ΑΣΚΗΣΕΙΣ ΣΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ. 1. Να βρείτε την απόσταση του σημείου Μ( ημθ, συνθ) από την ευθεία: i) ε : y = -xεφθ ii) ε : xσυνθ - yημθ = 2

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΣΚΗΣΕΙΣ ΣΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ. 1. Να βρείτε την απόσταση του σημείου Μ( ημθ, συνθ) από την ευθεία: i) ε : y = -xεφθ ii) ε : xσυνθ - yημθ = 2"

Transcript

1 ΑΠΟΣΤΑΣΗ ΣΗΜΕΙΟΥ ΑΠΟ ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ ΣΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ 1. Να βρείτε την απόσταση του σημείου Μ( ημθ, συνθ) από την ευθεία: i) ε : y = -xεφθ ii) ε : xσυνθ - yημθ = 4. α) Να βρεθεί η απόσταση του σημείου Μ(,-3) από την ευθεία y= x β) Να βρεθεί η απόσταση της αρχής Ο των αξόνων από την ίδια ευθεία y= x Να βρείτε τις εξισώσεις των ευθειών που διέρχονται από την αρχή Ο(0,0) και απέχουν από το σημείο Α(1,) απόσταση ίση με 1 4. Να βρεθεί η εξίσωση της ευθείας ε που διέρχεται από το σημείο Α(-,1) και απέχει από την αρχή των αξόνων μονάδες 5. Να βρείτε για ποιες τιμές του α η ευθεία ε : (3α-5)x + (α-3)y-4α + 8 = 0 ισαπέχει από τα σημεία Α(4,-3) και Β(3, ). 6. Τα σημεία Α (1, 0) και Β (3, 6) ισαπέχουν από το σημείο Γ (- 4, λ). Να υπολογιστεί η τιμή του λ. 7. Να βρεθεί το σημείο του άξονα y'y που ισαπέχει από την αρχή των αξόνων και από την ευθεία ε : 4x-3y + 4 = Να βρείτε τα σημεία της ευθείας ε : x + y - = 0 που απέχουν από την ευθεία ζ : 3x + 4y-10 = 0 απόσταση ίση με. 9. Δίνονται τα σημεία Α (4, ), Β (3, - 1) και η ευθεία ε: y = - 3x. Να βρεθεί σημείο Γ της ευθείας ε, ώστε το τρίγωνο ΑΒΓ να είναι ισοσκελές με κορυφή το Β. 10. Δίνονται οι εξισώσεις x-3y+5=0, 3x+y-7=0 δύο πλευρών ενός ορθογωνίου παραλληλογράμμου και η κορυφή του Α (, -3). Να βρείτε τις εξισώσεις των δύο άλλων πλευρών του, τις κορυφές και το εμβαδόν του. 11. Να βρείτε την εξίσωση της ευθείας που είναι παράλληλη προς την ευθεία ε: 3x-4y+10 = 0 και απέχει από το σημείο Μ(6, ) απόσταση ίση με Να βρεθεί η εξίσωση της ευθείας η οποία διέρχεται από το σημείο Μ(1,) και ισαπέχει από τα σημεία Α(3, ) και Β(1, 8). 13. Να βρεθεί η εξίσωση της ευθείας που περνά από το κοινό σημείο των ευθειών ε1: x-3y+1=0 και ε: x+5y-9=0, και απέχει από την αρχή των αξόνων απόσταση d= 1

2 14. Να βρείτε την εξίσωση της ευθείας η οποία διέρχεται από το σημείο Μ(4, 1) και απέχει από το σημείο Ν(5, 3) απόσταση ίση με Να βρείτε τις εξισώσεις των ευθειών που είναι παράλληλες με την ευθεία ε: 3x-4y+1=0 και απέχουν από το σημείο Α (, 1) απόσταση ίση με Να βρείτε τα σημεία της ευθείας ε: x+y-1=0 που απέχουν από την ευθεία ζ: 3x+4y-=0 απόσταση ίση με. 17. Να διατάξετε με φθίνουσα σειρά τις αποστάσεις των σημείων Α (, 5), Β (-3, -6), Γ (-1, 4) από την ευθεία 4x-3y= Έστω τα σημεία Α (0, -4) και Β (3, 0). Να βρεθεί αν υπάρχουν οι ευθείες που περνάνε από το Α και απέχουν από το Β απόσταση: α) d=3, β) την μέγιστη απόσταση, γ) d= Να αποδείξετε ότι η εξίσωση: x +y +xy-3x-3y+=0 παριστάνει δύο παράλληλες ευθείες και στην συνέχεια να βρείτε το εμβαδόν του τραπεζίου που σχηματίζουν οι ευθείες αυτές με τους άξονες. 0. Τα σημεία Α (1, 1), Β (, ) και Γ (3, - 1) είναι τρεις κορυφές ενός παραλληλογράμμου. Να βρεθούν: α) οι συντεταγμένες της τέταρτης κορυφής του β) οι συντεταγμένες του κέντρου του γ) το εμβαδόν του 1. Οι εξισώσεις των πλευρών ενός τριγώνου είναι: 3x + 4y - 7 = 0, x + y +=0 και x + 3y - 5 = 0. Ζητούνται: α) οι συντεταγμένες των κορυφών του τριγώνου β) το εμβαδόν του. Να υπολογισθεί το μήκος του ύψους ΑΔ τριγώνου ΑΒΓ στο οποίο Α(4,13), Β(10,1), Γ(-,5) 3. Να βρεθεί η εξίσωση της ευθείας που περνάει από τα Α (ημω, συνω) και Β(ημφ, συνφ). Να βρεθεί η απόσταση του 0 (0,0) από αυτήν. (0 ). 4. α) Να βρεθεί ποια από τις ευθείες της οικογένειας α(x+y+4)+(x-y-3)=0, α, απέχει από το σημείο Μ(,-3) απόσταση ίση με 10 β) Να δειχθεί ότι καμία ευθεία της οικογένειας (x-y-6)+κ(x-y-4)=0, κ δεν απέχει από το σημείο Ρ(3,-1) απόσταση ίση με 3

3 5. Οι δύο πλευρές ενός ορθογωνίου ΑΒΓΔ, με Α(5, ), βρίσκονται 4 4 πάνω στις ευθείες με εξισώσεις y x 8 και y x Να 3 3 βρεθεί το εμβαδόν του ορθογωνίου αυτού. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 6. Να βρείτε τις ευθείες που είναι παράλληλες στην ευθεία ζ: 3x+y-011=0 και απέχουν από το σημείο A(-4,) απόσταση ίση με Να βρείτε τις ευθείες που σχηματίζουν με τον άξονα χ χ γωνία 45 και απέχουν από το σημείο Α(,5) απόσταση ίση με 3 8. Δίνεται η ευθεία ζ: x+y-15=0 και το σημείο Α(3,1):Να βρείτε: i) την απόσταση του σημείου Α από την ευθεία ζ, ii) τις ευθείες που είναι κάθετες στη ζ και απέχουν από το Α απόσταση ίση με 0 9. Να βρείτε τις ευθείες που διέρχονται από το σημείο Ρ(6,5) και απέχουν από το σημείο Α(3,-1) απόσταση ίση με Να βρείτε την ευθεία ε που είναι παράλληλη στην ευθεία ζ: 6x-3y-13=0 και ισαπέχει από τα σημεία Α(1,-4) και Β(5,) 31. Να βρείτε τις ευθείες που διέρχονται από το σημείο Ρ(,1) και ισαπέχουν από τα σημεία Α(1,3) και Β(3,7). 3. Δίνονται τα σημεία : Α(α,β) καιβ(β-1,α),με α, β R για τα οποία ισχύει (4, 8) Να βρείτε : i) τους αριθμούς α και β ii) τις ευθείες που διέρχονται από το σημείο Ρ(-,-3) και ισαπέχουν από τα σημεία Α και Β. ΑΠΟΣΤΑΣΗ ΠΑΡΑΛΛΗΛΩΝ ΕΥΘΕΙΩΝ 33. Να αποδείξετε ότι η απόσταση των παράλληλων ευθειών, ε1: αx+βy+γ1=0 και 1 ε: αx+βy+γ=0 είναι ίση με:. Δύο πλευρές ενός τετραγώνου βρίσκονται στις ευθείες με εξισώσεις: 5x-1y-65=0 και 5x-1y+6=0. Να υπολογιστεί το εμβαδόν του τετραγώνου. 3

