόμενο
ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων
ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 014 ΘΕΜΑ 1 Δίνεται ο πίνακας: 1) Να
website:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα
Βιοµαθηµατικά BIO-156
Βιοµαθηµατικά BIO-56 Ολοκλήρωση Ντίνα Λύκα Εαρινό Εξάµηνο, 08 lik@uo.gr Ορισµός αντιπαραγώγου ή παράγουσας ή αρχικής συνάρτησης Μια συνάρτηση F ονοµάζεται αντιπαράγωγος της σε ένα διάστηµα Ι, αν F' για
Μαθηματική Εισαγωγή Συναρτήσεις
Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας Διανύσματα Καστοριά,
«Μοντελοποίηση και Αριθµητικές Προσοµοιώσεις» Εισαγωγή στη Μαθηµατική Βιολογία. Πληθυσµιακά Μοντέλα
«Μοντελοποίηση και Αριθµητικές Προσοµοιώσεις» Εισαγωγή στη Μαθηµατική Βιολογία Μοντέλα Πληθυσµών Ενός Είδους: Συνεχή Διακριτά Μοντέλα Αλληλεπιδρώντων Πληθυσµών: Συνεχή Διακριτά Μαθηµατική Μοντελοποίηση:
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Πραγματικές Συναρτήσεις Πολλών Μεταβλητών (μέρος 1) Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής
ΠΟΛΥΧΡΟΝΙΑΔΗΣ ΝΙΚΟΣ ΤΑΥΤΟΤΗΤΕΣ
ΘΕΩΡΙΑ Α ΛΥΚΕΙΟΥ ΤΑΥΤΟΤΗΤΕΣ ). (α + β) = α +αβ + β ). (α β) = α αβ + β. 3). (α + β) 3 = α 3 + 3α β +3αβ + β 3 ). (α β) 3 = α 3 3α β +3αβ β 3. 5). α β = (α β)(α + β) 6). α + β = (α + β) αβ. 6). α 3 β 3
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Εισαγωγή στις Διαφορικές Εξισώσεις Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα . Σκοποί
y 1 (x) f(x) W (y 1, y 2 )(x) dx,
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x
Μαθηματική Εισαγωγή Συναρτήσεις
Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς Καστοριά, Ιούλιος 14 A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας
Κεφάλαιο 4 ΜΟΝΟΔΙΑΣΤΑΤΑ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. 4.1 Η ροή μιας διαφορικής εξίσωσης. Θεωρούμε πάλι το πρόβλημα αρχικών τιμών. x (0) = x 0, (4.1.
Κεφάλαιο 4 ΜΟΝΟΔΙΑΣΤΑΤΑ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4.1 Η ροή μιας διαφορικής εξίσωσης Θεωρούμε πάλι το πρόβλημα αρχικών τιμών ẋ = f (x), x (0) = x 0, (4.1.1) όπου το διανυσματικό πεδίο f είναι κλάσεως C 1 σε ένα
ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 014 ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ & ΘΕΜΑΤΑ: ΓΕΝΙΚΑ
Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017
Βιομαθηματικά IO-56 Θεωρία Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 07 lika@biology.uo.gr Ορισμοί Τυχαίο Πείραμα: κάθε πείραμα που είναι δυνατόν να επαναληφθεί με το ίδιο σύνολο υποθέσεων και του οποίου
ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ
ΜΑΣ 3: Συνήθεις Διαφορικές Εξισώσεις, Εαρινό Εξάμηνο 4 ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ Να ταξινομηθούν οι πιο κάτω ΣΔΕ με βάση τα εξής: τάξη, γραμμική ή μή Να δοθούν επίσης οι ανεξάρτητες και εξαρτημένες μεταβλητές
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Διαφορικός Λογισμός Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 1 Σκοποί ενότητας 4
ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ
ΜΑΣ : Συνήθεις Διαφορικές Εξισώσεις, Εαρινό Εξάμηνο 14 ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 1. Να ταξινομηθούν οι πιο κάτω ΣΔΕ με βάση τα εξής: τάξη, γραμμική ή μή. Να δοθούν επίσης οι ανεξάρτητες και εξαρτημένες μεταβλητές.
ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ
ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..: Παραγωγίσιμες Συναρτήσεις Παράγωγος Συνάρτηση - Κεφ..: Κανόνες Παραγώγισης του
Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016
Βιομαθηματικά IO-56 Θεωρία Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 06 lika@biology.uo.gr Ορισμοί Τυχαίο Πείραμα: κάθε πείραμα που είναι δυνατόν να επαναληφθεί με το ίδιο σύνολο υποθέσεων και του οποίου
Γραφική επίλυση γραμμικού συστήματος με δύο αγνώστους.
ΜΕΡΟΣ Α 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ 71 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ Αν έχουμε δύο γραμμικές εξισώσεις με δύο αγνώστους,, π.χ. α + β
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι
Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3
ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ 1 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Προβλήματα Αδιαστατοποίησης - Δυναμικής Πληθυσμών Άσκηση 3.3, σελίδα 32 από
ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:. Να γνωρίζει τον ορισμό της παραγώγου συνάρτησης σε ένα σημείο και να τον ερμηνεύει ως ρυθμό μεταβολής.. Να γνωρίζει τις έννοιες
Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x
Θέμα Α Θέματα Α. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του, στο οποίο όμως η f είναι συνεχής. Να αποδείξετε ότι αν η f() διατηρεί πρόσημο στο (, ) (, ), τότε
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 2015-16. Λύσεις του τρίτου φυλλαδίου ασκήσεων. 1. Λύστε τις παρακάτω διαφορικές εξισώσεις. Αν προκύψει αλγεβρική σχέση ανάμεσα στις μεταβλητές x, y η οποία δεν λύνεται
Κεφάλαιο 4: Διαφορικός Λογισμός
ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 006 Θέµα ο. Για την διαφορική εξίσωση + ' =, > 0 α) Να δειχτεί ότι όλες οι λύσεις τέµνουν κάθετα την ευθεία =. β) Να βρεθεί η γενική λύση. γ) Να βρεθεί και να σχεδιαστεί
( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α
.5.. Ίσες συναρτήσεις ΣΥΝΑΡΤΗΣΕΙΣ 7 Ο ΜΑΘΗΜΑ Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f = g, Έχουν το ίδιο πεδία ορισμού Α Για κάθε x Α ισχύει f ( x) = g( x) Αν για τις συναρτήσεις: f:
ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ [Κεφ..6: Συνέπειες του Θεωρήματος της Μέσης Τιμής πλην της Ενότητας Μονοτονία Συνάρτησης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ
4. 1 Η ΣΥΝΑΡΤΗΣΗ Y=AX 2 ME A 0
ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ Y=AX ME A 0 5. Η ΣΥΝΑΡΤΗΣΗ Y=AX ME A 0 Ορισμοί Ονομάζουμε συνάρτηση την διαδικασία με την οποία σε κάθε τιμή της μεταβλητής αντιστοιχίζουμε μια μόνο τιμή της μεταβλητής. Ονομάζουμε
ΔΙΑΓΩΝΙΣΜΑ 12., στο ίδιο σύστημα
Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 1 1. (4 μονάδες) α). Η συνάρτηση () έχει το παραπλεύρως γράφημα. () Να βρεθούν τα γραφήματα της μέσης τιμής: A() = () / και του οριακού ρυθμού: M() = (), στο ίδιο σύστημα συντεταγμένων.
