+ z, όπου I x, I y, I z είναι οι ροπές αδράνειας
|
|
- Ἄλκανδρος Τρικούπης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 r Έστω κβαντικός περιστροφέας ολικής στροφορμής J, που περιγράφεται από Jx J y J τη Χαμιλτονιανή H = z, όπου I x, I y, I z είναι οι ροπές αδράνειας I x I y I z του περιστροφέα ως προς τους άξονες x,y,z, αντίστοιχα. i Δείξτε ότι ο κβαντικός αριθμός που χαρακτηρίζει το μέτρο, ή το τετράγωνο, της στροφορμής του περιστροφέα διατηρείται, με την έννοια ότι αν η αρχική κατάσταση του περιστροφέα είναι μια κατάσταση με σταθερό, αν δηλαδή είναι γραμμικός συνδυασμός των καταστάσεων,,, -,...,, -, τότε η χρονική εξέλιξη δεν αλλάζει το μέτρο ούτε το τετράγωνο της στροφορμής. ii Υπολογίστε τον μεταθέτη é H, J z ù και δείξτε ότι μηδενίζεται αν και μόνο αν = Iy. iii Τι μπορείτε να πείτε, γενικά, για τις ιδιοκαταστάσεις της ενέργειας του περιστροφέα; iv Αν I x = I y, πώς γράφεται η Χαμιλτονιανή H ; Ποιες είναι τότε οι ενέργειες του περιστροφέα; Τι παρατηρείτε; Λύση i Έστω ότι η αρχική κατάσταση y 0 του περιστροφέα είναι μια κατάσταση σταθερού, είναι δηλαδή γραμμικός συνδυασμός των καταστάσεων που έχουν το ίδιο, δηλαδή y 0 = åc m =- m, m, όπου cm οι μιγαδικοί συντελεστές του αναπτύγματος. Η δράση του τετραγώνου της στροφορμής στην κατάσταση y 0 μάς δίνει æ ö J y 0 = J ç å cm, m = å cm è m=- ø m=- = h åc J, m = å cm h, m = 44 m=- h, m, m = h y 0 m =- 44 m y 0 J y 0 = h y 0
2 Η αρχική κατάσταση y 0 είναι επομένως κι αυτή ιδιοκατάσταση του τετραγώνου της στροφορμής με την ίδια ιδιοτιμή με κάθε κατάσταση, m, κάτι αναμενόμενο, αφού η y 0 είναι γραμμικός συνδυασμός καταστάσεων που έχουν το ίδιο εκφυλισμένων καταστάσεων. Εξάλλου, επειδή το τετράγωνο της στροφορμής μετατίθεται και με τις τρεις συνιστώσες της, άρα και με τα τετράγωνα των τριών συνιστωσών της, η Jx J y Jz Χαμιλτονιανή H = του περιστροφέα μετατίθεται με το τετράγωνο I x I y I z της στροφορμής, δηλαδή é H, J ù = 0. Επομένως, η Χαμιλτονιανή και το τετράγωνο ê ú της στροφορμής έχουν κοινές ιδιοκαταστάσεις. Η αρχική κατάσταση y 0 είναι ιδιοκατάσταση του τετραγώνου της στροφορμής, άρα είναι και ιδιοκατάσταση της Χαμιλτονιανής, η οποία είναι χρονοανεξάρτητη, επομένως æ iet ö y 0, è h ø y t = exp ç - όπου E είναι η ενέργεια της ιδιοκατάστασης y 0. Με τη βοήθεια της, η δράση του τετραγώνου της στροφορμής στην κατάσταση y t είναι æ iet ö æ iet ö J y t = exp ç J y 0 = h exp ç y 0 = h y t 4 4 è h ø è 4h444 ø 44 h y 0 y t J y t = h y t 4 Από την 4 βλέπουμε ότι η y t είναι ιδιοκατάσταση του τετραγώνου της στροφορμής, ίδιας ιδιοτιμής με την y 0. Έτσι, η χρονική εξέλιξη δεν αλλάζει το μέτρο ούτε το τετράγωνο της στροφορμής του περιστροφέα. ii Είναι é J J J ù é H, J z ù = ê x y z, J z ú = é J x, J z ù é J y, Jz ù é Jz, J z ù 5 I I ê I x I y I z ú I x y z Όμως é Jx, Jz ù = Jx é Jx, J z ù é J x, Jz ù Jx = Jx -ihj y -ihj y Jx = -ih Jx J y J y J x και
