ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
|
|
- Εὐριπίδης Δεσποτόπουλος
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΉΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/tst25 e-ail: nagia@uop.gr
2 Περιεχόμενα Μαθήματος Επικοινωνίες ΙΙ Εισαγωγή στα σήματα Δειγματοληψία Ιδανική Κβάντιση Πρακτική Ομοιόμορφη Ανομοιόμορφη Διαφορική Κωδικοποίηση Παλμοκωδική διαμόρφωση Διαφορική παλμοκωδική διαμόρφωση Δέλτα διαμόρφωση Προσαρμοστική δέλτα διαμόρφωση Σίγμα-Δέλτα διαμόρφωση Σύγκριση συστημάτων Πολυπλεξία με διαίρεση χρόνου Επικοινωνίες ΙΙ (Κ7) Διαμόρφωση βασικής ζώνης Διαμόρφωση πλάτους παλμών (PAM) Διαμόρφωση θέσης παλμών (PPM) Άλγεβρα σημάτων Δέκτες Αποδιαμορφωτές Ανιχνευτές Επιδόσεις συστημάτων PAM και PPM Σύγκριση συστημάτων Κανάλια περιορισμένου εύρους ζώνης Διασυμβολική παρεμβολή Διάγραμμα οφθαλμού Σχεδίαση άριστων φίλτρων Επιδόσεις συστήματος PAM Διαμόρφωση διέλευσης ζώνης Σύμφωνο ASK, PSK, FSK Ασύμφωνο ASK, PSK, FSK 2
3 Διαμόρφωση Κανάλι AWGN i {b, b,,b K } i () r() bi Πομπός Δέκτης ˆ i bi 2 3 {,} {,} {, } {,} 2 3 ( ) ( ) ( ) ( ) n() Έστω M μηνύματα, i (i,,, M ), το καθένα αποτελούμενο από K bi, Κ log 2 (M) Ο αριθμός M ονομάζεται τάξη της διαμόρφωσης (odulaion order) Τα bi της πηγής είναι ισοπίθανα και συνεπώς τα i έχουν ίδια πιθανότητα εμφάνισης Ο πομπός αντιστοιχεί κάθε μήνυμα σε ένα Μ-ιαδικό σύμβολο, i () Το κανάλι αλλοιώνει τα εκπεμπόμενα σύμβολα Ο δέκτης πρέπει να αναγνωρίσει ποιο ανάμεσα από τα M πιθανά σύμβολα εκπέμφθηκε Βάσει της αντιστοίχισης των bi σε σύμβολα στον πομπό, προκύπτουν τα bi που στάλθηκαν Επικοινωνίες ΙΙ (Κ7) 3
4 Διαμόρφωση Ρυθμός μετάδοσης bi R b : Πόσα bi ανά ec εισέρχονται στον πομπό Ρυθμός μετάδοσης συμβόλων R : Πόσα σύμβολα ανά ec εξέρχονται από τον πομπό T b 5 T K 2 Πομπός T b 5T (), (), 3 (), (), 2 () T b, T : οι διάρκειες bi και συμβόλου, αντίστοιχα, T K T b Ο ρυθμός μετάδοσης συμβόλων είναι R Rb T KT K b Ο ρυθμός μετάδοσης συμβόλων είναι K φορές μικρότερος από το ρυθμό μετάδοσης bi Επικοινωνίες ΙΙ (Κ7) 4
5 Διαμόρφωση Πιθανότητα σφάλματος συμβόλου P e : Ορίζεται η πιθανότητα n από τα N σύμβολα που στέλνονται να αναγνωριστούν λάθος από το δέκτη P e n/n Πιθανότητα σφάλματος bi P be : Ορίζεται η πιθανότητα p από τα P bi που στέλνονται να είναι λάθος κατά τη λήψη P be p/p Για 2αδική διαμόρφωση M 2, κάθε σύμβολο μεταφέρει bi και συνεπώς, κάθε λάθος σύμβολο συνεπάγεται και λάθος στο bi, άρα P e P be Γενικότερα όμως, η σύνδεση της πιθανότητα σφάλματος συμβόλου με την πιθανότητα σφάλματος bi δεν είναι πάντα εύκολη Π.χ. για M 4, αν στείλαμε το () το οποίο μεταφέρει το {,} και αναγνωριστεί ως () {,}, έχουμε bi λάθος, ενώ αν αναγνωριστεί ως 3 () {,}, έχουμε 2 bi λάθος Επικοινωνίες ΙΙ (Κ7) 5
6 Διαμόρφωση Γενικά, η επιλογή του σχήματος διαμόρφωσης γίνεται βάσει: Ρυθμού μετάδοσης bi, R b Φασματικής απόδοση, R b / B w Απόδοσης ισχύος, E b / N Ανοχής στα προβλήματα του καναλιού μετάδοσης Κόστους υλοποίησης Επικοινωνίες ΙΙ (Κ7) 6
7 Διαμόρφωση πλάτους παλμού (pule apliude odulaion PAM) g T () Παλμός g T () πλάτους και διάρκειας T b Δυαδικό PAM (M 2) Για το bi, το πλάτος του παλμού είναι +A και η κυματομορφή: () A g T (), < T b () A T b Για το bi, το πλάτος του παλμού είναι A και η κυματομορφή: () -A g T (), < T b () T b T b -A Διαφορετική έκδοση του δυαδικού PAM είναι το on/off keying: Σύμβολα δυαδικού PAM (Μ 2) Για το bi, η κυματομορφή είναι () () A g T (), < T b A Για το bi, η κυματομορφή είναι () T b (), < T b T b Σύμβολα on/off (Μ 2) Επικοινωνίες ΙΙ (Κ7) 7
8 g T () Στο M-ιαδικό PAM κάθε σύμβολο αναπαριστάται με έναν παλμό, g T (), διάρκειας T και πλάτους A A (2 + M),,,, M, δηλ. A ±A, ±3 A, ±5 A,, ±(Μ-) A 3 () 3A T Η αντίστοιχη κυματομορφή είναι () A g T (), < T Η ενέργεια του συμβόλου () είναι ( ) ( ) T 2 2 T d 2 d 2 T d 2 T E A g A T A Η μέση ενέργεια ανά σύμβολο M-PAM είναι M M 2 T 2 M 2 E E A AT M M 3 () -A () -3A T T 2 () A T T Σύμβολα τετραδικού PAM (Μ 4) Επικοινωνίες ΙΙ (Κ7) 8
9 Φασματική πυκνότητα ισχύος M-PAM S pa (f) inc 2 (f T ) Η S pa (f) είναι κανονικοποιημένη ώστε η μέση ισχύς να είναι ανεξάρτητα του M Οι μηδενισμοί εμφανίζονται όταν f k / T, με k ±, ±2, ±3, Εύρος ζώνης από μηδενισμό-σε-μηδενισμό (null-o-null bandwidh) B - / T Το εύρος ζώνης είναι ανεξάρτητο του M S pa (f) (dbw/hz) Φασματική Πυκνότητα Ισχύος PAM (M 2, 4, 8) Επικοινωνίες ΙΙ (Κ7) / T ( ) B S f df B pa 9% / T f T Εύρος Φάσματος Περιεχόμενη Ισχύς ± / T 9% ±.5 / T 93% ±2 / T 95% ±3 / T 96.5% ±4 / T 97.5% ±5 / T 98% 9