4 34. Δίνονται οι ευθείες ε1: x-y+1=0 και ε: 3x-4y-1=0. Nα βρείτε σημείο Μ της ε1 που απέχει από την ε απόσταση ίση με 1 μονάδα 35. Να βρείτε την απόσταση των ευθειών ε1: 4x -6y+5=0 και ε: y= 3 x Να βρεθούν οι εξισώσεις των ευθειών, οι οποίες είναι παράλληλες προς την ευθεία ε: y = 3 x - και απέχουν από αυτή απόσταση ίση με Δίνονται οι ευθείες ε1 : y = 3x - 4 και ε : y = 3x + 0. Να βρεθεί η εξίσωση της ευθείας ε, η οποία απέχει από τις ε1, ε αντίστοιχα αποστάσεις με λόγο Η μια πλευρά τετραγώνου ΑΒΓΔ, με Α(, -1), βρίσκεται πάνω στην ευθεία ε : 3x - 4y + 0 = 0.Nα βρείτε το εμβαδόν του τετραγώνου. 39. Να υπολογίσετε το εμβαδόν ενός τετραγώνου του οποίου οι δύο πλευρές βρίσκονται πάνω στις ευθείες ε : 5x - 1y-60 = 0 και ζ : 5x - 1y + 31 = Οι δύο πλευρές ενός τετραγώνου βρίσκονται πάνω στις ευθείες με εξισώσεις ε1 : αx + βy + γ1 = 0 και ε: αx + βy + γ = 0. Να αποδείξετε ότι για το εμβαδόν Ε του (γ1- γ ) τετραγώνου ισχύει E α +β 41. i) Να βρείτε την απόσταση των παράλληλων ευθειών που παριστάνει η εξίσωση x + xy + y -x-y-μ = 0 ii) Για ποια τιμή του μ η απόσταση των παραπάνω ευθειών είναι ίση με 10 ; 4. Να βρείτε τις τιμές των λ, μ R για τις οποίες οι ευθείες ε1 : x + μy+1 =0 και ε : μx + y + λ = 0 είναι παράλληλες και η απόσταση τους είναι ίση με. ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ-ΜΕΣΟΠΑΡΑΛΛΗΛΗ ΔΙΧΟΤΟΜΟΣ 43. Να βρεθεί η εξίσωση της μεσοπαραλλήλου των ευθειών ε1 : y = 3 x- και ε : y = 3 x

5 44. Να βρεθεί η εξίσωση της μεσοπαράλληλης των ευθειών ε1: x+y-8=0 και ε: 4x+y-8=0 45. Να βρεθεί η εξίσωση της μεσοπαράλληλης των ευθειών ε1: y=3x-1 και ε: y = 3x Να βρεθεί η εξίσωση της μεσοπαράλληλης των ευθειών: x-3y+5=0 και 4x-6y+9= Να βρεθεί η εξίσωση της ευθείας που είναι μεσοπαράλληλη των ευθειών: α)ε1 : 3x-y+1=0 και ε :-6x+y-3=0 β)ε: x = 4 και ε : x = - 6 γ)ε1: y =x και ε :y =x Να αποδείξετε ότι η εξίσωση της μεσοπαραλλήλου των ευθειών ε1 : αx + βy + γ1 =0 και γ γ ε : αx + βy + γ = 0, με γ1 γ, είναι η αx+βy Η ευθεία ε : y = 5 x + 3 είναι η μεσοπαράλληλος δύο ευθειών ε1, ε, οι οποίες απέχουν 1 μεταξύ τους απόσταση ίση με 8. Να βρεθούν οι εξισώσεις των ευθειών αυτών. 50. Δίνονται οι ευθείες ε1: 3x-4y+1=0 και ε: 8x-6y+5=0.Να βρείτε : i) τις εξισώσεις των διχοτόμων των γωνιών που σχηματίζουν οι ευθείες ε1 και ε ii) ποια από τις παραπάνω διχοτόμους αντιστοιχεί στην οξεία γωνία που σχηματίζουν οι ευθείες ε1 και ε 51. Δίνονται τα σημεία Α(3,1) και Β(13,6).Έστω ε1 η ευθεία που διέρχεται από το σημείο Α και είναι παράλληλη στο διάνυσμα v (3,6) και ε η ευθεία που διέρχεται από τα σημεία Α και Β. Να βρείτε : i) τις εξισώσεις των ευθειών ε1 και ε ii) την απόσταση του σημείου Β από την ευθεία ε1 iii) τις διχοτόμους των γωνιών που σχηματίζουν οι ευθείες ε1 και ε 5. α) Να βρεθούν οι εξισώσεις της διχοτόμου των γωνιών που σχηματίζουν οι ευθείες: ε1: 3x-4y+1=0 ε: 5x+1y+4=0 β) Να βρεθεί η εξίσωση της μεσοπαράλληλης των ευθειών ε1: x+y-8=0 και ε: 4x+y-8=0 53. Οι ευθείες ε1: ( 1)x y 1 3 0και ε: (4 )x (6 )y 0 είναι παράλληλες. Να βρείτε : i) τον αριθμό λ ii) ευθεία ε3,ώστε η ε να είναι η μεσοπαράλληλη των ε1 και ε. 54. Δύο παράλληλες ευθείες απέχουν απόσταση ίση με 8 και έχουν ως μεσοπαράλληλη την ευθεία ζ: 3x-4y+1=0.Να βρείτε τις εξισώσεις των ευθειών αυτών. 5

