Στατιστική ΙΙ-Διαστήματα Εμπιστοσύνης Ι (εκδ. 1.1)
|
|
- Ἐλισάβετ Σπανού
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Στατιστική ΙΙ- Ι (εκδ. 1.1) Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 17 Ιουλίου 2013
2 Περιγραφή 1 Δ.Ε.γιατονμέσο µ Δ.Ε. για την αναλογία
3 Τί είναι τα ; Τα (Δ.Ε.) εκφράζουν το διάστημα τιμών για ένα στατιστικό μέτρο ή μια παράμετρο ενός τυχαίου γεγονότος στον πληθυσμό μεπιθανότητα 1 α. 1 Στατιστικόμέτρο:παρ. µ(μέσος), σ 2 (διακύμανση), p(αναλογία). 2 ΤοΔ.Ε.ορίζεταιμεπιθανότητα 1 α. 3 Το α εκφράζει το επίπεδο σημαντικότητας(ή το σφάλμα εκτίμησης). Γιατίοχιμεπιθανότηταίσημε 1; 1 Ηπιθανότητα 1 αεκφράζειτηναβεβαιότηταγιατοστατιστικ ομέτρο στον πληθυσμό παρ. µ πληθυσμιακό μέσο. 2 Πλήρης βεβαιότητα μόνο για τα στατιστικά μέτρα στο δείγμα(δεδομένου του δείγματος), παρ. x δειγματικός μέσος για δείγμα n. 3 Αυξάνοντας το α, μειώνουμε την πιθανότητα. Ετσι θα περιορίζεται το εύρος του Δ.Ε. αυξάνοντας την ακρίβεια της εκτίμησης μας.
4 Τί είναι τα ; Τα (Δ.Ε.) εκφράζουν το διάστημα τιμών για ένα στατιστικό μέτρο ή μια παράμετρο ενός τυχαίου γεγονότος στον πληθυσμό μεπιθανότητα 1 α. 1 Στατιστικόμέτρο:παρ. µ(μέσος), σ 2 (διακύμανση), p(αναλογία). 2 ΤοΔ.Ε.ορίζεταιμεπιθανότητα 1 α. 3 Το α εκφράζει το επίπεδο σημαντικότητας(ή το σφάλμα εκτίμησης). Γιατίοχιμεπιθανότηταίσημε 1; 1 Ηπιθανότητα 1 αεκφράζειτηναβεβαιότηταγιατοστατιστικ ομέτρο στον πληθυσμό παρ. µ πληθυσμιακό μέσο. 2 Πλήρης βεβαιότητα μόνο για τα στατιστικά μέτρα στο δείγμα(δεδομένου του δείγματος), παρ. x δειγματικός μέσος για δείγμα n. 3 Αυξάνοντας το α, μειώνουμε την πιθανότητα. Ετσι θα περιορίζεται το εύρος του Δ.Ε. αυξάνοντας την ακρίβεια της εκτίμησης μας.
5 Τί είναι τα ; Τα (Δ.Ε.) εκφράζουν το διάστημα τιμών για ένα στατιστικό μέτρο ή μια παράμετρο ενός τυχαίου γεγονότος στον πληθυσμό μεπιθανότητα 1 α. 1 Στατιστικόμέτρο:παρ. µ(μέσος), σ 2 (διακύμανση), p(αναλογία). 2 ΤοΔ.Ε.ορίζεταιμεπιθανότητα 1 α. 3 Το α εκφράζει το επίπεδο σημαντικότητας(ή το σφάλμα εκτίμησης). Γιατίοχιμεπιθανότηταίσημε 1; 1 Ηπιθανότητα 1 αεκφράζειτηναβεβαιότηταγιατοστατιστικ ομέτρο στον πληθυσμό παρ. µ πληθυσμιακό μέσο. 2 Πλήρης βεβαιότητα μόνο για τα στατιστικά μέτρα στο δείγμα(δεδομένου του δείγματος), παρ. x δειγματικός μέσος για δείγμα n. 3 Αυξάνοντας το α, μειώνουμε την πιθανότητα. Ετσι θα περιορίζεται το εύρος του Δ.Ε. αυξάνοντας την ακρίβεια της εκτίμησης μας.