10 Διαμόρφωση θέσης παλμού (pule poiion odulaion PPM) g T () Παλμός g T () πλάτους και διάρκειας T /M Δυαδικό PPM Για το bi, η κυματομορφή του συμβόλου αναπαρίσταται ως T / M () T () A g T (), < T b / 2 A Για το bi, η κυματομορφή του συμβόλου αναπαρίσταται ως () A g T ( T b / 2), T b / 2 < T b () A T b / 2 T b Στο M-ιαδικό PAM κάθε σύμβολο αναπαριστάται με έναν παλμό, g T (), διάρκειας T / M και πλάτους A. Η κυματομορφή του συμβόλου () είναι () A g T ( T / M ), T / M < ( + ) T / M με,,, M T b / 2 T b Σύμβολα δυαδικού PPM (Μ 2) () () 2 () 3 () A A A A T /4 2T /4 3T /4 T T /4 2T /4 3T /4 T T /4 2T /4 3T /4 T T /4 2T /4 3T /4 T Σύμβολα τετραδικού PPM (Μ 4) Επικοινωνίες ΙΙ (Κ7)
11 Η ενέργεια του συμβόλου () για το M-PPM είναι ( ) δηλαδή δεν εξαρτάται από το ( + ) ( + ) T E A g T A A M M T T M T M d T d d T M T M Συνεπώς και η μέση ενέργεια ανά σύμβολο είναι E E Ιδιαίτερο χαρακτηριστικό των συμβόλων PPM είναι ότι δεν αλληλοεπικαλύπτονται χρονικά και άρα T ( ) ( ) d, n n Σήματα για τα οποία ισχύει η παραπάνω ιδιότητα χαρακτηρίζονται ως ορθογώνια (orhogonal) Επικοινωνίες ΙΙ (Κ7)
12 Φασματική πυκνότητα ισχύος δυαδικού PPM Tb 2 ftb S2 pp ( f ) in c ( co( π ftb )) + δ ( f ) Το φάσμα του 2-PPM περιέχει τόσο συνεχές φάσμα όσο και διακριτό Στο 2-PPM μηδενισμοί στο φάσμα εμφανίζονται για f 2 k / T b με k ±, ±2, ±3, Σε σύγκριση με το 2-PAM, το 2-PPM απαιτεί διπλάσιο εύρος ζώνης S 2ap (f), S 2pp (f) (dbw/hz) 2-PAM 2-PPM / T ( ) 2-PAM: B S f df B 2pa 9% / T 2/ T ( ) 2-PPM: B S f df B 2pp 93% 2/ T f T b Φασματική Πυκνότητα Ισχύος 2-PAM και 2-PPM Επικοινωνίες ΙΙ (Κ7) 2
13 Φασματική πυκνότητα ισχύος τετραδικού PPM T 2 ft 2 π ft 2 π ft S4 pp ( f ) in c co co + δ ( f ) Γενικά, το φάσμα του M-PPM περιέχει τόσο συνεχές όσο και διακριτό φάσμα Στο M-PPM μηδενισμοί στο φάσμα εμφανίζονται για f k M / T με k ±, ±2, ±3, Σε σύγκριση με το M -PAM, το M -PPM απαιτεί M φορές μεγαλύτερο εύρος ζώνης 2/ T ( ) 2-PPM: B S f df B 2pp 93% 2/ T 4/ T ( ) 4-PPM: B S f df B 4pp 9% 4/ T 8/ T ( ) 8-PPM: B S f df B 8pp 9% 8/ T S pp (f) (dbw/hz) Φασματική Πυκνότητα Ισχύος PPM (M 2, 4, 8) 2 M 2 M 4 M 8 f T Επικοινωνίες ΙΙ (Κ7) 3
14 Ενέργεια συμβόλου Τα σύμβολα M-PAM έχουν μεταξύ τους διαφορετική ενέργεια Τα σύμβολα M-PPM έχουν μεταξύ τους όλα ίδια ενέργεια Μέση ενέργεια ανά σύμβολο Στο M-PAM η μέση ενέργεια ανά σύμβολο αυξάνεται με το M Στο M-PPM η μέση ενέργεια ανά σύμβολο μειώνεται με το M Επικοινωνίες ΙΙ (Κ7) 4
15 Τόσο στο M-PAM όσο και στο M-PPM μπορούν να χρησιμοποιηθούν παλμοί διάρκειας T και T / M, αντίστοιχα, διαφορετικοί από τετραγωνικούς Παλμοί για M-PAM: g T () g T () Παλμοί για M-PPM: g T () g T () T T T / M T T / M T Ως συνέπεια της διάρκειας των παλμών g T () προκύπτει ότι: Στο M-PAM το απαιτούμενο εύρος ζώνης διατηρείται σταθερό καθώς αυξάνει το M Στο M-PPM το απαιτούμενο εύρος ζώνης αυξάνει καθώς αυξάνει το M Το M-PPM απαιτεί εύρος ζώνης M φορές μεγαλύτερο από το εύρος ζώνης του M-PAM Επικοινωνίες ΙΙ (Κ7) 5
16 Σύγκριση M-PPM με M-PAM ως προς εύρος ζώνης (ίδιος ρυθμός μετάδοσης bi R b ) Για να μεταδώσουμε K bi με M-PAM χρειάζονται: M 2 K σύμβολα Διάρκεια κάθε παλμού T K / R b Εύρος ζώνης παλμού περίπου B W / (2 T ) Β 95% Άρα, απαιτούμενο εύρος ζώνης καναλιού BW R b / [2 log 2 (M)] Για να μεταδώσουμε K bi με M-PPM χρειάζονται: M 2 K σύμβολα διάρκειας T K / R b Διάρκεια κάθε παλμού T p T / M K / (Μ R b ) Εύρος ζώνης παλμού περίπου B W M / (2 T ) Β 95% Άρα, απαιτούμενο εύρος ζώνης καναλιού BW M R b / [2 log 2 (M)] Συνεπώς για να μεταδοθούν δεδομένα με ρυθμό R b, το M-PPM απαιτεί M φορές μεγαλύτερο εύρος ζώνης καναλιού σε σχέση με το M-PAM Επικοινωνίες ΙΙ (Κ7) 6