6 55. Οι ευθείες ε1: x ( 1)y 0 και ε: ( )x ( 6)y είναι παράλληλες. Να βρείτε : i) τον αριθμό λ ii) τον γεωμετρικό τόπο των σημείων Μ για τα οποία ισχύει d(m, 1) d(m, ). 56. Θεωρούμε τα σημεία Α(3,), Β(-1,-) και Γ(5,0). Να βρείτε την εξίσωση της ευθείας πάνω στην οποία βρίσκεται η διχοτόμος της γωνίας Α του τριγώνου ΑΒΓ. 57. Να βρεθεί ο γεωμετρικός τόπος των σημείων. τα οποία ισαπέχουν από τις ευθείες 3x-y+4=0 και 3x-y+ 6= Να βρεθεί ο γεωμετρικός τόπος των σημείων. τα οποία ισαπέχουν από τις ευθείες 3x-y+4=0 και 3x-y+ 6= Να βρείτε τον γεωμετρικό τόπο των σημείων Μ του επιπέδου των οποίων ο λόγος των αποστάσεων από τις ευθείες ε1 : x- y = 0 και ε : x + y = 0 αντίστοιχα είναι ίσος με. 60. Δίνονται οι ευθείες ε1 : x + y = 0 και ε : x- y- 4 = 0. Να βρείτε : i) το σημείο τομής Α των ε1 και ε, ii) τον γεωμετρικό τόπο των σημείων Μ του επιπέδου των οποίων ο λόγος των αποστάσεων από τις ευθείες ε1 και ε αντίστοιχα είναι ίσος με. 61. Να δείξετε ότι οι ευθείες λx+(λ -)y=λ-1 και (λ +)x+λy=λ τέμνονται για όλες τις τιμές του λ. Στη συνέχεια να βρείτε τον γεωμετρικό τόπο του σημείου τομής τους 6. Σε ορθογώνιο σύστημα αναφοράς Οxy δίνεται το ορθογώνιο ΟΑΒΓ, του οποίου οι κορυφές Α και Γ κινούνται στους θετικούς ημιάξονες Ox και Oy αντίστοιχα και είναι Β (α,β) με α-β=1. Να δείξετε ότι η κάθετη που φέρουμε από το Β στην ΑΓ διέρχεται από σταθερό σημείο το οποίο και να βρεθεί 63. Να αποδειχθεί ότι η εξίσωση x y 4 y 3 0 παριστάνει δύο ευθείες κάθετες μεταξύ τους. Να βρεθεί ο γεωμετρικός τόπος του σημείου τομής των δύο αυτών ευθειών. 64. Να αποδείξετε ότι ο γεωμετρικός τόπος των σημείων, των οποίων τα τετράγωνα των αποστάσεων από τα σημεία Α (3, ) και Β (- 1, ) έχουν σταθερή διαφορά c είναι ευθεία κάθετη στην ΑΒ. 6

7 ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ 65. Δίνονται τα σημεία Α(-,1),Β(3,4) και Γ(1,-6).Να βρείτε το εμβαδόν του τριγώνου ΑΒΓ. 66. Να βρεθεί το εμβαδόν του τετραπλεύρου που έχει κορυφές τα σημεία Α(1, - ),Β(-, 3), Γ (- 1, - 4) και Δ (5, 0). 67. Να βρείτε το εμβαδόν του τετραπλεύρου ΑΒΓΔ που έχει κορυφές τα σημεία Α(4,), Β(6,0),Γ(1,-), Δ(-,) 68. Να βρείτε το εμβαδόν του τετραπλεύρου ΑΒΓΔ που έχει κορυφές τα σημεία Α(-1,), Β(,4),Γ(3,-), Δ(-,-1) 69. Ενός παραλληλογράμμου ΑΒΓΔ οι τρεις κορυφές του έχουν συντεταγμένες (-3,1),(-,3) και (4,-5).Να υπολογίσετε το εμβαδό του παραλληλογράμμου 70. Να υπολογίσετε το εμβαδόν του παραλληλογράμμου ΑΒΓΔ, του οποίου οι τρεις κορυφές είναι τα σημεία Α(- 1, 5), Β(5, -3), Γ(-, 3). 71. Δίνονται τα σημεία Α(8,3) και Β(6,-1).Να βρείτε σημείο Γ του άξονα χ χ,ώστε το τρίγωνο ΑΒΓ να έχει εμβαδόν 7 τ.μ. 7. Έστω τα σημεία Α(1,1) και Β(5,5) και η ευθεία ε: x-y-1=0.nα βρεθεί σημείο Γ της ευθείας ε, ώστε το εμβαδό του τριγώνου ΑΒΓ να είναι ίσο με 4 τ.μ. 73. Θεωρούμε τα σημεία Α(, 1) και Β(4,5). Να βρείτε σημείο Γ της ευθείας ε: x y-1 = 0 τέτοιο, ώστε το εμβαδόν του τριγώνου ΑΒΓ να είναι ίσο με 4 τ.μ Θεωρούμε τα σημεία Α(0, ) και Β(4, 6). Να βρείτε σημείο Γ της ευθείας ε:x -y + = 0 τέτοιο, ώστε το εμβαδόν του τριγώνου ΑΒΓ να είναι ίσο με 4 τ.μ Δίνονται τα σημεία Α(1,1), Β(-,) και Γ( λ + 1,λ + ), x R i) Να αποδείξετε ότι για κάθε λ R τα σημεία Α,Β,Γ αποτελούν κορυφές τριγώνου, ii) Να βρείτε για ποιες τιμές του λ το τρίγωνο ΑΒΓ έχει εμβαδόν ίσο με Το εμβαδόν τριγώνου ΑΒΓ είναι 8 τ.μ. και οι δύο κορυφές του Α και Β έχουν συντεταγμένες (1, -), και (, 3) αντιστοίχως. Η τρίτη κορυφή του Γ είναι σημείο της ευθείας x+y-=0. Να βρεθούν οι συντεταγμένες της κορυφής Γ. 77. Δίνεται το σημείο Α (, 1) του καρτεσιανού επιπέδου Οxy. Α) Να βρείτε την εξίσωση της ευθείας ΟΑ. 7

8 Β) Να βρείτε την εξίσωση της ευθείας (ε) που διέρχεται από το Α και είναι κάθετη στην ευθεία ΟΑ. Γ) Η ευθεία (ε) τέμνει τον άξονα x x στο σημείο Β. Να βρείτε την εξίσωση του ύψους του τριγώνου ΟΑΒ που διέρχεται από την κορυφή Α. Δ) Να βρείτε το εμβαδόν του τριγώνου ΟΑΒ. 78. Να βρείτε την εξίσωση της ευθείας που περνάει από το σημείο Μ (, 3) όταν: α) Το Μ είναι το μέσον του ΑΒ όπου τα Α και Β είναι τα σημεία στα οποία η ευθεία τέμνει τους άξονες xx και yy αντίστοιχα, β) Σχηματίζει με τους άξονες τρίγωνο με εμβαδόν Δίνονται οι ευθείες ε1: x+y-=0 και ε: x-y-1=0.να βρείτε ευθείες που είναι παράλληλες στο διάνυσμα v (,) και σχηματίζουν με τις ε1 και ε τρίγωνο με εμβαδόν 1 τ.μ. 80. Δίνεται τρίγωνο ΑΒΓ και έστω Μ το μέσο της πλευράς ΒΓ. Αν ισχύει ότι (8,4) και (1, 3),να βρείτε το εμβαδόν του τριγώνου ΑΒΓ. 81. Δίνονται τα σημεία Α(1,-) και Β(3,4).Να βρείτε τον γεωμετρικό τόπο των σημείων Μ του επιπέδου,ώστε το τρίγωνο ΜΑΒ να έχει εμβαδόν 4 τ.μ. 8. Δίνονται τα σημεία Α(3,-4), Β(1,6) και Γ(-5,).Να βρείτε τον γεωμετρικό τόπο των ( ) σημείων Μ του επιπέδου για τα οποία ισχύει ( ). 83. Να βρείτε τις εξισώσεις των ευθειών που είναι παράλληλες προς την ευθεία : x 3y 1 0 και οι οποίες ορίζουν με τους άξονες τρίγωνο με εμβαδόν ίσο με 1τμ. 84. Να βρεθεί η εξίσωση της ευθείας, η οποία διέρχεται από το σημείο Ρ(-, 6) και σχηματίζει με τους άξονες τρίγωνο με εμβαδόν Να βρείτε τις εξισώσεις των ευθειών που είναι παράλληλες προς την ε: x - 3y - 1 = 0 και οι οποίες ορίζουν με τους άξονες τρίγωνο με εμβαδόν ίσο με 1 τ.μ. 86. Να αποδείξετε ότι το εμβαδόν Ε του τριγώνου, του οποίου οι πλευρές βρίσκονται πάνω στις ευθείες με εξισώσεις x = α, y = β και y = λx (όπου λ 0 και β λα), είναι ( β λα) Ε. λ 87. Να βρείτε τις εξισώσεις των ευθειών, οι οποίες είναι κάθετες προς την ευθεία ε : 6x-3y+10 = 0 και σχηματίζουν με τους άξονες τρίγωνο με εμβαδόν Ε = 9. 8