6 Τί είναι τα ; Τα (Δ.Ε.) εκφράζουν το διάστημα τιμών για ένα στατιστικό μέτρο ή μια παράμετρο ενός τυχαίου γεγονότος στον πληθυσμό μεπιθανότητα 1 α. 1 Στατιστικόμέτρο:παρ. µ(μέσος), σ 2 (διακύμανση), p(αναλογία). 2 ΤοΔ.Ε.ορίζεταιμεπιθανότητα 1 α. 3 Το α εκφράζει το επίπεδο σημαντικότητας(ή το σφάλμα εκτίμησης). Γιατίοχιμεπιθανότηταίσημε 1; 1 Ηπιθανότητα 1 αεκφράζειτηναβεβαιότηταγιατοστατιστικ ομέτρο στον πληθυσμό παρ. µ πληθυσμιακό μέσο. 2 Πλήρης βεβαιότητα μόνο για τα στατιστικά μέτρα στο δείγμα(δεδομένου του δείγματος), παρ. x δειγματικός μέσος για δείγμα n. 3 Αυξάνοντας το α, μειώνουμε την πιθανότητα. Ετσι θα περιορίζεται το εύρος του Δ.Ε. αυξάνοντας την ακρίβεια της εκτίμησης μας.
7 Δ.Ε. μέσω παραδειγμάτων: 1 Παράδειγμα Α: Ενα χρεόγραφο έχει μια μέση απόδοση για ένα χρονικό διάστημα. Ενας επενδυτής προκειμένου να επενδύσει σε αυτό θέλει να γνωρίζει με μια πιθανότητα το ελάχιστο αλλά και μέγιστο της δεδομένης απόδοσης με στόχο να αποφύγει ενδεχόμενο μεγάλο ρίσκο μιας τέτοιας επένδυσης. 2 Παράδειγμα Β: Το ποσοστό των παραγόμενων ελαττωματικών προιόντων είναι γνωστό σε μια βιομηχανική επιχείρηση. Ποιό θα ήταν το ανώτερο και κατώτερο όριο των ελαττωματικών προιόντων που είναι δυνατόν να παραχθούν στο μέλλον. 3 Παράδειγμα Γ: Μια επιχείρηση διαθέτει προιόντα σε δύο(2) αγορές. Κάθε αγορά έχει διαφορετική κατανάλωση προιόντος. Ποιά θα μπορούσαν να είναι τα όρια την διαφοράς στην κατανάλωση των δύο αυτών αγορών πέραν των οποίων μια διαφορά στην κατανάλωση θα μπορούσε να χαρακτηριστεί περαν των επιτρεπτών ορίων από τον διευθυντή πωλήσεων;
8 Δ.Ε. μέσω παραδειγμάτων: 1 Παράδειγμα Α: Ενα χρεόγραφο έχει μια μέση απόδοση για ένα χρονικό διάστημα. Ενας επενδυτής προκειμένου να επενδύσει σε αυτό θέλει να γνωρίζει με μια πιθανότητα το ελάχιστο αλλά και μέγιστο της δεδομένης απόδοσης με στόχο να αποφύγει ενδεχόμενο μεγάλο ρίσκο μιας τέτοιας επένδυσης. 2 Παράδειγμα Β: Το ποσοστό των παραγόμενων ελαττωματικών προιόντων είναι γνωστό σε μια βιομηχανική επιχείρηση. Ποιό θα ήταν το ανώτερο και κατώτερο όριο των ελαττωματικών προιόντων που είναι δυνατόν να παραχθούν στο μέλλον. 3 Παράδειγμα Γ: Μια επιχείρηση διαθέτει προιόντα σε δύο(2) αγορές. Κάθε αγορά έχει διαφορετική κατανάλωση προιόντος. Ποιά θα μπορούσαν να είναι τα όρια την διαφοράς στην κατανάλωση των δύο αυτών αγορών πέραν των οποίων μια διαφορά στην κατανάλωση θα μπορούσε να χαρακτηριστεί περαν των επιτρεπτών ορίων από τον διευθυντή πωλήσεων;