17 Κάθε κυματομορφή () την αντιμετωπίζουμε ως ένα διάνυσμα Το εσωτερικό γινόμενο μεταξύ δύο πραγματικών κυματομορφών () και n (), οι οποίες ορίζονται στο διάστημα [, 2 ], είναι 2 ( ), n( ) ( ) n( ) d Αν < (), n () >, όταν n τα () και n () είναι ορθογώνια Σημειώνουμε την ομοιότητα με την Ευκλείδεια γεωμετρία, όπου το εσωτερικό γινόμενο μεταξύ δύο διανυσμάτων ˆ ˆ ˆ f if+ jf2 + kf3 και g ig ˆ + ˆjg2 + kg ˆ 3 είναι 3 fg fn gn n Αν fg, τότε τα f και g είναι ορθογώνια μεταξύ τους f g Το μέτρο ή νόρμα μιας κυματομορφής (), στο διάστημα [, 2 ], είναι Η νόρμα συνδέεται με την ενέργεια της κυματομορφής ως E () 2 Η Ευκλείδεια απόσταση μεταξύ δύο κυματομορφών () και n (), στο διάστημα [, 2 ], είναι Επικοινωνίες ΙΙ (Κ7) 2 2 ( ) ( ), ( ) ( ) d 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) d, n n n, n n d 2 7
18 Έστω N το πλήθος κυματομορφών ψ () με,,, M με την παρακάτω ιδιότητα ψ ( ), ψ ( ) n,αν n, αν n Το σύνολο των N κυματομορφών αποτελούν μια ορθοκανονική βάση (orhonoral bai) Έχουν μοναδιαία ενέργεια E ψ ψ ( ) 2 Ο αριθμός N ονομάζεται διάσταση (dienion) του χώρου των κυματομορφών ψ ψ 2 N N 2 N 3 ψ ψ ψ ψ Επικοινωνίες ΙΙ (Κ7) 8
19 Είναι χρήσιμο να αναπαραστήσουμε ένα M-ιαδικό σύνολο συμβόλων σε μία ορθοκανονική βάση με N M Παρέχει σύντομο χαρακτηρισμό των σημάτων Απλοποιεί την ανάλυσή τους Παρέχει μια γεωμετρικού τύπου αναπαράσταση των σημάτων Η εύρεση της βάσης του χώρου είναι γενικά ένα δύσκολο πρόβλημα Ένας εύκολος τρόπος να βρεθεί μία βάση είναι με ορθογωνιοποίηση Gra-Schid Η βάση που προκύπτει δεν είναι μοναδική ψ N 2 () ψ Επικοινωνίες ΙΙ (Κ7) 9
20 Διαδικασία ορθογωνιοποίησης Gra-Schid: Η η κυματομορφή της ορθοκανονικής βάσης προκύπτει ως με E την ενέργεια του () ( ) ( ) ψ E Η 2 η κυματομορφή προκύπτει ως με E την ενέργεια του ψ ( ) ( ) c ψ ( ), E ( ) ψ ( ) c, και ( ) ψ ( ) c, d Η k-ιωστή (k,, 2, M-) κυματομορφή προκύπτει ως ψ με E k την ενέργεια του Επικοινωνίες ΙΙ (Κ7) k k k ki, i E k i ( ) ( ) c ψ ( ) k k ki, i i ( ) ψ ( ) c και ki, k( ) ψ i( ) d c 2
21 Παράδειγμα ορθογωνιοποίησης Gra-Schid τετραδικού σήματος (M 4) Η ορθοκανονική βάση έχει διάσταση N 3 Τα () εκφράζονται ως γραμμικός συνδυασμός των ψ () μέσω των διανυσμάτων ( 2,, ), (, 2, ), (, - 2, ) και ( 2,, ) 2 3 ψ () / () - () () - 3 () ( ) 2ψ ( ) ( ) 2ψ ( ) ( ) 2ψ ( ) + ψ ( ) ( ) 2ψ ( ) + ψ ( ) ψ () / 2 - / 2 ψ 2 () Τετραδικό σήμα (M 4) Ορθοκανονική βάση με N 3 Επικοινωνίες ΙΙ (Κ7) 2
22 Παράδειγμα ορθογωνιοποίησης Gra-Schid τετραδικού σήματος (M 4) Τα () εκφράζονται ως γραμμικός συνδυασμός των ψ () μέσω των διανυσμάτων ( 2,, ), (, 2, ), (, - 2, ) και ( 2,, ) 2 3 Τα σημεία στα οποία καταλήγουν τα διανύσματα απαρτίζουν το διάγραμμα αστερισμού (conellaion diagra) του τετραδικού σήματος ( ) 2ψ ( ) ( ) 2ψ ( ) ( ) 2ψ ( ) + ψ ( ) ( ) 2ψ ( ) + ψ ( ) O ψ ψ 2 ψ Επικοινωνίες ΙΙ (Κ7) 22
23 Ορθογωνιοποίηση Gra-Schid M-PAM Τα M-ιαδικά σύμβολα του PAM μπορούν να αναπαρασταθούν ως () A g T (), < T με A A (2 + M),,,, M g T () T 2 Ep gt ( ) d T Πραγματοποιώντας ορθογωνιοποίηση Gra-Schid, εύκολα προκύπτει ότι: Η ορθοκανονική βάση έχει διάσταση N Η συνάρτηση βάσης έχει μορφή ψ () g T () / E p, < T Τα M-ιαδικά σύμβολα εκφράζονται μέσω της συνάρτησης βάσης ως () ψ (), < T με A E p Δεδομένου ότι η διάσταση της ορθοκανονικής βάσης είναι N, το διάγραμμα αστερισμού είναι μονοδιάστατό (θεωρώντας E p ) -5A -3A -A A 3A 5A ψ () Επικοινωνίες ΙΙ (Κ7) 23
24 Ορθογωνιοποίηση Gra-Schid M-PPM Τα M-ιαδικά σύμβολα του PPM μπορούν να αναπαρασταθούν ως () A g T ( T / M), T / M < ( + ) T / M, με,,, M Πραγματοποιώντας ορθογωνιοποίηση Gra-Schid, εύκολα προκύπτει ότι: Η ορθοκανονική βάση έχει διάσταση N M Η συναρτήσεις βάσης έχουν μορφή ψ () g T ( T / M) / E p, T / M < ( + ) T / M Τα σύμβολα εκφράζονται μέσω των συναρτήσεων βάσης ως + ( ) Eψ ( ), T < T M M με E να είναι η ενέργεια κάθε συμβόλου E A 2 E p Δεδομένου ότι N M, το διάγραμμα αστερισμού δε μπορεί να αναπαρασταθεί γραφικά όταν M > 3 E,,,,,, και, E,,, M M M,,,, E M T ( + ) T M 2 p T T M E g T d M ψ A g T () ψ 2 A 2 T / M O A Διάγραμμα αστερισμού για M 3 και E p ψ Επικοινωνίες ΙΙ (Κ7) 24
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 4 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/tst25
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 14 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/s15 e-mail:
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 2 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://eclass.uop.gr/courses/tst25
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 8 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/s5 e-mail:
