ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside
|
|
- Παρθενορή Λούπης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Bursde Θα αποδείξουµε εδώ ότι κάθε οµάδα τάξης a q b (, q πρώτοι) είναι επιλύσιµη. Το θεώρηµα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιµοποίησε τη νέα τότε θεωρία αναπαραστάσεων οµάδων που αναπτύχθηκε από τον Frobeus. Για σχεδόν 70 χρόνια δεν υπήρχε απόδειξη που να αποφεύγει χαρακτήρες και αναπαραστάσεις. Τελικά βρέθηκε µια οµαδοθεωρητική απόδειξη το 972 από τον J. Thomso (Felds Medal) η οποία είναι µακροσκελής και δύσκολη. Αργότερα βρέθηκαν πιο σύντοµες αποδείξεις. 8.. Αλγεβρικοί Ακέραιοι. αριθµός Ξεκινάµε µε ορισµένα στοιχεία που αφορούν αλγεβρικούς ακεραίους. Ένας πολυωνύµου a C ονοµάζεται αλγεβρικός ακέραιος αν είναι ρίζα ενός µονικού (x) Z[ x]. Το σύνολο των αλγεβρικών ακεραίων συµβολίζεται µε O και ο σκοπός µας είναι να δείξουµε ότι το O είναι υποδακτύλιος του C (δες για παράδειγµα τις σηµειώσεις του γράφοντος, Μεταθετική Άλγεβρα και Εφαρµογές, Αθήνα 999, 7.2). 8.. Πρόταση. Έστω R S δακτύλιοι και s S. Τότε τα παρακάτω είναι ισοδύναµα () το s είναι ακέραιο πάνω από το R (δηλαδή εξ ορισµού είναι ρίζα µονικού πολυωνύµου ( x) R[ x] ) () ο υποδακτύλιος R[s] του S είναι πεπερασµένα παραγόµενο R-πρότυπο () υπάρχει υποδακτύλιος R του S έτσι ώστε παραγόµενο R-πρότυπο (v) υπάρχει πιστό R [ s] R και το R είναι πεπερασµένα R[s] -πρότυπο που είναι πεπερασµένα παραγόµενο R-πρότυπο. Απόδειξη: () () Ως R-πρότυπο το R [s] παράγεται από τα, s, s,... Από την υπόθεση έχουµε 2 s + r s r0 = 0 για κάποια r R. Άρα s = r s... r0 και s = r s... r0 s, + k + k k
2 84 οπότε µια προφανής επαγωγή στο k δείχνει ότι το συνδυασµός των, s,..., s. () () Προφανές () (v) Το R είναι πιστό R[s]-πρότυπο k s + είναι R-γραµµικός (v) () Έστω Μ πιστό R[s]-πρότυπο που παράγεται από m,...,m. Υπάρχουν r j R µε sm = r m + r 2 m r m οπότε sm = r... + m + r 2m2 + rm, 0 = ( r s m r m r m ) = r m + r m ( r s) m. 2 2 Έστω Α ο αυτό ως οπότε πίνακας των συντελεστών των m στο τελευταίο σύστηµα. Γράφουµε m 0 = A Αλλά ( adja) A = (det A)I, όπου I είναι ο ταυτοτικός πίνακας, όπως Επειδή το Μ είναι πιστό R[s]-πρότυπο και τα παράγουν το Μ παίρνουµε m m 0 = ( adja) A. m θυµόµαστε από τη Γραµµική Άλγεβρα. (Η απόδειξη που δίνεται εκεί ισχύει και για µεταθετικούς δακτυλίους στη θέση σωµάτων). Άρα (det A) m = 0, =,...,. m Το ανάπτυγµα της ορίζουσας det A det A = 0. δίνει τη ζητούµενη σχέση Πόρισµα. Έστω R S δακτύλιοι και s,..., s S στοιχεία ακέραια πάνω από
3 85 το R. Τότε ο δακτύλιος [ s,..., s R ] είναι πεπερασµένα παραγόµενο R-πρότυπο. Απόδειξη: Για = δες την προηγούµενη πρόταση. Για > γράφουµε R[ s,..., s ] = R[ s,..., s ][ s ]. Το R[ s,..., s ] είναι πεπερασµένα παραγόµενο R-πρότυπο από την υπόθεση της επαγωγής. Το R[ s,..., s ][ s ] είναι πεπερασµένα παραγόµενο R[ s,..., s ] πρότυπο (αφού το είναι ακέραιο πάνω από το R). Συνεπώς το R[s,..., s ] είναι s πεπερασµένα R-πρότυπο Πόρισµα. Το σύνολο O είναι υποδακτύλιος του C. Απόδειξη: Έστω a, b O. Ο δακτύλιος Z[ a, b] είναι πεπερασµένα παραγόµενο Ζ- πρότυπο από το πόρισµα 8..2 για συµπεραίνουµε ότι a b O και R = Z και S ab O. = O. Από την πρόταση 7.4. () 8..4 Πρόταση. O Q = Z. Απόδειξη: Έστω a / b Q µ ε a, b Z, µ.