3 é J y, Jz ù = J y é J y, Jz ù é J y, J z ù J y = J y ihjx ihjx J y = ih J y Jx Jx J y = = ih J x J y J y J x = - é J x, J z ù é J y, Jz ù = - é J x, J z ù ¹ 0 6 Επίσης é Jz, Jz ù = 0 7 Με τη βοήθεια της 6 και της 7, από την 5 παίρνουμε é H, J z ù = éjx, Jz ù é J x, J z ù = ç - é Jx, J z ù I I ç I x y è x Iy ø é H, Jz ù = ç - é Jx, Jz ù 8 ç I è x Iy ø Επειδή é Jx, Jz ù ¹ 0, από την 8 βλέπουμε ότι ο μεταθέτης é H, J z ù μηδενίζεται αν και μόνο αν - = 0, δηλαδή αν και μόνο αν I x = I y. Iy J J J iii Γενικά, η Χαμιλτονιανή H = x y z του περιστροφέα μετατίθεται με το I x I y I z τετράγωνο της στροφορμής. Έτσι, στη γενική περίπτωση, οι ιδιοκαταστάσεις του τετραγώνου της στροφορμής, δηλαδή οι καταστάσεις σταθερού, είναι και ιδιοκαταστάσεις της ενέργειας του περιστροφέα. Επειδή η Χαμιλτονιανή του περιστροφέα δεν έχει άλλους βαθμούς ελευθερίας εκτός από τις τρεις συνιστώσες της στροφορμής, δεν έχει άλλες ιδιοκαταστάσεις. Επομένως, στη γενική περίπτωση, οι ιδιοκαταστάσεις της ενέργειας του περιστροφέα είναι οι καταστάσεις σταθερού. Ξέρουμε ότι για κάθε τιμή του, υπάρχουν ορθοκανονικές καταστάσεις, αφού m = -, -,...,, οι οποίες αποτελούν βάση στον χώρο των καταστάσεων του περιστροφέα. Στη γενική περίπτωση, οι ιδιοκαταστάσεις της ενέργειας του περιστροφέα είναι, λοιπόν, γραμμικοί συνδυασμοί των καταστάσεων {, m } m =-, για κάθε τιμή του. Αν οι ροπές αδράνειας του περιστροφέα ως προς τους άξονες x και y είναι ίσες, δηλαδή αν I x = I y, τότε, όπως δείξαμε στο προηγούμενο ερώτημα, η Χαμιλτονιανή του περιστροφέα μετατίθεται ΚΑΙ με τη z συνιστώσα της στροφορμής του, οπότε έχει κοινές ιδιοκαταστάσεις και με τη z συνιστώσα της στροφορμής του. Στην ειδική αυτή περίπτωση, οι ιδιοκαταστάσεις της ενέργειας του περιστροφέα είναι οι καταστάσεις σταθερού ΚΑΙ σταθερού m, είναι δηλαδή οι καταστάσεις, m.
4 Σε κάθε άλλη περίπτωση, όπου I x ¹ I y, η Χαμιλτονιανή του περιστροφέα δεν μετατίθεται με τη z συνιστώσα της στροφορμής του, και οι καταστάσεις, m δεν είναι, γενικά, ιδιοκαταστάσεις της ενέργειας του περιστροφέα. iv Αν I x = I y, η Χαμιλτονιανή του περιστροφέα γράφεται Jx J y J z 9 H= I x Iz Όμως J = Jx ex J y ey Jz ez Þ J = Jx J y Jz Þ Jx J y = J - Jz 0 Με τη βοήθεια της 0, η 9 γράφεται J - Jz Jz æ ö H= = J ç - Jz I x I z I x è Iz ø æ ö H = J ç - J z I x è Iz ø Βλέπουμε ότι η Χαμιλτονιανή μετατίθεται με το τετράγωνο και με τη z συνιστώσα της στροφορμής, επομένως οι καταστάσεις, m είναι ιδιοκαταστάσεις της Χαμιλτονιανής, η οποία, επειδή δεν έχει άλλους βαθμούς ελευθερίας, δεν έχει άλλες ιδιοκαταστάσεις. Αν δράσουμε με τη Χαμιλτονιανή σε μια τυχαία ιδιοκατάσταση, m, θα πάρουμε æ æ ö ö H, m = çç J ç - J z, m = è Iz ø è I x ø J, m ç - Jz, m = 44 è I z I x ø 44 h, m h, m ç - m h, m = I x è Iz ø h æ æ ö ö h æ - m m ö = çç ç - m, m = ç, m è è è Iz I x ø ø = h æ - m m ö H, m = ç, m è Επομένως, η ενέργεια της ιδιοκατάστασης, m είναι E,m h æ - m m ö = ç è mh,m
5 Παρατηρήστε ότι E,- m = E,m, δηλαδή οι καταστάσεις, - m και, m είναι εκφυλισμένες, αν m ¹ 0. Από τη βλέπουμε ότι αν I x = I z, δηλαδή αν και οι τρεις ροπές αδράνειας είναι h ίσες I x = I y = I z º I, τότε οι ενέργειες του περιστροφέα είναι E =, I δηλαδή οι καταστάσεις, m με το ίδιο έχουν την ίδια ενέργεια, είναι δηλαδή εκφυλισμένες. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. skonstan@hotmail.com
Δηλαδή. Η Χαμιλτονιανή του περιστροφέα μέσα στο μαγνητικό πεδίο είναι
Κβαντικός περιστροφέας που J J J H y z τοποθετείται y z περιγράφεται μέσα σε από τη ομογενές, Χαμιλτονιανή χρονοανεξάρτητο μαγνητικό πεδίο με κατεύθυνση στα θετικά του άξονα z, δηλαδή B B ez, με B >. Αν