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 7 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 3 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 15 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ Διαμόρφωση Βασικής Ζώνης ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Χειμερινό Εξάμηνο Τμήμα Πληροφορικής και Τηλεπικοινωνίων Νικόλαος Χ. Σαγιάς Αναπληρωτής Καθηγητής Wepage: hp://eclass.uop.gr/courses/tst25
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 6 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 5 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Wepage: http://eclass.uop.gr/courses/tst233
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ Κβάντιση και Κωδικοποίηση ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Χειμερινό Εξάμηνο Τμήμα Πληροφορικής και Τηλεπικοινωνίων Νικόλαος Χ. Σαγιάς Αναπληρωτής Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 13 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Wepage: http://eclass.uop.gr/courses/tst15
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 2 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215
Διαβάστε περισσότεραΨηφιακές Τηλεπικοινωνίες. Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση
Ψηφιακές Τηλεπικοινωνίες Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση Σύνδεση με τα Προηγούμενα Σχεδιάστηκε ο βέλτιστος δέκτης για κανάλι AWGN Επειδή πάντοτε υπάρχει ο θόρυβος, ακόμη κι ο βέλτιστος δέκτης
Διαβάστε περισσότεραΤηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 3: Εισαγωγή στην Έννοια της Διαμόρφωσης Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Η ανάγκη για διαμόρφωση 2. Είδη διαμόρφωσης 3. Διαμόρφωση με ημιτονοειδές
Διαβάστε περισσότεραΕξίσωση Τηλεπικοινωνιακών Διαύλων
Εξίσωση Τηλεπικοινωνιακών Διαύλων ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΜΔΕ ΠΡΟΗΓΜΈΝΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΉΜΑΤΑ ΚΑΙ ΔΙΚΤΥΑ Ενότητα η Φίλτρα Nyquis Νικόλαος Χ. Σαγιάς Επίκουρος
Διαβάστε περισσότεραΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΕΦΑΛΑΙΟ 2ο ΑΝΑΛΟΓΙΚΑ - ΨΗΦΙΑΚΑ ΣΗΜΑΤΑ & ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Πληροφορία Επικοινωνία συντελείται με τη μεταβίβαση μηνυμάτων από ένα πομπό σε ένα δέκτη. Μήνυμα
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 7 ο : Διαμόρφωση BPSK & QPSK
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Εργαστήριο 8 ο. Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα
Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 8 ο Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα Βασική Θεωρία Σε ένα σύστημα μετάδοσης
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 9 ο : Διαμόρφωση BPSK & QPSK Βασική Θεωρία Εισαγωγή Κατά την μετάδοση ψηφιακών δεδομένων
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 1 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst233
Διαβάστε περισσότεραΚεφάλαιο 7. Ψηφιακή Διαμόρφωση
Κεφάλαιο 7 Ψηφιακή Διαμόρφωση Ψηφιακή Διαμόρφωση 2 Διαμόρφωση βασικής ζώνης H ψηφιακή πληροφορία μεταδίδεται απ ευθείας με τεχνικές διαμόρφωσης παλμών βασικής ζώνης, οι οποίες δεν απαιτούν τη χρήση ημιτονοειδούς
Διαβάστε περισσότεραΨηφιακές Τηλεπικοινωνίες. Δισδιάστατες Κυματομορφές Σήματος
Ψηφιακές Τηλεπικοινωνίες Δισδιάστατες Κυματομορφές Σήματος Εισαγωγή Στα προηγούμενα μελετήσαμε τη διαμόρφωση PAM δυαδικό και Μ-αδικό, βασικής ζώνης και ζωνοπερατό Σε κάθε περίπτωση προέκυπταν μονοδιάστατες
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI M-κά συστήματα διαμόρφωσης: Μ-PSK, M-FSK, M-QAM, DPSK + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/
Διαβάστε περισσότεραΨηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης
Ψηφιακές Τηλεπικοινωνίες Βέλτιστος Δέκτης Σύνδεση με τα Προηγούμενα Επειδή το πραγματικό κανάλι είναι αναλογικό, κατά τη διαβίβαση ψηφιακής πληροφορίας, αντιστοιχίζουμε τα σύμβολα σε αναλογικές κυματομορφές
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 9 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 5 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 8 ο : Προσαρμοσμένα Φίλτρα Βασική
Διαβάστε περισσότεραΣύνδεση με τα Προηγούμενα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Εισαγωγή (2) Εισαγωγή. Βέλτιστος Δέκτης. παρουσία AWGN.