κ.δ. ( a, b) =. Αν a / b O τότε έχουµε µια σχέση της µορφής οπότε ( a / b) + a ( / b) a0 a, a Z a + a ba a0b = 0 πράγµα που δίνει ότι το b διαιρεί το a. Άρα b = ±, οπότε a / b Z. Η άλλη σχέση Z O Q είναι προφανής. Επιστρέφουµε τώρα σε χαρακτήρες Πρόταση. Έστω χ χαρακτήρας της G. Τότε για κάθε g G, το είναι αλγεβρικός ακέραιος. Απόδειξη: Κάθε ρίζα της µονάδας είναι αλγεβρικός ακέραιος ως ρίζα του x. Γνωρίζουµε ότι το είναι άθροισµα ριζών της µονάδας, οπότε το ζητούµε m
4 86 προκύπτει από το πόρισµα Κατά συνέπεια οι µόνοι ρητοί αριθµοί που εµφανίζονται στον πίνακα χαρακτήρων της G είναι οι ακέραιοι Θεώρηµα του Bursde Λήµµα. Έστω V ανάγωγο C [G] -πρότυπο και z C( C[ G]). Τότε υπάρχει λ C µε την ιδιότητα zv = λv για κάθε v V. Απόδειξη: Επειδή z C( C[ G]), η συνάρτηση f : V v zv V είναι C[G] - οµοµορφισµός. Επειδή το C είναι αλγεβρικά κλειστό η f έχει µη ιδιοτιµή, έστω λ. Άρα f ( v) = λv για κάποιο λ C, v V, v 0. Συνεπώς ο οµοµορφισµός f λ V έχει µη µηδενικό πυρήνα. Αφού το V είναι ανάγωγο, παίρνουµε δηλαδή f ( v) = λv για κάθε v V. Ker( f λ ) = V, V Πρόταση. Έστω χ ανάγωγος χαρακτήρας της G και g G. Τότε ο αριθµός είναι αλγεβρικός ακέραιος. G λ = Απόδειξη: Έστω V C[G] ανάγωγο C[G] -πρότυπο µε χαρακτήρα χ και έστω C το άθροισµα των συζυγών του g. Τότε C v = λv για κάθε v V. (2) Πράγµατι, αφού C C( C[ G]) (δες τη συζήτηση πριν την πρόταση 7..6) συµπεραίνουµε από το λήµµα 8.2. ότι υπάρχει µ C µε C v = µ v για κάθε v V. Λαµβάνοντας ίχνη η τελευταία σχέση δίνει χ ( g ) = µ, όπου το g διατρέχει τα συζυγή στοιχεία του g. Επειδή χ ( g ) = και το πλήθος των g είναι G / C( παίρνουµε G µ =. Θεωρούµε τώρα τη γραµµική απεικόνιση
5 87 f : C[ G] z Cz C[ G]. Ο πίνακας της f ως προς τη βάση G = g,..., g } έχει στοιχεία ακέραιους αριθµούς. { Κάθε ιδιοτιµή ενός τέτοιου πίνακα είναι αλγεβρικός ακέραιος. Από το (2), το λ είναι ιδιοτιµή της f, και άρα το λ είναι αλγεβρικός ακέραιος. Από την προηγούµενη πρόταση ο αριθµός G G G είναι αλγεβρικός ακέραιος. Έστω ότι µκδ, =. Τότε a + C ( g ) b ) = για κάποιο a,b Z, οπότε G = a + b που είναι αλγεβρικός ακέραιος (πόρισµα 8..3). G Πόρισµα. Με τους προηγούµενους συµβολισµούς, έστω µ.κ.δ, =. Τότε ο / είναι αλγεβρικός ακέραιος. Ερχόµαστε τώρα στο τελευταίο προπαρασκευαστικό αποτέλεσµα που αποτελεί το κλειδί για τα θεωρήµατα που ακολουθούν. Εδώ θα χρησιµοποιήσουµε λίγη θεωρία Galos. Με C ( ρ( G)) συµβολίζουµε παρακάτω το κέντρο της οµάδας ρ(g). G Πόρισµα. Με τους προηγούµενους συµβολισµούς, έστω µ.κ.δ, =. Έστω ρ : G GL ( C) αναπαράσταση µε χαρακτήρα χ. Τότε ή ρ( C( ρ( G)) ή χ ( = 0. Απόδειξη: Επειδή το είναι αθροισµα ριζών της µονάδας (πλήθους )) η τριγωνική ανισότητα δίνει. Αν ισχύει ισότητα, τότε αυτές οι ρίζες της µονάδας είναι ίσες µεταξύ τους (γιατί;)
