A;B"C"D "E"F"GH"I"J"K"L M"N"G 5 OQP"R"S "K""T"U"!"VXW"Y"Z"[""8"\"]_^"` S"a"b"c"d"_f GXg_h"i"j"k_U" "_8
|
|
- Χρυσάνθη Κορωναίος
- 6 χρόνια πριν
- Προβολές:
Transcript
1
2 A;B"C"D "E"F"GH"I"J"K"L M"N"G 5 OQP"R"S "K""T"U"!"VXW"Y"Z"[""8"\"]_^"` S"a"b"c"d"_f GXg_h"i"j"k_U" "_8 S T"l"m"n"o"m"V $"[""8,9;:"<""> P"R"S"p"q 9r:"<_"_T"U_!">_s"GXt_u,9r:"<_"^_`"m" f >_n"v_m"w_"k k"u S 9;:"<"""y""z">"V "!"g"{"z"'""k" "}"~"X " "X "ƒ" " " " "ˆ" "Š" "$"Œ" " "Ž"m f"s "K" " "!"V
3 ª ½ ¾ À ª Ç È š œž Ÿ «²± ³µ ¹ º¼» Á ÃÅÄÆ
4 Ê É Ë ËÌËÍËÎÐÏËÑËÒËÓË ËÔËÕËÖË ËØËÙËÚËÛËÜËÝË ËÞàßËáËâËÜËãËäËÒËåçæéè ê ê êëêìêíêîêïêðêñêò ó Üêô õ è ö ïê êø Í Î Üêù ä úêûµü ýêèÿþ êô Õ Ö Ø Ù Ú Û ñ ܵü Ü Þ Ý ß ôàõ ÜêÜêè ¹ ã è ß êø! Üê ݵæ ó õ "# è$ % ñ& ø '! Ü * Þ ßËË,+,Ë,-,.,+,çæéè/,,,.,$,%Ë ËÔËÕËÖË,,,ËîËÞà Ë ËíËî Ü,4Ëã,5,6ËÌ,7,8,9,:,;,<,,,7,>çüéßËÜË ËÔËÕËÖËè?,@Ë ËÔËÕËÖ,A,B,C,D E ¹ ã,@ë Ë,F,GËè?,@,F,G,H,I,J ¹ Ë,K,LËèM,N,?,@Ë Ë,F,GËÜËá,O,J ¹ ê MK Þ ê KLPQL R ± < ¹ S Q T4 ã Q ¹ U V K LêèÿþK L øw X Ü89:; æ ÜêÕêÖ! U V êèy7> Z ÙêÜ [ Ö Ì\ ] ÜêÞY^_ <Ỳa b,cëì,m,këüë,dë Ë,, ËÞ4,,Q ¹ /,f,,k,lëèàþ,k,lëø,w X Ü,8,9,:,;!g]h/fêÞA iêë `ÿ ê jk /f á OêÌ M KêÜ dê l m Þ4 S Q ¹ KnKLêè þklêøw X Ü 89 :;µæ Ü ÕêÖ op Kn êþqknà ê ë Ì M K Ü d # r Þ s cë,tëë Ë Ë,Q,u,v,dËÝ,%ËÜ,w,Ë Ë Ë Ë zy,oëã,{,,b,^,_,<,`a bê `Aiêëêìê ê j kc~}yy O è Ì\ Üêú û ê Ë êë yêþƒhêá?,,y,oëüë, Ëèà,%,R ±,, ã,ˆ, Ë,^,_,<,Š,ËíËî,` zˆ, Ë,^z_<,Š í î ` Œ Ž ` I ^ < l O ì < l O ` Ô b ì Ø Ù ` a b ` A i ë ì j k c l Ü d A ` dà ë ` d l m è ¹ š,,,œ,q, y,oë,žëã,5,ÿëóë Ë,,,, V \ËûËÜ,, ËÔ,`, ËÔË /,fëô,l, ËÜË Ë Ë Ë ËÞàßË, Ëá,OçæéèHËáË Ë,, Ëì,ËË ËíËîËÜ,!,f,F èr ±,,,%,ª,>,«, Ë,,,Ë ËÜË,,«,,,*,` ËîËøË,,,<,:,;Ë,,,:,;ËÜ,,* ± Š,, Ëܲ± ³Ë,,,*Ëèµ,,5,,%ËÜ,,,¹ º» ¼ * Þ Ë Ë Ë Ë Ë Ë Ë, àö,½,¾, ËÌ,À,H s c,¾,áâäãëã,å, ÇÆ,È,Ž,ÉzÊ˾ Ëè,BÍÌÎ^_,<,Ï Ð `Ñ,Ò `ÓÌÎa,,bË,Ï,`ÓÌÎA,iËëËìË Ë,j,k,ÏËè ± ŠËì,,Ô,ÕËÜ,,;,y,¾,OËÞ ¹ ñ,l,öëã,a,¾,,¾ë ËèØËÖ,½,¾,,Ù,Ú,ÛËñËì,œ ³,¾,,Ô,ÕËÜÝÜßÞ,¾,àË,¾, Ëî,á,;,,â ØËÖ,½,¾, çüéý,,ãëñ,¾,á,ä. å Ë,u,vË Ë,¾Ë,æ,ç,è,é,.,ê,¼,ë V ÜÂ Ë Ë Ë,Q,dËÝË Ë Ë Ë z¾ë Ë d û ì Ò å y O ¾ Æ ÈÂøÃ Å, É Êz¾ Ëè, ù,ú ûëñ,ü,õ,ý ßËó èßí î ñ Ƶü Q ¾ Ü ¹ ï èßð ñ Ì òó ñ ô õ ö Æ ã Íø
5 Ð iv Ë,¾Ë,l,,_,þËÜË,ÿËÞØËÖ½,¾, çæ,< Ëñ,w,Ë Ë Ë Ë Ëy,OËÜ Ö j è ð ñ b Ü ð è d Û ` í î ` ` Üêè*êðêÝê ` Ö j ê R Üj ã èê ÜjêãêÞ êúê êë[êö89êèqhêá 8 õ ê lm ßê ê à Ü!"êí îêþ#ê ê 8ÿ ü ýêì ;y F è ¹ %êõ Ýê ô pêü d êè%$&ê êíêîê ê ê MKêÜ«'lmêÞqòÜÞ *,+ #r-. ê `" ê êü/ êíêî è- s %êü 4 è ö «56 ã{ «èƒ 7 ð ì y O Ü89 Þ dëö,½,¾,,ð ËÌ,T7,pËñ,p,bË Ë,«'Ëì,l,mËèM,NËñËì Ë Ë,l,m Ü 9;:éè7 Ëñ,u,v <,ìë Ë,%,,#,,*ËÜ, èàö,¾, ËÜËÖ,j,Ë 4 ËÜ >? j ã Þ ß¾ êöêì ü ý@ èbac ¹ê Q` ê Qê 4Q œu v ± Š,ËÕËÜ 4,-,.ËÝË,u,v D,Ë,ËÜ,y,7,>ËÜ <,ìëè7ë Ë Ëû,ì, s Ü,u v,r E,¾, ËÜ F,ä üéýëè G,u,v,R ± H I 8,9 <Ëû J K L MËÜ N O E ËÞ Ë Ë Ë à Ë Ë Ë, àö,½,¾, çæß³,¾, Ëß P N,Ô, Ëñ,,;Ëèçæ ; A Ì,p,¾Ë Ë,dËû,ìËÜ,,;Ëè ;ËÌ,7Ë,dçüéý - Q,`ŸËõ ± Š, ËîËÜ B ;êþárs&êñ ;T â à è.uüt êþƒøêö ½ ¾ µæ ; y ¾O R ±V W %F ` Ö j ỲXZ C[ \ ³ ¾ Ü ³ ûµü ý è öw% ]^`_` Û X`%- s abêøw êèyµ î øw < `%c[ d f[ çæéü g, h WËíËî,:,;ËÞ7P N i j,a,b,³ëûçüéýë,¾ WËû,ìËè Z,ž,; JE`%kl:; âêèƒ! ÜNOmž ñinop Q L < èƒê S&q ;` q ; Š T â à ì- Þ ß,dËÖ,½,¾, ËÜ Ëá,Oçæéè7r sëó W,¾ t c,`7r sëó W h W W u S vëñ ó,* w Ëèw, h W,¾ WËìËÍËÎ æ y z,³ { 7} ~ ƒ ˆ Š Œ t Ž 7 Œ š œ ˆ Œ š Ž vƒžy Ÿ w 7 ˆ Ž h ª «7 ± ² ³ µ ޹ 7º»¼½¾ À 7¾ÁÂÃ7 ˆ ÄÅ Æ dfçh ÈÉÊ7 ˆ ŒËÌ 8 Í 8 Î
6 Ñ Ñ Ñ Ñ Ð Ï Ò ÓÕÔ Ö Ö Ö Ö Ö Ø Ö Ò ÙÚÛÜÝ Ö Ö Ö Ö Ö Ö Ö Ö Ø Ö Ò ÞÔÛßà 55 Ö Ö Ö Ö Ö Ö Ø Ö Ò ßàáâãäÛÞÔåæ 96 Ö Ö Ö
7 Ñ Ñ vi Ö Ö Ö Ø Ö çéè Ò êãëà Ö Ö Ö Ö Ø Ö Ò ãëàìíåæ 57 Ö Ö Ö Ö Ö Ö Ö Ö Ø Ö
8 < ý ý î ï ð ñ. ¹õö øùú ûüý þ 6 ÿ òôó + y 6 ¾ µ y y. ûü ûü { > 6, R}; {, y + y < 6}; {, y y y }. ¹ øùú ûüý. ûü 8 + ûü µ y y ûü { 5, Z}. {, 6}; {,,, }; { 4,,,,,,,, 4, 5, 6}.. A {,, }, B {,, 5}, C {, 4, 6}, A B; A B; A B C; 4 A B C; 5 A\B. A B {,,, 5}; A B {, }; A B C {,,, 4, 5, 6}; 4 A B C Ø; 5A\B {}. 4. A { < < 5}, B { > 4}, A B; A B; A\B. A B { > }; A B { 4 < < 5}; A\B { < 4}. "!$# % & ' * 7¹ûü , % & ' * ¹ûü øù +, / % & ' 4 -. B * % & ' ¾ * &¹ûü 4 øùú " :9 ý % & ' * ;$< % & ' ¾ * % & ' * -. % &$# >? * ;$< A øù
9 A BDCDE 4 ;$< % & ' F¾ * A B, ; B A G A B, ; A B, ; 4 A B, ¹ H Iøù J Kú ¾ L ÿ ûüý 5; ; a < ε a M, ε > ; 4 ; 5 + >. [ 5, 5]; [, ]; a ε, a + ε; 4, ] [, + ; 5,, ¹ H Iøùú û 7 N O øù Pý A { + < }; B { < < }. 5, ;,, ¹¾ L G Q œ R ¾ L øùú 5 H Iý S T U, ; [, ]; 5, +. < < 5 < < 5, G ; > 5. ú V W X Y ý òôó. < 5 ;. y 4 ; y ; y lg + ; 4 y a a > ; 5 y arccos ; 6 y + ; 7 y + arctan ; 8 y {, <,, <. S 4 Z, U W X Y D [, ];
10 []\ S Z, U W X Y {, + G D W X Y S + > Z >, U 4 S a > Z a < < a, U 5 S Z { 6 S +,,, { + ; 7 S,, +, 8 W X Y D, ].. }, R ; 4, U D, + ; W X Y W X Y Z ±. U Z, U W X Y D,, D a, a; D [, 4]; W^X^Y. ú 5 $# "V f g _ ` a 7 b c:d f ln, g ln ; f, g sin + cos. ¾ a f ln W X Y ` a W X Y ¾ a. f ú V g h i ý y 4 ; y ; y sin ; 4 y sin cos ; 5 y sin + cos ; 6 y ln + + ; 7 y ; 8 y +. f 4, j D [, D,, ]; R\{}, g ln W X Y k k y 4 h V f, j f 4 4 f, y l g l h V f,
11 4 A BDCDE f sin, j k k k k k k f sin sin sin f, y sin h V 4 f sin cos, j f sin cos sin cos, y sin cos l g l h V 5 f sin + cos, j y sin + cos f h V sin + cos 6 f ln + +, j f ln + + ln f, y ln + + g V 7 f sin + cos f, ln ln + +, j f y g V 8 f +, j y 4. f + f, + + g V Áú V m n i ý y 5 8; y ; y + ln ; 4 y + 8. f,
12 U U U []\ f 5 8. œ, R, <,. 5 f 5 8, f 5 8, f f þ <. k m n o p V f < f, y 5 8 œ f., R, <, f, f, þ f < f, k f f <. y m n o p V f + ln. œ,, +, <, f + ln, f + ln, þ f f + ln ln + ln <. f < f, k y + ln, + O m n o p V 4 f + 8. œ,, +, <, f f >,
13 y ý 6 A BDCDE þ k f > f, y + 8 aç m n q? f, ÿ s 5. y Áú V r i ý + + ; y sin ; y cos. + ÿ s, y ÿ s, sin r V k k sin k œ M >, [M + ]π, t Z y cos, + 6. ú v m n q? V + r V cos [M + ]π cos [M + ]π V v [M + ]π > M, u r y sin ; y sin + sin + sin ; y tan. cos k ÿ s w y k y w y sin, y sin v sin v w y π, sin v π v, U y sin + sin + w y w y sin v v π.. ú V z V ý òôó. y + ; y + ; y ; 4 y + lg + ;, <, 5 y + ln + ; 6 y, 4,, > 4. S y + Z y, U z V y w π. π, sin ; π.