Δείξτε ότι οι ιδιοκαταστάσεις της ενέργειας του ελεύθερου κβαντικού 2
Δείξτε ότι οι ιδιοκαταστάσεις της ενέργειας του ελεύθερου κβαντικού Jˆ Jˆ Jˆ περιστροφέα με Χαμιλτονιανή Hˆ = x y z και ολική στροφορμή j = x y z είναι οι ιδιοκαταστάσεις των τριών συνιστωσών της στροφορομής
Σύστημα δύο αλληλεπιδρώντων σπιν μέσα σε ομογενές μαγνητικό πεδίο (άσκηση)
Σύστημα δύο αλληλεπιδρώντων σπιν μέσα σε ομογενές μαγνητικό πεδίο (άσκηση) Δύο σωμάτια με σπιν s και s αντίστοιχα και με τον ίδιο γυρομαγνητικό λόγο τοποθετούνται μέσα σε ομογενές χρονοανεξάρτητο μαγνητικό
( x) Half Oscillator. Σωμάτιο βρίσκεται υπό την επίδραση του δυναμικού
Half Oscillator Σωμάτιο βρίσκεται υπό την επίδραση του δυναμικού ì, x ï V x í ïî mw x, x > Το σύστημα αυτό αναφέρεται ως «Half Oscillator». Στα Ελληνικά, θα χρησιμοποιήσουμε τον όρο «μισός αρμονικός ταλαντωτής»,
Το θεώρημα virial1 στην κβαντική μηχανική
Το θεώρημα val στην κβαντική μηχανική Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. sposkonsanoganns@gal.co 7 Φεβρουαρίου 08 Η λέξη val προέρχεται από το λατινικό vs, που σημαίνει «δύναμη», «ενέργεια», «ισχύς»
! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C
Δύο διακρίσιμα σωμάτια με σπιν s 1
Δύο διακρίσιμα σωμάτια με σπιν και Σύνδεση της βάσης των ιδιοκαταστάσεων του τετραγώνου και της z συνιστώσας του ολικού σπιν με τη βάση που αποτελείται από τα τανυστικά γινόμενα των καταστάσεων των δύο
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H
Λυμένες ασκήσεις στροφορμής
Λυμένες ασκήσεις στροφορμής Θα υπολογίσουμε τη δράση των τελεστών κλίμακας J ± σε μια τυχαία ιδιοκατάσταση j, m των τελεστών J και Jˆ. Λύση Δείξαμε ότι η κατάσταση Jˆ± j, m είναι επίσης ιδιοκατάσταση των
Μια γενική έκφραση της κυματοσυνάρτησης στον χώρο των ορμών για μια δέσμια κατάσταση
Μια γενική έκφραση της κυματοσυνάρτησης στον χώρο των ορμών για μια δέσμια κατάσταση Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. spiroskonstantogiannis@gmail.com Δεκεμβρίου 07 //07 Coprigt Σπύρος Κωνσταντογιάννης,
ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ
ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ Ξεκινώντας από τους τελεστές δημιουργίας και καταστροφής
) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,
ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ
ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ Έστω â μια παρατηρήσιμη (διανυσματικός τελεστής) με συνεχές φάσμα ιδιοτιμών. Επίσης, έστω ότι t είναι η κατάσταση του συστήματός μας την τυχαία χρονική στιγμή
Είναι (1) Έστω (2) Τότε η (1) γράφεται (3) Από την (3) βλέπουμε ότι η y ( x; a ) περιγράφει μια συνοχική κατάσταση μάλιστα
Είναι i ö ö y ( ; ) ç ep ç - ˆ ep ç ( p ø ø ) ö ø () Έστω () Τότε η () γράφεται i ö ö y ( ; ) ç ep ç ep ç - ( - ˆ p ø ø ) ö ø (3) Από την (3) βλέπουμε ότι η y ( ; ) περιγράφει μια συνοχική κατάσταση μάλιστα
Ιδιοσυναρτήσεις του αρμονικού ταλαντωτή Πολυώνυμα Hermite
Ιδιοσυναρτήσεις του αρμονικού ταλαντωτή Πολυώνυμα Hermite i) Δείξτε ότι δύο τυχαίες διαδοχικές ιδιοσυναρτήσεις του αρμονικού ταλαντωτή έχουν αντίθετη ομοτιμία. ii) Δείξτε ότι y n 0 ) ¹ 0, για n = 0,,...