6 88 Ισχυριζόµαστε ότι ρ( C( ρ( G)). Πράγµατι, έστω m η τάξη του g. Τότε ρ( m = I, οπότε το ελάχιστο πολυώνυµο του πίνακα ρ( διαιρεί το x και m κατά συνέπεια έχει διακεκριµένες ρίζες. Άρα ο ρ( είναι διαγωνίσιµος, και συνεπώς όµοιος µε έναν πίνακα της µορφής ωi (γιατί οι ιδιοτιµές του ρ( ταυτίζονται). Άρα ρ ( = ωi που ανήκει στο κέντρο της GL (C). Έστω τώρα ότι <. Θέτουµε a =. Έστω ε µια πρωταρχική m-ρίζα της µονάδας, όπου m είναι η τάξη του g, και K = Q(ε) οπότε a K. Για κάθε σ Gal( K / Q), ισχύει σ ( a), γιατί σ a) = σ( ) = ( ω ω ( όπου κάθε ω είναι ρίζα της µονάδας. Συνεπώς η υπόθεση δίνει σ Gal( K, Q) σ ( a) <. Επειδή το a είναι αλγεβρικός ακέραιος (πόρισµα 8.2.4), κάθε σ(a) είναι αλγεβρικός ) ακέραιος και άρα το b = σ Gal( K, Q) σ( a) είναι αλγεβρικός ακέραιος. Από την άλλη µεριά, το b είναι ρητός αριθµός, γιατί σ( b ) = b για κάθε σ Gal(K,Q). Εποµένως (πρόταση 8..4) b Z. Αφού b < παίρνουµε b = 0. ηλαδή σ(a) = 0 για κάποιο σ, που δίνει βέβαια a = 0. Σηµείωση: Στην προηγούµενη απόδειξη θα µπορούσαµε να πάρουµε στη θέση του Κ οποιαδήποτε επέκταση του Galos που περιέχει το ε Θεώρηµα (Bursde). Έστω G πεπερασµένη οµάδα και C µια κλάση συζυγίας της G µε C =, πρώτος m > 0. Τότε υπάρχει µη τετριµµένη ανάγωγη αναπαράσταση ρ της G µε την ιδιότητα το m ρ(c) C( ρ( G)). Συνεπώς η G δεν είναι απλή. Απόδειξη: Έστω ο χαρακτήρας του κανονικού C[G]-προτύπου και g G, χ reg g. Τότε (λήµµα 7.2.3) 0 = χ = χ ( ) χ ( χ () χ ( = + χ () χ ( +... χ () (, reg ( s s s χ s
7 89 όπου χ είναι ο χαρακτήρας της τετριµµένης αναπαράστασης. Γράφουµε την προηγούµενη σχέση ως s χ = 2 χ () ( =. Επειδή το δεν είναι αλγεβρικός ακέραιος (πρόταση 8..4), για κάποιο 2 το χ ( χ ( ) / δεν είναι αλγεβρικός ακέραιος (πόρισµα 8..3). Επειδή το χ ( είναι αλγεβρικός ακέραιος (πρόταση 8..5), το χ () / δεν είναι. ηλαδή το δεν διαιρεί το. Άρα χ ( 0 και δεν διαιρεί το (). Άρα µ.κ.δ ( C, ()) =. Τότε το πόρισµα δίνει ότι το ρ( ανήκει στο χ χ κέντρο της ρ(g) για κάθε g C, όπου ρ είναι η ανάγωγη αναπαράσταση µε χαρακτήρα χ. Θα δείξουµε τέλος ότι η G δεν είναι απλή. Έστω H = Kerρ, που είναι µια κανονική υποοµάδα της G. Αφού η ρ δεν είναι η τετριµµένη αναπαράσταση έχουµε H G. Αν ισχύει H =, τότε G ρ(g) και το κέντρο της ρ(g) είναι µη τετριµµένο αφού περιέχει το σύνολο ρ(c), όπως δείξαµε πριν. Αν C( ρ( G)) = ρ( G) τότε η G είναι αβελιανή, και αφού η τάξη της δεν είναι πρώτος (γιατί m C =, m < 0 ) η G δεν είναι απλή. Αν C( ρ( G)) ρ( G), τότε το C(ρ(G)) είναι µια γνήσια µη τετριµµένη κανονική υποοµάδα της ρ(g), δηλαδή η ρ(g) δεν είναι απλή. Θυµίζουµε ότι µια οµάδα G ονοµάζεται επιλύσιµη αν υπάρχουν υποοµάδες της G = G < G <... < Gr < G 0 έτσι ώστε κάθε είναι κανονική στη G και κάθε πηλίκο G / G είναι κυκλική G τάξης πρώτου αριθµού. Ως απλές ασκήσεις αφήνουµε τις εξής παρατηρήσεις: ) Αν η υποοµάδα Η της G είναι κανονική µε την ιδιότητα η Η και η + είναι επιλύσιµες, τότε η G είναι επιλύσιµη. 2) Κάθε οµάδα τάξης, πρώτος, a > 0 δεν είναι απλή a + G / H (υπόδειξη: C ( G) ). Ερχόµαστε τώρα στο δεύτερο φηµισµένο θεώρηµα του Bursde.