14 { Z f œ []\. 7 S y y + + y, U z V y ; + S y { Z z V y, U 4 S { z V y + lg + Z y, U 5 S { z V y + ln + Z y, U y ; 6 < } y, U z V y, y, <. 4 } y, U z V y, y, 6. > 4 } y, U z V log y, y log, > 6., ; k z V, <, g, 6, log, > 6. ú 5 $# "~ ÿ V ' ^ ü V. S V R ý þ W:ƒ Å R y u, u sin, π 4, π ; y u, u,, ; y ; + V y u, u,,. y sin, y, y ; y, y, y 4 ; y, y, y 4.. Ÿ ú V S, V ü ' ý y ; y a + ; y + ln 5 ; 4 y ; 5 y tan ; 6 y arcsin[lg + ]. y u, u ; y a u, u + ; y u 5, u + ln ; 4 y u, u v, v ; 5 y u, u tan v, v ; 6 y arcsin u, u lg v, v f + +, f. f + + fu u, U f. k + 5. ˆ T f, ϕ sin, f[ϕ], ϕ[f]., u +, y
15 } š S + 8 A BDCDE f[ϕ] sin sin,. Ÿ ú V # òôó, L V ϕ [f] sin..4, ¾ L V ý { y sin ; y, <, +, ; { {, <,, y 4 y uç Ç,, ;, ; 5 y + ln { +,, cos ; 6 y +, <. L V l L V l L V l L V L V l7 L V Ž. y Š y ^ ^Œ " V ^ ^Œ^ ^p ;^Ž Œ +. S y Œ Žú V Œ y ; y + 4; y ; 4 y. 4. a a } ü V! W X Y a } 7¾ ü V 5. W X Y Œ Œ { > }. y lga sin ¾ ü V y y lg sin ü V W X Y D R. a A, & š s øù V 7 y,, j A y, U y A. þ s + y + A,! W X Y
16 { µ { Z Z ý œ ž 6. r Ÿ W V W X Y W X Y $ à D, r. V π h, S [ r []\ Œ h "& ].5 9 h π r h 4 øù! à V 7 h, Å.,, 4 } òôó.5 Ø ª «Å V 7 R Z T Ø ª «& WØ ª «R, 6, 8. R Å a, b 4, c.. ± R a + b + c, S ˆ T ² Å k c, 6 4a + b + c, 8 6a + 4b + c, R + 4. Q œ ³ P V 4 V 4 Q QP a + b c P, T P } Q ; P } Q 5; P 4 } Q 9, P V 4 S ˆ T a, k b 5, c, a + bc, 5 a + bc, 9 a + bc 4, P Q P. ² Å Q œ ³
17 { Z Ü } ± Ü ± d Î Ý A B CDE W ³. t, ¹ ³ ½ ¾ ½ ¾ À º Å s "» ¼ 7t } 7 t } À 9 & Ø ª «Ø Å V 4 ¹ ø Á V Œ Ø y, Å, P. 6 º Ø ª «y 4. ˆÂTà Ãñ {, 7, , 7 <. ³Ã P } Á V Œ Î È Ä Æ½ Ê Ë É ÅÄÃÆ ½ œãç Ì Á Î È Œ 7 { Í! Î Ï X Î È Ô R, j R P P. Å s W Ð Ñ o p "Ò Å QP øù ³ P V Ž Î Ó ~ Å Ö þ I V 4 7 Á Œ Å Ù?:d ŽÎ Ø y 4t + 44, Å ª Ú Û "ß W ' 6. Ü Ý Þ º Ù? ª Ú Û à Þ á â Ý ã u ä å ; å éƒ Ù?:d Þ æ Ü á ç è G Ù? à ê Z 5 º è ë à Þ ª Ú Û à Þ Ü á â Ý ã S ˆ T ^ Å Ô º ' "Õ Ü 5. É >? à Þ 5 Ü , ª Ú Û á â Ý ã
18 { á d á Ì } Å f d ' []\ ' ª «ª « , k å é 5 5. á à Þ Ü á â ê Z 5 º è ë S ˆ T Z k 75. à ê Z 5 º è ë "ñ 7. ;^á^ìîí^ï^ð^ á^ Î ò á^ Î Ì Æ ª Æ º ìóí ñ k ø ù ñ ² Å áî ª Æ , à Þ ª Ì Æ º +. V 8. ± ² V F û ³ 7 ú a ü ý $# Á ² $þ ² $þ ¾ } S P Ï 56 P SP 8 7, ³ ÿ þ "u P, } ² Å ñ ^ô 75 Ü º áî ª Æ ìîí º %^õ^ ^Î k^ö " Ì^ø^ù ª Æ DP 56 P þ Å N + Î Ï X b c:d + 6. SP P. P, { Z P 8. k F û ³ 8. } QP 7. ²
19 A B CDE òôó. ú ûü J K ÿ < ÿ $ A 4 + y 9 ÿ {±, ±, ±, ±4, }; {, };. ¹ H Iøùú û } {, y 4 + y 9 <. { < < 4}; { }.,, 5;, ] [, +. {. ˆ T +,, f f, f, f, f, f., >, f, f, f +, f, f Áú $# V _ a V ý y, y ; y, y sinarcsin, y, y. a V ¾ a V ¾ a V ú V W X Y 5. + y ; y arcsin +. + S { Z k W X Y <. [, ; S { + Z k W X Y [. ]., 6. ú V, h V, g V y arctansin ; y sin ; y + sin ; 4 y +., l g l h V d
20 ý ý f arctansin, j []\ k f arctan[sin ] arctan sin arctansin f, y arctansin g V f sin, j f [ ] sin sin sin k k k f, y sin h V f + sin, j f + sin + sin + sin, y + sin l g l h V 4 f + y + 7. ú V #, j f + +, l g l h V, v V d Ÿ! + + v y + cos π; y sin π + cos π; y sin ; 4 y sin. V v V v T π; T ; 8. Ÿ ú V ü ¾ y sin[ln + ]; y tan. V ¾ v V 4 v T ;
21 Ž 4 A B CDE y sin u, u ln v, v + ; y u, u v, v tan w, w. 9. V f W X Y [, ], & f ; f a + f + a a >. S k ú V W X Y S, { Z, W X Y [, ]; { a, + a a >, { Z < a } W X Y. f, g V Œ,, >, g[f],,, < ; a a, < a,, >,,,, <,. f n f{f[ f]}, f }{{} f[f] f{f[f]} n Ø, a >, [a, a]; a > } W X Y Ø. g[f] f[g], Á + ;, >, f[g],,, <. +, f n. +, +, f n.. + n
22 & # } ÿ ý ÿ ê { I I } â []\ 5. f {,,, >, f[f]. S f T f[f]. ª Ú Û. Ü ³ ' 9 º 6 º ± W W Ê Å ½ ¾ s O Ù W Ê Ü Ü ³ ÿ ³ Ü 75 º Ü ³ øù W Ê Å V P øù ' W Ê Å è ë V W ± Ê Ù?:d Ü Ý ê è ë 9,, P 9., < < 6, 75, 6.,, L P 6., < < 6, 5, 6. L. º 4. Õ W ³ 5 º w ê Z º ÂÃ Ž 5 º ê^è^ë! " I I V 4 W d + Ù?:d è ë } è ë y º Å Ê w ÿ j Ý I Ù^? S y Î 9 º w è ë 648 º! I 4 B ú V W X Y ý. y lg lg ; y arcsin + 7 lg. { S lg >, >, Z < <, W X Y,.
23 { { Z 6 A B CDE, 7 S, <,, >,,,, ]. {.,, f ϕ ln, W X Y fϕ, <, W X Y f [ϕ] f [ϕ] W X Y { ln,, ln, < <,, +. { ln,,, < <.. f Ç V fa fb a b, f m, f. f A a b, S a + b f a + b A a + b a m, T b m, Z A 4m k a b, f 4m a b. a b 4. f + +4, f. f u, Z a + b fu u 4 u u 4 u +, É f 4 +. k f f + ' +, $&% ý f + a +a + f + a + f a +a + f + a + f a ffa. +a+, f a a + +a+ + a + a+. a+
24 { Z []\ 7 a + a + + a+ + +a+ a + a a + a a + a a + a+ ffa. 6. f +, fϕ, ϕ. S f[ϕ] ϕ + Ý T ϕ. U ϕ ln,,, ú V z V ý y ;, <, y,,, >. S y T y y, y + y. k z V y +. < } z V y, y, < ; } y, z V y, 8; > } z V y, y log, > 9. k z V f, <, g, 8, log, > 9.
25 { Z œ ý * 8 A B 8. f J K 4 ý af + bf S ˆ T + * Z f af + bf, af + bf, f f f + f [ a b a b a + b + a + b a b a b. Á^V 9. y F a + a > a. f F a +, j f F a + F a b, & f ø, +, ^g^h^i "! # a F a + F F a + f, k y F a + g V. + œ, Ï a, b a < b t fb fb +, $&% s f ', ] + + a a F h V J K, f fa fa + Š V T b a v f[ + b a] f[b + + b a] f[b + b a]
26 & þ œ ³ â # ý ¹ ã } # I ã t Z ¹ S Z Í ý d []\ 9 fa f[a + a ] f[a a ] f, V k s f T b a v. W X f l, l l >, g V f $&% m n o p l, j m n o p f, l.- ',, l, <,, l, >. S m n o p f l, U f > f, / þ f > f, m n o p k f < f, f, l -. f ln, $&% f + fy fy; f fy f ' y. f f + fy ln + ln y ln y fy. f fy ln ln y ln y f. y. ª Û Û ³ R Í Ø yº t 45 º ³ R» Ø tí V 4 ³ ý 4 R Í Ø y t Í Ø y ' : Å ½ ¾ 5 } ; &? >? Ù? 7 8 >? 7 8 â y 45. º t # óª Z. º # < ½ ¾ ª Ž7 > Æ ª % :d Ù? } â ê è º Ï %,
27 { { # # ã A B CDE Z k >? 8, ê è º Z 8, + 5. %, 8 } â ê è º
28 ô î ï ACBCDCECF ' N k. G H ú { n } òôó. I J K " L M 7» ~ L M R n n + ; n n sin n ; n cos n ; 4 n n. n n n n sin n ; n cos n n ; 4 ¾ +. ¹ L M W X $&% n + ; ú L M ý n n ; n n n ' n + n œ ε >, à t ; 4 n ¾ L n n < ε n < ε, É < n > ε. N n œ, n Ï n. < ε <, à t n + n ; n +. n [ ] ε n n < ε. ¾ L n + n < ε +, n > N }
29 ô ô ô V à œ A BPO.Q.R.S.T ' N n > N } k ' N k ' N k n + n n + n. œ ε >, à t n < ε, É n > ε ε ¾ L n + n < ε. n + n < ε n < ε, É n > < [ ε. N ε n + n 4 œ ε >, à t n + n n n > n + n. $&% '. ¾ L n + n < ε. < [ ε. N ε ] +, n > N } n + n n nn + n + < n < [ ] ε. N +, n > N } ε n + n < ε. ] +, < ε. U V n à W Ô n i S ˆ T ε >, + n. n y N, n > N } É n < ε. - œ ε >, + n < ε, y N, n > N } k n. n n < ε.
30 U œ S œ U i S ˆ T ε >, + []\ y. N, n > N } k n. n 4. '6 y n T n k ε >, + { n } r œ { n } ór T y ny n. n ε >, + n n n < ε. n y n, ¹ L M W X $&% ny n. n œ6, Ï y6 ó M >, n, n M. S y N, n > N } N, n > N } y n < ε M. n y n n y n n y n < M òôó. ε M ε. ú V. G H W :ƒ Å I J K ú ^_ L M " L M "~ L M ý 6. ; cos ; arctan ; 4 + sin ; 5 ; 6 ¾ +. ¹ W X $&% ¾ + ú L M ý + ; + ' sin ; 4 œ ε >, à t ¾ L. π ; 4 ¾ + ; +. < ε 5 ¾ +
31 ô ô ô + 4 A BPO.Q.R.S.T ' N < ε <. δ ε, < < δ } k ' N k ' N k ' N < k. œ < ε <, à t + < δ ε. ¾ L < ε < > log ε. X log ε, < X ε.. œ ε >, à t > ¾ L < ε. X ε, sin. 4 œ ε >, à t ¾ L > X } sin < ε > X } sin < ε δ ε, < + < δ } < ε. + + < ε +. { sin, <, L M _ :d b c:d X,. V f
32 U U S þ S þ + + j d d k []\. 5 ÿ s f + f +, f sin. X 4. f L M _ + þ L M ¾ f f. +, ϕ f + +, } Y Z:[ L M 7 \ f + f f., %] k ϕ } % ý f. ϕ + + ϕ L M ¾ ^ + 5. f ` V + ϕ ϕ. +,, f A, _ z _ f >, A >? :? _ :d z _ f + f {,,,, f. f >, A.
33 œ É < ` + V à ƒ + j + ñ 6 A BPO.Q.R.S.T z _ V f 4, j f 4 5 <. 5 V ` f, L M ¾ z _, δ >, t Z k œ k f + J K¾ L 4 f V f + < < δ, Ï, f A f A < ε. ε >, δ >, t Z < < δ } f A. f A < ε. + 4 >.. S 4 T } œ f A, ε > a L M W X & ý"v L M 6. $ U V f } Y L M [ L M 5 `"L ' i œ ε >, δ >, < < δ } à W Ô f A < ε. ε >, < O ö δ >, < < + δ δ < < } f A < ε. f A + U i œ ε >, δ min{δ, δ }, < < δ }. n ú L M ý n + n n+ + n+ ; } f A. { δ >, < < + δ f A < ε, δ >, δ < < } f A < ε. f A < ε, É f A. òôó.
34 []\ n n + n + + n n n. 7 n n + n + + n n ; [ n + ] + + ; nn + 4 n n + n ; n 5 n n ; 6 n n n + n n + n n+ + n+ n n + nn n n n n n. ; [ n [ n n ; 4 n n n n ; n + ] + + nn ] n n + [ ] n + n n + n n n + n n + + n n + + n n n + + n ; 5 n n n n n n + n
35 8 A BPO.Q.R.S.T n ; n + n 6 n + + [. n n n n + ú V L M ý n n + ; + + ; 5 + ; ; + + ; + + ] ; ; + + ; ; ; ; ;
36 b + + []\ ; f k ; { + a, <, +, 5 X L M 5. M a. f 4. + f + +, f + a a, L M X ú V L M ý cos ; ÿ s arcsin + ; + cos cos. ln + ln. S a. ln + ; , arcsin u π u 6, arcsin + π f f + f, f f.
37 f { d œ d A BPO.Q.R.S.T < L M _ ª d Z A. É 6. ^ f + f ; c % ý { n y n } 4 A + A + A, f, f. _ ª d d { n } { n } f f A, ª d { n } {y n } f ḡ? F {y n } f :? { n ± y n } :? Ç _ W u r { n } ª d þ, {y n }, Ï " _ { n ± y n } { n y n } n ny n? { n ± y n } f ª d ª d ]h c ª d { n + y n } { n } y n n + y n n, y n ˆ T i j k { n + y n } aç f { n y n } f V ªd { n y n } ` { n } n, {y n} n, j n n, {y n} " n y n n n n. { n y n } f { n } n, {y n} n, j n n, {y n} f ª d n n y n n n n. ny n n n V ` { n } n, {y n } { n } n. n + y n n f. n y n ª d. ª d ¾ n y n n n W. n n f : r n 4 ¾ W n n, n n, y n n, n y n, ny n. n "
38 . 5 ú L M ý sin tan 5 ; cos sin []\ òôó.4.4 cot ; ; 4 n n sin n ¾ Lþ k M ; 6 cos cos. sin tan 5 cot 4 cos sin sin 5 sin sin 5 n n sin n 6 cos cos ú L M ý cos sin sin sin 5 sin sin 5 sin sin ; sin 5 sin sin n n ; n sin sin sin. ; 5 tan 5 5 ; sin cos ; sin sin ;. ; ; ; ; 6 ; sin k k M.
39 + A BPO.Q.R.S.T ¹ L M. è n n ; + + [ + k j $&% + ; k k. ; ] ; n + π + n + π + + n ; + nπ A ma{a, a,, a m } a i >, i,,, n, j ; + ' n a n n + a n + + an m A. n n n + nπ n n n n + nπ n n n n + nπ + n + nπ + + n + π + n + π + + n + nπ n + π + n + π + + n + π n n k n + π, n + π + n + π + + n + nπ n + nπ n n + π. œ, Ï i i,,, m, n a in n a n + an + + an n n ma n, U A n a n + an + + an n A n m,
40 b S þ S þ Z n m, j$sl m n W Ç []\.4 4. f n a n n + a n + + an m A. sin a, >, a +, < + f + sin a X + a L M sin a a a, f. f X L M f a +. U a, þ sin, >, f +, <. f k, + k M k. { + k k }k { k, Z k ln. 6. 6, n+ 6 + n, n,,, $&% ª d 7 { n } L M R ' n } n k } i > i,,, n, ú $&% n+ > n > 6. k+ > k, n k + } k þ { n } m n o p b k+ 6 + k+ > 6 + k k+. 6 < 6, 6 + < 6,, n 6 + n < 6. { n } m n o p O r k { n } + L M n l n l 6 + l,
41 { / { ý þ? i T è º d 4 A BPO.Q.R.S.T L M Z l G l. S i >, S ã n 7., n+ L M R ' n+ n + n n + n n+ n n. n n,,, $o% n. n +. n U n+ n, þ { n } m n q? ú r k { n } + l Z l ±. b { n }, k l, l + l. L M { n } ªd n l, n 8. p 7q rst vu W s Í Ø s t } ; ~ { º n. n 7 8 Í è w 6.5% yz è{ } s t ³ W Ù? S ˆ T A 65%, { Z A.65. u u. ^ ; Ž ; Ž òôó.5 % ý u _ u d b c:d ± u _ u :d b c:d ƒ W ˆ f sin, g, } W. W X $&% } } f g sin. f g F f +, g. + } f g F [f + g] u u
42 É ' ' N :< k ' N Š ε >, à t δ min{, ε}. L []\.5 5 < < ε Œ <,É < <, É } Š M >, à t L "ô }. 5 7 < ú Ž L M ý < < δ } < < δ ε. u < > M Œ < { M +. δ min, M + arctan cos u sin sin + ; tan sin sin arctan sin. cos sin 4 sin m sin n > M. ; sin ; ; 4 sin m 6 }, < < } sin n m, n y ; ln sin 5 sin ; 8 tan. arctan t t t tan t sin cos., n < m, m n, n m,, n > m. ;.