9 Δ.Ε. μέσω παραδειγμάτων: 1 Παράδειγμα Α: Ενα χρεόγραφο έχει μια μέση απόδοση για ένα χρονικό διάστημα. Ενας επενδυτής προκειμένου να επενδύσει σε αυτό θέλει να γνωρίζει με μια πιθανότητα το ελάχιστο αλλά και μέγιστο της δεδομένης απόδοσης με στόχο να αποφύγει ενδεχόμενο μεγάλο ρίσκο μιας τέτοιας επένδυσης. 2 Παράδειγμα Β: Το ποσοστό των παραγόμενων ελαττωματικών προιόντων είναι γνωστό σε μια βιομηχανική επιχείρηση. Ποιό θα ήταν το ανώτερο και κατώτερο όριο των ελαττωματικών προιόντων που είναι δυνατόν να παραχθούν στο μέλλον. 3 Παράδειγμα Γ: Μια επιχείρηση διαθέτει προιόντα σε δύο(2) αγορές. Κάθε αγορά έχει διαφορετική κατανάλωση προιόντος. Ποιά θα μπορούσαν να είναι τα όρια την διαφοράς στην κατανάλωση των δύο αυτών αγορών πέραν των οποίων μια διαφορά στην κατανάλωση θα μπορούσε να χαρακτηριστεί περαν των επιτρεπτών ορίων από τον διευθυντή πωλήσεων;
10 Δ.Ε. μέσω παραδειγμάτων: 1 Παράδειγμα Α: Ενα χρεόγραφο έχει μια μέση απόδοση για ένα χρονικό διάστημα. Ενας επενδυτής προκειμένου να επενδύσει σε αυτό θέλει να γνωρίζει με μια πιθανότητα το ελάχιστο αλλά και μέγιστο της δεδομένης απόδοσης με στόχο να αποφύγει ενδεχόμενο μεγάλο ρίσκο μιας τέτοιας επένδυσης. 2 Παράδειγμα Β: Το ποσοστό των παραγόμενων ελαττωματικών προιόντων είναι γνωστό σε μια βιομηχανική επιχείρηση. Ποιό θα ήταν το ανώτερο και κατώτερο όριο των ελαττωματικών προιόντων που είναι δυνατόν να παραχθούν στο μέλλον. 3 Παράδειγμα Γ: Μια επιχείρηση διαθέτει προιόντα σε δύο(2) αγορές. Κάθε αγορά έχει διαφορετική κατανάλωση προιόντος. Ποιά θα μπορούσαν να είναι τα όρια την διαφοράς στην κατανάλωση των δύο αυτών αγορών πέραν των οποίων μια διαφορά στην κατανάλωση θα μπορούσε να χαρακτηριστεί περαν των επιτρεπτών ορίων από τον διευθυντή πωλήσεων;
11 διότι Z 1 α/2 = Z α/2. βεαμερ-τυ-λογ Δ.Ε.γιατονμέσο µ Δ.Ε. για τον πληθυσμιακό μέσο µ Εστωγιατ.μς X 1,...,X nπροερχόμενεςαπόπληθυσμόμεμέσητιμή µκαι διακύμανση σ 2 τότεγια n 30θαισχύει: x µ σ/ N(0, 1). n Ετσι, δεδομένου ποσοστού σφάλματος α θα ισχύει: P(Z α/2 x µ σ/ n Z 1 α/2), όπου P(Z Z α/2 ) = Φ(Z α/2 ) = α/2,και P(Z Z 1 α/2 ) = 1 α/2. Ετσι, P(Z α/2 x µ σ/ n Z 1 α/2) = 1 α P( x + Z α/2 σ/ n µ x + Z 1 α/2 σ/ n) = 1 α P( x Z 1 α/2 σ/ n µ x Z α/2 σ/ n) = 1 α P( x Z 1 α/2 σ/ n µ x + Z 1 α/2 σ/ n) = 1 α,
12 Δ.Ε.γιατονμέσο µ Δ.Ε. για τον πληθυσμιακό μέσο µ(συν.) 1 σ-γνωστή 1 n 30ήΚανονικάκαταναμημένα X, x ± Z 1 α/2 σ n 2 n < 30καιμη-Κανονικάκαταναμημένα X, x ± t 1 α/2,n 1 σ n 2 σ-άγνωστη και n < 30: χρησιμοποίησε τη δειγματική τυπική απόκλιση S = i=1 n (X i X) 2 n 1 x ± t 1 α/2,n 1 S n όπου t 1 α/2,n 1 t-studentκατανομήμε n 1βαθμούςελευθερίας.