α. y = y x 2 β. x + 5x = e x γ. xy (xy + y) = 2y 2 δ. y (4) + xy + e x = 0 η. x 2 (y ) 4 + xy + y 5 = 0 θ. y + ln y + x 2 y 3 = 0 d 3 y dy + 5y
Ασκήσεις στα Μαθηματικά ΙΙΙ Τμήμα Χημ. Μηχανικών ΑΠΘ Μουτάφη Ευαγγελία Θεσσαλονίκη 2018-2019 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΙΣΑΓΩΓΗ 1. Στις παρακάτω Δ.Ε. να προσδιορίσετε: α) την ανεξάρτητη και την εξαρτημένη
1.1 Βασικές Έννοιες των Διαφορικών Εξισώσεων
Κεφάλαιο 1 Εισαγωγικά Στο κεφάλαιο αυτό θα παρουσιάσουμε τις βασικές έννοιες και ορισμούς των Διαφορικών Εξισώσεων. Στο εδάφιο 1.1 παρουσιάζονται οι βασικές έννοιες και ορισμοί των διαφορικών εξισώσεων
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση
x(t) 2 = e 2 t = e 2t, t > 0
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 216-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Σήµατα και Συστήµατα Ασκηση
ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)
ΜΑΣ00: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Να κατατάξετε τις διαφορικές εξισώσεις, δηλ να δώσετε την τάξη της, να πείτε αν είναι γραμμική ή όχι, να δώσετε την ανεξάρτητη μεταβλητή
ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1. ΙΣΤΟΡΙΚΑ ΣΤΟΙΧΕΙΑ Οι διαφορικές εξισώσεις είναι ο κλάδος των μαθηματικών που περισσότερο ίσως από κάθε άλλον οφείλει την γέννηση του στην Μηχανική, στην Αστρονομία και στη Θεωρητική
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική
Κεφάλαιο 0 Μιγαδικοί Αριθμοί
Κεφάλαιο 0 Μιγαδικοί Αριθμοί 0 Βασικοί ορισμοί και πράξεις Είναι γνωστό ότι δεν υπάρχει πραγματικός αριθμός που επαληθεύει την εξίσωση x Η ανάγκη επίλυσης τέτοιων εξισώσεων οδηγεί στο σύνολο των μιγαδικών
Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς
Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Οι εξισώσεις Bernoulli αποτελούν την κλάση των μη γραμμικών διαφορικών εξισώσεων
Βασικές ασκήσεις Βασική θεωρία. του πεδίου ορισμού της; β) Έστω η συνάρτηση: ένα σημείο του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x
8 Συνέχεια συνάρτησης Ορισμός της συνέχειας 8. α) Πότε μια συνάρτηση f :A λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού της; β) Έστω η συνάρτηση:, αν < f() =, αν i) Να αποδείξετε ότι f() = 7 και να
ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι
ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.
Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών
Φ ρ ο ν τ ι σ τ ή ρ ι α δ υ α δ ι κ ό ΦΡΟΝΤΙΣΤΗΡΙΑ δυαδικό Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς 6 Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών Τα θέματα επεξεργάστηκαν οι καθηγητές των Φροντιστηρίων
ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ. Το Θεώρημα και το Πόρισμα ισχύουν σε διαστήματα και όχι σε ένωση διαστημάτων.
ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σε ένα διάστημα Δ και ισχύει f () = 0 για κάθε εσωτερικό σημείο του Δ, τότε η f είναι σταθερή σ' όλο το διάστημα Δ. Πόρισμα Αν δύο συναρτήσεις
dx cos x = ln 1 + sin x 1 sin x.
Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 17-18 Ν. Βλαχάκης 1. Εστω πεδίο δύναμης F = g () cos y ˆ + λ g() sin y ŷ, όπου λ = σταθερά και g() = 1 e π/ B C (σε κατάλληλες μονάδες). (α) Υπολογίστε πόση ενέργεια
Οι ιδιότητες και οι µέθοδοι επίλυσης διαφορικών εξισώσεων παρουσιάζονται σε µία σειρά εγχειριδίων µαθηµατικών
Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 2015 Μαθηµατικό Παράρτηµα 1 Διαφορικές Εξισώσεις Στο µαθηµατικό αυτό παράρτηµα ορίζουµε και αναλύουµε την επίλυση απλών συστηµάτων γραµµικών διαφορικών
II. Συναρτήσεις. math-gr
II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική
ΠΟΛΥΩΝΥΜΑ. Λυμένα Παραδείγματα
ΠΟΛΥΩΝΥΜΑ Λυμένα Παραδείγματα. Να βρεθούν οι τιμές του λ R για τις οποίες το πολυώνυμο Ρ () = (4λ -9) +(λ -λ-) +λ- είναι το μηδενικό. Το Ρ () θα είναι το μηδενικό πολυώνυμο, για εκείνες τις τιμές του λ
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 0 ΘΕΜΑΤΑ Α Θέµα ο. Να βρεθεί (α) η γενική λύση yy() της διαφορικής εξίσωσης y' y + καθώς και (β) η µερική λύση που διέρχεται από το σηµείο y(/). (γ) Από ποια σηµεία του επιπέδου
Μ Α Θ Η Μ Α Τ Ι Κ Η Π Ρ Ο Τ Υ Π Ο Π Ο Ι Η Σ Η Ε Ρ Γ Α Σ Ι Α 1 Η
Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Μ Α Θ Η Μ Α Τ Ι Κ Η Π Ρ Ο Τ Υ Π Ο Π Ο Ι Η Σ Η Ε Ρ Γ Α Σ Ι Α 1 Η ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 11-1
ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ Πότε μια συνάρτηση λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της?
ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ 4-5 Πότε μια συνάρτηση λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της? Απάντηση: Mια συνάρτηση λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της όταν
ΚΕΦ. 1. ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Εισαγωγή.
1 ΚΕΦ. 1. ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1.1. Εισαγωγή. Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα πραγματικών αριθμών. Σε
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
y x y x+2y=
ΜΕΡΟΣ Α 3.1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ 59 3. 1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ Η εξίσωση α+β=γ Λύση μιας εξίσωσης α + β = γ ονομάζεται κάθε ζεύγος αριθμών (, ) που την επαληθεύει. Για παράδειγμα η
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 15 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα
Κεφάλαιο 8 Διαφορικές Εξισώσεις
Διαφορικές Εξισώσεις Κεφάλαιο 8 Διαφορικές Εξισώσεις 8. Ορισμοί Έστω ένα κύκλωμα το οποίο αποτελείται από μία πηγή ηλεκτρεργετικής δύναμης Ε (Volt), η οποία μπορεί να είναι σταθερή ή να εξαρτάται από το
2 Περιεχόμενα. Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R )
Περιεχόμενα Γράφημα της συνάρτησης f( ), αν p < 0 F( ) = f( ), αν 0 p και F( + p) = F( ), R (δηλ της περιττής περιοδικής επέκτασης της f = f( ), 0 p στο R ) Περιεχόμενα 5 ΠΡΟΛΟΓΟΣ Το Βιβλίο αυτό απευθύνεται
Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης
Η Εξίσωση Euler-Lagrange Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους
ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ
ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ
Ακαδημαϊκό έτος ΘΕΜΑ 1. Η κινητική εξίσωση της αντίδρασης Α + Β = Γ είναι: r = k[a] α [B] β
Ακαδημαϊκό έτος 4-5 ΘΕΜΑ Η κινητική εξίσωση της αντίδρασης Α + Β = Γ είναι: r = [] α [B] β Χρησιμοποιώντας τη μέθοδο των αρχικών ταχυτήτων βρήκαμε ότι η αντίδραση είναι δεύτερης τάξης ως προς Α και πρώτης
Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού
Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 11 ΟΚΤΩΒΡΙΟΥ 2016 ΜΗ ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Οικονομικές Συναρτήσεις με μεταβλητούς ρυθμούς
Μαθηματικά Και Στατιστική Στη Βιολογία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά Και Στατιστική Στη Βιολογία Ενότητα 10 : Δυναμικά Συστήματα Στέφανος Σγαρδέλης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις πρώτου φυλλαδίου ασκήσεων.. Για κάθε μία από τις παρακάτω διαφορικές εξισώσεις πείτε αν είναι γραμμική ή όχι και προσδιορίστε την τάξη της. α. y + y +
Αόριστο Ολοκλήρωμα Μέθοδοι Ολοκλήρωσης
8 Αόριστο Ολοκλήρωμα Μέθοδοι Ολοκλήρωσης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμός Έστω μια συνάρτηση f ορισμένη σε διάστημα Δ. Ονομάζουμε αρχική συνάρτηση ή παράγουσα της f στο Δ, μια συνάρτηση F παραγωγίσιμη
Κάθε εξίσωση, η οποία περιλαµβάνει παραγώγους, είναι διαφορική εξίσωση. Έτσι οι εξισώσεις
ΠΑΡΑΡΤΗΜΑ Β: ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ µ ÂÓÈÎ ÓÓÔÈÂ Κάθε εξίσωση, η οποία περιλαµβάνει παραγώγους, είναι διαφορική εξίσωση Έτσι οι εξισώσεις d = + t d = 5 (Β) (Β3) d e t = cos (Β) d d = 5 + (Β4) είναι όλες διαφορικές
Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x,
Θέμα Α Θέματα Α. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του, στο οποίο όμως η f είναι συνεχής. Να αποδείξετε ότι αν η f() διατηρεί πρόσημο στο (, ) (, ), τότε
Μοντέρνα Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 16. Ανάστροφο εκκρεμές (ανάδραση κατάστασης) Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων
Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης
,..., xn) Οι συναρτήσεις που ορίζουν αυτό το σύστημα υποτίθενται παραγωγίσιμες με συνεχείς παραγώγους:
ΜΑΘΗΜΑ 6 ο : ΕΥΣΤΑΘΕΙΑ ΤΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΙΣΟΡΡΟΠΙΑΣ (ΣΥΝΑΡΤΗΣΕΙΣ LYAPUNOV) O Aleksadr Lyapuv (857-98) έθεσε τις βάσεις της μαθηματικής θεωρίας της ευστάθειας που φέρει το όνομά του εμπνευσμένος από μια απλή
Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;
Κεφάλαιο 1 Διαφορικός Λογισμός 1.1 Συναρτήσεις Κατανόηση εννοιών - Θεωρία 1. Τι ονομάζουμε συνάρτηση; 2. Πως ορίζονται οι πράξεις της πρόσθεσης, της διαφοράς, του γινομένου και του πηλίκου μεταξύ δύο συναρτήσεων;
- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 3: ΣΥΝΑΡΤΗΣΗ 1-1 ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση. ΘΕΜΑ Β Να
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΔΙΑΧΕΙΡΙΣΗ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΦΥΣΙΚΩΝ ΠΟΡΩΝ: Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΑΛΙΕΙΑΣ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΔΙΑΧΕΙΡΙΣΗ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΦΥΣΙΚΩΝ ΠΟΡΩΝ: Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΑΛΙΕΙΑΣ 1) Μια Σύντομη Εισαγωγή Στα Πληθυσμιακά Μοντέλα Ας θεωρήσουμε μια συγκεκριμένη κοινότητα ψαριών, για την οποία υποθέτουμε
Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΗΣ ΣΧΕΔΙΑΣΗΣ & ΠΑΡΑΓΩΓΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Αν Καθ: Δ ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ Εφαρμ: Σ ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα
Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 11 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Γραμμικοποίηση Ευστάθεια Απόκριση Συστημάτων 1 Β.Ε. που περιγράφονται από ΣΔΕ 1 ης τάξης 2 Πρόβλημα/Ερώτημα
Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές
Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com