Προχωρημένα Θέματα Τηλεπικοινωνιών Βέλτιστος Δέκτης για Ψηφιακά Διαμορφωμένα Σήματα παρουσία AWGN Σύνδεση με τα Προηγούμενα Στις «Ψηφιακές Τηλεπικοινωνίες», αναφερθήκαμε στο βέλτιστο δέκτη ψηφιακά διαμορφωμένων
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 5 ο : Προσαρμοσμένα Φίλτρα Βασική
Διαβάστε περισσότεραΕθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης Καθηγητής Ι. Τίγκελης itigelis@phys.uoa.gr ΚΒΑΝΤΙΣΗ Διαδικασία με την
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Ψηφιακή μετάδοση στη βασική ζώνη + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ +
Διαβάστε περισσότεραΠαλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)
Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι
Διαβάστε περισσότερα2 η Εργαστηριακή Άσκηση
Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ 2 η Εργαστηριακή Άσκηση Σύγκριση Ομόδυνων Ζωνοπερατών Συστημάτων 8-PSK και 8-FSK Στην άσκηση αυτή καλείστε
Διαβάστε περισσότεραΔυαδικά Αντίποδα Σήματα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Πιθανότητα Σφάλματος σε AWGN Κανάλι. r s n E n. P r s P r s.
Προχωρημένα Θέματα Τηλεπικοινωνιών Πιθανότητα Σφάλματος σε AWGN Κανάλι Δυαδικά Αντίποδα Σήματα Δυαδικά Αντίποδα Σήματα Βασικής Ζώνης) : s (t)=-s (t) Παράδειγμα: Δυαδικό PA s (t)=g T (t) (παλμός με ενέργεια
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 6 ο : Διαμόρφωση Θέσης Παλμών Βασική Θεωρία Μ-αδική Διαμόρφωση Παλμών Κατά την μετατροπή
Διαβάστε περισσότεραΨηφιακές Τηλεπικοινωνίες. Διαμόρφωση Παλμών κατά Πλάτος
Ψηφιακές Τηλεπικοινωνίες Διαμόρφωση Παλμών κατά Πλάτος Διαμόρφωση Παλμών κατά Πλάτος Είπαμε ότι κατά την ψηφιακή μετάδοση μέσα από αναλογικό κανάλι κάθε σύμβολο αντιστοιχίζεται σε μια κυματομορφή σήματος
Διαβάστε περισσότεραΨηφιακές Τηλεπικοινωνίες. Γεωμετρική Αναπαράσταση Κυματομορφών Σήματος
Ψηφιακές Τηλεπικοινωνίες Γεωμετρική Αναπαράσταση Κυματομορφών Σήματος Ψηφιακό Τηλ/κό Σύστημα: Τι είδαμε ως τώρα; ΠΗΓΗ ΚΩΔΙΚΟΠΟΙΗΤΗΣ ΠΗΓΗΣ ΚΩΔΙΚΟΠΟΙΗΤΗΣ ΚΑΝΑΛΙΟΥ ΦΙΛΤΡΟ ΠΟΜΠΟΥ ΑΠΟΔΙΑΜΟΡΦΩΤΗΣ ΚΑΝΑΛΙ ΔΙΑΜΟΡΦΩΤΗΣ
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 5: Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Πλεονεκτήματα-Μειονεκτήματα ψηφιακών επικοινωνιών, Κριτήρια Αξιολόγησης
Διαβάστε περισσότεραΨηφιακές Επικοινωνίες
Ψηφιακές Επικοινωνίες Ενότητα 3: Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Μέρος Α 3 Διαμόρφωση βασικής ζώνης (1) H ψηφιακή πληροφορία μεταδίδεται απ ευθείας με τεχνικές
Διαβάστε περισσότεραΑναλογικές και Ψηφιακές Επικοινωνίες
Αναλογικές και Ψηφιακές Επικοινωνίες Ενότητα : Γεωμετρική αναπαράσταση κυματομορφών σήματος - διαμόρφωση παλμών Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Επικοινωνιών Στοιχεία
Διαβάστε περισσότεραΠαλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)
Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 7 ο : Διαμόρφωση Θέσης Παλμών
Διαβάστε περισσότεραΨηφιακές Επικοινωνίες
Ψηφιακές Επικοινωνίες Ενότητα 2: Παναγιώτης Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Εισαγωγή (1) Οι Ψηφιακές Επικοινωνίες (Digital Communications) καλύπτουν σήμερα το
Διαβάστε περισσότεραΤμήμα Μηχανικών Η/Υ και Πληροφορικής
Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Ασύρματες και Κινητές Επικοινωνίες Τεχνικές Ψηφιακής Διαμόρφωσης και Μετάδοσης Τι θα δούμε στο μάθημα Μια σύντομη