8 Θεώρηµα (Bursde). Κάθε οµάδα τάξης a q b, όπου, q είναι πρώτοι αριθµοί, είναι επιλύσιµη. Απόδειξη: Επαγωγή στο a + b. Το θεώρηµα είναι προφανές για a + b = οπότε υποθέτουµε ότι a + b 2. Θα δείξουµε πρώτα ότι η G δεν είναι απλή. Αν a = 0 ή b = 0, τότε η G δεν είναι απλή από την παρατήρηση 2 που επισηµάναµε πριν το θεώρηµα. Έστω a, b >. Έστω Q µια q-sylow υποοµάδα της G, b οπότε Q = q. Τότε C ( Q), από την παρατήρηση 2. Έστω g C( Q), g. Τότε Q C G ( και άρα ο πληθάριθµος της συζυγούς κλάσεως του g, έστω C, είναι C = [ G : C ( ] = για κάποιο r. Αν r = 0, τότε g C(G), οπότε η G δεν είναι απλή, αφού < g > είναι γνήσια µη τετριµµένη κανονική υποοµάδα της G. Αν r 0, τότε η G δεν είναι απλή από το θεώρηµα Έχοντας αποδείξει ότι η G δεν είναι απλή, µια προφανής επαγωγή στο βασιζόµενη στην παρατήρηση δίνει το αποτέλεσµα. G r a + b Όπως έχουν τονίσει ήδη, υπάρχουν αποδείξεις του θεωρήµατος που αποφεύγουν χαρακτήρες. Το ίδιο όµως δεν συµβαίνει για το θεώρηµα µέχρι σήµερα. Ασκήσεις. Κάθε µη αβελιανή απλή οµάδα ταξης 69 έχει ταξη 60 (Υπόδειξη: για να αποκλείσετε τις περιπτώσεις 30 και 42 εφαρµόστε τα θεωρήµατα Sylow). r 2. Κάθε µη αβελιανή απλή οµάδα δεν έχει αβελιανή υποοµάδα δείκτη, πρώτος. 3. Έστω χ ανάγωγος χαρακτήρας της G. Τότε το χ () διαιρεί G. (Υπόδειξη: Έστω αριθµός g,..., g s αντιπρόσωποι των κλάσεων συζυγίας. Από την πρόταση 8.2.2, ο s G g ) g = χ ) g () )
9 9 είναι αλγεβρικός ακέραιος. Αυτός ισούται µε G /, οπότε το ζητούµενο προκύπτει από την πρόταση 8..4). 4. Από τη στοιχειώδη θεωρία οµάδων γνωρίζετε ότι κάθε οµάδα τάξης 2, πρώτος, είναι αβελιανή. ώστε µια άλλη απόδειξη (Υπόδειξη: προηγούµενη άσκηση και θεώρηµα 7..8). 5. Έστω οµάδα G µε την ιδιότητα τα στοιχεία g και g είναι συζυγή για κάθε g G. Tότε ο πίνακας χαρακτήρων της G αποτελείται µόνο από ακεραίους αριθµούς. (Για παράδειγµα, οι συµµετρικές οµάδες ιδιότητα). S έχουν την προηγούµενη
ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside
ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Bursde a b Θα αποδείξουμε εδώ ότι κάθε ομάδα τάξης pq ( p, q πρώτοι) είναι επιλύσιμη Το θεώρημα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιμοποίησε τη νέα
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι
ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι Χρησιµοποιώντας το θεώρηµα του Weddebu για ηµιαπλούς δακτυλίους αναπτύσσουµε εδώ τις πρώτες προτάσεις από τη θεωρία των αναπαραστάσεων και αρακτήρων πεπερασµένων
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες
ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιµοποιώντας τανυστικά γινόµενα και εφαρµόζοντας το θεώρηµα των Wedderbur-rt ( 33) θα αποδείξουµε δύο θεµελιώδη θεωρήµατα που αφορούν κεντρικές απλές άλγεβρες *
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι
ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 9: Επαγόµενοι Χαρακτήρες και το Θεώρηµα του Frobenius
ΚΕΦΑΛΑΙΟ 9: Επαγόµενοι Χαρακτήρες και το Θεώρηµα του Frobenus Στο κεφάλαιο αυτό εισάγουµε τους επαγόµενους αρακτήρες µε τη βοήθεια των οποίων αποδεικνύουµε το θεώρηµα των συµπληρωµάτων του Frobenus Οι
Διαβάστε περισσότεραΚεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη
Κεφάλαιο 0 Μεταθετικοί ακτύλιοι, Ιδεώδη Το κεφάλαιο αυτό έχει προπαρασκευαστικό χαρακτήρα Θα καθιερώσουµε συµβολισµούς και θα υπενθυµίσουµε ορισµούς και στοιχειώδεις προτάσεις για δακτύλιους και ιδεώδη
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι
ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα
ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson
ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Είδαµε στο προηγούµενο κεφάλαιο ότι κάθε ηµιαπλός δακτύλιος είναι δακτύλιος του Art. Επειδή υπάρχουν παραδείγµατα δακτυλίων του Art που δεν είναι ηµιαπλοί, πχ Z 2, > 1, τίθεται
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων
ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι
ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι Χρησιμοποιώντας το θεώρημα του Weddebu για ημιαπλούς δακτυλίους, αναπτύσσουμε εδώ τις πρώτες προτάσεις από τη θεωρία των αναπαραστάσεων και αρακτήρων πεπερασμένων
Διαβάστε περισσότεραΚεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.
Κεφάλαιο Πρότυπα Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο Ορισμοί και Παραδείγματα Παραδοχές Στo βιβλίο αυτό θα κάνουμε τις εξής παραδοχές Χρησιμοποιούμε προσθετικό συμβολισμό
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες
ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιμοποιώντας τανυστικά γινόμενα και εφαρμόζοντας το θεώρημα των Wedderbur-rt ( 33) θα αποδείξουμε δύο θεμελιώδη θεωρήματα που αφορούν κεντρικές απλές άλγεβρες θεώρημα
Διαβάστε περισσότεραΔακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα.