43 É V S þ à S þ Z 6 A BPO.Q.R.S.T k 5 sin + 6 ln sin 5 7 tan sin sin + ln[ + ] sin 5 tan cos sin +. sin 8 tan $&% } ' } , } `& sin " Ž k U sin sin u 6. $ % f A +6 f A + α. ' i f A, U sin. }6 u6 u [f A], / α α, tóz } u þ f A α f A, f α + A, α } u U i < L M f A + α, j f α A. ; c f A. 7. } u d _ L ³ u d [f α] A., _ a u
44 b ñ i []\ + +. } a u }. ú Ž V y z :š, <, f,,, > ; k.6 7 L ³ u + L ³ u òôó Á V.6 f, 6 œ I ž f Œ ý + { sin,, f, >. + f. k, U + f, U f X y z. k f, + + f f, + + f sin f, U f X y z. W M. a,b t f k ln, b <,,, sin a, > X y z f + + sin a sin a a + a a, f f ln b X y z "U b b, a b,
45 { S þ þ þ þ ñ U i 8 A BPO.Q.R.S.T Z a, b. %. H Ý ú Ž V Ÿ I ž "j W y z V G y,, ; y, kπ k, ±, ±, ; sin y cos {, ;,, 4 y. 4 5, >, S f U Ý I ž u k S } k y ^ I ž^ Ÿ W X ' V t U ý! þ y z ý + + 6, } f. + +, U } y ñ 6 I ž k sin, f. } kπ sin. nπn ñ 6 I ž sin y cos ñ 6 I ž sin ^Ý I ž^ 4 S f 4 5, œ I ž f Ž V I ž 4. Ÿ :š Ÿ 4 f ; f tan ; I ž þ f ; 4 f sin ; 5 f sin ; 6 f U ý f, U ; { 7 f arctan ; 8 f, <,, ; n 9 f. n + n
46 «ž ± Sª f []\ 4 nπ + π n ² ³ f ž ± ª ª «6 ª «7 ª f + + sin, µ sin ž ± sin œ f.6 9, «f, f ž ± arctan + π, «arctan œ 8 ª f f, «f ¹ y z :º ž ± 9» < ¼ f n» ¼ f,» > ¼ f n f 4 + ž ±, ž ± ž ± arctan π, ž ± sin, f f, + + n + n, n + n n, <,,,, >, n +,
47 Ä Ñ µ Ÿ 4 ½ ¾P.À.Á.Â.à f, + f, µ ÆÈÇ.7. É Ê ³ f ln + Å Ë Ì Í f Å œ ž ± + > Î Ï > Ð <. Ë Ì Í,, +.. É Ê ³ f + f., +. µ + 6 Å Ë Ì Í ]š É f, f + 6 Î Ï,. Ë Ì Í,, f ¼ Ë Ì :«f f. f f ¼ f º Ž Ê ³ Å Ò Ó. É ; π 4 ; 4 5 sin arctan ; 6 ln + + ; cos cos ; π 4 π 4 ; [ ln 4 cos + ] cos ; [ ln cos , + +, sin 5 sinarctan sin + arctan + ; 6 ln sin sin ln. 4. Ô Õ Ž Ê ³ Å Ë Ì Ö : Ø +. ] ; cos ln + cos ln ; ž ±
48 Ä Ä µ µ µ ÙÛÚ.7 4 Ü Ý Ü Ý Ü Ý f f µ ¹ Ë Ì,,, < <, +, ; f + + f f, f f, f +, + + f Å ž ± µ f 5. Þ f ¹ Ë Ì f f, {, ;, >. f, f + f, + { sin + cos, >, + a,, + ß Ë Ì É à ³ a. â ã f sin + cos, + + f, + ß Ë Ì :Ï a. 6. Þ f a + b,, sin b, > f + + sin b f a + b a. f, + ß Ë Ì :Ï a b. f + a a,, + ß Ë Ì :É à ³ a á b Å sin b b + b b,
49 ± ê ù ù û ± Þ µ õ ± ± ± õ õ ± Ï õ Ï ó ± õ é Ï 4 ½ ¾P.À.Á.Â.Ã ÆÈÇ.8 èé ê. ä&åæ ç 4, Ø ë ì [ ] í î Þ f 4, ï f, ß Ë Ì :ð f >, f 4 <, õ ξ, fξ, ö æ ç ñ ± ò ó é ê ô èé, Ø ë ì ξ. èé ê. ä&åæ ç 5 Í, Ø ë ì í î Þ f 5, ï f [, ] ß Ë Ì :ð f <, f 5 >, ñ ± ò ó é ê ô èé ê ô ξ, Ï fξ, ö æ ç, ë ì ê ô. Þ Ê ³ f Í [, a] ß Ë Ì :ð f fa, ä&å [, a] ß ξ, fξ fξ + a. í î F f f + a, ï& ø F [, a] ß Ë Ì :ð F f fa, F a fa fa fa f. F, ï f fa, ú Ü f fa, ξ É F, ï F F a <. ñ ± ò ó é ê ô ξ, a F ξ, ú fξ é ê ô fξ + a. µ fξ fξ + a. ß [, a] ß ξ, fξ fξ + a. 4. Þ Ê ³ f ü Í èé ê [a, b] ß Ë Ì,,, n [a, b] ß Å n :ä&å ý Í a, b Ø ξ, í î ƒ fξ f + f + + f n n f ü Í [, n ] ß Ë Ì :«f [, n ] ß þ ÿ Ï Þ M, m, ú m m + m + + m n f + f + + f n n M + M + + M M. n.
50 õ Þ ± õ ± ð ó õ ó ð ± õ Ï õ Ï ð ð ± ò ó é ê ô 5. ù f [, ] ß Ë Ì fξ ξ. í î Þ ξ [, n ] [a, b], ÙÛÚ.8 4 fξ f + f + + f n. n F f, ø < f <, É ä F é ê ô [, ] ß Ë Ì ξ,, F, F, F f, F f <, ò é ê ô ξ,, F ξ. ö fξ ξ, fξ ξ. 6. è Þ f g [a, b] ß Ë Ì fa < ga, fb > gb, ä a, b Ø ξ, fξ gξ. í î ñ ± ò ó é ê ô F f g. ø F [a, b] ß Ë Ì F a fa ga <, F b fb gb >, ξ a, b, Ï F ξ, ú fξ gξ. µ fξ gξ.
51 ù ï 44 ½ ¾P.À.Á.Â.à ÆÈÇ. A ù + a, ï a. k,, Þ f + +, <, k. { Þ f,,,, 4 Ê ³ f Å ž ± ± a. ª + a a. ú f ¹ Ë Ì ï f Å Ë Ì Í. ±, f Å f Å ž ± Å, «+ a, ú k. ª f + 5, f ¹ Ë Ì µ k., +. µ 4 µ º f µ f Å º µ f + + f k + 5, Ü Ý f, f ¹ Ë Ì œ ž ± + +, ž ± ž ± + a, µ «f 5,,.
52 Å» ¼ µ f. œ ž ± ÙÛÚ 45 á! Å º. A sin ; B + sin ; C tan ; D. ù fa fa + A, ï f ± a. ò " A Ø ; B f A; a C Ë Ì ; D fa A. f A Ë Ì ± sin, ï f Å. B þ ž ± œ C ž ± 4 # $ % & ' Å. A C µ sin B. sin D º ; B + ; ; D., + sin + + sin, ž ± ««B. B. C. µ C. 4 C. µ tan sin + sin,. + sin sin { [ +,. ] },
53 46 ½ ¾P.À.Á.Â.Ã + [ + ], «C.. sin # Ò Ó n n + n n; 5 ln 7 8 a sin ln + 5 sin 6 lna + ln a a * + a sin ; 4 ; 6 t, a > ; a t. n n + n n n sin + sin sin ln n ; sin + sin, sin + sin ; ; + t ; t n + n n n + n + n n + n + n n n + n + n ; 5 5 ; ln 6 t sin 6 t t ; ln sin 6 ln ; 6 ln ;
54 «Þ ó - ê # ô É 7 8 a 4. ø ª lna + ln a a a ÙÛÚ 47 ln + a a t a+t a t t a + b, É à ³ a, b. a + b a a t t t a ; a. + a + + b + + a + b a + b + + { a, b a, 5.. / í î Î Ï a, b 4. ò ä&å n n + n n Þ n n + n n, ï. n + n n n n n n + n + + n n + n, n n + n n n + n, µ n n. 6. Þ, n+ 6 + n n,,, 4 ä&å ³ í î 5 ä ³ / ³ 9 : ; < # 6 7 8» n ¼ Ò Ó n ¼ & ' ö n+ < n, > n +, <, n+ 6 + n+ < 6 + n n+.
55 J # ô ³ Þ & ± I 48 ½ ¾P.À.Á.Â.Ã ö > n N, n+ < n, µ { n } 6 7? 8 µ { n } 6 7? 8 Ø B C µ Ò Ó l 6 + l, # ð A n l, Ø n ³ n, n. Î Ï l Ð Ä l, i > i,,, n, µ 7. É B Ê ³ Å D ± ' ò 4 Ü E õ K GF þgh D Ë Ì Ü Ý Ü Ý y cos y 5 y µ + n n. ; y sin sin ; cos π ; 4 y ; cos π,, 6 y, >. +,,, ; cos, ï IGJ cos Å þ H D ± I J» ¼ f. µ sin sin Ü Ý, sin sin Å þ H D ±» ¼ f. Ü Ý µ µ π cos + þ H D + + ± + Å L M D π sin I J» ¼ ± + +, π f π., ò " π,
56 ó & ì ¼ ± õ & ì ð ÙÛÚ 49 µ cos π, Ü Ý 5 µ cos π Å º D ± Ü Ý 6 µ , Å L M D ± +, Ü Ý y, L M D µ ± y cos π + +, y cos π, f cos π Ü Ý, f ¹ Ë Ì é ê 8. ä&åæ ç Ø ª Å í î Þ f, ï f [, ] ß Ë Ì ñ ± ò ó é ê ô Ø ª Å y, + + f <, f >. ξ,, 9. ø f p + + q + 5,» ¼ º PRQ p N q O f º S PRQ f p + + q + 5 p + q q + p q + + é ê Ï f ξ. ö æ ç p N q O ¼ f
57 w ê # Q & ê s ô & ö Ø Ø ê s Q 5 ½ ¾P.À.Á.Â.û q p + 5 ¼ f ºGG GP ¼ Å º P q ¼ f ¼ Å º S P. UTUVUWUXØUYUZ ù ÝU[U\U]U^ am,.% _U` W Ø Y Z d f % [ t ¼ V W Å Y Z p 5, q ¼ f \U] ba [ t ¼UcUTUV s F a.%t a.t. òuguh ôuk. UUiUj UlUmUn guoup F i j Ý [ ^ 9%, t [ u v w. y Å æ. Ë Ì Å { q m d Q Þ q m s A f % A + 9% 4 c luq m [Ur %GvGz gg{! qgm d 4, Î Ï ù w. Ë Ì Å ï Ø A s. A 9%, Î Ï A s. B. É Ò Ó n n. > ª ³ í î ô k+ a, k + a + a + + a n + b + b + + b + a + a + + a n + b + b + + b n n a <, b <. n a n+ a b n+ n b a ù { n }, k k ε >, k a, k b b a a n+ b n+ k+ a, ä&å k ² ³ K,» k > K ¼ k a < ε. ² ³ K,» k > K ¼ k+ a < ε. n n a.
58 % Ø ÙÛÚ 5 ÿ N ma{k, K + }.» n > N ¼ õ Ü Ý n a. n. Ò Ó + a + b + c + a + b + c a + b + c + c + [ + c a c [ a c + + c c c. n a < ε. c + b c + b c ] ] < a < b < c. a b c + c a b c + c 4. Ò Ó a + b + c a + b + c [ + a + b + c [ a + b + c + a >, b >, c >. ] [ a + b + c + ] a +b +c ] a +b +c a +b +c, a + b + c a + b + c [ a b + c ] + µ lnabc abc. ln a + ln b + ln c lnabc,
59 Ä ô è è õ Ï Ï D 4 5 ½ ¾P.À.Á.Â.Ã 5. ä&å } Ê ³ y cos, + ³ º S í î > M >, [M + ]π, º C ~» + ¼ c Ê cos [M + ]π cos [M + ]π Ü Ý cos, + º C [M + ]π > M, M >, X >, [X + ]π + π > X, õ cos [X + ]π + π cos[x + ]π + π Ü Ý y cos < M. 6. Ô Õ Ê ³ f n» < ¼» ¼» > ¼ µ, + ß º S n + n Å Ë Ì Ö f n f, f n f n, + n n + n n, <,,,, < <,,,, >, n n +. f, «f Å L M D ± f, + + f, f, + +
60 è Ä è è % è ± «f Å L M D D 7. Ô Õ f ± 4 ª ÙÛÚ 5 ± sin, <,,, +, > Å Ë Ì Ö + f , f sin, «f f f, µ f Å þ H D + 8. Þ Ê ³ f Í, + Ë Ì ð Ò Ó ³ f Í, + Ø C í î ô µ Ò Ó f Þ» > X ¼ f a < ε, ô f ± F ä&åê f a. > ε >, X >, «f < a + ε, ÿ ε, X >,» > X ¼ f < a +. f Í, + Ë Ì «f [ X, X] ß Ë Ì ú f [ X, X] ß ØƒC ö M >, [ X, X], f M, ª ÿ M { ma a + }, M ä&å Ø C 9. Þ f A ë ³ f à ³ í î ó f f f f, >, +, f M, µg f, + f f, ð f ¹ Ë Ì f f n,
61 ö 54 ½ ¾P.À.Á.Â.Ã µ Ä f n n f. f ± Ë Ì f à ³ f f n n f. Ü Ý
62 ô «¼ ¼ ô ô ± Q ± ± ± ¼ ô ô ± ó ± ˆŠ Š ŠŒŠ ÆÈÇ.. Ž ù Ë Ì Ê ³ y f þ a y f ¹ ò Ø Þ 6Ê6³ y f Å6 6 6 D ± a 6³ f á 6³ f + RQ Þ Ê ³ y f þ a f þ RQ 4 Þ f þ a f þ RQ G ò Þ f f f. ª «f þ ~ f ¹ Ø. ù f á f + ¼ Þ A, B. Ø, f f f A, f f 4 A + α, α, ú ª f f A + α, {f f } {A + α }, µ f Ë Ì f Ë Ì ö f ¹ Ë Ì D ± š :Ü Ý f á f + Þ f, ï f ¹ þ ~ þ ~ 4 Þ f {,, á&ø f Å f ¹ f, f, <, œ f Å L M D ± µ f þ ¹ þ
63 A ô ± B # ô Q 56 ½ ¾Ÿž.Á. Þ f Ò Ó $ + f f h f f + h h h f + h f h h 4 f Þ f, f f f h f f + h h h f + h f h h h f + f ; ; ;. f[ + ] f f ; h f + h f h f + h f [f h f ] h h f + h f f h f h h h f ; 4 f f f f. f ;. Å ª «æ ç s t + t, É t ¼ Å ¼ " ó 4. É y ³ Å O A v t t t. " ó k f f + t f t + t + + t t t + t + t t, ¹ Å f f æ ç < æ ç,
64 «< ó Þ Ü É # ± ¼ % ± á ± ± Q Ü Ý ø æ ç y, ö y. æ ç y, ö + y a ÿ O y 6. / ³ í î 7. Ô Õ B ƒ y Å, f, ï k f f ¹ Å ò " ^ k f f, Î Ï 6. ä&å ³ f cos f f f ª ÙÛÚ. 57 y y Å ± ² ³ ¹ Å ^,, cos sin. cos + cos + sin sin + sin sin sin. Ê ³ ò ± {, <,,, ¹ Ë Ì arctan,,,, sin,,,, ¹ þ } ¹ ¹ f +, + f, f f f, +
65 { Q Ï õ ± 58 ½ ¾Ÿž.Á ú f ¹ Ë Ì µ + Ü Ý Ü Ý Ü Ý Ü Ý ÿ f f f µ f µ f µ f 8. Þ f «a + b. ³ ¹ þ ¹ Ë Ì + + ¹ þ ¹ Ë Ì, f f f arctan, f f f f f {,, a + b, >, µ f ¹ þ + arctan + arctan π, arctan arctan π, sin f, µ f ¹ þ Gµ Ü Ý f a + b a + b, + + f + + ò " f f Ê ³ f + a + b f ¹ Ë Ì, ¹ þg Ä f, + a a, a, b
66 ó # ± % } Ø ± ð ± µ ÙÛÚ. 59 f f f, «a, b. 9. ø f. f µ ¹ Ë Ì f, É f. f, Ü Ý f. Ä f ¹ Ë Ì f f f f.. ä&å } y a ¹ Å á ¹ º» Ü ¼ ½ Á  à о À Å Ä a. í î ÅÄG Å â y a ÄG¹GºG >GÆ GÇ Þ >, y >. Þ, y y ± y a, ³ O A " ó ± ¹ Å ^ µgg æ çg, Y a k f f y a. µ ¾ À a Á  a a a.»gn y» ßGÈGÉ, G, y X S XY a a.. ä&å B ³ f ÆÈÇ. csc csc cot ; arccos. í î csc sin sin sin sin cos sin csc cot. Þ y arccos, Ø cos y arccos cos y sin y.