Διαβάστε περισσότεραΤηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 3: Ψηφιακή Διαμόρφωση Πλάτους Amplitude Shift Keying (ASK) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Ψηφιακή Διαμόρφωση Πλάτους (ASK) Μαθηματική περιγραφή
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Παλμοκωδική διαμόρφωση (PCM) I + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ + Περιεχόμενα
Διαβάστε περισσότεραΜετάδοση πληροφορίας - Διαμόρφωση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μετάδοση πληροφορίας - Διαμόρφωση MYE006-ΠΛΕ065: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Βασικές έννοιες μετάδοσης Διαμόρφωση ορισμός
Διαβάστε περισσότεραΕξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης
Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙςΤΗΜΗς & ΤΕΧΝΟΛΟΓΙΑς ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 2 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst233
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI FSK, MSK Πυκνότητα φάσματος ισχύος βασικής ζώνης + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/
Διαβάστε περισσότεραΜετάδοση πληροφορίας - Διαμόρφωση
Μετάδοση πληροφορίας - Διαμόρφωση MYE006: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Διάρθρωση μαθήματος Μετάδοση Βασικές έννοιες Διαμόρφωση ορισμός είδη
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ
Αντικείμενο: Δειγματοληψία ΘΕΜΑΤΑ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Έστω οτι το σήμα x()=sinc(4) δειγματοληπτείται με συχνότητα δειγματοληψίας διπλάσια της συχνότητας Nyquis και κβαντίζεται με ομοιόμορφη
Διαβάστε περισσότεραΑναλογικές και Ψηφιακές Επικοινωνίες
Αναλογικές και Ψηφιακές Επικοινωνίες Ενότητα : Βέλτιστος δέκτης για ψηφιακά διαμορφωμένα σήματα Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Επικοινωνιών Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ
Διαβάστε περισσότεραΑρχές Τηλεπικοινωνιών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #12: Δειγματοληψία, κβαντοποίηση και κωδικοποίηση Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε.
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 2: Εισαγωγή στις διαμορφώσεις αναλογικού σήματος Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση βασικών
Διαβάστε περισσότεραΤηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 4: Ψηφιακή Διαμόρφωση Φάσης Phase Shift Keying (PSK) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Μαθηματική περιγραφή δυαδικής PSK (BPSK) Φάσμα σήματος διαμορφωμένου
Διαβάστε περισσότεραΦΡΟΝ ΑΣΚΗΣΕΙΣ ΕΙΣ. ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ
Πρόβλημα 1 ΦΡΟΝ ΑΣΚΗΣΕΙΣ ΕΙΣ. ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΝΑΛΙ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ s + r Ο πομπός στέλνει στο δέκτη μέσω του καναλιού του σχήματος την ακολουθία συμβόλων {st} t=1,2,,10 που ανήκουν στο
Διαβάστε περισσότεραΨηφιακές Τηλεπικοινωνίες. Πολυδιάστατες Κυματομορφές Σήματος
Ψηφιακές Τηλεπικοινωνίες Πολυδιάστατες Κυματομορφές Σήματος Ανακεφαλαίωση Καθένα από τα Μ σύμβολα αντιστοιχίζεται σε μια αναλογική κυματομορφή Οι κυματομορφές ορίζονται σε ένα N-D χώρο σήματος (Ν Μ) Μονοδιάστατα
Διαβάστε περισσότεραΕξίσωση Τηλεπικοινωνιακών Διαύλων
Εξίσωση Τηλεπικοινωνιακών Διαύλων ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΜΔΕ ΠΡΟΗΓΜΈΝΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΉΜΑΤΑ ΚΑΙ ΔΙΚΤΥΑ Ενότητα 2 η Φίλτρα Μηδενισμού της ISI Νικόλαος Χ.