Παραμαγνητικός συντονισμός
Παραμαγνητικός συντονισμός B B teˆ teˆ B eˆ, όπου Έστω ηλεκτρόνιο σε μαγνητικό πεδίο cos sin x y z B, B. Θεωρούμε ότι η σταθερή συνιστώσα του μαγνητικού πεδίου, Be, ˆz είναι ισχυρότερη από τη χρονοεξαρτώμενη
Σπιν 1/2. Γενικά. 2 Υπενθυμίζουμε ότι τα έξι κουάρκ και τα έξι λεπτόνια του Καθιερωμένου Προτύπου,
Σπιν / Γενικά Θα χρησιμοποιήσουμε τις γενικές σχέσεις που αποδείξαμε στην ανάρτηση «Εύρεση των ιδιοτιμών της στροφορμής», που, όπως είδαμε, ισχύουν για κάθε γενική r στροφορμή Jˆ με συνιστώσες Jˆ x, Jˆ
Â. Θέλουμε να βρούμε τη μέση τιμή
ΜΕΣΗ ΤΙΜΗ ΕΝΟΣ ΕΡΜΙΤΙΑΝΟΥ ΤΕΛΕΣΤΗ Έστω ο ερμιτιανός τελεστής Â. Θέλουμε να βρούμε τη μέση τιμή Â μια χρονική στιγμή, που αυθαίρετα, αλλά χωρίς βλάβη της γενικότητας, θεωρούμε χρονική στιγμή μηδέν, όπου
Αρμονικός ταλαντωτής Ασκήσεις
Αρμονικός ταλαντωτής Ασκήσεις 4. Αρμονικός ταλαντωτής, τη χρονική στιγμή t, βρίσκεται στην κατάσταση ˆ i e, όπου η βασική κατάσταση του αρμονικού ταλαντωτή, ο τελεστής της ορμής, και η κλίμακα μήκους του
1. Μετάπτωση Larmor (γενικά)
. Μετάπτωση Larmor (γενικά) Τι είναι η μετάπτωση; Μετάπτωση είναι η αλλαγή της διεύθυνσης του άξονα περιστροφής ενός περιστρεφόμενου αντικειμένου. Αν ο άξονας περιστροφής ενός αντικειμένου περιστρέφεται
Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής
Τροχιακή Στροφορμή Δομή Διάλεξης Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής Ιδιοτιμές και ιδιοκαταστάσεις της L
ˆ ˆ. (τελεστής καταστροφής) (τελεστής δημιουργίας) Το δυναμικό του συστήματός μας (αρμονικός ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι
ΜΟΝΟΔΙΑΣΤΑΤΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΕ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ Ξεκινώντας από τους τελεστές δημιουργίας και καταστροφής
μαγνητικό πεδίο τυχαίας κατεύθυνσης
Σπιν 1 μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο τυχαίας κατεύθυνσης 1) Ηλεκτρόνιο βρίσκεται μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο B B ˆ ˆ ˆ 0xex B0 yey B0 zez, όπου B0 x, B0
Εύρεση των ιδιοτιμών της στροφορμής
Εύρεση των ιδιοτιμών της στροφορμής Χρησιμοποιώντας την άλγεβρα της στροφορμής, θα υπολογίσουμε τις ιδιοτιμές του τετραγώνου της και της -συνιστώσας της. Μπορούμε, ωστόσο, να θέσουμε το πρόβλημα γενικότερα,
Η άλγεβρα της στροφορμής
Η άλγεβρα της στροφορμής Στην κλασική μηχανική, η τροχιακή στροφορμή L ενός σωματιδίου είναι L r p (1) όπου r το διάνυσμα θέσης του σωματιδίου και p η ορμή του. Σε καρτεσιανές συντεταγμένες, η (1) γράφεται
Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2.
Σπιν Γενικά Θα χρησιμοποιήσουμε τις γενικές σχέσεις που αποδείξαμε στην ανάρτηση «Εύρεση των ιδιοτιμών της στροφορμής», που, όπως είδαμε, ισχύουν για κάθε γενική στροφορμή ˆ J με συνιστώσες Jˆ, Jˆ, J ˆ,
μαγνητικό πεδίο παράλληλο στον άξονα x
Σπιν μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο παράλληλο στον άξονα ) Ηλεκτρόνιο βρίσκεται μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο με κατεύθυνση στα θετικά του άξονα, δηλαδή e,
(φορτισμένος αρμονικός 2 ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι
ΜΟΝΟΔΙΑΣΤΑΤΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΕ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΥΠΟΛΟΓΙΣΜΟΣ ΜΕΣΩΝ ΤΙΜΩΝ ΜΕ ΧΡΗΣΗ ΤΩΝ ΤΕΛΕΣΤΩΝ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ Για μια τυχαία ιδιοκατάσταση της ενέργειας,, υπολογίζουμε
Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών
Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών Δομή Διάλεξης Ανασκόπηση συμβολισμού Dirac Διαταραχές σε σύστημα δύο καταστάσεων Η γενική μέθοδος μη-εκφυλισμένης θεωρίας διαταραχών Εφαρμογή: Διαταραχή
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Τροχιακή Στροφορμή (Ορισμοί Τελεστών) Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Πανεπιστήμιο Αθηνών Τμήμα Φυσικής
Κβαντομηχανική ΙI Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Α. Καρανίκας και Π. Σφήκας Σημειώσεις IX: Πρόσθεση στροφορμών Υπάρχουν πάμπολα φυσικά συστήματα στα οποία η κίνηση των επί μέρους σωματιδίων ή τα spin
ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής
ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής Re Im V r V r i V r, όπου οι συναρτήσεις Re,Im V r V r είναι πραγματικές συναρτήσεις
Εξετάσεις 1ης Ιουλίου Για την ϐασική κατάσταση του ατόµου του Υδρογόνου της οποίας η κανονικοποιηµένη στην µονάδα
ΘΕΜΑ 1: Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ Εξετάσεις 1ης Ιουλίου 13 Τµήµα Α. Λαχανά) Α ) Για την πρώτη διεγερµένη κατάσταση του ατόµου του Υδρογόνου µε τροχιακή στροφορµή l = 1 να προσδιορισθουν οι αποστάσεις
Μετασχηματισμοί Καταστάσεων και Τελεστών
Μετασχηματισμοί Καταστάσεων και Τελεστών Δομή Διάλεξης Μετασχηματισμοί Καταστάσεων Τελεστής Μετατόπισης Συνεχείς Μετασχηματισμοί και οι Γεννήτορές τους Τελεστής Στροφής Διακριτοί Μετασχηματισμοί: Parity
(ταλαντούμενο) μαγνητικό πεδίο τυχαίας κατεύθυνσης Επίλυση με αλλαγή βάσης
Σπιν 1 μέσα σε χρονικά μεταβαλλόμενο (ταλαντούμενο) μαγνητικό πεδίο τυχαίας κατεύθυνσης Επίλυση με αλλαγή βάσης Έστω ηλεκτρόνιο μέσα σε μαγνητικό πεδίο cos B B t, όπου B, και si cose si sie cos e είναι
1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι
Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. 8 Δεκεμβρίου 2017
Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. siroskonstantogiannis@gmail.com 8 Δεκεμβρίου 7 8//7 Coyrigt Σπύρος Κωνσταντογιάννης, 7. Με επιφύλαξη παντός δικαιώματος.