Δακτύλιοι και Πρότυπα 0-7 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα Βρείτε τη ρητή κανονική μορφή και μια κανονική μορφή Jorda του M( ) 0 0 Έστω
Διαβάστε περισσότεραΚεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)
Κεφάλαιο 3β Ελεύθερα Πρότυπα (µέρος β) Ο σκοπός µας εδώ είναι να αποδείξουµε το εξής σηµαντικό αποτέλεσµα. 3.3.6 Θεώρηµα Έστω R µια περιοχή κυρίων ιδεωδών, F ένα ελεύθερο R-πρότυπο τάξης s < και N F. Τότε
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες
ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιμοποιώντας τανυστικά γινόμενα και εφαρμόζοντας το θεώρημα των Wedderbur-Art ( 33) θα αποδείξουμε δύο θεμελιώδη θεωρήματα που αφορούν κεντρικές απλές άλγεβρες *
Διαβάστε περισσότεραL = F +. Είναι, 1 F, άρα και 1 L. Επεκτείνουµε τις πράξεις του F έτσι ώστε
ΕΠΕΚΤΑΣΕΙΣ ΣΩΜΑΤΟΣ Προκαταρκτικά Σώµα = Αντιµεταθετικό σώµα, χαρακτηριστικής µηδενός Τα σώµατα αυτά καλούνται και αριθµητικά σώµατα Θα τα συµβολίζουµε µε τα γράµµατα F, F, L κλπ Έστω ότι κάποια ανάγκη
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ελάχιστο Πολυώνυµο Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 20 4. Ελάχιστο Πολυώνυµο Στην παρούσα παράγραφο
Διαβάστε περισσότεραΚεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές
Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε
Διαβάστε περισσότεραβαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των
Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Ορισμός ελαχίστου πολυωνύμου γραμμικής απεικόνισης και ιδιότητές του Κριτήριο διαγωνισιμότητας
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)
ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια
Διαβάστε περισσότεραA, και εξετάστε αν είναι διαγωνίσιμη.
Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Θεώρημα (Κριτήριο διαγωνισιμότητας) Ένας είναι διαγωνίσιμος αν και μόνο αν ( x) γινόμενο διακεκριμένων
Διαβάστε περισσότεραb. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.
Ασκήσεις4 46 Ασκήσεις 4 Τριγωνίσιμες γραμμικές απεικονίσεις, Θεώρημα των Cayley-Hamilton Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Κριτήριο τριγωνισιμότητας
Διαβάστε περισσότεραΑσκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις
Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου
Διαβάστε περισσότεραΑλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.
Διαβάστε περισσότεραΑλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση
Διαβάστε περισσότεραΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi07/asi07.html Παρασκευή 9 Μαίου 07 Για κάθε µετάθεση
Διαβάστε περισσότεραΑσκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους
Aσκήσεις1 1 Βασικά σημεία Ευκλείδεια διαίρεση πολυωνύμων Ορισμός και ιδιότητες μκδ και εκπ Ιδιότητες σχετικών πρώτων πολυωνύμων Τα ανάγωγα πολυώνυμα στο [ ] και [ ] Ασκήσεις1 Πολυώνυμα Ανάλυση πολυωνύμου
Διαβάστε περισσότεραΒασική Άλγεβρα. Ασκήσεις (εκδοχή )
Βασική Άλγεβρα Ασκήσεις 0-4 (εκδοχή 5--04) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόµενα σελίδα Ασκήσεις ιαιρετότητα στους ακέραιους, ισοτιµίες Ασκήσεις Ακέραιοι odulo, Θεώρηµα του Euler 7
Διαβάστε περισσότεραΚεφάλαιο 6. Πεπερασµένα παραγόµενες αβελιανές οµάδες. Z 4 = 1 και Z 2 Z 2.
Κεφάλαιο 6 Πεπερασµένα παραγόµενες αβελιανές οµάδες Στο κεφάλαιο αυτό ϑα ταξινοµήσουµε τις πεπερασµένα παραγόµενες αβελιανές οµάδες. Αυτές οι οµάδες είναι από τις λίγες περιπτώσεις οµάδων µε µία συγκεκριµένη
Διαβάστε περισσότεραΑσκήσεις4 48. P AP τριγωνικό. Αφού δείξτε ότι ο A δεν είναι διαγωνίσιμος, βρείτε αντιστρέψιμο A 1 3 1
Ασκήσεις4 48 Ασκήσεις4 Τριγωνισιμότητα Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Θεώρημα: είναι τριγωνίσιμος αν και μόνο αν ( x ) γινόμενο πρωτοβάθμιων παραγόντων
Διαβάστε περισσότεραΚεφάλαιο 3. Ελεύθερα Πρότυπα. στοιχείων του Μ καλείται βάση του e λ παράγει το Μ, και ii) κάθε m M γράφεται κατά µοναδικό
Κεφάαιο 3 Εεύθερα Πρότυπα 3.1 Εεύθερα Πρότυπα Έστω Μ ένα R-πρότυπο. Μια οικογένεια Μ αν ) το σύνοο { Λ} τρόπο ως άθροισµα της µορφής πεπερασµένο πήθος από τα ( e ) στοιχείων του Μ καείται βάση του e παράγει
Διαβάστε περισσότεραto Modern Number Theory των Kenneth Ireland και Michael Rosen, GTM 84, Springer - Verlag, New York 1982.
Αθροισµατα Gauss και Jacobi και Εφαρµογες Κατερίνα Κούτα Πτυχιακή Εργασία Παρουσιάσθηκε στις 15-11-2004 Επιβλέπων Καθηγητής ΝΓ Τζανάκης Τµήµα Μαθηµατικών - Πανεπιστήµιο Κρήτης Φθινοπωρινό εξάµηνο 2004
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Υποοµάδες και το Θεώρηµα του Lagrange Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 210 2. Υποοµάδες και το Θεώρηµα
Διαβάστε περισσότεραΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι
Διαβάστε περισσότερα= s 2m 1 + s 1 m 2 s 1 s 2
ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 203 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ Οι σηµειώσεις αυτές είναι ϐασισµένες στις διαλέξεις του µαθήµατος. Καταγράϕηκαν αρχικά ηλεκτρονικά από τη κ.