67 # 6 ½ ¾Ÿž.Á. É B Ê ³ Å ³ } y + + ; y + ln ; y ; 4 y ; 5 y ; + 6 y cos sin ; 7 y ln ; + ln 8 y ; 9 y cos ln ; ρ θ θ cot θ. y ; y + ln + ln ; y 5 + ; 4 y ; 5 y ; 6 y cos sin cos sin cos sin cos sin ; ln 7 y + + ln + ln + ln + ln + ln + ln + ln ; 8 y [ ] ; 9 y cos ln cos ln + cos ln + cos ln ln cos ln sin ln + cos ; ρ θ θ cot θ θ θ cot θ + θ θ cot θ + θ θ cot θ θ cot θ + θ θ cot θ + θ θ csc θ cot θ + θ cot θ θ csc θ θ.
68 # #,. É B f Ê ³ Ê ò ± ¹ Å ³ } 5 +, ; S t sin t + cos t, t π 4 ; f f S f +,. 5 + ÙÛÚ ; t sin t + cos t sin t + t cos t sin t π S 4 sin π 4 + π 4 cos π 4 + π 4 f + + f +, f 4. É B Ê ³ Å ³ } ; + 5. y ; y ln tan ; y ; 4 y sin ; 5 y ln[lnln ]; 6 y arcsin ; 7 y sc + csc ; 8 y ln + ln ; 9 y + arcsin ; y ln tan y y [ ] ; ln tan tan tan sc tan tan sc csc ; sin 5 + sin t + t cos t, + ; cos ln tan.
69 6 ½ ¾Ÿž.Á y 4 y ; sin sin sin cos cos sin ; 5 y {ln[lnln ]} ln ln ln lnln ln ln lnln ; [ arcsin sin sin cos ln ln ln [ln ln ] ] 6 y arcsin arcsin arcsin arcsin arcsin 4 ; 7 y sc + csc sc + csc sc sc + csc csc sc sc tan + csc csc cot sc sc tan + csc csc cot sc tan csc cot ; 8 y ln + ln ln ln +
70 ð # ÙÛÚ ln + ln ln ln + ln ln ; 9 y + arcsin + + arcsin ; y ln tan cos ln tan ln tan cos ln tan tan tan tan sc tan sc csc + sin ln tan csc sin ln tan. 5. Þ f þ Ê ³ [ sin ln tan + cos tan [ sin ln tan + cos [ sin ln tan + cos f >, É B y ln f; y f. y [ln f] [f ] f f f f f ; y [f ] f [f ] f f f f. Ê ³ Å ³ } tan ] tan sc tan sc ] ]
71 # 64 ½ ¾Ÿž.Á ÆÈÇ.. É B Ê ³ Å Ë ³ } y ln + ; y sin ; y + arctan ; 4 y ; 5 y ln ; 6 y cos ln ; 7 y ln + + ; 8 y +. y [ln + ] +, y ; y sin sin cos, y sin cos sin cos cos sin sin cos sin sin ; y [+ arctan ] arctan ++ + arctan +, arctan + y arctan y + +, y [ + ] ; ln 5 y ln 4 ln, ln y ln 6 6 ln 5 4 ; 6 y cos ln cos sin ln + cos sin ln + cos, y sin ln + cos sin cos ln + + sin cos sin sin cos ln cos sin cos ln + + cos ; 7 y [ln + + ] , + y ; ;
72 # } # ÙÛÚ y y É B Ê ³ Å ³ f + 4, É f ; f, É f ; +, 4 +. f, É f. f 4 + +, f [ + ] , f [ ] , f 4 4; f [ + +, f + ] , f ; f, f 4 +, f 4.. Þ fu Ë þ É B y f ; y f y dy d Ê ³ Å Ë ³ d y d : ; y ln[f]; 4 y f. d d [f ] f f, d y d [f ] f + f [ f f f + f f + 4 f ; ] f f,
73 } 66 ½ ¾Ÿž.Á f y [ f f f f ] f 4 f 4 f 4 + f 4 ; y {ln [f]} f f, d [ y f ] d f f f f f f dy 4 d d[ f ] d d y d d [ f f] d { f f + f f [ f] f f, [ f] } f f [f ] f ; 4. Ì ä Ê ³ y sin í î y sin ó { f f + f f [ f ] } [ f f f f] [ f f ] f. â ã % y y + y. y sin sin + cos sin + cos, ú y [ sin + cos ] sin + cos + cos sin cos Ä y y + y cos sin + cos + sin.
74 # # Ø 5. É B Ê ³ Å n Ë ³ } ÙÛÚ.4 67 y a ; y ln ; y. y a a a, y a a a a, B H y n a n a ; y ln ln + + ln, y + ln, y, y4 4, B H y n n n! n, n ; y + +, y [ + ] + + +, B H y n n Þ y cos, É y 4. y cos cos sin cos sin, y [ cos sin ] cos sin + sin cos sin, y sin sin + cos sin + cos, y 4 [ sin + cos ]. É& B [ sin + cos + cos sin ] 4 cos. æ ç Ü ' ò Å Í Ê ³ ÆÈÇ.4 y Å ³ dy d : + y y ; y sin cos y ; y + ln y; 4 y tan y; 5 y +y ; 6 y y. æ ç Î ¼ > É Î Ï dy d y y. + y y y + y,
75 Ï Ø Ø Ï Ï Ï Ï 68 ½ ¾Ÿž.Á æ ç Î ¼ > É y sin + y cos [ sin y y ], Î Ï y æ ç Î y cos + sin y sin y sin. ¼ > É Î Ï y y y. 4 æ ç Î ¼ > É y + y y, Î Ï y 5 æ ç Î tan y y sc y. ¼ > y y tan y + sc yy, É Î Ï y +y y +y, ö y 6 æ ç Î ¼ ÿ > ³ y + y +y + y, y y. y ln ln y. Ï ¼ > É Î Ï y dy d y ln + y y ln y y y ln, ö y y ln ln y. ln y + y y,. É ]æ ç siny + lny ÜG' ò ÅGÍ Ê ³ y ¹ ÅG ³. Î Ï y dy d æ ç Î. ¼ > É cosyy + y + y + yy cos y y cos y + y y,. ]æ ç óg» ¼ y, úg
76 % # Ï Ï Ï Ï Ï Ñ Ó. É B æ ç Ü ' ò Å Í Ê ³ ÙÛÚ.4 69 y Å Ë ³ } y 4; y sin + y; y + y. æ ç Î ¼ > É Î Ï y y. Ð yy, y æ ç Î Î Ï y ÑÒ Î y y y y ¼ > cos + y cos + y. ¼ > É É y y y y y 4 y. y cos + y + y, µ y sin + y + y + cos + yy, æ ç Î Î Ï y y æ çôóò Î y. y sin + y + y cos + y [ cos + y sin + y + cos + y cos + y sin + y [ cos + y]. ¼ > ¼ > É É y y + y y, ] y y y + y y + y y y + y y,
77 Ð % % # Ï Ï Ï Ï Ó 7 ½ ¾Ÿž.Á µ 4. É B y y y + y y y y y + y y y y Ê ³ Å ³ } y y y y y y. y + ; y ; 4 + y ; 4 y ; 5 y ; 6 y + cos. ÑÒ Î Î Ï y æ ç Î ¼ > + æ ç Î É ¼ ÿ > ³ ln y ln + y y ln [ ln + ]. + ¼ ÿ > ³, Ñ, µ ÓÒ Î ¼ > ln y ln [ + + 6], ln y ln + + ln ln. É y y , 6 y y
78 Ð ß Ð ß % % % Ï Ï Ï Ø Ï ÙÛÚ.4 7 µ µ y Î ¼ ÿ > ³ 4 Î ln y ln 4,. ln y [ln + ln ln ln 4 ], ¼ > y É y y 4 4 y Î Î > É Ï + 4, +. 4 ¼ ÿ > ³ ln y ln , ln y 4 ln + y y 4 + y 4 [ y Î ÿ > ³ ln + 5 ln +, + 5 +, ] ln y ln, > ß Î ÿ > ³ lnln y ln + lnln Õ
79 Ð % ó Ï Ï 7 ½ ¾Ÿž.Á ÕÒ Î ¼ > É ln y y y ln y ln + + y y ln + + ln ln, ln + ln + 6 y + cos ln+cos ln+cos, ln. 5. ø ] y [ ln+cos [ ln+cos ln + cos + ] sin + cos [ ] + cos ln + cos sin + + cos [ + cos ln + cos + tan ]. arctan y ln + y dy, É d y d,, d., æ ç Î ¼ > É y + y y + yy + y, Î Ï y y + y. Ð y y + y y + y y, ú y,, y,. 6. É B # { cos t, y sin t, µ ò ± ¹ Å N < æ ç } t π 4 ; { a cos θ, y a sin θ, y dy dt d dt cos t sin t, θ π 4.
80 Ð Ð < < " þ ó ÙÛÚ.4 7 Ä y π. t t π > { ± ^ 4 4 k, ú æ ç y, y. ³ Å O A, ö + y. æ ç y, ö 4y +. µ y y π θ 4 4 ³ Å O A dy dθ d dθ Ä. θ π > { ± " ó 4 æ ç y ö 6 + 8y 5 a. æ ç ö 8 6 y a. 7. É B 5 # Ö ³ æ ç { cos t, y sin t; { t, y Ü ' ò y t ; { ln + t, y t arctan t; dy d dy dt d dt a sin θ cos θ a cos θ sin θ 4 a 4 4 a 4 Å Ê ³ 4 6 cos t sin t sin θ, a, y 4 a. a a,, y f Å Ë Ë ³ } { t, y t t ; { at, y bt ; t, y t. cot t.
81 Q Q 74 ½ ¾Ÿž.Á d y d d d dy d cot t d dy dt d dt d y d d d dy d 4 dy dt d dt d y d d d dy d d y d d d 5 dy d d y d d d 6 dy d d y d d d dt cot t dt d csc t t t t, t t t d dt t 9t 5 ; t t t t, t d dt t 4 9 t ; dy dt d dt b a t dy dt d dt t dy dt d dt t bt at d dt b a t, t d b dt a t + t t + t t t. Ž } Þ Ê ³ f ± Þ Ê ³ f ± d dt þ Ë Ì ò t, t a a ÆÈÇ t, dt d dt d dt d dt d b a dt d t.5 f ± f ± sin t at t + t t Ë Ì þ sin t ; b 4a t ; t. + t 4t ;
82 # ± \ P á. É y ¹ ÙÛÚ.5 75».,. ¼ Å y f + f f. f , dy f..; y f + f f. f , dy f.... É B Ê ³ Å y + ; y cos ; y ln ; 4 y ; 5 y + ; 6 y ln tan ; 7 y cos ; 8 y ln arctan. dy d + + d + + d d; + dy d cos cos d + d cos cos d + sin d cos d sin d cos sin d; dy d [ ln ] d d d d; 4 dy d d + d d + d d + d + d; + d d 5 dy d d + d + d + ;
83 Ð è Ï k ± 76 ½ ¾Ÿž.Á 6 dy d ln tan tan d tan tan sc d tan csc d; 7 dy d[ cos ] d cos + cos d sc sin d cos d sin d cos d [sin [ cos ] d; 8 dy d ln arctan ] 4. B d ln d arctan + + d d d + + d. + 4 # $ Å Ø Ù Ú» Å Ê ³ d 5d; d 5d; d d + d sin d; 4 d d; 5 d d; 6 d d; + 7 d sc d; 8 d csc 4d C; + C; cos + C; 4 + C; 5 ln + + C; 6 + C; 7 tan + C; 8 cot 4 + C É& æ ç Ü ' ò y y Å Í Ê ³ y y, ¹ Å dy,. æ ç Î ÿ d y y, d dy + yd y dy, ú d dy,,
84 ] ÙÛÚ.5 77 µ ú 6. É B # $ % Å Û Ü dy, d. sin ; 996; ln.998; 4 arctan.. sin sin + sin π 6 + π 8. Þ f sin, ï y f + f dy f, Ð f + f + f, π sin 6 + π sin π cos π Þ Ð 4. f, f, ú [ [ ] π ] ln.998 ln.. Þ f ln. Ð ln.998 ln. ln + ln... 4 Þ f arctan, Ð arctan. arctan +. arctan + arctan. π ÝUÞU cm ä ' ÅUn á Û Ü Eàß TUáUâ r 4 Ý Þ ã µ.5cm, É 4 ÁUÂ \ SÅ
85 Þ # 78 ½ ¾Ÿž.Á f π. f π. Á  \ S Å ä ' S, Û Ü ds, Ð S f + f π.5 π.48, ds f π ä&å» å ¼ í î Þ ft ln t, t æ Û Ê ln +. ò \ P, f ln + ln f t t t, µ ln +.. É B ; ÆÈÇ Ê ³ Å Ï ç Ê ³ á è Ö Ê ³ } Þ y. ; a b+c..6 Ï ç Ê ³ y. è Ö Ê ³ Ey E y Þ y. Ï ç Ê ³ y è Ö Ê ³ y. Ey E y y Þ y a b+c. Ï ç Ê ³.. y [ a b+c ] a a b+c + a b+c b è Ö Ê ³ a a b a b+c. Ey E y y aa b a b+c a b+c aa b a a
86 ÙÛÚ.6 79 aa b a+ a a a b a a b.. Þ é ê ë Å ì í î R â Ä ï ð P Q Å Ê ³ RQ 4Q.4Q. É } ï ð P Q ¼ Å Ï ç í î ï ð P Q 5 6 ñ ¼ Å Ï ç í î ï ð P Q 6 ñ ¼ ì í î > Q Å è Ö Ï ç í î R Q 4Q.4Q 4.8Q; Q 5 ¼ R Q ; ER è Ö EQ Q Q R Q 4.8Q RQ ER EQ 4 Q ä&å è Ö Å ï ª } í î 4Q.4Q, E[f ± g] f Ef ± g Eg E E ; E f ± g E[f g] Ef + Eg [ E ] E E ; f E g Ef Eg E E E. E[f ± g] [f ± g] E f ± g [f ± g ] f ± g f ± g f ± g ff f ± g f ± g f Ef ± g Eg E E f ± g g g.