Διαβάστε περισσότεραΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. «ΜΕΛΕΤΗ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ BER ΓΙΑ ΣΗΜΑΤΑ QPSK, π/8 PSK, 16QAM, 64- QAM ΜΕ ΧΡΗΣΗ ΓΕΝΝΗΤΡΙΑΣ ΣΗΜΑΤΟΣ ΚΑΙ ΑΝΑΛΥΤΗ ΣΗΜΑΤΟΣ»
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΜΕΛΕΤΗ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ BER ΓΙΑ ΣΗΜΑΤΑ QPSK, π/8 PSK, 16QAM, 64- QAM ΜΕ ΧΡΗΣΗ ΓΕΝΝΗΤΡΙΑΣ ΣΗΜΑΤΟΣ ΚΑΙ ΑΝΑΛΥΤΗ ΣΗΜΑΤΟΣ» ΟΛΓΑ ΛΑΔΑ Α.Ε.Μ. 2572 ΑΘΑΝΑΣΙΑ ΧΡΟΝΗ Α.Ε.Μ 1802 ΕΠΙΒΛΕΠΩΝ
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 11: Ψηφιακή Διαμόρφωση Μέρος Α Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή διαμόρφωσης παλμών κατά
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 4 ο : Διαμόρφωση Παλμών Βασική
Διαβάστε περισσότεραΚινητά Δίκτυα Επικοινωνιών
Κινητά Δίκτυα Επικοινωνιών Ενότητα 8: Πιθανότητα Σφάλματος σε AWGN Κανάλι Καθ. Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Η εξοικείωση του φοιτητή με τεχνικές
Διαβάστε περισσότεραΕπεξεργασία Στοχαστικών Σημάτων
Επεξεργασία Στοχαστικών Σημάτων Ψηφιακή Μετάδοση Αναλογικών Σημάτων Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ψηφιακή Μετάδοση Αναλογικών Σημάτων Τα σύγχρονα συστήματα
Διαβάστε περισσότεραΤηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 6: Ψηφιακή Διαμόρφωση Φάσης Phase Shift Keying (PSK) με Ορθογωνική Σηματοδοσία Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Ορθογωνική Σηματοδοσία Διαμόρφωση
Διαβάστε περισσότεραΕξίσωση Τηλεπικοινωνιακών Διαύλων
Εξίσωση Τηλεπικοινωνιακών Διαύλων ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΜΔΕ ΠΡΟΗΓΜΈΝΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΉΜΑΤΑ ΚΑΙ ΔΙΚΤΥΑ Ενότητα 5 η Ανιχνευτές Νικόλαος Χ. Σαγιάς Επίκουρος
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 5 ο : Διαμόρφωση Παλμών Βασική Θεωρία Μ-αδική Διαμόρφωση Παλμών Κατά την μετατροπή
Διαβάστε περισσότεραΜετάδοση σήματος PCM
Μετάδοση σήματος PCM Θόρυβος κατά τη μετάδοση Εύρος ζώνης μετάδοσης Το (διαμορφωμένο) σήμα PCM όταν μεταδίδεται μέσω του διαύλου είναι ένα σήμα συνεχούς χρόνου και έχει το δικό του εύρος ζώνης Το εύρος
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 10: Ψηφιακή Μετάδοση Βασικής Ζώνης Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση των πινάκων αναζήτησης
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ TE Αρχές Ψηφιακών Συστημάτων Επικοινωνίας και Προσομοίωση Εαρινό Εξάμηνο Διάλεξη 3 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage:
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΤΩΝ ΕΦΑΡΜΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Ιωάννης Γ. Τίγκελης και Δημήτριος Ι. Φραντζεσκάκης
Διαβάστε περισσότεραΑρχές Τηλεπικοινωνιών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #11: Ψηφιακή Διαμόρφωση Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΨηφιακή μετάδοση στη βασική ζώνη. Baseband digital transmission
Ψηφιακή μετάδοση στη βασική ζώνη Baseband digital transmission Ψηφιακά σήματα Το ψηφιακό σήμα δεν είναι τίποτε άλλο από μια διατεταγμένη σειρά συμβόλων παραγόμενη από μια διακριτή πηγή πληροφορίας Η πηγή
Διαβάστε περισσότεραΠεριεχόµενα διαλέξεων 2ης εβδοµάδας
Εισαγωγή οµή και πόροι τηλεπικοινωνιακού συστήµατος Σήµατα Περιεχόµενα διαλέξεων 1ης εβδοµάδας Εισαγωγή Η έννοια της επικοινωνιας Ιστορική αναδροµή οµή και πόροι τηλεπικοινωνιακού συστήµατος οµή τηλεπικοινωνιακού
Διαβάστε περισσότεραΤηλεπικοινωνιακά Συστήματα Ι
Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 10: Παλμοκωδική Διαμόρφωση, Διαμόρφωση Δέλτα και Πολύπλεξη Διαίρεσης Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Παλμοκωδική Διαμόρφωση (PCM) Παλμοκωδική Διαμόρφωση
Διαβάστε περισσότεραΣεραφείµ Καραµπογιάς. Το κανάλι επικοινωνίας είναι το φυσικό µέσο που χρησιµεύει για να στέλνεται το σήµα από την πηγή στον προορισµό χρήσης.
Στοιχεία ενός Συστήµατος Ηλεκτρικής Επικοινωνίας Ο σκοπός του συστήµατος επικοινωνίας είναι να µεταδώσει πληροφορία (raniion of inforaion)απόένασηµείοτουχώρου, πουλέγεταιπηγή, σεέναάλλοσηµείο, πουείναιο
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 7: Μετατροπή Σήματος από Αναλογική Μορφή σε Ψηφιακή Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετατροπή Αναλογικού Σήματος σε Ψηφιακό Είδη Δειγματοληψίας: Ιδανική
Διαβάστε περισσότεραΣυμπίεση Δεδομένων
Συμπίεση Δεδομένων 2014-2015 Κβάντιση Δρ. Ν. Π. Σγούρος 2 Αναλογικά Ψηφιακά Σήματα Αναλογικό Σήμα x t, t [t min, t max ], x [x min, x max ] Δειγματοληψία t n, x t x n, n = 1,, N Κβάντιση x n x(n) 3 Αλφάβητο
Διαβάστε περισσότεραΜορφοποίηση και ιαµόρφωση Σηµάτων Βασικής Ζώνης
Μορφοποίηση και ιαµόρφωση Σηµάτων Βασικής Ζώνης Μορφοποίηση - Κωδικοποίηση πηγής Μορφοποίηση παλµών βασικής ζώνης Μορφοποίηση & µετάδοση βασικής ζώνης Mορφοποίηση-κωδικοποίηση πηγής Mορφοποίηση παλµών
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙςΤΗΜΗς & ΤΕΧΝΟΛΟΓΙΑς ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 3 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst33
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ
ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ 5. Εισαγωγή Ο σκοπός κάθε συστήματος τηλεπικοινωνιών είναι η μεταφορά πληροφορίας από ένα σημείο (πηγή) σ ένα άλλο (δέκτης). Συνεπώς, κάθε μελέτη ενός τέτοιου συστήματος
Διαβάστε περισσότεραΣτο Κεφάλαιο 9 παρουσιάζεται μια εισαγωγή στις ψηφιακές ζωνοπερατές επικοινωνίες.