9 88. Να βρεθεί η εξίσωση της ευθείας που διέρχεται από το σημείο Μ(1, - 4) και σχηματίζει με τους άξονες τρίγωνο με εμβαδόν Ε= Nα βρεθεί η εξίσωση της ευθείας ε που περνάει από την αρχή των αξόνων και σχηματίζει με την ευθεία x+y=3 και τον άξονα y y τρίγωνο εμβαδού 9 τ.μ. 90. Να αποδείξετε ότι η εξίσωση 4x + y -4xy-8x + 4y + 3 = 0 παριστάνει δύο παράλληλες ευθείες και στη συνέχεια να βρείτε το εμβαδόν του τραπεζίου που σχηματίζουν οι ευθείες αυτές με τους άξονες. θ θ θ θ π π 91. Δίνονται τα σημεία Α( ημ, συν ) και Β( συν, ημ ) με θ,. Να βρείτε: i)την εξίσωση της ευθείας ΑΒ, ii)την τιμή του θ για την οποία το τρίγωνο ΟΑΒ έχει το μέγιστο εμβαδόν. 9. Έστω τα σημεία Α(1,), Β(-3,4), Γ(λ+1,-λ+1), λ. i)να δειχθεί ότι τα σημεία Α, Β, Γ είναι κορυφές τριγώνου με σταθερό εμβαδό για κάθε λ. ii)nα δείξετε ότι το σημείο Γ κινείται πάνω σε ευθεία της οποίας να βρείτε την εξίσωση iii)nα βρείτε το λ ώστε το σημείο Γ(λ+1, -λ+1) να απέχει από την αρχή των αξόνων την ελάχιστη απόσταση ΕΛΑΧΙΣΤΗ ΑΠΟΣΤΑΣΗ ΣΗΜΕΙΟΥ ΕΥΘΕΙΑΣ ΑΠΟ ΣΤΑΘΕΡΟ ΣΗΜΕΙΟ 93. Δίνεται η ευθεία ε:x+y-6=0.να βρείτε : i) τη μικρότερη απόσταση που απέχει ένα σημείο της ευθείας ε από την αρχή των αξόνων, ii) ποιο σημείο της ευθείας ε απέχει τη μικρότερη απόσταση από το σημείο Μ(,-3) 94. Δίνονται τα σημεία Α(-,4) και Β(8,-1). α) Να βρείτε το εμβαδόν του τριγώνου ΟΑΒ,όπου Ο η αρχή των αξόνων. β) Έστω η ευθεία που διέρχεται από τα σημεία Α και Β.Να βρείτε : i) την εξίσωση της ευθείας ε ii) ποιο σημείο της ευθείας ε απέχει τη μικρότερη απόσταση από το σημείο Γ(5,3). 95. Θεωρούμε τα σημεία Μ(λ-4,3λ-) με λ R i) Να αποδείξετε ότι για τις διάφορες τιμές του λ τα σημεία Μ κινούνται σε ευθεία ε της οποίας να βρείτε την εξίσωση 9

10 ii) Να βρείτε την ελάχιστη απόσταση που απέχει ένα σημείο της ευθείας ε από την αρχή των αξόνων. 96. Οι ευθείες ε1: λx+(λ -1)y-5=0 και ε1: (λ +1)x-(λ +4)y-15=0 είναι κάθετες. Να βρείτε: i) τον αριθμό λ ii) το σημείο τομής των ευθειών ε1 και ε iii) την ελάχιστη απόσταση που απέχει ένα σημείο της ευθείας ε1 από την αρχή των αξόνων,καθώς και ποιο είναι το σημείο αυτό. 97. Δίνεται η ευθεία ε: :3x-y+α=0,με α R,και τα σημεία Α(4,) και Β(-7,-1),τα οποία απέχουν από την ε αποστάσεις 10 και 10 αντίστοιχα. i) Να βρείτε τον αριθμό α ii) Αν Γ είναι το σημείο τομής της ευθείας ε με τον άξονα y y,να βρείτε το εμβαδόν του τριγώνου ΑΒΓ. iii) Να βρείτε ποιο σημείο της ευθείας ε απέχει τη μικρότερη απόσταση από την αρχή των αξόνων. ΣΥΝΔΥΑΣΤΙΚΑ ΘΕΜΑΤΑ 98. Δίνονται τα σημεία Α(,3),Β(5,λ) και Γ(λ-6,5),με λ R,για τα οποία ισχύει ότι 35. Να βρείτε : i) τον αριθμό λ ii) την απόσταση του σημείου Γ από την ευθεία ΑΒ iii) τις ευθείες που διέρχονται από το σημείο Α και ισαπέχουν από τα σημεία Β και Γ 99. Οι παράλληλες ευθείες : y x και 1 : y x απέχουν απόσταση ίση με 1. α) Να βρείτε τον αριθμό λ β) Να βρείτε τη μεσοπαράλληλη των ε1 και ε γ) Έστω ε3 η ευθεία που διέρχεται από το σημείο Α(4,) και τέμνει την ε1 σε σημείο με τετμημένη 7.Να βρείτε : i)την εξίσωση της ευθείας ε3 ii)τις διχοτόμους των γωνιών που σχηματίζουν οι ευθείες εκαι ε Οι ευθείες : x ( 4)y 0 και 1 : ( 1)x (3 )y 3 0 είναι κάθετες.να βρείτε : i) τον αριθμό λ ii) τις ευθείες που διέρχονται από το σημείο Ρ(,-1) και σχηματίζουν με τις ε1και ε τρίγωνο με εμβαδόν 1 τ.μ Δίνεται τρίγωνο ΑΒΓ με Γ(-,-1),στο οποίο η πλευρά ΑΒ βρίσκεται πάνω στην ευθεία με εξίσωση x y 10 0 και το ύψος ΑΔ βρίσκεται πάνω στην ευθεία με εξίσωση : x 3y 15 0.Να βρείτε : i) τις συντεταγμένες της κορυφής Α ii) τις εξισώσεις των πλευρών ΑΓ και ΒΓ 10