Διαβάστε περισσότεραΑλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 2 Οκτωβρίου 2012 Ασκηση 1.
Διαβάστε περισσότεραg (v + W ) = gv + W gv = 0.
Ασκήσεις #1 Σε ότι ακολουθεί, G είναι πεπερασμένη ομάδα και V είναι C-διανυσματικός χώρος πεπερασμένης διάστασης. 1. Δείξτε ότι η απεικόνιση G G G που ορίζεται θέτοντας g x = gxg 1 για g, x G αποτελεί
Διαβάστε περισσότεραΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 24 Μαρτίου 2017
Διαβάστε περισσότερα1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x]
σκήσεις Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμών και ιδιοδιανυσμάτων, υπολογισμός τους Ιδιόχωροι, διάσταση ιδιόχωρου, εύρεση βάσης ιδιόχωρου Σε διακεκριμένες ιδιοτιμές αντιστοιχούν
Διαβάστε περισσότεραΒασική Άλγεβρα. Ασκήσεις (εκδοχή )
Βασική Άλγεβρα Ασκήσεις 05-6 (εκδοχή 8--05) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόμενα σελίδα Ασκήσεις Διαιρετότητα στους ακέραιους, ισοτιμίες Ασκήσεις Ακέραιοι odulo, Θεώρημα του Euler
Διαβάστε περισσότεραΚεφάλαιο 7 Βάσεις και ιάσταση
Κεφάλαιο 7: Βάσεις και ιάσταση Σελίδα από 9 Κεφάλαιο 7 Βάσεις και ιάσταση n Στο Κεφάλαιο 5 είδαµε την έννοια της βάσης στο και στο Κεφάλαιο 6 µελετήσαµε διανυσµατικούς χώρους. Στο παρόν κεφάλαιο θα ασχοληθούµε
Διαβάστε περισσότερα1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d
Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις6: Βάση και Διάσταση Βασικά σημεία Βάση διανυσματικού χώρου (ορισμός, παραδείγματα, μοναδικότητα συντελεστών) Θεώρημα (ύπαρξη, πρώτη μορφή) Έστω V K μη μηδενικός με K πεπερασμένο
Διαβάστε περισσότεραΘεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )
Θεωρία Galos Πρόχειρες σημειώσεις 0- (εκδοχή -7-0) Περιεχόμενα 0 Υπενθυμίσεις και συμπληρώματα Ανάγωγα πολυώνυμα Ανάγωγα πολυώνυμα και σώματα Χαρακτηριστική σώματος Απλές ρίζες πολυωνύμων Ασκήσεις 0 Επεκτάσεις
Διαβάστε περισσότεραΑλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 16 & Τετάρτη 21 Νοεµβρίου
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων
ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς
Διαβάστε περισσότεραKΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...
KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός
Διαβάστε περισσότεραΑσκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3
Ασκήσεις 8 Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμων και ιδιοδιανυσμάτων, υπολογισμός τους Σε διακεκριμένες ιδιοτιμές αντιστοιχούν γραμμικά ανεξάρτητα ιδιοδιανύσματα Αν ΑΧ=λΧ,
Διαβάστε περισσότεραΠρώτα και Μεγιστοτικά Ιδεώδη
Κεφάλαιο 10 Πρώτα και Μεγιστοτικά Ιδεώδη Στο παρόν Κεφάλαιο ϑα µελετήσουµε ειδικούς τύπους ιδεωδών σε έναν δακτύλιο και την επίδραση που έχουν οι επιπλέον ιδιότητες τις οποίες ικανοποιούν τα ιδεώδη αυτά
Διαβάστε περισσότεραΑλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114
Διαβάστε περισσότεραΑσκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.
Ασκήσεις 0 Ασκήσεις Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα o H -στήλη του P P είναι E αν και μόνο αν η -στήλη του P είναι ιδιοδιάνυσμα του που αντιστοιχεί στην ιδιοτιμή
Διαβάστε περισσότεραΘεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις
202 Μέρος 4. Θεωρητικά Θέµατα Ι. Θεωρία Οµάδων 1. Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 1.1. Σχέσεις ισοδυναµίας. Εστω X ένα µη-κενό σύνολο. Ορισµός 1.1. Μια σχέση ισοδυναµίας επί του X είναι ένα
Διαβάστε περισσότεραΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ
ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ Οι σηµειώσεις αυτές είναι ϐασισµένες στις διαλέξεις του µαθήµατος. Καταγράϕηκαν αρχικά ηλεκτρονικά από τη
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson
ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Στο κεφάλαιο αυτό μελετάμε δακτυλίους του Art χρησιμοποιώντας το ριζικό του Jacobso. Ως εφαρμογή αποδεικνύουμε ότι κάθε δακτύλιος του Art είναι και της Noether. 4.1. Δακτύλιοι
Διαβάστε περισσότεραΚεφάλαιο 9. Οµάδες συγκεκριµένης τάξης. 9.1 Οµάδες τάξης pq. Z p 2 και Z p Z p.