87 o 8 ½ ¾Ÿž.Á 4. Þ E[f g] E [ f E g EX ] [fg] f g [f g + fg ] f g f g + g f fg f Ef E f g f + g + Eg E. f g g f g fg fg Ef E É P Q â Ä! ò P Å Ê ³ f g fg g f f g g g f Eg E. Q a bp a >, b >. É } o ì í î Ê ³ N ó _ í î Ê ³ Ï ç í î Ê ³ É è Ö EQ EP. R P Q b ln Q a Q Q b ln Q a ; ó _ í î R Q b ln Q a ; Ï ç í î R Q Q b ln Q a [ ln Q b a + Q a Q EQ EP Q P P Q ab bp ] a b P a bp + ln Q a bp. ;
88 Ð < ó ú. } ô { t sin t, y t cos t ; ø f, ï ù ft t + ÙÛÚ 8 ÆÈÇ A 4 Þ æ ç ' ò y y y Å Ê ³ 5 Þ 4 y fln f, f þ µ dy d t ¹6Å y +, + y. dy d dy dt d dt æ6ç, < f f ; t, ï f t ; t cos t + t sin t t sin t + t cos t t. ³ÅUŪOUA " ó æ ç ï y ; ï dy. U ^ y, cos t sin t sin t + cos t, k. Ä t > {± æ6ç,, ö y +. æ ç y, ö + y.. f f f[ + ] f f. + t t. µ ft t + t [ t + ] t t t,
89 % ± Õ ô ô ô Ï ï Å ô 8 ½ ¾Ÿž.Á Ü Ý ß f t t t t + t t + t t. 4 + ln y. æ ç Î ÿ > ³ Î > Î Ï y É + ln y. 5 f [ f ln ln y ln y, y ln y + y y y, ] + fln f d, dy d[fln f ] f dfln + fln d f f f ln d ln + fln f df f f ln d + fln f f d [ f f ] ln + fln f d.. } Þ f þg Ê ³ ðg G GõGö ^ f f y f, f ¹ Å. A ; B ; C ; D. B ù # ½ ø Å. A ù f ï f ¹ þ B f f f ; ù C ù f ¹ þ D f ¹ Ë Ì Þ f A N ³ B ³ à ô ~,,, >, ³ ï f ¹ þ ï f ¹ þ ï f ¹., ï Å
90 ù Q ô Ã Å ô ó ô ð Ï ± # ô Î Ï Ð ÙÛÚ 8 C ³ ~ ³ D N ³ 4 ù 4 y + a + b y + y, ¹ Ø f ù, a, b à ³ ï. A a, b ; B a, b ; C a, b ; D a, b. D. f. Ð C. B. µ B. 4 C. f f + y + a + b þ y + y Î ^ f f f f f f. D. + f,, y + a, ú y + a. ¼ > É y y + y y,, Î Ï y Ä y y, ú y, Ä + a, Î Ï a. y + a + b ú ±, Ø + a + b, Î Ï b. C.. ϕ a ± Ë Ì ϕa, a B f a ϕ; g aϕ. Ê ³G a ± G þ
91 ô 84 ½ ¾Ÿž.Á µ Ü Ý a f fa a a ϕ a a a a ϕ a ϕa a a a, f +a ϕa, f a ϕa. Ä ϕ a, µ f a þ µ Ü Ý ϕ a 4. Þ f f fa a a ± þ a aϕ a ä > à ³ α, β Ø a ϕ ϕa, í î h f + αh f + βh h α βf. h f + αh f + βh h h f + αh f [f + βh f ] h h f + αh f h αf βf α βf. 5. Ô Õ f µ + f f f f +,,, + h f + βh f h + + ¹ Å þ Ö + + +,,
92 Ä Þ Ü # É ± ô ± ô - ± ± ± Ü Ý Ü Ý f ù þ 6. f û Ê ³ í î µ ð f f + + f f f f f f t f, t + t f + f. Ä f 7. ³ ü y ß ý ³ Å 6y + 5 ; á ÙÛÚ 85 ä&å f. f f, + t f t f t + t µ f + f, ö f. ó j Ä ³ ² ³ y 4 5; y +, f, y, y., 4. π 4. A 4, Î Ï Ü, É A, Î Ï Ü, É, 9. 4 ÞG G ^ k, ÅGA, Î Ï k Ð, k. k + k, Ï 4.,, Ï, Ü Ý Ü É,. 8. É B Ê ³ Å ³ 4, y, t þ P a, α à ³ : y sin + α ; y sin ln ; sin α y a a a >, a ; 4 y + t + t ; 5 y sin + cos ; 6 y 5 + ; 7 y lg + lg. sin y + α cos sin sin α ; y sin ln sin ln + sin ln + sin ln sin ln + cos ln + sin sin ln + cos ln + sin ; 4, 6 Ð
93 # 86 ½ ¾Ÿž.Á y a a a a + a a a ln a a + a a a a a ln a + a + a ; 4 y + t + t t t ; 5 y [ sin + cos ] t ln sin + cos + [sin + cos sin ] ln sin + cos + cos ; 6 y ; 7 y lg + lg lg + ln 9. É B Ê ³ Å ³ } lg + lg lg. y sc ln ; y + + ; y ln + + ; 4 y [f ], 4 f þ Ê ³. y [sc ln ] sc ln [sc ln ] sc ln sc ln tan ln ln sc ln tan ln y ; y ln [ ; ; ]
94 ö % # > ± ÙÛÚ 87 4 y {[f ] } f [f ] f [f + f ]. É& B f [f + f ]. æ ç Ü ' ò Å Í Ê ³ y y Å ³ + y y ; cos y sin y. æ ç Î ¼ > É + y y y + y, Î Ï y y y. æ ç Î ÿ > ³ y ln cos ln sin y, ß Î > É y ln cos + y sin cos ln sin y + cos y sin y y, Î Ï y æ ç Ü Ý. ÉGÿGÀ ± µ ^ ln sin y + y tan ln cos cot y. { cos t, k 4, y sin t 4 dy d dy d t π 4 dy dt d dt { Ö ßG ³ t π 4. 4, sin t cos t cos t sin t. Ð æ ç 4 ¹ ÅG tan t, æ çgg< y 4 + 4, y.
95 < ô è ð 88 ½ ¾Ÿž.Á æ ç y + 4 4, ö + y.. Þ f, É f Ñ f. f , f!, f +, f!. þ Ö B. Ô Õ Ê ³ α sin f, >,, µ α > ± Å Ë Ì Ö N Ü Ý f + α sin + f, f µ ± Ë Ì + f f f f, α sin + α sin + {, α >,, α, f f, Ü Ý» α > ¼ f þ» < α ¼ f þ. Þ f ò ", + ß Å Ê ³ f, f, ð A, y Ø f+y ffy, äoå f, + ¹¹þU í î µ A, y Ø, f + y ffy. y, Ø f f, f f.
96 Ä ó # è ð } Ü Ý f, Ð f. >, +, f f + f f [f ] ff f,, + ù. y y Ë þ í î 4. ø µ + ¹ ¹ þ d dy d d dy dy y ÙÛÚ 89 f ff f f + f ð f f. d dy y, ä&å d d d dy d dy y y d dy y y. y d dy y y. f +, É f, f. f f + +, Ü Ý Ü Ý f, ð f. 5. É B f f, >, f,, 6, <, f f + f f Ê ³ Å ³ Ð + 6 y arcsin ln, É dy;,,,
97 ß % 9 ½ ¾Ÿž.Á y tan + + cos π 4, É y ; y [ln sc ], É dy; 4 y cos sin, É y ; + 5 y 5, É y ; 6 y ln tan cot ln + sin, É y. dy d arcsin ln arcsin d + d arcsin + d 9 arcsin d + arcsin d + arcsin [ d; y tan + + cos π ] 4 sc + + sc + 9 d + sc + ; dy d [ln sc ] [ln sc ] d [ln sc ] [ln sc ] d sc sc [ln sc ] d sc + sc d sc [ln sc ] sc tan d + sc d sc [ln sc ] sc + tan d sc [ln sc ] + tan d; 4 æ ç Î ÿ > ³ d + 9 d9 9 d Î > É ln y sin ln cos, Î Ï y y cos ln cos + sin sin cos y cos sin cos ln cos sin tan ;,
98 ß % # 5 æ ç Î ÿ > ³ ÙÛÚ 9 Î Ï Ü Ý ln y ln Î > É + 5 y y ln + + ln 5 ln, + + 5, [ + y dy d [ln tan ] cot ln + sin ] 5 ; d ln tan d cot ln + sin tan d tan [cot d ln + sin + ln + sin d cot ] tan sc d [ ] cot + sin d + sin ln + sin csc d sc [ ] tan cos d cot + sin d ln + sin csc d [ csc ln + sin + ] d, y csc ln + sin Þ f, g _ þ É B Ê ³ Å ³ } y + f + g ; y f f. [ y + f + g ] [ + f + g ] + f + g + f + g [f f + gg ] ff + gg + f + g ; y [ f f ] f f + f [f ] f f [ f ] + f f f f f f + f f [ ] f f ff + f.
99 É ó É É 9 ½ ¾Ÿž.Á 7. Þ u f[ϕ + y ], 4, y æ ç y + y, ð f Ñ ϕ _ þ Î Ï y Î Ï 8. Þ dy dt du d. æ ç + y. y + y Î du d d d ¼ > É y + y y, { f[ϕ + y ] } f [ϕ + y ][ϕ + y ] f [ϕ + y ][ϕ + yy ] [ f [ϕ + y ] ϕ + y { t + t +, æ ç y sin t y +, y sin t y + Î dy d. t ¼ > + y t É y dy dt sin t + y cos t dy dt y cos t Ä y sin t. dy d dy dt d dt y cos t y sin t 6t + ].,, t ¼ y, Ü Ý dy d t. 9. ø { ln + t, dy d d y d d d d y d d d y t arctan t, dy dt d dt 4 d y d. + t t + t t, dy d dy dt d dt d d d y d d d y dt dt d d t t t + t t t4 8t. + t t + t 4t,
100 Ï, ± ú É 4. Ì ä Ê ³ y + â ã % ÙÛÚ 9 4y + y y. y + + +, y [ ] { + [ ]} , [ 4y + y y ] ú ±, y Å Þ,, ó y ^ æ ç k, æ ç A. Ð, Ø æ ç y., y, ö y.. É Å Û Ü 4 4 f,
101 Å % % % ó ± ¹ ê 94 ½ ¾Ÿž.Á æ ç ß. Þ f f + f ÑÒN 4. Þ f + f Ý Î > É Ï.9977, f + f, f f Ó Ï f +. A n n y f á y f ú ¹ º f, É f., Ñ + f, + f, Ó y sin ± nf n n n n f É n n f n Ø f, ð f sin. n n f n f n n 5. Þ é ë Å ½ 4 Ê ³ í î Ê ³ +, + ë Å P É } Ï ç ½ Ê ³ N Ï ç í î Ê ³ N Ï ç. Ê ³ ø ï ð 5 6 ñ ë 6 6 ñ ë Ø d C , f. C + 5 +, R. RQ
102 8 ê Q o o o o É É 8 ê å å \ A A 8 ê \ ÙÛÚ 95 R + +, L [R C] L L é ê ë Å É P Q Å! ò P Å Ê ³ Q 5 P. É }» P 6 ¼ Å Ï ç 4 "» P 6 ¼ Å É è Ö 4 "» P 6 ¼ ù! ò B %, ì í î þ 6 ñ å»! ò ê ë P! ò ß EQ EP dq dp 4P, Ð dq dp 4. P 6 6 ¼ 6 ñ dq dp B %, ï * B! ò o RQ É á \ á 4 P Q 4P P Q 4P 5 P, Ð EQ EP.85. P 6 \ á.85%. C P Q P 5 P, EC EP P C P CP 5 6P P P 5 P, EC.846, C.846 %.69%. EP» P 6 ¼ ù! ò B %, ì í î á.69%.
103 Ä Ï ð Þ Ï ± ñ ñ ± ¹ ¹ õ Ï { è Ï þ 4 ŒŠ Š ˆ. Ì ä Ê ³ y sin Í í î ÆÈÇ 4. [ π 6, 5π 6 [ f sin, f π 6, 5π 6 π f f 6 5π 6 µ f cos,, f, Ï π. ï ô f π. ] ß Roll ò ] ß Ë Ì. π π 6, 5π 6. ÌäU>ʳ y p +q+r p U@UAØÓÍ [a, b] ß ò Ü ξ ì Ä Í a, b Å ± 4 í î Þ f p + q + r, ï f [a, b] ß Ë Ì! ò "$# ò é ê ô ξ a, b, f p + q, a + b. µ ξ ì. Ì ä [, ] ½ ø ß å µ í î µg,, f f g g f ξ fb fa b a fb fa. b a, pb + a + q. p + q pb + a + q, Ä Í f f g g a, b Å ± π 6, 5π 6 õ, è / Lagrang p, q, r à ³ a, b þ Cauchy ò > Ä Ê ³ f Ñ g f ξ g ξ, ½ ø f g. µgg> µ g ¹ g, % & g.
104 Ä õ Ï é % % è õ ± õ Ï Ð è ò ± ð è ò ÙÛÚ U/É Ê³ f ÅU ³ æç f Å ì Å ³ µ f y d ' % f ¾ y d ' % ú f d Ø ¾ ë ì f [, ], [, ], [, ] ß ò Roll õ ö é ê ô ξ i, i,, f ξ i. µ f Ø ¾ ì 5. Þ f, + þ ð Ø f cà ³, ä&å f Ö Ê ³ í î Þ, +. ÅÄ f, + þg Ü Ý f [, ] Ð [, ] ß ô 6ò é6ê6ô Langrang ξ, Ð,, f f f ξ c. Ð f f + c c + [f c ], µ f 6. ä&å } arcsin + arccos π. í î Þ f arcsin + arccos, f [, ] ß þ f, Ð f C. Ä f arcsin + arccos π. µ C π, ö arcsin + arccos π. 7. ä&å } arctan a arctan b a b. íî Þ f arctan, > a, b, f [a, b] ßËÌ ò ó é ê ô Lagrang ξ a, b, µ f +, Ð f ξ arctan a arctan b a b + ξ, ú arctan a arctan b a b f ξ. f ξ, a, b Ö Ê ³ arctan a arctan b a b. þu
105 Ð õ Ä ö Ï ó ± Þ ± õ õ Ï ó Ï è ± è þ 98 ½ 4 ¾ *,+.-./.Á ž. 8. Þ f þg Ê ³ f <. í î é ê ô f 9. ø ä }, ð f, f <, äg>gäg@go, Ø >, ft [, ]Ð [, ] ß þ ξ, Ð,, f f f ξ. Lagrang ò f ξ <, µ f <. Ê ³ èé ê ô f [, ] ß Ë Ì c,, f c fc. c F f, ï& ø í î þ Ï F [, ] ß Ë Ì ð F f, F. ò ó é ê ô Roll F c. F [f] f + f. ú þ F c fc + cf c. f, f, É, c,, f c fc c. / L Hospital < ï É B. # $ ÆÈÇ Ò Ó } 4. ln + ; ; sin cos cos a sin a ; 4 b ; a a tan b ln sin 7 a 7 5 ; 6 π π a a a ; ln tan 7 + ln tan 4 ; 8 ; tan 9 sin ; ; + sin cot ; + a.