13 Δ.Ε.γιατονμέσο µ Δ.Ε. για τον πληθυσμιακό μέσο µ(συν.) 1 σ-γνωστή 1 n 30ήΚανονικάκαταναμημένα X, x ± Z 1 α/2 σ n 2 n < 30καιμη-Κανονικάκαταναμημένα X, x ± t 1 α/2,n 1 σ n 2 σ-άγνωστη και n < 30: χρησιμοποίησε τη δειγματική τυπική απόκλιση S = i=1 n (X i X) 2 n 1 x ± t 1 α/2,n 1 S n όπου t 1 α/2,n 1 t-studentκατανομήμε n 1βαθμούςελευθερίας.
14 Δ.Ε.γιατονμέσο µ Δ.Ε. για τον πληθυσμιακό μέσο µ(συν.) 1 σ-γνωστή 1 n 30ήΚανονικάκαταναμημένα X, x ± Z 1 α/2 σ n 2 n < 30καιμη-Κανονικάκαταναμημένα X, x ± t 1 α/2,n 1 σ n 2 σ-άγνωστη και n < 30: χρησιμοποίησε τη δειγματική τυπική απόκλιση S = i=1 n (X i X) 2 n 1 x ± t 1 α/2,n 1 S n όπου t 1 α/2,n 1 t-studentκατανομήμε n 1βαθμούςελευθερίας.
15 Δ.Ε.γιατονμέσο µ Παράδειγμα: Δ.Ε. για τον πληθυσμιακό μέσο µ Εστω δείγμα με τιμές: {12, 1 12, 3 11, 8 11, 9 12, 8 12, 4} αυτές προέρχονται από Κανονικό πληθυσμό με τυπική απόκλιση ίση με 12. Να προσδιορίσετε το 95% διάστημα εμπιστοσύνη για τον πληθυσμιακό μέσο. Λύση Προσδιορίζουμε τον δειγματικό μέσο, x = 12, 1+12, 3+11, 8+11, 9+12, 8+12, 4 6 = Επίσης, δεδομένης της επιθυμίας για ένα 95% διάστημα εμπιστοσύνη, υποθέτουμε ποσοστό σφάλματος ίσο με 5%. Ακόμα, έχουμε τυπική απόκλιση ίσημε σ = 12.Ενώμέσωτουπίκαναπουακολουθείηκριτικήτιμή Z = 1, 96. Ετσι, 12, 21 1, µ 12, 21+1, µ βεαμερ-τυ-λογ
16 Δ.Ε.γιατονμέσο µ
17 Δ.Ε. για την αναλογία για την αναλογία Εστωτ.μ. Xδυαδικούαποτελέσματος X {0, 1},τότεγιαδείγματο X 1,...,X nενδιαφερόμαστεναπροσδιορίσουμετηναναλογία n i=1 X i. n Υποθέτονταςότιτοδείγμα X 1,...,X nαπόκοινούκατανέμεταισύμφωναμετη Διωνυμική κατανομή, τότε για n 30 και χρησιμοποιώντας τη συνθήκη Cramer-Rao θα ισχύει ότι: ˆp p ˆp(1 ˆp) n N(0, 1), όπου n i=1 ˆp = X i. n Ετσι, δεδομένου ποσοστού σφάλματος α, το Δ.Ε. για την αναλογία στον πληθυσμο θα είναι της μορφής: ˆp(1 ˆp) ˆp(1 ˆp) P(ˆp Z 1 α/2 p ˆp + Z 1 α/2 ) = 1 α. n n βεαμερ-τυ-λογ
Στατιστική ΙΙ- Ελεγχος Υποθέσεων Ι (εκδ. 1.3)
Στατιστική ΙΙ- Ι (εκδ. 1.3) Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 31 Μαρτίου 2017 Περιγραφή 1 Τί είναι οι Ελεγχοι Υπόθεσης; Οι Ελεγχοι Υπόθεσης(Ε.Υ.)
Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι
Στατιστική ΙΙ- Ελεγχος Υποθέσεων ΙΙ (εκδ. 1.1)
Στατιστική ΙΙ- Ελεγχος Υποθέσεων ΙΙ (εκδ. 1.1) Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 17 Ιουλίου 2013 Περιγραφή 1 2 Δίπλευρος και μονόπλευρος Ε.Υ.
Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών
Εισαγωγή στην Εκτιμητική
Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση
Εκτίμηση Διαστήματος. Χ. Εμμανουηλίδης, 1. Στατιστική ΙI. Εκτίμηση Διαστήματος Εμπιστοσύνης για τον Μέσο
Στατιστική ΙI Ενότητα : Εκτίμηση Διαστήματος Δρ. Χρήστος Εμμανουηλίδης Aν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στατιστική ΙΙ, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης, cemma@eco.auth.gr 1 Εκτίμηση
Στατιστική Ι-Πιθανότητες Ι
Στατιστική Ι-Πιθανότητες Ι Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 15 Οκτωβρίου 2015 Περιγραφή 1 Ενωση και Τομή Ενδεχομένων Περιγραφή 1 Ενωση και
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες
Στατιστική Συμπερασματολογία
4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε
Διαστήματα Εμπιστοσύνης
Διαστήματα Εμπιστοσύνης 00 % Διαστήματα Εμπιστοσύνης για τη μέση τιμή ενός πληθυσμού Κατανομή Διασπορά Μέγεθος δείγματος Διάστημα Εμπιστοσύνης Κανονική Γνωστή Οποιοδήποτε Οποιαδήποτε Γνωστή Μεγάλο 30 Z
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 07 & ΔΙΑΛΕΞΗ 08 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 016-017 ΕΙΣΑΓΩΓΗ ΣΤΗΝ
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,
Σημειακή εκτίμηση και εκτίμηση με διάστημα. 11 η Διάλεξη
Σημειακή εκτίμηση και εκτίμηση με διάστημα 11 η Διάλεξη Εκτιμήτρια Κάθε στατιστική συνάρτηση που χρησιμοποιείται για την εκτίμηση μιας παραμέτρου ενός πληθυσμού (π.χ. ο δειγματικός μέσος) Σημειακή εκτίμηση
ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ
ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ Το ενδιαφέρον επικεντρώνεται πάντα στον πληθυσμό Το δείγμα χρησιμεύει για εξαγωγή συμπερασμάτων για τον πληθυσμό π.χ. το ετήσιο εισόδημα των κατοίκων μιας περιοχής Τα στατιστικά
Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης
1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από
Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Στατιστική Ι-Μέτρα Διασποράς
Στατιστική Ι- Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 8 Οκτωβρίου 2016 Περιγραφή 1 Περιγραφή 1 Περιγραφή Η αποτελεί μέτρο διασποράς των τιμών μιας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
Στατιστική Επιχειρήσεων ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που
Δειγματικές Κατανομές
Δειγματικές Κατανομές Στατιστική συνάρτηση ή στατιστική Δειγματική κατανομή - Εκτιμητής Τα άγνωστα στοιχεία του πληθυσμού λέγονται παράμετροι. Τα συμπεράσματα για μια παράμετρο εξάγονται με τη βοήθεια
ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ
Έστω τυχαίο δείγμα παρατηρήσεων από πληθυσμό του οποίου η κατανομή εξαρτάται από μία ή περισσότερες παραμέτρους, π.χ. μ. Επειδή σε κάθε δείγμα αναμένεται διαφορετική τιμή του μ, είναι προτιμότερο να επιδιώκεται
Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο )
Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική (Η
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 7-8 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές
ΣτατιστικήΙΙ- Ελεγχοι X 2 (εκδ. 1.2)
ΣτατιστικήΙΙ- Ελεγχοι X 2 (εκδ. 1.2) Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 20 Μαΐου 2017 Περιγραφή 1 2 Ορισμός Ο Ελεγχος προσαρμογής εξετάζει την
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegean.gr Τηλ: 7035468 Εκτίμηση
Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ
Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές ΙΙ Περιγραφή 1 Θεωρητικές
Στατιστική ΙΙ Ενότητα 2: ειγµατοληψία
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Στατιστική ΙΙ Ενότητα 2: ειγµατοληψία Γεώργιος Κ. Τσιώτας Τµήµα Οικονοµικών Επιστηµών Περιεχόµενα ειγµατοληψία Κατανοµές ειγµατοληψίας Κεντρικό Οριακό Θεώρηµα Τι
6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων
6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 6-7 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές
Κεφάλαιο 9 Κατανομές Δειγματοληψίας
Κεφάλαιο 9 Κατανομές Δειγματοληψίας Copyright 2009 Cengage Learning 9.1 Κατανομές Δειγματοληψίας Μια κατανομή δειγματοληψίας δημιουργείται, εξ ορισμού, από δειγματοληψία. Η μέθοδος που θα χρησιμοποιήσουμε
Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας
Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. )
Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. ) Πίνακας Περιεχομένων Εργασία η... Θέμα ο :... Θέμα ο :... 4 Θέμα 3 ο :...