Κεφάλαιο 9 Οµάδες συγκεκριµένης τάξης Στο κεφάλαιο αυτό ϑα εφαρµόσουµε τη ϑεωρία που αναπτύχθηκε στα προηγούµενα κεφάλαια για να περιγράψουµε οµάδες τάξης pq, όπου p, q είναι διακεκριµένοι πρώτοι αριθµοί,
Διαβάστε περισσότεραΑλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114
Διαβάστε περισσότεραΜάθηµα Θεωρίας Αριθµών Ε.Μ.Ε
Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε 1. Να αποδειχθεί ότι κάθε ϑετικός ακέραιος αριθµός n 6, µπορεί να γραφεί στη µορφή όπου οι a, b, c είναι ϑετικοί ακέραιοι. n = a + b c,. Να αποδειχθεί ότι για κάθε ακέραιο
Διαβάστε περισσότεραΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 31 Μαρτίου 2017 Υπενθυµίζουµε
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Κανονική Μορφή Jordan - II Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 52 9 Η Κανονική Μορφή Jordan - II
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 202 Μέρος 4. Θεωρητικά
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Τάξη στοιχείων και Οµάδων - Κυκλικές (Υπο-)Οµάδες Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 222 3.1. ύναµη
Διαβάστε περισσότεραf x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j
Το θεώρηµα Tor στις πολλές µεταβλητές Ο σκοπός αυτής της παραγράφου είναι η απόδειξη ενός θεωρήµατος τύπου Tor για συναρτήσεις πολλών µεταβλητών Το θεώρηµα για µια µεταβλητή θα είναι ειδική περίπτωση του
Διαβάστε περισσότεραΓραμμική Άλγεβρα II. Ασκήσεις με Υποδείξεις - Απαντήσεις. Περιεχόμενα
Γραμμική Άλγεβρα II Ασκήσεις με Υποδείξεις - Απαντήσεις ΜΜ Περιεχόμενα Ασκήσεις0: Όμοιοι Πίνακες Ασκήσεις: Πολυώνυμα 6 Ασκήσεις: Ιδιοτιμές και Ιδιοδιανύσματα Ασκήσεις: Διαγωνισιμότητα Ασκήσεις4: Τριγωνισιμότητα
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι
Διαβάστε περισσότεραΠαράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z).
Παράρτηµα Α 11.1 Εισαγωγή Οπως έχει αναφερθεί ήδη προοδευτικά στο δεύτερο µέρος του παρόντος συγγράµµατος χρησιµοποιούνται ϐασικές έννοιες άλγεβρας. Θεωρούµε ότι οι έννοιες αυτές είναι ήδη γνωστές από
Διαβάστε περισσότεραΓραμμική Άλγεβρα II Εαρινό εξάμηνο
Γραμμική Άλγεβρα II Εαρινό εξάμηνο 0-0 Υποδείξεις/Απαντήσεις των Ασκήσεων Περιεχόμενα Ασκήσεις Πολυώνυμα Ασκήσεις Ιδιοτιμές-Ιδιοδιανύσματα 6 Ασκήσεις Διαγωνίσιμες γραμμικές απεικονίσεις 9 Ασκήσεις4 Τριγωνίσιμες
Διαβάστε περισσότεραa = a a Z n. a = a mod n.
Αλγεβρα Ι Χειμερινο Εξαμηνο 2017 18 Διάλεξη 1 Ενότητα 1. Πράξεις: Πράξεις στο σύνολο S, ο πίνακας της πράξης, αντιμεταθετικές πράξεις. Προσεταιριστικές πράξεις, το στοιχείο a 1 a 2 a n. Η πράξη «σύνθεση
Διαβάστε περισσότεραΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία
ΜΑΘΗΜΑ 5.. ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ Εφαπτοµένη ευθεία Παράγωγος βασικών συναρτήσεων ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Αθροίσµατος γινοµένου - πηλίκου Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Εξίσωση
Διαβάστε περισσότεραΚεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα
Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα Ορισµοί Ιδιοτιµές και Ιδιοδιανύσµατα Έστω Α ένας πίνακας µε πραγµατικά στοιχεία Ο πραγµατικός ή µιγαδικός αριθµός λ καλείται ιδιοτιµή του πίνακα Α εάν υπάρχει µη
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 7 Οκτωβρίου 016 Ασκηση 1. Βρείτε όλους
Διαβάστε περισσότεραΓραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10
Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 0 Επαναληπτικες Ασκησεις ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθοι Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laiihtml
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 23 Μαρτίου 2018
Διαβάστε περισσότεραΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi06/asi06.html Πέµπτη Απριλίου 06 Ασκηση. Θεωρούµε τα
Διαβάστε περισσότεραΣυνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )
Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής
Διαβάστε περισσότεραΟµάδες Πηλίκα και τα Θεωρήµατα Ισοµορφισµών
Κεφάλαιο 6 Οµάδες Πηλίκα και τα Θεωρήµατα Ισοµορφισµών Στο παρόν Κεφάλαιο ϑα µελετήσουµε τις ϐασικές ιδιότητες της οµάδας πηλίκο µιας οµάδας ως προς µια κανονική υποµάδα, ϑα αποδείξουµε τα ϐασικά ϑεωρήµατα
Διαβάστε περισσότεραΚεφάλαιο 1. Πρότυπα. Στο κεφάλαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύλιο που θα παίξει σηµαντικό ρόλο στα επόµενα κεφάλαια.