106 ÙÛÚ Ü Ý a 4 5 π ln + sin cos cos a a sin a tan b ln sin π 6 a 7 a 7 a 7 + ln tan ln tan 4 8 µ 9 ; + sin a π + ; + ; cos sin sin a; a cos a b sc b a b ; cos sin π 4 π 4 π 8 ; 7 6 a + 4 sin 7 a4 ; + tan sc tan 4 4 sc 4 tan 4 tan t 4 sc 4 sc ; t + sin tan ; t t ln tan + + tan ln t + t, cos π sin sin sin, sin cos + sin sin, sin
107 ~ ô ½ 4 ¾Ÿ *,+.-./.Á ž. Ü Ý + sin tan ln + sin tan ; cot + a tan ln + a ln + sin ln sin + + +, sin cos sin cos sin sc ; a ln+ ln + a. ln + a a + a a, µ + a a.. Ì ä Ò Ó + í î º < É Î ~ / L Hospital < ï Ï
108 Ð É õ è %. ' ò à ³ a, b, Ò Ó ln + a + b ÙÛÚ 4. ln + a + b + ½ ø a + b a a + b b + a a + b b. a a + b b, ú a, a. ln + a + b a a + b b [a + b + b] a + b + b. Ð a + b 4, Î Ï b Þ f ± Å é 4 5 [f]. [f] Ø Ë Ë Ì Å ³ ln f ln f, ð f >, f, µ [f] f.. 6 ln f ÆÈÇ f f 4. f f f 9 ± Å ¾ Ë Taylor d ' f. f9 9, f, f 9 6, f 4, f 9 8, f 5 8, f f 9 ± Å ¾ Ë Taylor d ' P f + f + f! % + f!
109 % # ½ 4 ¾Ÿ *,+.-./.Á ž É Ê ³ f tan Å Ë Maclaurin % f, f sc, f, f sc tan, f, f sc tan + sc 4 4 sin + cos 4 tan +! + 4 sin ξ + cos 4 ξ sin θ + cos 4 θ. É Ê ³ f Å n Ë Maclaurin % f n n +, f f + f + f! + + f n+ θ n +! 4.. / 7 8 f É B Ò Ó }, Ð ξ Ä á < θ <. + + f n n! n+, < θ < n! n ; + cos ! +! o ! n + + θ n +! + o 4. n θ n+, < θ < o4 6 4
110 á # ÙÛÚ ! + 5 5! + 6 6! + o 6, ! 5 5! + 6 6! + o 6, ! + o 6, cos + 4 4! 6 6! + cos 6 + o 6, ! + o ! + 6 6! 6 4 6! + o ! 8. ÆÈÇ. ' ò B Ê ³ Å 6 7 Í } 4.4 y arctan ; y + sin ; y ; 4 y ln ; 5 y ln ; 6 y + ; 7 y + 8 > ; 8 y ln. Ð + + +, y arctan, + ; y ê Í y + sin + cos, Ð y + sin 6 7 \, \ Í, + ; y + +,, f, ÎÏ,.,,, + f + + f
111 4 ½ 4 ¾Ÿ *,+.-./.Á ž. 6 7 \ á Í,, +, Í, ; 4 y [ln ] 4 + >, 6 7 \ Í, + ; 5 y ln 4,, y, Î Ï ±, 9 H. 6 7 \ 6 7 \,, + f + f [ Í ], +, Í,. 6 y , y, Î Ï ±.,,, + f + f Í [, ], Í, ] [, +. 7 y 9 H ,, y, Î6Ï ±, 6 7 \,, + f + Í [, +, Í, ]. f 8 y ln., y, Î Ï,, +, 9 H. 6 7 \ Í f + f [ 6 7 8, +, Í, ].
112 ö Ä Ä û ß # % è ± } á õ Ï è. ä&å B» > ¼ > ¼ < < π ¼ 4 < < π ¼ + ÙÛÚ < ln + < ; > + + ; sin + tan > ; sin > 6 ; b a > a b. 5» a > b > ¼ íî æu<u Þ F ln+, ï F > >, F <, úu F 6U7U8 ê, + F, ö ln + <. Þ G ln + +, ï G ú G 6 7 \, + Ä : > >, + < ln + <. G > G. ln + > +. æ < Þ F t ln + t, > >, F t [, ] ò é ê ô ß þ ξ,, µ ln + F ξ. F t + t, ú + < F ξ <. Ä : + < ln Ä;:U> >, F < +, > >, G >, <, Lagrang < ln + <. + Þ F + +, ï F, F 6 7 \. F á Ä : > >, F > F, ö >, F >, ú F >. µ 6 7 \ F á > >, F > F, ö > + +.
113 ö è è ê á è è ð ê á 6 ½ 4 ¾Ÿ *,+.-./.Á ž. Þ F sin + tan, ï ú F < < π F cos + sc cos 4 cos 6 7 \ > >, ö sin + tan >. 4 Þ F sin 6 F >., ï F cos sin [ sin > < < π, F, Ð F < < π ß 6G7G\, F > F, ö sin > 6. 5 Þ F ln, ï F ln F 6 7 8, + > a > b >, Ø ln a a < ln b b F a < F b. ]. > >, ÐG> >, F <. úg, : b ln a < a ln b, a b < b a.. Ô Õ æ ç ln Å ì Å < Þ F ln, ï F,, F, Î Ï.», ¼ ê 6U7U\ F <, F», + ¼ F >, F á ð F ln ÜÝ, ln Ø;>Uì. 4. Þ f [, + ß Ë Ì, + þg f, f ê, + ä&å 6 7 8, + ϕ f
114 ö þ # è ± õ è Ï ê è íî ò >, +, ft [, ] ó é ê ô ßËÌ ξ, ÙÛÚ 4.4 7, þu Lagrang f f ξ. f f f ξ, [ ] f ϕ f f f f ξ f f ξ. Ä f 6U7U8 ê, + ð ÜÝ ξ,, f < f ξ, úu ϕ f f ξ <, µ ϕ 6 7 8, + 5. É B Ê ³ Å Ò y + 7; y + ; y + ; 4 y ; 5 y ; 6 y ln + ; 7 y ; 8 y. y , y, Î Ï,. ycedef 7, ycegef. y,,, + y + + y?.@.a?.b.a + ycegef, ycedef. +,, y, Î Ï ±.,,, + y + y?.b.a?.@.a
115 8 ½ 4 ¾Ÿ *,+.-./.Á ž.. Þ f +,, ï f., f, Î Ï ycedef, [ ], f + f?.@.a f. 4 y,, y, Î Ï,.,,, + f + f?.b.a?.@.a ycegef, ycedef 4 4. ycedef 5 y , 6 y [ ln + ] , y, Î Ï 5. 5, + f + f?.@.a +,, y, Î Ï.,, + f + f?.b.a ycegef. 7 y [ ].,, + f + f?.@.a ycedef.
116 Ä Ä Ä a ¼ Q, # }, ÙÛÚ y ln,, y, Î Ï.,, + f + f?.@.a ycedef. 6.. / Ë ³ D B Ê ³ Å Ò y 9 5; y ; y ln4 ; 4 y +., y 9 5. y, Î Ï,. y 6, y >, y <. µ : Ò ± ycegef, : Ò S ± ycedef. y [ ] 7., y, Î Ï, 7. 7 y [ 7] 6 6, y >, y <. µg ± : Ò S ± ycedef ycegef ; 7 y [ ln4 ] : Ò, y >. µ 4 y. : Ò ±. y, Î6Ï, Ä y ycegef 4 ln. y, Î6Ï ln. Ä y ln >. µu ln :ÒU ±. 7. QH: Ò S a GO : Ò ycegef y +, ln Ê ³ f a sin + sin π ¹ ÿ Ï Ò, ö f a cos + cos. UA π f f a sin sin, Ä : π f <. µ a ¼ π ¹ ÿ Ï Ò S fcedef. π a, ÎÏ a. f
117 L ± ó ¼ ± } è, ½ 4 ¾Ÿ *,+.-./.Á ž. ÆÈÇ 4.5. É B # Å IKJ L y + > ; y 6 + ; y ln + arctan ; 4 y. y +, + : BKJ., y. > >, y >, y + y 6 + +, y 6.», ¼», + ¼ y <, y 6 + : ßKJ y >, y 6 + : BKJ y, Î Ï,. y [ln + arctan ] arctan, y + <, y ln + arctan, + : ßKJ [ ] 4 y 5, y 9 +, 4 9, y, Î Ï 5.,, y <, y, è ßKJ 5 5 5, +, y, y 5 è, BKJ 5, 6 : L ± 5 5. a a, b O ±, y a + b, y 6a + b. A { 6a + b, a + b, y a + b Å L y, ö ± Î Ï a, b 9.. ø y f ß Å L Ê ³ y a + b + c + d ± ¹ Ø Ò É à ³ a, b, c, d. 44, ±,
118 Ä Ä ß ß è è : è : ÙÛÚ 4.5 y a + b + c, y 6a + b. A y y. Ä : a 4b + c, 6a + b, 8a + 4b c + d 44, a + b + c + d, Î Ï a, b, c 4, d ä&å y + íî Ø ¾ L ± ñ y + + +, y ³ + +., y, Î Ï, +,.», ¼ y <, y è +,», ¼», + ¼ ßKJ» +, + ¼ µu Å L ± Ä ú B, C Å ³G y. µ 5. É : ßKJ y >, y +, : BKJ y <, y +, + y >, y + +, + A,, B, 8 4, C + +, y + { t, dy d y y t + t dy dt d dt : BKJ [ ].» ¼ Ø ¾ L ± ñ ³ Å L + t t ± d y d d dy d dy d d dt d t + t 4t t. t + t. dt d +
119 ö ò % } è ± è ½ 4 ¾Ÿ *,+.-./.Á ž. L, d y, Î Ï t ±. d d» t, ¼ y d d» t, ¼ y d d» t, + ¼ y d» t ¼, y 4;» ± 6.. / Ê ³ ÅKJÖ ä&å >, BKJ <, ßKJ >, BKJ t ¼, y 4. ±, 4,, 4 í î + y n + y n > Þ F t t n, F t, + n >, y >, y, n >. Ë þ nn t n, ÄM: >, F >, F :, +, y >, + y 7. O n < n + y n y R + y F < F + F y. F t nt n, F t BNJÊ6³ µ >. R Å õ Å L ¹ Å <, y [R ] 4R, y R, Ü Ý ±, 4R : Å L ±. µ y ± Q R Ù» ¼ y 8R. Ä : < æ ç P ú ± y, Î Ï ± < ú ± ó» ¼ R ± 8. y 4R 8R y 8R, Ä : <. æ ç < æ ç ú ± ó y 4R 8R R ± 8. +,
120 # # ô } Q á. É B Ê ³ Å S N y [, ]; y ln + [, ]; y [ ] +, ; ÙÛÚ 4.6 ÆÈÇ y + [, 4]. y ,, y, Î Ï,,.,,,, + f + + f?.b.a?.@.a?.b.a ycegef 4, ycedef 5, ycegef 4, y, y. ysedef ysedef, ysegef ysegef 4. y [ln + ], +, y, Î Ï.», ¼ y < ;», + ¼ y >, úg : y ln + Å6Ò 6± ycegef Ä. y ln, y ln 5,ÄM: ysedef ln 5, ysegef. y +, + +, y, Î Ï. [» ], ¼ y < ;» [, ] ¼ y >, ú : y Å6Ò 6± ycegef, y +, y, ÄM: ysedef ysedef, ysegef. 4 y + + ysegef, ysedef B Ê ³ : S N >, Ð y + [, 4] ß ù ô É 4 y 5, < < + ; y 54, <. y 5,, y, Î Ï \ µ
121 ,, ê Ý ± & " Ý Ø ] Ü Þ É ú " V õ Ü / 4 ½ 4 ¾Ÿ *,+.-./.Á ž.», 5 ¼ ¼ y <. Ä : 5 : y 5 Å Ò S 5, Ø y, ¼ 54 y <,» y > ;» 5, + µ ysedef , ¼ Å Ò ysegef 7. Ø S. U V W æ À *X  8m Å Z ] ^RQ Þ W, y ¼ / ] ^ S, Î Ï m ¼ / ] ^,, y, Î Ï. ÄT:» y >, µ : y 54 æ º Y y 8. Á  S + 4y , S 4, 6. ë ç A " 4. É _ ` a.5.8 ì ª b Ê ³ Å µ 6, y X Z *[ \ ö» W 6m, y, Î Ï y [ ] 5 a + a ë ç A 5 ¼ a a. ÿ Ï ysegef 5 76a. 5. cd tu ¼ n milö ;f n mil 85m ÅU U hgiuj;j ¼ Kk d Kc d & l 8n mil ¹ t ¼ 6n mil Å Kg m j j a ú d ¼ d É n ÛRQ ÞKc d Å o ¹ º ± *p ø ³ ã G¹ º ¼ dgé n Û A S Ä : S , + 8 6, S, Î Ï. ë ç A ± ¼
! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C
) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
v w = v = pr w v = v cos(v,w) = v w
Íö Ú Ò ÔÖ Ø Ô Ö ÔÖ ØÝ Ô Ð Ùö Ú ÒÝÒ ÝÖ Ð ÓØ Ó µ º ºÃÐ ØÒ Ë ÓÖÒ Þ ÔÓ ÒÐ Ø Ó ÓÑ ØÖ ½ ÁÞ Ø Ð ØÚÓ Æ Ù Å Ú º ÖÙ µº Ã Ø Ùö Ú Ò ÝÖ Ú Ø ÒÅ ØØÔ»»ÛÛÛºÑ ºÚÙºÐØ» Ø ÖÓ» ¾» л Ò Ó» ÓÑ ÙÞ º ØÑ ½ Î ØÓÖ Ð Ö ÒÅ Ö Ú ØÓÖ ÒÅ
Δυναμική διαχείριση μνήμης
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γλώσσες Προγραμματισμού ΙΙ Διδάσκοντες: Νικόλαος Παπασπύρου, Κωστής Σαγώνας
2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <
K+P K+P PK+ K+P - _+ l Š N K - - a\ Q4 Q + hz - I 4 - _+.P k - G H... /.4 h i j j - 4 _Q &\\ \\ ` J K aa\ `- c -+ _Q K J K -. P.. F H H - H - _+ 4 K4 \\ F &&. P H.4 Q+ 4 G H J + I K/4 &&& && F : ( -+..
Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±
Ó³ Ÿ. 009.. 6, º 7(156.. 6Ä69 Š Œ œ ƒˆˆ ˆ ˆŠ ˆŒ ˆ - ˆ ƒ ˆ ˆ ˆŸ Š -Œ ˆ Šˆ ˆ.. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ μ ± Ê É É Ê Ò μ μ, Œμ ± É ÉÓ μ Ò ÕÉ Ö ²μ Í Ò - μ Ò ² É Ö ³ ÖÉÓ Ì ÒÎ ² ÖÌ, μ²ó ÊÕÐ Ì ±μ ± 4- μ Ò. This paper
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1
Å Ü Ò ÙÐØ Ø ÍÒ Ú ÖÞ Ø Ø Ù Ó Ö Ù Ã Ø Ö Þ Ñ Ò Ù ÐÙ Ð Ò Ö Ëº Ó Ì Ä ÈÊÇÊ ÉÍÆ Æ ÃÁÀ ËÌÊÍ ËÌÁ ÁÎÇ ÄÍÁ Á ÆÌÊÇÈËÃ Ê Ä Á κ = 1.4µ ½ ½ ÁÞ ÒØÖÓÔ Ö Ð ÃÓÖ Ø Ò ÑÓ Þ Þ ÒØÖÓÔ Ó ØÖÙ ½ Ú ÔÓÑÓ Ù Ò ÜÙ ØÓØ ÐÒ Ú Ð Õ Ò Ø Ø
Déformation et quantification par groupoïde des variétés toriques
Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 2: Αναλυτική Γεωμετρία Αθανάσιος Μπράτσος Τμήμα Πολιτικών Μηχ.ΤΕ και Μηχ. Τοπογραφίας & Γεωπληροφορικής
Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 018.. 49.. 4.. 907Ä917 Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ.. ³μ, ˆ. ˆ. Ë μ μ,.. ³ ʲ μ ± Ë ²Ó Ò Ö Ò Í É Å μ ± ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö μ ² Ìμ μé Ê Ö ±
Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim.
Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) x ξ g(x, ξ), g(x, ξ) f(x) f(ξ) x ξ Ορισμός Cauchy: ɛ > 0 δ(ɛ, ξ) > 0 x x ξ
Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ14) Περίοδος ΕΡΓΑΣΙΑ 1 η. Τότε r r b c. και ( )
Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ4) Περίοδος 8-9 ΕΡΓΑΣΙΑ η Θέμα (μονάδες ) i. Δείξτε ότι ( a b) c a ( b c ) + b( a c ). a b c+ c a b+ b c a ii. Δείξτε την ταυτότητα Jacobi : ( ) ( ) ( ) Απάντηση i.
PDF hosted at the Radboud Repository of the Radboud University Nijmegen
PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/52779
Im{z} 3π 4 π 4. Re{z}
! #"!$%& '(!*),+- /. '( 0 213. $ 1546!.17! & 8 + 8 9:17!; < = >+ 8?A@CBEDF HG
Œˆ ˆ ƒ ˆŸ Ÿ ˆ ˆ Ÿ Œˆ ˆ
Ó³ Ÿ. 2017.. 14, º 1(206).. 176Ä189 ˆ ˆŠ ˆ ˆŠ Š ˆ Œˆ ˆ ƒ ˆŸ Ÿ ˆ ˆ Ÿ Œˆ ˆ.. Š μ,. ˆ. Š Î 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μé ³ É É Ö μ²êî μ μ μ μ μ ² Ö Êα ÉÖ ²ÒÌ μ μ ÊÐ Ö ³ Ï μ³μðóõ ± μ Ö Êα μ μ Ì μ É. ± μ μ ÊÐ
Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών
Θεωρία Συνόλων Ενότητα: Διατακτικοί αριθμοί Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι
tan(2α) = 2tanα 1 tan 2 α
½º ÙÒ Ð ØØ ½º Ò Ò Å Ò Ò M 1 = {1,4,9,16,25,36,49,64,...}, M 2 = {4,6,8,9,10,12,14,15,...}. µ Ö Ò Ë M 1 ÙÒ M 2 ÙÖ Ò Ò Ö Ò Ø ÓÖÑ Ð Ù º µ Ò Ë M 1 M 2 Òº µ Ò Ë M 1 \M 2 ÙÒ M 2 \M 1 Òº µ Ï Ú Ð ÚÓÒ Ò Ò Ö Ú Ö
Εφαρμοσμένα Μαθηματικά
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Εφαρμοσμένα Μαθηματικά Ενότητα 6: Συναρτήσεις πολλών Μεταβλητών Αθανάσιος Μπράτσος Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας ΤΕ Το περιεχόμενο
Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2010.. 41.. 1 Š ƒ ˆ ˆŸ Å Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. ÉÉÊ,. Ê μ μ ± Ö μ Í Ö Ö ÒÌ
= df. f (n) (x) = dn f dx n
Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0
ΟΡΙΑ ΣΥΝΕΧΕΙΑ ΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ. 2 f (x) =, να βρεθεί ο k Î R, ώστε να. . β) Να βρείτε το. , αν για κάθε x Î U(, á) όρια lim fx ( ) και lim gx ( ).
ΟΡΙΑ ΣΥΝΕΧΕΙΑ ΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ Αν για την συνάρτηση f ισχύει ( ) το f () Έστω η συνάρτηση υπάρχει το f () 7 ( k ) f = 4 για κάθε Î R να βρεθεί 7 49 f () = να βρεθεί ο k Î R ώστε να 7 Έστω η συνάρτηση f(
Review Exercises for Chapter 7
8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6
Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 006.. 3, º 1(130).. 7Ä16 Š 530.145 ˆ ƒ ˆ ˆŒ ˆŸ Š ƒ.. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É μ ² Ö Ó μ μ Ö μ μ²õ μ É μ ÌÉ ±ÊÎ É ² ³ É μ - Î ±μ μ ÊÌ ±μ Ëμ ³ μ- ±² μ ÒÌ ³μ ²ÖÌ Ê ±. ³ É ÔÉμ μ μ μ Ö, Ö ²ÖÖ Ó ±μ³
! ҽԗज़ϧљ!!ΐμΐԃ த ໒ ำ!! ǵ թ໒!! ΒǵЬ ठ໒!! Οǵ ٣!! Ѥǵ ᇡ٣!! ϖǵᖏਔ!! Ϥǵණ!!!!! 1 ~ 1 ~
~ 1 ~ ~ 2 ~ pm ~ 3 ~ p v :9 Ô ndã ndã 2/Æs )644-619-859/* 3/sÕ )6:4-:94-594/* ss ss )2-238-5:3-342/* v v 2/s. 1/ Ô Ô )2-238-5:3 5:3-342/* 342/* :9/23/42 hsà OU%:6-974 m Ë½Ç s Äi z us o½ 352 ssu Çyg ìjý
( ) ( ) ( ) ( ) ( ) β ( ) ... Χ 2 Υ 11 Χ 12. Χ... p Χ 22 Υ 21 Υ 1. Χ... np ... ,..., ˆ. i,
"! #%$ &(' )*- /" 3 45687495:;< >?@AB DE"F G HIJ KL"MNONP QRTVUW"XZYZ[U\8Q ] ^`_ a_bcdfe _ cghjk_ e e l ezmh o`qqr stujvwxzryz"o{"q }~ u Vƒ Š ~Œ Ž w %š wœ" "žÿš Vœ` % % Z ž œ% œ Ÿ ž 8 œ9 w " 9 œ Vª«w f
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 5: Συναρτήσεις Πολλών Μεταβλητών Μέρος ΙI Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο
Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx.
ΟΛΟΚΛΗΡΩΜΑΤΑ ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ( ) 6e ) ( + ) ) 3) ( + ) 3 + + ( 5) 3 5 ) + 3 6) + 3 ( + ) Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ) cos sin ) cos ( 3) cos sin
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 4: Συναρτήσεις Πολλών Μεταβλητών Μέρος Ι Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του
Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής
Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι Άρης Παγουρτζής Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾
Ã Ð Ó ËØÓ Õ ÛÒ ÐÓ ³ À ÛÑ ØÖ ØÛÒ ÇÖ Ó ÛÒÛÒ º½ ÇÖ ÑÓ ØÓÙ ÐÓÙ ³ ÌÓ ÐÓ ³ Ò ÒØÓÑÓ ÓÑÓ Ò Ñ Ñ ÒÓ ½ ÔÖÓØ Ó ÓÖ ¹ ÑÓ Ø Ò ÖÕ º ËØÓ Ñ Ð Ø ÖÓ Ñ ÖÓ ØÓÙ ÔÖ Ø ÔÓØ Ð Ñ Ø ÔÓÙ ÓÖÓ Ò ÓÖÓÙ ÙÒ Ù ÑÓ ÓÖ Ó ÛÒÛÒ Ø ØÖ ôòûò ÓÙ Ô
Δυναμικοί τύποι δεδομένων
Δυναμικοί τύποι δεδομένων ΙωάννηςΓºΤσούλος Δεκέμβριος ¾¼ Η ÂÚπεριέχειμιασειράαπόχρήσιμεςκατηγορίεςπουχρησιμοποιούνταιγια τηνδιαχείρισηδυναμικώνδεδομένων σταοποίαδενγνωρίζουμεεκτωνπροτέρων όχι μόνον την
D F g ヾ j gj k E k j i g g ヾg g j i kg ヾ j jk g ヾ j g kg k jji g gj G k g k i g H g gh gj g g k j j IJ K L M g N li g ヾ i g IJ L O M BC
! "#$ % "&$ ' ( ' ))$ % *$ ' ( ' +, + + &)$ % &)$ ' ( ' + + + ' + ' ' / 0 1 2 2 3 4 5 6789 : 2 5 ; ; ;?. 2?>> ;? 2 @ >> ;? 2 @ > ; A 2A> 2 2 5 -. D E F G H IJKL M IJ N L O M BC RS TU V RSW U V
Ó³ Ÿ , º 4(181).. 501Ä510
Ó³ Ÿ. 213.. 1, º 4(181.. 51Ä51 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ Š ˆ ƒ ˆ ˆŸ Ÿ ƒ Ÿ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ Š.. Œμ Éμ 1,.. Ê 2 Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ± ƒ ÒÎ ² É μ Ô - ³ Ê²Ó ²Ö ³ É ± Š. Ò Ï É Í μ Ò Ô Ö ³μ³
1 Σύντομη επανάληψη βασικών εννοιών
Σύντομη επανάληψη βασικών εννοιών Μερικές χρήσιμες ταυτότητες + r + r 2 + + r n = rn r r + 2 + 3 + + n = 2 n(n + ) 2 + 2 2 + 3 2 + n 2 = n(n + )(2n + ) 6 Ανισότητα Cauchy Schwarz ( n ) 2 ( n x i y i i=
d 2 y dt 2 xdy dt + d2 x
y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf
!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!
# $ #$ % (% # )*%%# )# )$ % # * *$ * #,##%#)#% *-. )#/###%. )#/.0 )#/.* $,)# )#/ * % $ % # %# )$ #,# # %# ## )$# 11 #2 #**##%% $#%34 5 # %## * 6 7(%#)%%%, #, # ## # *% #$# 8# )####, 7 9%%# 0 * #,, :;
¼ ½ ¾ À Á Â Á Ã Ä Å Á Æ Ç È É È É Á Ê Ä Ã Ã Ë Ì Í Ç Á Ê Ã È Á Ê Æ Ê Ì Ä Î Í Ï Ä É È Í Ç È Í Ð Í Ä Ê Ñ Ê Ì Ä É È Í Ò Ó Ô Õ Ö Ø Ù Ú Ú Û Ü Ý Þ Ó Ø ß à á
F G H I J J K L L! " # $ % % & ' ( # ) * + ), -. - / 0 1 2 ), -. 3.. 4, 5 1 6 7 1 8 9 4 : ; < 4 = 4 < >? $ @ @ A B < < C D D E E E 1 8 9 4 >? U S U X s U V W U X X Y W U X U V W š T Z J J ^ _ h \ J F \
Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή
ÔØ Ö ΕΙΣΟΔΟΣ ΔΕΔΟΜΕΝΩΝ º½ ÉÄ Ò Ø Ηβασ ικήκατηγορίατης ÉØγιαείσ οδοδεδομένωνείναιηéä Ò Øμετηνοποία οχρήσ τηςμπορείναεισ άγεισ εμιαγραμμήένααλφαριθμητικόºστοναλγόριθμο º½παρουσ ιάζεταιηδήλωσ ηγιαένακεντρικόπαράθυρομετοοποίοοχρήσ
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,
Ó³ Ÿ , º 7(163).. 755Ä764 ˆ ˆŠ ˆ ˆŠ Š ˆ .. ± Î,. ˆ. ³. ƒ ˆ, Œμ ±
Ó³ Ÿ. 2010.. 7, º 7(163).. 755Ä764 ˆ ˆŠ ˆ ˆŠ Š ˆ ˆ ƒ ˆ Šˆ ˆ ˆ ƒ Š.. ± Î,. ˆ. ³ ƒ ˆ, Œμ ± μí Ê μ ± É μ μ Êα Î ÉμÉ É É μ ÒÌ ±μ² Î É Í ³ Ö- É Ö - μ É Ì μé±²μ Ö μ ³ Ê²Ó Ê ( ² Î Ì μ³ É Î μ É ) ³ Ö ±Ê²μ- μ
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä
Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ
Παράγωγος - ιαφόριση ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των πα- ϱαγώγων πραγµατικών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
3/5/016 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Παραδείγματα Κεραιών Αθανάσιος Κανάτας Καθηγητής Παν/μίου Πειραιώς Δίπολο Hetz L d
ˆ œ ˆ ˆ ˆ Šˆ Œ ˆ ˆ Š ˆ Ÿ Œˆ ˆ Œˆ ŒŠ Œ ˆ Ÿ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2009.. 40.. 6 ˆ œ ˆ ˆ ˆ Šˆ Œ ˆ ˆ Š ˆ Ÿ Œˆ ˆ Œˆ ŒŠ Œ ˆ Ÿ ˆ Œ.. Ê μ, ƒ. ƒ. ³Ö,.. Éμ ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ˆ 1603 ˆ ˆ ˆŸ ˆ ˆ œ Š Œ ˆ Ÿ 1614 Î μ μ Ö É ²Ó μ μ μ É É±. 1614 μöé μ ÉÓ μ μ Ö
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 1: Διαφορικές Εξισώσεις Μέρος Ι Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος
Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº
ÔØ Ö ΓΡΑΦΙΚΑ ΚΑΙ ΠΟΛΥΜΕΣΑ Ηβιβλιοθήκη ÉÌμπορείναχρησ ιμοποιηθείκαιγιατηνδημιουργίαπρογραμμάτων μεαπλάγραφικά γραμμές κείμενο κύκλουςκτλµόπωςεπίσ ηςγιατηνδημιουργία γραφημάτων από δεδομέναº º½ Àκατηγορία
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο. Επίδοση Υπολογιστικών Συστημάτων. Α.-Γ. Σταφυλοπάτης.
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Πειράματα Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής. Αθανάσιος Μπράτσος
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο
ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ
ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ ËÓÑÑ Ö Ò Ò ÖÞ Ù Ø Ñ Ø Ñ ÈÖÓ Ö ÑÑ Ë ØØ Ò ÔÙÖ µ ½ ÒÐ
ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ
Ó³ Ÿ. 2007.. 4, º 5(141).. 719Ä730 ˆ ˆ ƒˆÿ, Š ƒˆÿ ˆ Ÿ Ÿ Œ ˆ ˆ ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ Š Œ Œ ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ ÖÉ Ö Ê²ÓÉ ÉÒ μéò μ ³ Õ ±μ Í É Í CO 2 O 2 ϲ μì
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 653Ä664 ˆ Œ ˆ ˆ e + e K + K nπ (n =1, 2, 3) Š Œ ŠŒ -3 Š - ˆ Œ Š -2000 ƒ.. μéμ Î 1,2, μé ³ ±μ²² μ Í ŠŒ -3: A.. ß ±μ 1,2,. Œ. ʲÓÎ ±μ 1,2,.. ̳ ÉÏ 1,2,.. μ 1,.. ÏÉμ μ 1,.
!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
MÉTHODES ET EXERCICES
J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com
Points de torsion des courbes elliptiques et équations diophantiennes
Points de torsion des courbes elliptiques et équations diophantiennes Nicolas Billerey To cite this version: Nicolas Billerey. Points de torsion des courbes elliptiques et équations diophantiennes. Mathématiques
Š ˆ ˆ Šˆ Šˆ ˆ Šˆ ˆ Š ˆˆ ˆ Ÿ Œ ƒ ˆ œ Šˆ ˆ ˆ Š Œ 1 n 1,6
Ó³ Ÿ. 2013.. 10, º 3(180).. 376Ä388 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ Š ˆ ˆ Šˆ Šˆ ˆ Šˆ ˆ Š ˆˆ ˆ Ÿ Œ ƒ ˆ œ Šˆ ˆ ˆ Š Œ 1 n 1,6.. Œ Ì,.. É±μ ±μ μ Ê É Ò Ê É É, Ó, μ Ö μé Ò μ± μ ² Î ± É Î ± Ì ÉμÎ ± ÉμÎ ± ËÊ ± Í Ê Ð ÕÐ Ì
Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 2008.. 5, º 5(147).. 777Ä786 Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ ˆŒˆ Šˆ Œ Š ƒ ˆŒ œ ƒ - Ÿ ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ± μ, ÎÉμ ² ³ Ö Éμ³ μ-ô³ μ μ μ ±É μ³ É μ Ìμ É μ μ ³μ² ±Ê² CN CO 2 N 2. ±
Q Q Q 2Q b a a b
"! $# % &'()!, "!*.- -0, *# 354 36 4*78 8 :9* :65;< 3= $>?3@ 89A 3; 4CB 8D E :F :G 3$>%H3Ï J @KLK@NMPO O@Ï 3Q S "-T O J3QL'0 U * S -TW 3Q@XYS -Z-TW Q@@[U%'0 * \ * S ]9C;C 8 D_a` 8 b;a b=dce b9 3Q@Q@ 65F
ŒˆŠ Š ˆ Š ˆ ˆ ˆ œ ƒ ƒˆƒ Š ƒ.. ˆÏÌ μ,.. ²
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2007.. 38.. 2 ŒˆŠ Š ˆ Š ˆ ˆ ˆ œ ƒ ƒˆƒ Š ƒ.. ˆÏÌ μ,.. ² ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ö μ Ë ± ³... ±μ ²ÓÍÒ, Œƒ, Œμ ± μ ³Ê² Ê É Ö μ É Ö μ²ê³ ± μ ±μ Î ± Ö ³μ ²Ó, μ μ²öõð Ö ÊÎ ÉÓ ² Ö Ëμ - ³ Í μ ÒÌ,
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 9: Επικαμπύλια Ολοκληρώματα Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος
!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.