5. Έλεγχοι Υποθέσεων
5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές
Έλεγχος Υποθέσεων (Hypothesis Testing)
Έλεγχος Υποθέσεων (Hypothesis Testig) Ορισμοί Μορφές στατιστικού ελέγχου Πιθανότητες σφάλματος τύπου Ι και ΙΙ Ισχύς (Power) ενός ελέγχου Η P-τιμή (P-vlue) Στατιστικοί έλεγχοι υποθέσεων για ειδικές περιπτώσεις
Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση
Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ
Στατιστική Ι-Θεωρητικές Κατανομές Ι
Στατιστική Ι-Θεωρητικές Κατανομές Ι Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές Η Χρήση των Θεωρητικών
ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων
ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 22 Μαΐου 2017 1/32 Εισαγωγή: Τυπικό παράδειγμα στατιστικού ελέγχου υποθέσεων. Ενας νέος τύπος
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 14 Μαρτίου 018 1/34 Διαστήματα Εμπιστοσύνης. Εχουμε δει εκτενώς μέχρι τώρα τρόπους εκτίμησης
ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ
ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού
2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.
2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,
Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017
Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι Ονοματεπώνυμο: Όνομα Πατρός:... ΑΜ:. Ημερομηνία: Σ Παρακαλώ μη γράφετε στα παρακάτω τετράγωνα Μέρος
Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21
ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση
Θέμα: ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΚΕΦΑΛΑΙΑ 10,12 KELLER
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 63 34 ΠΑΤΡΑ Τηλ.: 610 369051, Φαξ: 610 396184, email: mitro@teipat.gr Καθ η γη τ
Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό
Έλεγχοι Υποθέσεων. Χρήση της Στατιστικής. Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-2
Έλεγχοι Υποθέσεων 7-2 7 Έλεγχοι Υποθέσεων Χρήση της Στατιστικής Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-3 7 Μαθησιακοί Στόχοι Όταν θα έχετε ολοκληρώσει την μελέτη του κεφαλαίου θα πρέπει να
3. Κατανομές πιθανότητας
3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Τυχαίο Δείγμα
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 12. Εκτίμηση των παραμέτρων ενός πληθυσμού
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Δειγματοληψία στην Ερευνα. Ετος
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Αγροτικής Οικονομίας & Ανάπτυξης Μέθοδοι Γεωργοοικονομικής και Κοινωνιολογικής Ερευνας Δειγματοληψία στην Έρευνα (Μέθοδοι Δειγματοληψίας - Τρόποι Επιλογής Τυχαίου Δείγματος)
Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ
ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα
cv = κατάλληλη κριτική (κρίσιμη) τιμή από τους πίνακες της Ζ ή t κατανομής
ΕΚΤΙΜΗΣΗ ΔΙΑΣΤΗΜΑΤΟΣ Δ.Ε. της παραμέτρου θ: ˆ θ cv σ < θ < ˆ θ + cv σ ˆ θ ˆ θ θ = η παράμετρος που θέλουμε να εκτιμήσουμε, ˆ θ = η εκτίμηση της θ που προκύπτει από το τ.δ. cv = κατάλληλη κριτική (κρίσιμη)
Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική
Εργαστήριο Μαθηματικών & Στατιστικής ΣΕΙΡΑ Α Γραπτή Εξέταση Περιόδου Φεβρουαρίου 013 στη Στατιστική για τα Τμήματα Ε.Τ.Τ., Γ.Β., Α.Ο.Α. και Ε.Ζ.Π.&Υ. 08/0/013 1. [0] Η ποσότητα, έστω Χ, καλίου που περιέχεται
ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων
ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων ΠΡΑΓΜΑΤΙΚΟ ΚΟΣΤΟΣ ΣΥΛΛΟΓΗ ΠΛΗΡΟΦΟΡΙΩΝ ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΕΠΙΛΟΓΗ ΚΑΤΑΝΟΜΗΣ Υπολογισμός πιθανοτήτων και πρόβλεψη τιμών από τις τιμές των παραμέτρων και