ΟΡΙΑ ΣΥΝΕΧΕΙΑ ΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ. 2 f (x) =, να βρεθεί ο k Î R, ώστε να. . β) Να βρείτε το. , αν για κάθε x Î U(, á) όρια lim fx ( ) και lim gx ( ).
ΟΡΙΑ ΣΥΝΕΧΕΙΑ ΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ Αν για την συνάρτηση f ισχύει ( ) το f () Έστω η συνάρτηση υπάρχει το f () 7 ( k ) f = 4 για κάθε Î R να βρεθεί 7 49 f () = να βρεθεί ο k Î R ώστε να 7 Έστω η συνάρτηση f(
ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - Θ. BOLZANO - Θ. ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ. , ώστε η συνάρτηση. æ η γραφική της παράσταση να διέρχεται από το σημείο Mç
Να βρεθούν τα α και β Î R, ώστε η συνάρτηση ì 4 ημ - + = í - î α + β < ³ να είναι συνεχής και æ η γραφική της παράσταση να διέρχεται από το σημείο Mç è,- ö ø Να βρείτε τα α, β, γ Î R, ώστε να είναι συνεχής
ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ), και τις ενεργειακές στάθμες του, 2. E E E, όπου ˆ
ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ) Στο απειρόβαθο πηγάδι με τοιχώματα στα σημεία x, θα υπολογίσουμε τη διασπορά της ενέργειας,, για τη μικτή κατάσταση με 5 x x x 8 μέσα στο πηγάδι
ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια
ii) Υπολογίστε τις μέσες τιμές της θέσης και της ορμής του ταλαντωτή όταν t 0.
ΑΣΚΗΣΗ 4 Αρμονικός ταλαντωτής, τη χρονική στιγμή t, βρίσκεται στην κατάσταση ip ˆ x x, όπου η βασική κατάσταση του αρμονικού ταλαντωτή, ˆp x ο τελεστής της ορμής, και η κλίμακα μήκους του αρμονικού ταλαντωτή.
Δομή Διάλεξης. Ορισμός-Παραδείγματα Τελεστών. Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών. Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών
Τελεστές Δομή Διάλεξης Ορισμός-Παραδείγματα Τελεστών Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών Ερμητειανοί τελεστές Στοιχεία πίνακα τελεστών Μεταθέτες
Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος
Λύσεις των θεμάτων προσομοίωσης -- Σχολικό Έτος 5-6 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»
Για να υπολογίσουμε το ολοκλήρωμα στο δεξιό μέλος της (3), κάνουμε την αλλαγή μεταβλητής
Στην αναπαράσταση θέσης, η τυχαία συνοχική κατάσταση του αρμονικού ταλαντωτή περιγράφεται από μια κυματοσυνάρτηση της μορφής y ( ( Η κυματοσυνάρτηση στην αναπαράσταση ορμής, y% (, είναι ο μετασχηματισμός
Κβαντική Μηχανική ΙΙ. Ενότητα 8: Ερωτήσεις και Ασκήσεις (Ασκήσεις προς Λύση) Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Μηχανική ΙΙ Ενότητα 8: Ερωτήσεις και Ασκήσεις (Ασκήσεις προς Λύση) Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΛΥΣΗ Οι ασκήσεις που ακολουθούν είναι προς επίλυση από
Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις
Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις Δομή Διάλεξης Εκφυλισμένη Θεωρία Διαταραχών: Γενική Μέθοδος για την αντιμετώπιση των απειρισμών λόγω εκφυλισμού Εφαρμογή σε διεγερμένη κατάσταση υδρογόνου
Δομή Διάλεξης. Ορισμός Ολικής Στροφορμής. Σχέση βάσης ολικής στροφορμής (j,m j ) με βάση επιμέρους στροφορμών (m 1,m 2 )
Πρόσθεση Στροφορμών Δομή Διάλεξης Ορισμός Ολικής Στροφορμής Σχέση βάσης ολικής στροφορμής (j,m j ) με βάση επιμέρους στροφορμών (m 1,m 2 ) Συντελεστές μετάβασης (Glebsch-Gordon) για σύνθεση από l=1, s=1/2
Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική
Spin Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Δομή Διάλεξης Το πείραμα Stern-Gerlach: Πειραματική απόδειξη spin Ο δισδιάστατος χώρος καταστάσεων spin του ηλεκτρονίου: οι πίνακες Pauli Χρονική εξέλιξη
και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Πρόσθεση Στροφορμών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Πρόσθεση Στροφορμών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΑΠΑΝΤΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. Σωστό. Σωστό. Σωστό 4. Λάθος 5. Σωστό 6. Λάθος 7. Σωστό 8. Λάθος 9. Σωστό 0. Λάθος. Λάθος a. Σωστό b. Λάθος c. Λάθος