..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$
p din,j = p tot,j p stat = ρ 2 v2 j,
ÁÑ ÔÖ Þ Ñ Öº Ò ÍÔÙØ ØÚÓ Þ Ð ÓÖ ØÓÖ Ú ¹ Å Ò ÐÙ Í Å Ò ÐÙ Ø ÓÖ ÔÖÓÙÕ Ú Ù ÒÓ Ñ ÒÞ ØÖÙ Ò Ø Ü ÚÓ ÐÙ º Ç ÒÓÚÙ Ø ÞÒ Õ Ò ÖÒÙÐ Ú Ò Õ Ò Ò Õ Ò ÓÒØ ÒÙ Ø Ø ÔÖÓ¹ Ö ÕÙÒ ØÖÙ Ò ÓØÔÓÖ º ÅÒÓ Ó Ø ÓÖ ÞÒ ÒÓ Ñ ÒÞ ØÖÙ ÑÓ Ù ÔÖÓÚ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Λογισμός Ι Ενότητα 4: Παράγωγοι Κ. Δασκαλογιάννης Τμήμα Μαθηματικών Α.Π.Θ. (Α.Π.Θ.) Λογισμός Ι 1 / 68 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Mesh Parameterization: Theory and Practice
Mesh Parameterization: Theory and Practice Kai Hormann, Bruno Lévy, Alla Sheffer To cite this version: Kai Hormann, Bruno Lévy, Alla Sheffer. Mesh Parameterization: Theory and Practice. This document is
Ç ² ««É À ( \ #$&%'()*Ž+*, *,+ 1 ; g L gwo g B m«ic c ³ Ç a«i y³²< a ³ R5c c I R5c { Iº,B½_½ ¾ c mr ² c I³²d. ² _ ³² Rb_ ³R ³
À À À Z É «#$%&$' ('&) *,+ #- (.%0 125427:
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä1350 ˆ ˆ Š -3
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2018.. 49.. 4.. 1343Ä1350 ˆ ƒ ŒŒ ˆ ˆ Œ ƒˆ ˆˆ ˆ Š ˆ ˆ Š -3.. ŠÊ Ö 1,, ˆ.. μ 2,.. ɱμ 1, 2,.. 1, 2,.. Ê 1,.. Ê 2,.. μ ±μ 2, ˆ. Œ. μ 1, 2,.. Ÿ 1, Œ.. ² ± 2 1 ˆ É ÉÊÉ Ö ÒÌ ² μ, Œμ ± 2 ˆ É
Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ
Ó³ Ÿ. 218.. 15, º 2(214).. 171Ä176 Š Œ œ ƒˆˆ ˆ ˆŠ ˆ ˆ ˆ Š Š Œ Œ Ÿ ˆ Š ˆ Š ˆ ˆŠ Œ œ ˆ.. Š Ö,, 1,.. ˆ μ,,.. μ³ μ,.. ÉÓÖ μ,,.š. ʳÖ,, Í μ ²Ó Ò ² μ É ²Ó ± Ö Ò Ê É É Œˆ ˆ, Œμ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ ± Ê É
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Œ Œ ˆ ˆ ˆŠ ˆˆ 58. ˆ. Œ. ƒμ É. Œμ ±μ ± μ Ê É Ò É ÉÊÉ Ô² ±É μ ± ³ É ³ É ± (É Ì Î ± Ê É É), Œμ ±
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2010.. 41.. 1 Œ ˆ ˆ ˆŠ ˆˆ ƒ ˆ Šˆ š Š ƒ Œ ˆ Š Š Ÿ ˆˆ ˆ. Œ. ƒμ É Œμ ±μ ± μ Ê É Ò É ÉÊÉ Ô² ±É μ ± ³ É ³ É ± (É Ì Î ± Ê É É), Œμ ± ˆ 49 ˆ ˆ Šˆ Šˆ 50 ˆ ˆ Œ ˆ ˆˆ ˆ Š 54 Œ Œ ˆ ˆ ˆŠ ˆˆ 58 ˆ ˆ
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 2: Διαφορικές Εξισώσεις Μέρος ΙΙ Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος
Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 2006.. 3, º 2(131).. 105Ä110 Š 537.311.5; 538.945 Œ ƒ ˆ ƒ Ÿ ˆŠ ˆ ƒ Ÿ ƒ ˆ œ ƒ Œ ƒ ˆ ˆ Š ˆ 4 ². ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö μ ² ³ μ É ³ Í ² Ö Ê³ μ μ ³ É μ μ μ²ö
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 604Ä616 œ ˆ Š ˆ ˆ ˆ Š ˆŒ CMS LHC ˆ.. ƒμ²êé 1,.. ³ Éμ 1,2, 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 ƒμ Ê É Ò Ê É É Ê, Ê, μ Ö É ² Ò Ê²ÓÉ ÉÒ Ô± ³ É CMS, μ²êî Ò μ μ ÒÌ - μ μ Í ±² μéò LHC
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ƒ ² ± Ñ Ò É ÉÊÉ Ô É Î ± Ì Ö ÒÌ ² μ Å μ Ò Í μ ²Ó μ ± ³ ʱ ²μ Ê, Œ ±
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 017.. 48.. 6.. 934Ä940 ˆ Š Ÿ Š ˆ ˆ ˆ ˆ ƒ Ÿ.. ƒ ² ± Ñ Ò É ÉÊÉ Ô É Î ± Ì Ö ÒÌ ² μ Å μ Ò Í μ ²Ó μ ± ³ ʱ ²μ Ê, Œ ± μ μ Ò ÕÉ Ö μ ³μ μ ÉÓ ±ÉÊ ²Ó μ ÉÓ É μ É ²Ó É É μ μ É ±- Éμ Ö μ³ ²μ Ê ±μ.
Œ ƒ ˆ ˆˆ. Î ± É ÉÊÉ ³..., Œµ ± ˆ ˆˆ Œ ƒ ˆ ˆˆ 1051 Ð ³ Î Ö 1051 Î ± Ö É Í Ö 1059
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2002.. 33.. 5 Š 530.145 Œ ˆ Œ ˆ Œ ƒ ˆ ˆˆ.. Œ µ µ Î ± É ÉÊÉ ³..., Œµ ± ˆ ˆˆ Œ ƒ ˆ ˆˆ 1051 Ð ³ Î Ö 1051 Î ± Ö É Í Ö 1059 µ ³µÉ Í Ö µéò 1070 ˆ Š Œ ˆ Œ ˆ 1077 ³ ɵ µ µ³ É Î Ö ³µ ²Ó 1078 ³
Š Œ -Ÿ Š ˆŸ Ÿ Œˆ ˆ Œˆ.ˆ. Ê ÉÒ²Ó ±
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2000, Œ 31,. 2 539.172+;539.173 Š Œ -Ÿ Š ˆŸ Ÿ Œˆ ˆ Œˆ.ˆ. Ê ÉÒ²Ó ± Ñ Ò É ÉÊÉ Ö ÒÌ ² µ, Ê a ˆ 273 ˆŸ ˆ ˆ Š Œ ˆ 277 Î ± Ö ± É 277 Î Ö µ µ Ö ±µ³ Ê -Ö µ Ò µµé µï Ö ²Ö Ï ±µ³ Ê - 278 Ö É É É
2 SFI
ų 2009 2 Û 9  ¼ Ü «Ë ÐÁ Û ¼ÞÝÁ «Ð¼Â ß Ú Ì ÑÓ ±¼ ¼µÕ Û (Santa Fe) «Đ Þ ¼± «ÐÐÇ ¾ ¼Ï ««¼ Ã«Ø Ú Ó Ý¼ºÏ «Å Å ¾»«¼ É ½ ÒØ ÒÚ Ç 1944 ²Ì ¼ ÉÌ (Patrick J. Hurley, 1883 1963) ¼È Ë 1984 ÞÎ ¼ Ë ÉÜ Ò «Þ Þ ÅÌÞ Ù
P ˆ.. Ö±μ 1,.. ²μ 1,..ˆ μ 1,.. μ²μ μ 1,2,.. μ ² μ 3,.. É ±μ 1,.. 4. Š ƒ ˆ ˆ Š Š ˆ Š ˆ Šˆ. ² μ Ê ² Ó³ Ÿ
P10-2012-138 ˆ.. Ö±μ 1,.. ²μ 1,..ˆ μ 1,.. μ²μ μ 1,2,.. μ ² μ 3,.. É ±μ 1,.. 4 Š ƒ ˆ ˆ Š Š ˆ Š ˆ Šˆ ² μ Ê ² Ó³ Ÿ 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 ˆ É ÉÊÉ É μ É Î ±μ Ô± ³ É ²Ó μ μë ±, ÊÐ μ 3 ˆ É ÉÊÉ μë ± ±² ɱ,
Κάθε εξίσωση, η οποία περιλαµβάνει παραγώγους, είναι διαφορική εξίσωση. Έτσι οι εξισώσεις
ΠΑΡΑΡΤΗΜΑ Β: ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ µ ÂÓÈÎ ÓÓÔÈÂ Κάθε εξίσωση, η οποία περιλαµβάνει παραγώγους, είναι διαφορική εξίσωση Έτσι οι εξισώσεις d = + t d = 5 (Β) (Β3) d e t = cos (Β) d d = 5 + (Β4) είναι όλες διαφορικές
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του
Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±
Ó³ Ÿ. 2010.. 7, º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ ˆ Š ˆ œ Š Š Œ ˆ Œ ˆ.. Ëμ μ Î ± É ÉÊÉ ³..., Œμ ± Ò Ê²ÓÉ ÉÒ Î ² μ μ ³μ ² μ Ö É Í μ ÒÌ μí μ ² Î ÒÌ Ì - ³ Ì É ² Í Ö ²Ó μéμî ÒÌ Ô² ±É μ ÒÌ Êαμ ʲÓÉ ÉÒ ³ ³ É
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
Ó³ Ÿ , º 3(180).. 313Ä320
Ó³ Ÿ. 213.. 1, º 3(18).. 313Ä32 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ ˆŸ ƒ ƒ Ÿ ˆ Š ˆ Šˆ Š ŒŒ ˆ ˆ ˆ ˆ ˆ Œ ˆŠ.. μ a, Œ.. Œ Í ± μ,. ƒ. ²Ò ± a ˆ É ÉÊÉ Ö ÒÌ ² μ μ ±μ ± ³ ʱ, Œμ ± ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ö μ Ë ± ³... ±μ ²ÓÍÒ
Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει
Ã Ð Ó ËØÓ Õ ÛÒ ÐÓ ³ È Ö ÐÓÙ º½ È Ö Õ Ñ Ò ØÓÙ ÐÓÙ ³ ÇÖ ÑÓ ½ ½½ ÈÖ Ø ½ ÈÛ Ö ÓÙÑ ØÓ ÒØÖÓ ØÓÙ ÐÓÙº ÈÖÓØ ¾ ½ ÉÓÖ ÐÓ Ø ÑÒ Ñ ÒÓ ÔØ Ñ ÒÓ º ÈÖÓØ ½ ½ ÔØ Ñ Ò º ÈÖÓØ ¾¼ ¾¾ ½ ÛÒ ØÑ Ñ Ø ÐÓÙ Ø ØÖ ÔÐ ÙÖ ÐÓÙº à ï Ä ÁÇ
! "#! & "0/! ).#! 71 1&$ -+ #" &> " %+# "1 2$
"#$" &""'(() *+ , -------------------------------------------------------------------------------------------------------------------. / 0-1 2 $1 " 1 /& 1------------------------------------------------------------------------------------------------------------------------3
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Άλγεβρα Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Άλγεβρα Β Λυκείου Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. y y 4 y
ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ
13-2009-159.. ƒê,.. ± É,.. Ëμ μ Š ˆŒ œ ˆ ˆ ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ ² μ Ê ² ² ±É Î É μ ƒê.., ± É.., Ëμ μ.. 13-2009-159 ± ³ É ²Ó μ ² μ Ê ² Î Ö ³ É μ μ μ²ö Ð Í ² Î ± - ³³ É Î μ μ ³ É μ ³
.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o
G G - - -- - W - - - R S - q k RS ˆ W q q k M G W R S L [ RS - q k M S 4 R q k S [ RS [ M L ˆ L [M O S 4] L ˆ ˆ L ˆ [ M ˆ S 4 ] ˆ - O - ˆ q k ˆ RS q k q k M - j [ RS ] [ M - j - L ˆ ˆ ˆ O ˆ [ RS ] [ M
+ z, όπου I x, I y, I z είναι οι ροπές αδράνειας
r Έστω κβαντικός περιστροφέας ολικής στροφορμής J, που περιγράφεται από Jx J y J τη Χαμιλτονιανή H = z, όπου I x, I y, I z είναι οι ροπές αδράνειας I x I y I z του περιστροφέα ως προς τους άξονες x,y,z,
Ó³ Ÿ , º 3(194).. 673Ä677. Š Œ œ ƒˆˆ ˆ ˆŠ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ,ˆ..Š Ö, Ÿ. ʲ ±μ ±
Ó³ Ÿ. 2015.. 12, º 3(194.. 673Ä677 Š Œ œ ƒˆˆ ˆ ˆŠ ˆŸ ˆ Šˆ ˆ ˆ Œ ˆŠ ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ,ˆ..Š Ö, Ÿ. ʲ ±μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ˆ É ÉÊÉ Ö μ Ë ± μ²ó ±μ ± ³ ʱ, Š ±μ, μ²óï μé É ² Ò Ê Ö Ö Î ² Ò Ê²ÓÉ ÉÒ,
P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25
P6-2011-64.. Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25 Œ ²μ... P6-2011-64 ² μ Ö ²Õ³ Ö ± ³ Ö μ Í Ì μ Ò Ö μ-ë Î ± ³ ³ Éμ ³ μ²ó μ ³ ³ ± μé μ Œ -25 μ³μðóõ Ö μ-ë
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Όρια - Συνέχεια ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Όρια Συνέχεια ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ mail: info@iliaskosgr wwwiliaskosgr f] g,! R f] g,, f] g
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Επικαμπύλια Ολοκληρώματα. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 6: Επικαμπύλια Ολοκληρώματα Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του μαθήματος
20.2.5 Å/ ÅÃ... YD/ kod... 130
Περιεχόμενα 13 Ψάχνοντας υποαπασχόληση 1 13.1 Διάλογοι.................................................. 1 13.1.1 Ÿ º Â È Ç½µ¹ Å»µ¹..................................... 1 13.1.2 Ä µãä¹±äìá¹...........................................
Cascading failure model of complex networks based on tunable load redistribution
J X q Ô ø J 33 1 Vol33 No1 013 1 Systems Engneerng Theory & Prctce Jn 013 : 1000-6788(013)01-003-06 : N949 : A!"#$%&')()*+))-)/)01 4365 7 8 94:4; < = >@?6A 4C4D ( EFIJLKNMOPQRSTLKU VW 410073) YZ]\]^]_`cb]decf]ghc]j]k]lm]mcn]o]p]q]r]]j]s]t]]]]jxwzy]{]]j]s]
P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö
P11-2015-60. É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œ Œ ˆ Š Œ ˆ ˆ Œˆ ˆŸ ƒ Š ˆŒ Š ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 Œμ μ²ó ± μ Ê É Ò