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 9Α: Απλή Τυχαία Δειγματοληψία Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες
Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα
Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Ορισμός τυχαίας μεταβλητής Τυχαία μεταβλητή λέγεται η συνάρτηση
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
Σημειακή εκτίμηση και εκτίμηση με διάστημα Παραδείγματα. 12 η Διάλεξη
Σημειακή εκτίμηση και εκτίμηση με διάστημα Παραδείγματα 12 η Διάλεξη 1 ο Παράδειγμα (1) Μια αυτόματη μηχανή συσκευάζει καλαμπόκι σε τσουβάλια των 25kg Το βάρος του καλαμποκιού που συσκευάζεται ανά τσουβάλι
Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής
Ενότητα 2 Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής Ένας από τους βασικούς σκοπούς της Στατιστικής είναι η εκτίμηση των χαρακτηριστικών ενός πληθυσμού βάσει της πληροφορίας από ένα δείγμα.
Οικονομετρία. Απλή Παλινδρόμηση. Έλεγχοι υποθέσεων και διαστήματα εμπιστοσύνης των συντελεστών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Απλή Παλινδρόμηση Έλεγχοι υποθέσεων και διαστήματα εμπιστοσύνης των συντελεστών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση
Δειγματοληπτικές κατανομές
Δειγματοληπτικές κατανομές Κατανομές που χρησιμοποιούνται για τον έλεγχο υποθέσεων στα δείγματα Κανονική κατανομή (z-κατανομή) t-κατανομή Χ κατανομή F-κατανομή Ζητάμε να προσδιορίσουμε τις παραμέτρους
& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική //9 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ ο Θέμα Μονάδες Από τα ασθενή ζώα μιας κτηνοτροφικής μονάδας, ποσοστό % έχει προσβληθεί από την ασθένεια Α, % από
Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών
Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών να αντιληφθούν τη σημασία της εν λόγω κατανομής
X = = 81 9 = 9
Πιθανότητες και Αρχές Στατιστικής (11η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 35 Σύνοψη
Τυχαία μεταβλητή (τ.μ.)
Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 2 Μαΐου 2017 1/23 Ανάλυση Διακύμανσης. Η ανάλυση παλινδρόμησης μελετά τη στατιστική σχέση ανάμεσα
Στατιστική Ι- Βασικές Εννοιες
Στατιστική Ι- Βασικές Εννοιες Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 1 Οκτωβρίου 2015 Περιγραφή 1 Περιγραφή του Στατιστικού προβλήματος Ορισμός της
ΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ. Γρηγόρης Χλουβεράκης, Ph.D. Αναπληρωτής Καθηγητής Πανεπιστήμιο Κρήτης
ΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Γρηγόρης Χλουβεράκης, Ph.D. Αναπληρωτής Καθηγητής Πανεπιστήμιο Κρήτης Από την περασμένη φορά... Πληθυσμός (population): ένα σύνολο ατόμων Παράμετρος (parameter): χαρακτηριστικό του
Στατιστική Ι. Ανάλυση Παλινδρόμησης
Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι
TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III
0 TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III Νοέμβριος Eστω,,, τυχαίο δείγμα από κατανομή f( x; ), όπου συμβολίζει άγνωστη παράμετρο (a) Να ορισθεί η έννοια του επαρκούς στατιστικού
5 o Μάθημα Έλεγχοι Υποθέσεων
5 o Μάθημα Έλεγχοι Υποθέσεων 5 Το Πρόβλημα του Ελέγχου Υποθέσεων Ας υποθέσουμε ότι σχεδιάζονται κάποιες κυκλοφοριακές ρυθμίσεις με στόχο ο μέσος χρόνος μετακίνησης των εργαζομένων που χρησιμοποιούν το
Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.
Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο
2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ
.5. ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ Η μέθοδος κατασκευής διαστήματος εμπιστοσύνης για την πιθανότητα που περιγράφεται στην προηγούμενη ενότητα μπορεί να χρησιμοποιηθεί για την κατασκευή διαστημάτων
Ειδικά Θέματα Οικονομετρίας-Παλινδρόμηση (μέρος Α )
Ειδικά Θέματα Οικονομετρίας-Παλινδρόμηση (μέρος Α ) Γεώργιος Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης Ειδικά Θέματα Οικονομετρίας(ΕΘΟΟ 331) Περιγραφή 1 Εισαγωγή
Γ. Πειραματισμός - Βιομετρία
Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται
Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης
ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.
Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο Δίνεται η συνάρτηση f Ι. Το πεδίο ορισμού της f είναι:., υ -, B., Γ. -,.,., ΙΙ. Το όριο f lm 0 είναι ίσο με: Α. 0 Β. Γ. Δ. Ε. Τίποτε από τα προηγούμενα
Είδη Μεταβλητών. κλίµακα µέτρησης
ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό
Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική // (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [] Επιλέξαμε φακελάκια (της μισής ουγκιάς) που περιέχουν σταφίδες από την παραγωγή μιας εταιρείας
Το τυπικό σφάλμα του μέσου (standard error of mean) ενός δείγματος
Το σύμβολο μ απεικονίζει 92.4% το μέσο όρο του πληθυσμού 121 92.4% το μέσο όρο του δείγματος 8 6.1% το μέσο όρο της κατανομής t 0 0% το μέσο όρο της κανονικής κατανομής 2 1.5% Το σύμβολο X απεικονίζει
ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ
ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή
ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Δημήτρης Ιωαννίδης. Τμήμα Οικονομικών Επιστημών.
Μεθοδολογία Έρευνας: Μάθημα 3 ο ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ Δημήτρης Ιωαννίδης Τμήμα Οικονομικών Επιστημών Email: dimioan@uom.gr Εμπιστευτικό Σελίδα 1 Μάθημα 5 ο Ελέγχοντας την Θεωρία ΙΙ: Στατιστικοί Έλεγχοι για
ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ
ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών
ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ
ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f 1 ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ Ι. Το πεδίο ορισμού της f είναι:, 1 υ -1, B. 1, Γ. -1,., 1. 1, f 1 ΙΙ. Το όριο lm είναι ίσο με: 0 Α. 0 Β. 1 Γ. -1 Δ. 1/ Ε. Τίποτε
10.7 Λυμένες Ασκήσεις για Διαστήματα Εμπιστοσύνης
10.7 Λυμένες Ασκήσεις για Διαστήματα Εμπιστοσύνης Διαστήματα εμπιστοσύνης για τον μέσο ενός πληθυσμού (Μικρά δείγματα) Άσκηση 10.7.1: Ο επόμενος πίνακας τιμών δείχνει την αύξηση σε ώρες ύπνου που είχαν
ΣΧ0ΛΗ ΤΕΧΝ0Λ0ΓΙΑΣ ΤΡΟΦΙΜΩΝ & ΔΙΑΤΡΟΦΗΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΕΡΓΑΣΤΗΡΙΟ: ΟΡΓΑΝΟΛΗΠΤΙΚΟΥ ΕΛΕΓΧΟΥ ΓΙΑΝΝΑΚΟΥΡΟΥ ΜΑΡΙΑ ΤΑΛΕΛΛΗ ΑΙΚΑΤΕΡΙΝΗ
ΣΧ0ΛΗ ΤΕΧΝ0Λ0ΓΙΑΣ ΤΡΟΦΙΜΩΝ & ΔΙΑΤΡΟΦΗΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΕΡΓΑΣΤΗΡΙΟ: ΟΡΓΑΝΟΛΗΠΤΙΚΟΥ ΕΛΕΓΧΟΥ ΓΙΑΝΝΑΚΟΥΡΟΥ ΜΑΡΙΑ ΤΑΛΕΛΛΗ ΑΙΚΑΤΕΡΙΝΗ ΕΙΣΑΓΩΓΗ Ο όρος «ποιότητα», είναι μια απλή έννοια που εκφράζεται