11 iii) τις συντεταγμένες της κορυφής Β i) το εμβαδόν του τριγώνου ΑΒΓ. 10. Σε καρτεσιανό επίπεδο Οxy η εξίσωση ευθείας (λ +λ+1)x-(λ -λ+1)y-(λ +λ)=0, όπου λ {0,1,,3,...,19}, παριστάνει πορεία 0 πλοίων που κατευθύνονται σε κάποιο λιμάνι. α) Να βρεθεί η θέση του λιμανιού, β) Ανοικτά του λιμανιού στο σημείο (1, ) υπάρχει φάρος που δεν λειτουργεί. Να εξετάσετε αν υπάρχει περίπτωση κάποιο από τα πλοία να συγκρουστεί με τον φάρο, γ) Να εξετάσετε αν κάποιο από τα 0 πλοία κινείται παράλληλα με μικρό σκάφος που κινείται στην ίδια περιοχή και του οποίου η πορεία δίνεται από την εξίσωση: 11x-3y-= Στην πόλη των Μαθηματικών οι δρόμοι που έχουν εξίσωση: (3λ+1)x+(λ-1)y+7λ+5=0, περνούν από την πλατεία της γνώσης, iι) Να δείξετε ότι οι δρόμοι της εξίσωσης (1) είναι ευθείες λ R και να βρείτε τις συντεταγμένες της πλατείας της γνώσης (η πλατεία θεωρείται ως σημείο), ii) Να βρείτε τους δρόμους της εξίσωσης (1) που είναι παράλληλοι στον xx, iii) Αν ο δρόμος των συναντήσεων έχει εξίσωση της μορφής (1) και είναι κάθετη στην ευθεία ε: x-y+1=0, να βρεθεί η εξίσωση του δρόμου αυτού Ένα γήπεδο ποδοσφαίρου είναι τοποθετημένο στο επίπεδο xoy έτσι ώστε η μεσαία γραμμή να είναι τμήμα της ευθείας ε: 4x-3y+10=0. Αν το σημείο του πέναλτι στην μία περιοχή, έχει συντεταγμένες (0, -0) τότε: i) Να βρείτε τις συντεταγμένες του σημείου που γίνεται η έναρξη του αγώνα, ii) Να βρείτε τις συντεταγμένες του σημείου του πέναλτι στην άλλη περιοχή Οι συντεταγμένες ενός πλοίου κάθε χρονική στιγμή είναι Π (t+0, t+40), t 0. Το πλοίο ξεκινά από το λιμάνι Λ την χρονική στιγμή t=0 με προορισμό προς το λιμάνι Ο, όπου Ο είναι η αρχή των αξόνων του καρτεσιανού επιπέδου. α) Να βρεθούν οι συντεταγμένες του Λ, β) Να βρεθεί η απόσταση των δύο λιμανιών, γ) Είναι σωστή η πορεία του πλοίου σε σχέση με τον προορισμό του, δ) Ποιο σημείο της πορείας του πλοίου απέχει από τον τελικό προορισμό την μικρότερη απόσταση και ποια είναι αυτή; 106. Σε έναν αγώνα αυτοκινήτων δύο κινητά βρίσκονται κάθε χρονική στιγμή t στα σημεία Κ1 (t, t+4), K (1-t, t+1), t 0. α) Να βρεθεί η απόσταση των δύο κινητών την χρονική στιγμή t=, 11

12 β) Να βρεθούν οι εξισώσεις των γραμμών πάνω στις οποίες κινούνται τα δύο κινητά, γ) Την χρονική στιγμή t=1, να βρεθεί η απόσταση του Κ1 από την τροχιά του Κ. ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 107. Δίνονται τα σημεία Α(8,0) και Β(0,4) του καρτεσιανού επιπέδου Οxy. Α) Να βρείτε την εξίσωση της ευθείας που ορίζεται από την αρχή των αξόνων Ο και το μέσο Δ του τμήματος ΑΒ. Β) Να βρείτε την εξίσωση της ευθείας (ε) που διέρχεται από το σημείο Δ και είναι κάθετη στην ευθεία ΟΔ. Γ) Έστω τυχαίο σημείο της παραπάνω ευθείας (ε).να δείξετε ότι ισχύει η σχέση: MA MB OM (ΘΕΤΙΚΗ ο ΘΕΜΑ) 108. Στο διπλανό σχεδιάγραμμα, με καρτεσιανό σύστημα αξόνων Oxy, τα σημεία Α, Β και Γ παριστάνουν τις θέσεις τριών κοινοτήτων ενός δήμου. Στο ίδιο σχεδιάγραμμα, ο άξονας y'y παριστάνει μια εθνική οδό και τα ευθύγραμμα τμήματα ΑΒ και ΑΓ δύο επαρχιακούς δρόμους που συνδέουν την κοινότητα Α με τις κοινότητες Β κ α ι Γ κ α ι έχουν μήκη 5km κ α ι 13km αντίστοιχα. Π ρ ό κ ε ι τ α ι να κατασκευαστεί ένας επαρχιακός δρόμος ΒΓ που θα συνδέει τι ς κ ο ι ν ό τ η τ ε ς Β κ α ι Γ, ο οποίος στο σχεδιάγραμμα παριστάνεται με το ευθύγραμμο τμήμα ΒΓ. Αν οι αποστάσεις των κοινοτήτων Β και Γ από την ε θ ν ι κ ή οδό y'y ε ί ν α ι 3km και 5km αντίστοιχα, τότε : α) Να βρείτε τις συντεταγμένες των σημείων Α, Β κ α ι Γ. β) Να βρείτε το μήκος του επαρχιακού δρόμου ΒΓ. γ) Να βρείτε την εξίσωση της ευθείας ΒΓ κ α ι στη συνέχεια τ ι ς συντεταγμένες του σημείου Σ στο οποίο ο ε π α ρ χ ι α κ ό ς δρόμος ΒΓ συναντά τ η ν ε θ ν ι κ ή οδό. (ΘΕΤΙΚΗ ο ΘΕΜΑ ΣΕΠΤΕΜΒΡΗΣ) 1