Άσκηση 1. Δείξτε τις σχέσεις μετάθεσης των πινάκων Pauli
Άσκηση 1 Δείξτε τις σχέσεις μετάθεσης των πινάκων Pauli Άσκηση 2 Βρείτε την δράση των τελεστών του spin S x, S y, S z, στις ιδιοκαταστάσεις του S z +1/2>, =1/2> Η αναπαράσταση των S x, S y, S z, στις ιδιοκαταστάσεις
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 8 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σελίδα από Φάνης Μαργαρώνης Φροντιστήρια Ρούλα Μακρή Τομέας μαθηματικών ΘΕΜΑ
E + m. m + E 2m (σ p)/(2m) v. i( p) x = v(p, 97/389
97/389 Χρησιμοποιώντας τον ίδιο νορμαλισμό N = E + m έχουμε vp, s = σ p E + m E +m χs χ s, s =, 2 και ψ = vp, se i p x = vp, se ip x με p = E, p. Η επιλογή είναι χ = και χ 2 = γιατί η απουσία ενός άνω
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5
Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 53 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος
Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο: Λεπτή Υφή, Φαινόμενο Zeeman, Υπέρλεπτη Υφή
Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο: Λεπτή Υφή, Φαινόμενο Zeeman, Υπέρλεπτη Υφή Δομή Διάλεξης Λεπτή Υφή: Άρση εκφυλισμού λόγω σύζευξης spin με μαγνητικό πεδίο τροχιακής στροφορμής και λόγω σχετικιστικού
3/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΟ ΣΠΙΝ
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΤΟ ΣΠΙΝ ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ Στέλιος Τζωρτζάκης 1 3 4 Εισαγωγή Η ενδογενής στροφορμή ή αλλιώς σπιν αποτελεί ένα θεμελιώδες χαρακτηριστικό των σωματιδίων διότι
ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC Στέλιος Τζωρτζάκης Ο γενικός φορμαλισμός Dirac 1 3 4 Εικόνες και αναπαραστάσεις Επίσης μια πολύ χρήσιμη ιδιότητα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εφαρμογές Θεωρίας Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Εφαρμογές Θεωρίας Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Θεωρία της στροφορμής Στέλιος Τζωρτζάκης 1 3 4 Υπενθύμιση βασικών εννοιών της στροφορμής κυματοσυνάρτηση
Εισαγωγή στις Τηλεπικοινωνίες
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Ανάπτυξη σε Σειρές Furier Αθανάσιος Κανάτας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 13/04/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 3/04/06 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ονομάζουμε ρυθμό μεταβολής του y = f( ως προς το στο σημείο 0 ;
Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )
vs of Io vs of Io D of Ms Scc & gg Couo Ms Scc ική Θεωλης ική Θεωλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 746 dok@cc.uo.g cs.s.uo.g/dok ομηχ ομηχ δ ά τρεις διαστ Εξίσωση Schödg σε D Σε μία διάσταση Σε τρείς
ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ. ii) = x και. Περιπτώσεις στις οποίες η συνάρτηση είναι πολλαπλού τύπου και το x
ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ Περιπτώσεις στις οποίες βρίσκουμε την παράγωγο της f στο με τον ορισμό ~ Να βρεθούν με τη βοήθεια του ορισμού οι παράγωγοι αριθμοί των παρακάτω συναρτήσεων: i) f() = + + 4 στο =- ii) f()
Κεφάλαιο 7: Μετασχηματισμοί Καταστάσεων και Τελεστών
Κεφάλαιο 7: Μετασχηματισμοί Καταστάσεων και Τελεστών Περιεχόμενα Κεφαλαίου Τα θέματα που θα καλύψουμε στο κεφάλαιο αυτό είναι τα εξής (Τραχανάς, 2005 Τραχανάς, 2008 Binney & Skinner, 2013 Fitzpatrick,
ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει
ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ Θέμα α) Δείξτε ότι οι διακριτές ιδιοτιμές της ενέργειας σε ένα μονοδιάστατο πρόβλημα δεν είναι εκφυλισμένες β) Με βάση το προηγούμενο ερώτημα να δείξετε ότι μπορούμε να διαλέξουμε τις
Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ
Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ Χρονικά Ανεξάρτητη Θεωρία Διαταραχών. Τα περισσότερα φυσικά συστήματα που έχομε προσεγγίσει μέχρι τώρα περιγράφονται από μία κύρια Χαμιλτονιανή η οποία
Για τη συνέχεια σήμερα...