Κεφάαιο Πρότυπα Στο κεφάαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύιο που θα παίξει σηµαντικό ρόο στα επόµενα κεφάαια Στις σηµειώσεις αυτές όοι οι δακτύιοι περιέχουν µοναδιαίο στοιχείο
Διαβάστε περισσότεραΑλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση 1.
Διαβάστε περισσότερα,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί.
Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις7: Γραμμικές Απεικονίσεις Βασικά σημεία Ορισμός και παραδείγματα γραμμικών απεικονίσεων Σύνθεση γραμμικών απεικονίσεων, ισομορφισμοί Κάθε γραμμική απεικόνιση f : V W, όπου
Διαβάστε περισσότεραΔώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας
Δώδεκα Αποδείξεις του Θεμελιώδους Θεωρήματος της Άλγεβρας Mία εκδοχή της αρχικής απόδειξης του Gauss f ( z) = T ( z) + iu ( z) T = r cos φ + Ar 1 cos(( 1) φ + α) + + L cosλ U = r si φ + Ar 1 si(( 1) φ
Διαβάστε περισσότεραΚεφάλαιο 8. Το γενικό πολυώνυµο και το αντίστροφο πρόβληµα. 8.1 Το γενικό πολυώνυµο
Κεφάλαιο 8 Το γενικό πολυώνυµο και το αντίστροφο πρόβληµα Σε αυτό το κεφάλαιο αρχικά αποδεικνύουµε ότι υπάρχει επέκταση σωµάτων µε οµάδα Galois την S n. Για το σκοπό αυτό εξετάζουµε τα συµµετρικά πολυώνυµα.
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση
Διαβάστε περισσότεραΔακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i)
6 Δακτύλιοι και Πρότυπα 016-17 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Περιοχές κυρίων ιδεωδών. 1. Θεωρούμε το δακτύλιο [ i]. a. Βρείτε ένα d [ i] με ( a, b) d, όπου a (4 i) (1 i), b 16 1 i.
Διαβάστε περισσότεραΕνότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών
Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Ορίζουσα Gram και οι Εφαρµογές της Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 65 11 Η Ορίζουσα Gram και
Διαβάστε περισσότεραΕισαγωγή στην Τοπολογία
Ενότητα: Τοπικές έννοιες Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 31 Μαρτίου 2016 Υπενθυµίζουµε
Διαβάστε περισσότεραf(n) = a n f(n + m) = a n+m = a n a m = f(n)f(m) f(a n ) = b n f : G 1 G 2, f(a n a m ) = f(a n+m ) = b n+m = b n b m = f(a n )f(a m )
302 14. Ταξινόµηση Κυκλικών Οµάδων και Οµάδες Αυτοµορφισµών Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες ως προς τη σχέση ισοµορφίας. Ε- πίσης ϑα αποδείξουµε ένα σηµαντικό κριτήριο ισοµορφίας
Διαβάστε περισσότεραΑσκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Το σύνολο των πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α)
Διαβάστε περισσότεραΕισαγωγή. Herman Weyl
Εισαγωγή Όσο σηµαντικές και αν είναι οι γενικές έννοιες και προτάσεις που απορρέουν από το σύγχρονο πάθος για αξιωµατική θεµελίωση και γενίκευση, είµαι όµως πεπεισµένος ότι τα ειδικά προβλήµατα µε όλη
Διαβάστε περισσότεραΚεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)
Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων
Διαβάστε περισσότεραΠαράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( )
Παράρτηµα Β Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης Β1 Χώροι Baach Βάσεις Schauder Στο εξής συµβολίζουµε µε Z,, γραµµικούς (διανυσµατικούς) χώρους πάνω απ το ίδιο σώµα K = ή και γράφουµε απλά
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii8/laii8html Παρασκευή 4 Ιουνίου
Διαβάστε περισσότεραΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 26 Μαίου 2017 Ασκηση 1.
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ. Εισαγωγικές εξετάσεις για το Μεταπτυχιακό Πρόγραμμα - Μέρος 2ο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Εισαγωγικές εξετάσεις για το Μεταπτυχιακό Πρόγραμμα - Μέρος 2ο ΠΡΟΣΟΧΗ: Τα θέµατα που ακολουθούν καλύπτουν ένα ευρύ φάσµα διαφόρων περιοχών των Μαθηµατικών. Αυτό
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ταυτόχρονη ιαγωνοποίηση Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 31 6. Ταυτόχρονη ιαγωνοποίηση 6.1. Ταυτόχρονη
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 236 5. Ταξινόµηση
Διαβάστε περισσότεραG = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n
236 5. Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες, τις υποοµάδες τους, και τους γεννήτο- ϱές τους. Οι ταξινοµήσεις αυτές ϑα ϐασιστούν στην
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai018/lai018html Παρασκευή 3 Νοεµβρίου 018 Ασκηση
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii18/laii18html Παρασκευή 9 Μαρτίου 18 Ασκηση 1 Θεωρούµε
Διαβάστε περισσότεραΑριθµοί Liouville. Ιωάννης Μπαρµπαγιάννης
Αριθµοί Liouville Ιωάννης Μπαρµπαγιάννης Εισαγωγή Η ϑεωρία των υπερβατικών αριθµών έχει ως αφετηρία µια ϕηµισµένη εργασία του Liouville, το 844, ο οποίος περιέγραψε µια κλάση πραγµατικών αριθµών οι οποίοι
Διαβάστε περισσότερα