13 109. Σε καρτεσιανό σύστημα συντεταγμένων Οxy, εξίσωση της ευθείας ( 1) x ( 1) y 3 0 όπου λ πραγματικός αριθμός περιγράφει τη φωτεινή ακτίνα που εκπέμπει ένας περιστρεφόμενος φάρος Φ. α) Nα βρείτε τις συντεταγμένες του φάρου Φ β) Τρία πλοία βρίσκονται στα σημεία Κ(,),Λ(-1,5) και Μ(1,3).Να βρείτε τις εξισώσεις των φωτεινών ακτίνων που διέρχονται από τα πλοία Κ,Λ και Μ. γ) Nα υπολογίσετε ποιο από τα πλοία Κ και Λ βρίσκονται πλησιέστερα στην φωτεινή ακτίνα που διέρχεται από το πλοίο Μ. δ) Nα υπολογίσετε το εμβαδόν της θαλάσσιας περιοχής που ορίζεται από το φάρο Φ και τα πλοία Λ και Μ. (ΘΕΤΙΚΗ ο ΘΕΜΑ) 110. Δίνεται η εξίσωση x y 6x 9 0 α) Να δείξετε ότι η παραπάνω εξίσωση παριστάνει ευθείες ε1 και ε. β) Να δείξετε ότι οι ευθείες ε1 και ε είναι κάθετες. γ) Να βρείτε ένα σημείο Μ (κ,λ) με κ>0 και λ>0 τέτοιο ώστε το διάνυσμα a (3, k) να είναι παράλληλο προς τη μία από τις δύο ευθείες ε1 και ε και το διάνυσμα ( 16, 4 ) να είναι παράλληλο προς την άλλη ευθεία. δ) Να γράψετε την εξίσωση της παραβολής που έχει κορυφή την αρχή των αξόνων άξονα συμμετρίας τον άξονα x x και διέρχεται από το σημείο Μ. (ΘΕΤΙΚΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗ ο ΘΕΜΑ) 111. Στο ορθοκανονικό σύστημα συντεταγμένων Oxy του παρακάτω σχήματος δίνονται τα σημεία Α(4,0) και Β(0,4),η ευθεία που διέρχεται από τα σημεία Α και Β και η ευθεία δ που διέρχεται από την αρχή Ο των αξόνων και είναι κάθετη προς την ευθεία ε. α) Να αποδείξετε ότι η εξίσωση της ευθείας ε είναι x + y = 4. β)nα βρείτε την εξίσωση της ευθείας δ γ) Να βρείτε τις συντεταγμένες του σημείου τομής Μ των ευθειών δ και ε. δ) Να βρείτε την εξίσωση του κύκλου που έχει διάμετρο το ευθύγραμμο τμήμα ΟΜ. (4 ο Εσπερινού 00) 13

14 11. Δίνεται ένα τρίγωνο με κορυφές Α(λ 1, 3λ+), Β(1,) και Γ(,3) όπου λ IR με λ. Α. Να αποδείξετε ότι το σημείο Α κινείται σε ευθεία, καθώς το λ μεταβάλλεται στο IR. Β. Εάν λ=1, να βρείτε: α. το εμβαδόν του τριγώνου ΑΒΓ β. την εξίσωση του κύκλου, που έχει κέντρο την κορυφή Α(1,5) και εφάπτεται στην ευθεία ΒΓ. (3ο 003) 113. Δίνονται τα σημεία Α(14,5) και Β(, 1). Α. Να αποδείξετε ότι η εξίσωση της ευθείας ε που διέρχεται από τα σημεία Α και Β είναι x y 4 = 0. Β. Να αποδείξετε ότι η ευθεία ε τέμνει τους άξονες x x, y y στα σημεία Κ(4,0) και Λ(0, ) αντίστοιχα. (3ο 003 επαναληπτικές) 114. Δίνονται οι παράλληλες ευθείες ε1 : 3x+4y+6 = 0 και ε : 3x+4y+16=0. A. Να βρείτε την απόσταση των παράλληλων ευθειών ε1 και ε Β. Να βρείτε την εξίσωση της μεσοπαράλληλης ευθείας των ε1 και ε Γ. Να βρείτε την εξίσωση του κύκλου που έχει κέντρο το σημείο τομής της ευθείας ε1 με τον άξονα χ χ και αποκόπτει από την ευθεία ε χορδή μήκους δ=4 3 (4ο 004) 115. Δίνονται οι ευθείες ε1 και ε με εξισώσεις : 1 :3x y 1 0 και : x 3y 8 0 αντίστοιχα. α) Να αποδείξετε ότι η ευθεία ε1 είναι κάθετη στην ε β) Υποθέτουμε ότι το σημείο Α(α,) ανήκει στην ευθεία ε1 και το σημείο Β(-5,β) ανήκει στην ευθεία ε i) Να βρείτε τις τιμές των α και β ii) Να εξετάσετε αν το σημείο Μ (α,β) ανήκει στην ευθεία με εξίσωση 3x y 3 0 γ) Να βρείτε το σημείο τομής των ευθειών ε1 και ε 116. Δίνεται το σημείο Α(,1) του καρτεσιανού επιπέδου Οxy i) Nα βρείτε την εξίσωση της ευθείας ΟΑ ii) Να βρείτε την εξίσωση της ευθείας ε που διέρχεται από το σημείο Α και είναι κάθετη στην ευθεία ΟΑ iii) Η ευθεία ε τέμνει τον άξονα χ χ στο σημείο Β. Να βρείτε την εξίσωση του ύψους του τριγώνου ΟΑΒ που διέρχεται από την κορυφή Α iv) Να βρείτε το εμβαδόν του τριγώνου ΟΑΒ. 14

15 117. Σε ένα παραλληλόγραμμο ΑΒΓΔ,η πλευρά ΑΒ ανήκει στην ευθεία με εξίσωση :3x 7y 7 0 και η πλευρά ΑΔ στην ευθεία με εξίσωση : 4x y Οι διαγώνιοι ΑΓ,ΒΔ του παραλληλογράμμου τέμνονται στο σημείο K,. i) Να αποδείξετε ότι η κορυφή Γ έχει συντεταγμένες (6,) ii) Nα βρείτε την εξίσωση της ευθείας στην οποία ανήκει η πλευρά ΒΓ iii) Να βρείτε την εξίσωση της ευθείας στην οποία ανήκει η διαγώνιος ΒΔ 118. Ένα επιβατηγό πλοίο εκτελεί το δρομολόγιο Πειραιάς Ηράκλειο Κρήτης. Σε κάθε χρονική στιγμή t του ταξιδιού η θέση Μ του πλοίου ως προς ένα καρτεσιανό σύστημα συντεταγμένων Oxy είναι Μ(+κt,λ +t),όπου κ,λ R.Τη χρονική στιγμή t=5 το πλοίο διέρχεται από το σημείο Α(7,13) i) Να βρείτε τις τιμές των κ και λ ii) Να αποδείξετε ότι το πλοίο διαγράφει γραμμή που βρίσκεται πάνω στην ευθεία ε: y=x-1 iii) ένα δελφίνι κινείται παράλληλα προς το πλοίο.να βρείτε ένα διάνυσμα μήκους 1,κάθετο προς την ευθεία πάνω στην οποία κινείται το δελφίνι 15

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ Ευθεία ΣΥΝΤΕΛΕΣΤΗΣ ΔΙΕΥΘΥΝΣΗΣ ΕΥΘΕΙΑΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ 1. Να βρεθεί ο συντελεστής διεύθυνσης της ευθείας ε, αν αυτή έχει εξίσωση: 5x 6 i) y = x- 1 ii) y = 3 5x iii) y iv) x = y + 3 10 v) 18x-6y

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Θετικών Σπουδών Β Λυκείου

Μαθηματικά Προσανατολισμού Θετικών Σπουδών Β Λυκείου ΑΣΚΗΣΕΙΣ 1. Να βρείτε το συντελεστή διεύθυνσης της ευθείας που διέρχεται από τα σημεία Α, Β, όταν α) Α(2, 5), Β(1, -3) β) Α(-3, -5), Β(-5, 7) γ) Α(0, 4), Β(2, -6). 2. Να βρείτε τη γωνία που σχηματίζει

Διαβάστε περισσότερα

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ 1. Α. Έστω x, y και x, y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. i. Να εκφράσετε (χωρίς απόδειξη) το εσωτερικό γινόμενο των διανυσμάτων και συναρτήσει των συντεταγμένων τους.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 1. Να σχεδιάσετε την καμπύλη που παριστάνει η εξίσωση x y x 2 y. x y 2. Να βρεθεί η εξίσωση της ευθείας, η οποία τέμνει : i) τον άξονα χ'χ σε σημείο με τετμημένη

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία

Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία Ασκήσεις Ευθεία 1. Να βρεθεί η εξίσωση της ευθείας η οποία διέρχεται από το σηµείο τοµής των ευθειών 3x + 4y 11 = 0 και 2x 3y + 21 = 0 και να γίνει η γραφική της παράσταση όταν είναι: i) παράλληλη στην

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ 1. Δίνεται τετράγωνο ΑΒΓΔ.Σε καθεμία από τις παρακάτω περιπτώσεις να βρείτε το άθροισμα.