ΦΥΣ 211 - Διαλ.10 1 Για τη συνέχεια σήμερα... q Συζήτηση ξανά των νόμων διατήρησης q Χρησιμοποιώντας τον φορμαλισμό Lagrange q Γραμμική ορμή και στροφορμή q Σύνδεση μεταξύ συμμετρίας, αναλλοίωτο της Lagrangan,
ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ
ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ? Εύρεση εφαπτόμενης της γνωστό σημείο (, ( )) με την βοήθεια του ορισμού: Εάν το σημείο αλλαγής τύπου η σημείο μηδενισμού της ύπαρξης ποσότητας, εξετάζω αν η είναι παραγωγισιμη
ΚΕΦΑΛΑΙΟ 4 Ο ΕΚΘΕΤΙΚΗ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ 4 Ο ΕΚΘΕΤΙΚΗ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 Ο ΕΚΘΕΤΙΚΗ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΙΔΙΟΤΗΤΕΣ ΔΥΝΑΜΕΩΝ Από προηγούμενες τάξεις γνωρίζουμε τις παρακάτω ιδιότητες
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ επιμέλεια: ΑΘΗΝΑ ΚΑΡΑΜΑΝΙΔΟΥ ΜΑΘΗΜΑΤΙΚΟΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑ Ο Δίνεται η συνάρτηση f( = α, є[,+ ) όπου αє(,) σταθερό. (i) Ν.δ.ο. η f στρέφει
Αριθμητική Ολοκλήρωση με τις μεθόδους Τραπεζίου/Simpson. Φίλιππος Δογάνης Δρ. Χημικός Μηχανικός ΕΜΠ
Αριθμητική Ολοκλήρωση με τις μεθόδους Τραπεζίου/Smpso Φίλιππος Δογάνης Δρ. Χημικός Μηχανικός ΕΜΠ Μια πρώτη προσέγγιση Ο χώρος χωρίζεται σε διαστήματα: {... } Prtto P O r ίz o u µe : { } { } m m : M m :
Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος
Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου
Κεντρικά Δυναμικά Δομή Διάλεξης Εύρεση ακτινικού μέρους εξίσωσης Schrödinger Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους Εφαρμογή σε άτομο υδρογόνου Ακτινική Συνιστώσα Ορμής Έστω Χαμιλτονιανή
Μάθηµα 13 ο, 30 Οκτωβρίου 2008 (9:00-11:00).
Μάθηµα ο 0 Οκτωβρίου 008 (9:00-:00) ΑΣΚΗΣΕΙΣ ΣΧΕΤΙΚΕΣ ΜΕ ΘΕΜΕΛΙΩ ΕΙΣ ΑΡΧΕΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Άσκηση 9 Έστω ένα κβαντικό σύστηµα το οποίο περιγράφεται από τρεις ενεργειακές καταστάσεις (ιδιοτιµές ενέργειας
Τα θέματα συνεχίζονται στην πίσω σελίδα
ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΚΑΤΕΥΘΥΝΣΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΞΕΤΑΣΤΙΚΗ ΙΑΝΟΥΑΡΙΟΥ ΑΚΑΔ. ΕΤΟΣ 16-17 Διδάσκων : Χ. Βοζίκης Τ. Ε. Ι. ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
Μάθηµα 19 ο, 25 Νοεµβρίου 2008 (9:00-11:00) & Συµπλήρωµα 7 εκεµβρίου 2010 (9:00-11:00).
Μάθηµα 9 ο, 5 Νοεµβρίου 008 (9:00-:00) & Συµπλήρωµα 7 εκεµβρίου 00 (9:00-:00). ΑΣΚΗΣΗ 9- Θεωρούµε φυσικά µεγέθη που περιγραφονται από τους τελεστές A, B, C και H (Χαµιλτονιανή). Γνωρίζουµε για τους τελεστές
(1) (3) x a. Από την (3) βλέπουµε ότι η ( ) τυχαία συνοχική κατάσταση ενός αρµονικού ταλαντωτή µε κλίµακα µήκους a. â a, θα είναι,
Είναι i x 4 ( x ) ψ( x; ) e e () π Έστω () Τότε η () γράφεται ψ ( ; ) i x 4 ( x ) x e e (3) π είναι µια συνοχική κατάσταση µάλιστα µια Από την (3) βλέπουµε ότι η ( ) τυχαία συνοχική κατάσταση ενός αρµονικού
βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των
Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Ορισμός ελαχίστου πολυωνύμου γραμμικής απεικόνισης και ιδιότητές του Κριτήριο διαγωνισιμότητας
Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά
Διάλεξη : Κεντρικά Δυναμικά Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöing για κεντρικά δυναμικά Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03 Κεντρικά δυναμικά Εξάρτηση δυναμικού
Sˆy. Η βάση για την οποία συζητάμε απαρτίζεται από τα ανύσματα = (1) ˆ 2 ± =± ± Άσκηση 20. (βοήθημα θεωρίας)
Άσκηση 0. (βοήθημα θεωρίας) Έστω + και η βάση που συγκροτούν οι (κοινές) ιδιοκαταστάσεις των τελεστών ˆ S και Sˆz ενός σωματίου με spin 1/. Να βρείτε την αναπαράσταση των τελεστών S ˆx, Sˆ και Sˆz στη
Η Αναπαράσταση της Θέσης (Position Representation)