προλογοσ Σ αυτή την έκδοση του βιβλίου «Συστήματα επικοινωνίας» έχουν γίνει κάποιες βασικές αναθεωρήσεις στη διάταξη και το περιεχόμενό του, όπως συνοψίζονται παρακάτω: 1. Έχει δοθεί έμφαση στις αναλογικές
Διαβάστε περισσότεραΔομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 1 η Εισαγωγή και Συνοπτική Παρουσίαση
Διαβάστε περισσότεραΨηφιακές Τηλεπικοινωνίες
Ψηφιακές Τηλεπικοινωνίες Ψηφιακή Μετάδοση Σήματος σε Ζωνοπεριορισμένο Κανάλι AWGN (Μέχρι και τη διαφάνεια 32) Εισαγωγή Στα προηγούμενα μαθήματα θεωρήσαμε ότι ουσιαστικά το κανάλι AWGN είχε άπειρο εύρος
Διαβάστε περισσότεραΔορυφορικές Επικοινωνίες
Δορυφορικές Επικοινωνίες Διάλεξη #8 Ψηφιακή Μετάδοση (1/) Διδάσκων: Αθανάσιος Κανάτας Καθηγητής Πανεπιστηµίου Πειραιώς Περιεχόμενα Διάλεξης #8 Μοντέλο Ψηφιακών Επικοινωνιών Μετάδοση Βασικής Ζώνης Ζωνοπερατή
Διαβάστε περισσότεραΕισαγωγή στις Τηλεπικοινωνίες
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα 3: Δειγματοληψία και Ανακατασκευή Σημάτων Όνομα Καθηγητή: Δρ. Ηρακλής Σίμος Τμήμα: Ηλεκτρονικών
Διαβάστε περισσότεραΑναλογικές και Ψηφιακές Επικοινωνίες
Αναλογικές και Ψηφιακές Επικοινωνίες Ενότητα 3: Πιθανότητα σφάλματος στη φώραση σήματος Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Επικοινωνιών Ο Βέλτιστος Φωρατής Σεραφείμ Καραμπογιάς
Διαβάστε περισσότεραΨηφιακή μετάδοση στη βασική ζώνη. Baseband digital transmission
Ψηφιακή μετάδοση στη βασική ζώνη Baseband digital transmission Ψηφιακά σήματα Ένα ψηφιακό σήμα δεν είναι τίποτα άλλο από μια διατεταγμένη ακολουθία συμβόλων Η πηγή πληροφορίας παράγει σύμβολα από ένα αλφάβητο
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Εισαγωγή Δειγματοληψία + Περιεχόμενα n Εισαγωγή n αναλογικό η ψηφιακό σήμα; n ψηφιακά συστήματα επικοινωνιών n Δειγματοληψία
Διαβάστε περισσότεραΣταθερή περιβάλλουσα (Constant Envelope)
Διαμόρφωση ολίσθησης φάσης (Phase Shift Keying-PSK) Σταθερή περιβάλλουσα (Constant Envelope) Ίση Ενέργεια συμβόλων 1 Binary Phase Shift keying (BPSK) BPSK 2 Quaternary Phase Shift Keying (QPSK) 3 Αστερισμός-Διαγράμματα
Διαβάστε περισσότεραΠαράμετροι σχεδίασης παλμών (Μορφοποίηση παλμών)
Παράμετροι σχεδίασης παλμών (Μορφοποίηση παλμών) Κύριοι παράμετροι στη σχεδίαση παλμών είναι (στο πεδίο συχνοτήτων): Η Συχνότητα του 1ου μηδενισμού (θέλουμε μικρό BW). H ελάχιστη απόσβεση των πλαγίων λοβών
Διαβάστε περισσότεραΜετάδοση σήματος PCM
Μετάδοση σήματος PCM Συγχρονισμός ΌπωςσεόλατασυστήματαTDM, απαιτείται συγχρονισμός μεταξύ πομπού και δέκτη Εάν τα ρολόγια στον πομπό και τον δέκτη διαφέρουν, αυτό θα οδηγήσει σε παραμορφώσεις του σήματος
Διαβάστε περισσότεραΕισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
1 Oct 16 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 4 η Γεωμετρική Αναπαράσταση
Διαβάστε περισσότεραΤηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 1: Χωρητικότητα Καναλιών Το θεώρημα Shannon - Hartley Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Δυαδική σηματοδοσία 2. Μορφές δυαδικής σηματοδοσίας 3.
Διαβάστε περισσότεραΠΛΗ21 Κεφάλαιο 1. ΠΛΗ21 Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: 1 Εισαγωγή
Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: 1 Εισαγωγή Στόχοι του κεφαλαίου είναι να γνωρίσουμε: Τι είναι τα Αναλογικά κ τι τα Ψηφιακά Μεγέθη Τι είναι Σήμα, Αναλογικό Σήμα, Ψηφιακό Σήμα Τι είναι Δυαδικό Σήμα
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Οικονομίας Διοίκησης και Πληροφορικής Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Αρχές Τηλ/ων Συστημάτων Εργαστήριο 7 ο : Δειγματοληψία και Ανασύσταση Βασική
Διαβάστε περισσότεραΘόρυβος και λάθη στη μετάδοση PCM
Θόρυβος και λάθη στη μετάδοση PCM Πότε συμβαίνουν λάθη Για μονοπολική (on-off) σηματοδότηση το σήμα στην έξοδο είναι, όπου α k =0 όταν y( kts) ak n( kts) μεταδίδεται το bit 0 και α k =Α όταν μεταδίδεται
Διαβάστε περισσότεραΨηφιακές Τηλεπικοινωνίες
Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Χωρητικότητα Καναλιού Χωρητικότητα Καναλιού Η θεωρία πληροφορίας περιλαμβάνει μεταξύ άλλων: κωδικοποίηση πηγής κωδικοποίηση καναλιού Κωδικοποίηση πηγής: πόση
Διαβάστε περισσότερα