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

π (α,β). Έστω τα διανύσματα π (α,β) να βρεθούν:

π (α,β). Έστω τα διανύσματα π (α,β) να βρεθούν: ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Β ΚΑΤΕΥΘΥΝΣΗΣ 1. Για τα διανύσματα α, β δίνεται ότι α =1, β = και u α β, v α - β.να υπολογίσετε: π (α,β). Έστω τα διανύσματα α. το εσωτερικό γινόμενο α β β. τα μέτρα u, v των διανυσμάτων

Διαβάστε περισσότερα

Η γενική μορφή της εξίσωσης ευθείας είναι η από τα Α, Β διάφορο του μηδενός

Η γενική μορφή της εξίσωσης ευθείας είναι η από τα Α, Β διάφορο του μηδενός ΕΥΘΕΙΑ Να προσέχεις ότι: Η γενική μορφή της εξίσωσης ευθείας είναι η από τα Α, Β διάφορο του μηδενός Ax+By+Γ=0, με κάποιο Η εξίσωση της ευθείας που διέρχεται από ένα σημείο Α(x 0,y 0 ) και έχει συντελεστή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: α) ω = 3 π β) ω = π 3 γ) ω = π. Να βρείτε τη γωνία ω που σχηµατίζει µε τον άξονα x x µια ευθεία ε, η οποία

Διαβάστε περισσότερα

1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: 2π 3

1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: 2π 3 Ερωτήσεις ανάπτυξης 1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: α) ω = 3 π β) ω = 2π 3 γ) ω = π 2. * Να βρείτε τη γωνία ω που σχηµατίζει µε τον άξονα

Διαβάστε περισσότερα

2 ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

2 ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ 1. Να βρείτε τον συντελεστή διεύθυνσης μιας ευθείας ε, που σχηματίζει με τον άξονα x x γωνία: π 3 α) ω = β) ω = γ) ω = π 3. Να βρείτε τη γωνία ω που σχηματίζει με

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0

ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0 ΚΕΦΑΛΑΙΟ 3 Ο Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0 2. Να βρεθεί η εξίσωση της εφαπτομένης του κύκλου x

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 1 Στο ορθογώνιο σύστημα αξόνων Οxψ θεωρούμε τα σημεία Α, Β, τα οποία έχουν τετμημένες τις ρίζες της εξίσωσης x - (4λ+6μ)x - 005 = 0 και τεταγμένες τις ρίζες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

1 x και y = - λx είναι κάθετες

1 x και y = - λx είναι κάθετες Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία (ε) με τον άξονα. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

Μαθηματικά προσανατολισμού Β Λυκείου. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΟΕΦΕ α φάση. Διανύσματα

Μαθηματικά προσανατολισμού Β Λυκείου. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΟΕΦΕ α φάση. Διανύσματα Μαθηματικά προσανατολισμού Β Λυκείου wwwaskisopolisgr ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΟΕΦΕ 00-018α φάση Διανύσματα 1 Σε σύστημα συντεταγμένων Oxy θεωρούμε τρία σημεία Α, Β, Γ του μοναδιαίου κύκλου, για τα οποία υπάρχει

Διαβάστε περισσότερα

Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12

Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12 Τράπεζα 0- Πολλαπλασιασμός αριθμού με διάνυσμα.58 Θεωρούμε τα διανύσματα α,β,γ και τυχαίο σημείο Ο. Αν α β 5γ, α 3β 4γ και 3α β 6γ, τότε: α) να εκφράσετε τα διανύσματα, συναρτήσει των διανυσμάτων α,β,γ.

Διαβάστε περισσότερα

Επαναληπτικά συνδυαστικα θέµατα

Επαναληπτικά συνδυαστικα θέµατα Επαναληπτικά συνδυαστικα θέµατα Θέµα ο A. Αν α, β µη µηδενικά διανύσµατα και ισχύει α+ β + α β =, τότε να δείξετε ότι: i. αβ και ii. Αν α β τότε ισχύει α + β =. 4 4 B. Να βρεθούν οι τιµές του λ ώστε η

Διαβάστε περισσότερα

= π 3 και a = 2, β =2 2. a, β

= π 3 και a = 2, β =2 2. a, β 1 of 68 Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. γ) Να

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ 1. Να αποδειχθεί ότι τα μέσα των πλευρών τετραπλεύρου είναι κορυφές παραλληλογράμμου.

ΔΙΑΝΥΣΜΑΤΑ 1. Να αποδειχθεί ότι τα μέσα των πλευρών τετραπλεύρου είναι κορυφές παραλληλογράμμου. ΔΙΑΝΥΣΜΑΤΑ 1. Να αποδειχθεί ότι τα μέσα των πλευρών τετραπλεύρου είναι κορυφές παραλληλογράμμου.. Δίνεται ένα παραλληλόγραμμο ΑΒΓΔ και ένα οποιοδήποτε σημείο Ρ του χώρου. Να αποδειχτεί ότι: P A P 0. 3.

Διαβάστε περισσότερα

Επαναληπτικά συνδυαστικα θέµατα

Επαναληπτικά συνδυαστικα θέµατα Επαναληπτικά συνδυαστικα θέµατα A. Αν α, β i. αβ Θέµα ο µη µηδενικά διανύσµατα και ισχύει α+ β + α β =, τότε να δείξετε ότι: και ii. Αν α β τότε ισχύει α + β =. B. Να βρεθούν οι τιµές του λ ώστε η εξίσωση

Διαβάστε περισσότερα

: y=x+3, εξίσωση διαµέσου µ. : y= 2x+3 και κορυφή Β(4,1). Να προσδιορίσετε τις κορυφές Α και Γ του τριγώνου y= x+ 7 7 και y= 7x 5 αντίστοιχα.

: y=x+3, εξίσωση διαµέσου µ. : y= 2x+3 και κορυφή Β(4,1). Να προσδιορίσετε τις κορυφές Α και Γ του τριγώνου y= x+ 7 7 και y= 7x 5 αντίστοιχα. Κεφάλαιο ο : Η ευθεία στο επίπεδο Θέµατα «Ανάπτυξης» Να βρείτε τις εξισώσεις των πλευρών τριγώνου ΑΒΓ του οποίου η κορυφή Α έχει συντεταγµένες (,5) και οι διάµεσοι ΒΕ και ΓΖ έχουν εξισώσεις x 4y + = 0

Διαβάστε περισσότερα

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού 117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά Μαθηματικού Περιεχόμενα 1. Διανύσματα (47) ελ. - 9. Ευθεία (18) ελ. 10-1 3. Κύκλος (13).ελ. 13-15 4. Παραβολή (14) ελ. 16-18 5. Έλλειψη (18)..