Η Αναπαράσταση της Θέσης (Position Representation) Δομή Διάλεξης Το παρατηρήσιμο μέγεθος της θεσης και τα αντίστοιχα πλάτη πιθανότητας (συνεχές φάσμα ιδιοτιμών και ιδιοκαταστάσεων) Οι τελεστές της θέσης
, που, χωρίς βλάβη της γενικότητας, μπορούμε να θεωρήσουμε χρονική στιγμή μηδέν, δηλαδή
Η ΚΥΜΑΤΟΣΥΝΑΡΤΗΣΗ ΣΤΗΝ ΑΝΑΠΑΡΑΣΤΑΣΗ ΘΕΣΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ ΟΡΜΗΣ p. Θα βρούμε πρώτα τη σχέση που συνδέει την p με την x. x ΚΑΙ ΣΤΗΝ Έστω η κατάσταση του συστήματός μας μια χρονική στιγμή t 0, που, χωρίς βλάβη
Ατομική και Μοριακή Φυσική
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Ατομική και Μοριακή Φυσική Αλληλεπίδραση μονοηλεκτρονικού ατόμου με εξωτερικό ηλεκτρικό και μαγνητικό πεδίο Λιαροκάπης Ευθύμιος
Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ14) Περίοδος ΕΡΓΑΣΙΑ 1 η. Τότε r r b c. και ( )
Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ4) Περίοδος 8-9 ΕΡΓΑΣΙΑ η Θέμα (μονάδες ) i. Δείξτε ότι ( a b) c a ( b c ) + b( a c ). a b c+ c a b+ b c a ii. Δείξτε την ταυτότητα Jacobi : ( ) ( ) ( ) Απάντηση i.
ETY-202 ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ETY-202 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ. Στέλιος Τζωρτζάκης 1/11/2013
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ Στέλιος Τζωρτζάκης 1 3 4 Ο νόμος της χρονικής μεταβολής των μέσων τιμών και το
2( ) ( ) ψ είναι οι ιδιοκαταστάσεις του τελεστή. ψ x, θα πάρουµε
ΟΙ Ι ΙΟΚΑΤΑΣΤΑΣΕΙΣ ΤΟΥ ΤΕΛΕΣΤΗ ΚΑΤΑΣΤΡΟΦΗΣ ΩΣ ΚΑΤΑΣΤΑΣΕΙΣ ΕΛΑΧΙΣΤΗΣ ΑΒΕΒΑΙΟΤΗΤΑΣ ΣΥΝΟΧΙΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ (COHERENT STATES) ΤΟΥ ΑΡΜΟΝΙΚΟΥ ΤΑΛΑΝΤΩΤΗ Στην προηγούµενη ανάρτηση, δείξαµε ότι στην αναπαράσταση
Κβαντική Φυσική Ι. Ενότητα 10: Ερμιτιανοί τελεστές και εισαγωγή στους μεταθέτες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 10: Ερμιτιανοί τελεστές και εισαγωγή στους μεταθέτες Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να αναδείξει την ερμιτιανότητα
Κβαντική Φυσική Ι. Ενότητα 26: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή
Κβαντική Φυσική Ι Ενότητα 6: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει
α) () z i z iz i Αν z i τότε i( yi) i + + y y y ( y) i i y + 4y + 4, y y 4. Άρα z i. 4 β) ( z) z i z z i z ( i) z, οπότε ( z ) i z z Άρα z z γ) Αν z τ
Λυμένα θέματα στους Μιγαδικούς αριθμούς. Δίνονται οι μιγαδικοί z, w και u z w. α) Να αποδείξετε ότι ο μιγαδικός z είναι φανταστικός αν και μόνο αν ισχύει z z. β) Αν για τους z και w ισχύει: z + w z w,
ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ
ν ν æ α + i ö æ i - α ö Να βρείτε όλες τις τιμές της παράστασης Α = ç, νî Ν αi + ç αi è - ø è + ø και α Î R Να αναλύσετε το μιγαδικό = 5 + i σε άθροισμα δύο μιγαδικών,, των οποίων οι εικόνες βρίσκονται
Charge Conjuga,on. Μπορούμε να περιγράψουμε την κίνηση ενός φορτισμένου σωματιδίου σε. ελεύθερου σωματίδιου ως:
Charge Conjuga,on Μπορούμε να περιγράψουμε την κίνηση ενός φορτισμένου σωματιδίου σε ηλεκτρομαγνητικό πεδίο αντικαθιστώντας την ορμή και την ενέργια του ελεύθερου σωματίδιου ως: χρησιμοποιώντας τους τελεστές
Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Κίνηση σε κεντρικά δυναµικά 1.1.1 Κλασική περιγραφή Η Χαµιλτωνιανή κλασικού συστήµατος που κινείται
Φ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
Φ: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ 0-0 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α - ΘΕΩΡΙΑ - ΣΩΣΤΟ-ΛΑΘΟΣ - ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ - ΑΝΤΙΣΤΟΙΧΗΣΗΣ - ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΘΕΜΑ Β - ΑΣΚΗΣΕΙΣ
Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης
Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να