Διαβάστε περισσότερα

Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Μέρος Α : Θεωρία

Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Μέρος Α : Θεωρία 1 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Μέρος Α : Θεωρία ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ Εξίσωση Γραμμής Μια εξίσωση με δύο αγνώστους, λέγεται εξίσωση μιας γραμμής C, όταν οι συντεταγμένες των σημείων της C, και μόνο αυτές, την επαληθεύουν.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΛΛΕΙΨΗ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΛΛΕΙΨΗ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΛΛΕΙΨΗ EΞΙΣΩΣΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΕΛΛΕΙΨΗΣ 1. Να βρείτε την εξίσωση της έλλειψης όταν: α) Έχει εστία Ε (-8,0) και μεγάλο άξονα 0 β) Έχει εστία Ε(0,3) και μεγάλο άξονα 8 γ) Έχει εστία Ε(4,0) και

Διαβάστε περισσότερα

ΘΕΜΑ ίνονται τα διανύσµαταα, β. α) Να υπολογίσετε τη γωνία. β) Να αποδείξετε ότι 2α+β= β) το συνηµίτονο της γωνίας των διανυσµάτων

ΘΕΜΑ ίνονται τα διανύσµαταα, β. α) Να υπολογίσετε τη γωνία. β) Να αποδείξετε ότι 2α+β= β) το συνηµίτονο της γωνίας των διανυσµάτων ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΣΕ ΟΛΗ ΤΗΝ ΥΛΗ! ΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΙΑΝΥΣΜΑ ΘΕΜΑ 005 Θεωρούµε τα σηµεία Ρ, Λ, Κ και Μ του επιπέδου για τα οποία ισχύει η σχέση 5ΡΛ

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ - ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1. Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε = 5 + 2 α) Να γράψετε το διάνυσμα β) Να δείξετε

Διαβάστε περισσότερα

ΚΥΚΛΟΣ. Μ(x,y) Ο C ΘΕΩΡΙΑ ΕΠΙΜΕΛΕΙΑ: ΣΩΣΤΟ-ΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΧΡΑΣ ΓΙΑΝΝΗΣ ΑΣΚΗΣΕΙΣ. 3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ

ΚΥΚΛΟΣ. Μ(x,y) Ο C ΘΕΩΡΙΑ ΕΠΙΜΕΛΕΙΑ: ΣΩΣΤΟ-ΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΧΡΑΣ ΓΙΑΝΝΗΣ ΑΣΚΗΣΕΙΣ. 3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ Φ3 ΚΥΚΛΟΣ y Μ(x,y) A(x,y) ε Ο C x ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΘΕΩΡΙΑ ΣΩΣΤΟ-ΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ ΚΕΝΤΡΙΚΟ 3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ Ν. ΣΜΥΡΝΗΣ 0-0 ΘΕΩΡΙΑ. Τι ονομάζεται κύκλος με κέντρο το σημείο K( x0,

Διαβάστε περισσότερα

Ασκήσεις στην ευθεία. 2. Θεωρούµε την γραµµή µε εξίσωση x 2 +y 2-2x+y-5=0. Βρείτε τα σηµεία της καµπύλης, αν υπάρχουν, µε τετµηµένη -1.

Ασκήσεις στην ευθεία. 2. Θεωρούµε την γραµµή µε εξίσωση x 2 +y 2-2x+y-5=0. Βρείτε τα σηµεία της καµπύλης, αν υπάρχουν, µε τετµηµένη -1. Ασκήσεις στην ευθεία 1. Να βρείτε τα σηµεία τοµής των γραµµών µε εξισώσεις : α) 7x-11y+1=0, x+y-=0 β) y-3x-=0, x +y =4 γ) x +y =α, 3x+y+α=0. Θεωρούµε την γραµµή µε εξίσωση x +y -x+y-5=0. Βρείτε τα σηµεία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ - ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1. Δίνεται παραλληλόγραμμο ΑΒΓΔ με τρεις κορυφές τα σημεία Α (1,1), Γ (4,3) και Δ (,3). α) Να υπολογίσετε τα μήκη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Δίνεται η ευθεία (ε) με εξίσωση: 2x y1 0 καθώς και το σημείο Μ(3,0). α. Να βρείτε την εξίσωση μιας ευθείας (η) που περνά από το Μ και είναι κάθετη στην ευθεία (ε). β. Να

Διαβάστε περισσότερα

ΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΔΙΑΝΥΣΜΑΤΑ ΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 1) Δίνονται διανύσματα α και β, με α π = 4 και (α, β ) = 3 Αν ισχύει ότι το α (α + 2β ) = 28, να βρείτε: α) το εσωτερικό γινόμενο α β, β) το μέτρο

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Νρεθεί η εξίσωση του κύκλου σε καθεμιά από τις παρακάτω περιπτώσεις: α) έχει κέντρο την αρχή των αξόνων και ακτίνα β) έχει κέντρο το σημείο (3, - ) και ακτίνα 5 γ) έχει κέντρο το σημείο

Διαβάστε περισσότερα

Ασκήσεις Κύκλος. 6. Για ποια τιμή του λ το σημείο Μ(2λ + 1, λ) ανήκει στον κύκλο με εξίσωση (x 3) 2 + (y + 4) 2 = 100

Ασκήσεις Κύκλος. 6. Για ποια τιμή του λ το σημείο Μ(2λ + 1, λ) ανήκει στον κύκλο με εξίσωση (x 3) 2 + (y + 4) 2 = 100 Ασκήσεις Κύκλος 1. Να βρείτε το κέντρο και την ακτίνα του κύκλου (x + 5) + (y 5) =. Να βρείτε το κέντρο και την ακτίνα του κύκλου x + y 8x + 4y + 11 = 0 3. Ποια πρέπει να είναι η ακτίνα του κύκλου (x 1)

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ ΕΞΙΣΩΣΗ ΠΑΡΑΒΟΛΗΣ 8. Να βρεθεί η εξίσωση της παραβολής με κορυφή το (0, 0) στις παρακάτω περιπτώσεις: α) είναι συμμετρική ως προς το θετικό ημιάξονα Οx και έχει παράμετρο p = 5 β)

Διαβάστε περισσότερα

Ο κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ έχει εξίσωση: B,- 2 A 2

Ο κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ έχει εξίσωση: B,- 2 A 2 3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΚΥΚΛΟΣ Κύκλος είναι ο γεωμετρικός τόπος των σημείων του επιπέδου που απέχουν σταθερή απόσταση από ένα σταθερό σημείο του επιπέδου αυτού. Το σταθερό σημείο

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία Εξίσωση ευθείας

Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία Εξίσωση ευθείας Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία - 1-1. 2-18575 Εξίσωση ευθείας Δίνονται τα σημεία Α(1,2) και Β (5,6 ). α) Να βρείτε την εξίσωση της ευθείας που διέρχεται από

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΔΙΑΝΥΣΜΑΤΑ

ΕΠΑΝΑΛΗΨΗ ΔΙΑΝΥΣΜΑΤΑ ΕΠΑΝΑΛΗΨΗ ΔΙΑΝΥΣΜΑΤΑ Στο ορθογώνιο σύστημα αξόνων Οxy θεωρούμε τα σημεία Α, Β, τα οποία έχουν τετμημένες τις ρίζες της εξίσωσης x - (4λ+6μ)x - 005 = 0 και τεταγμένες τις ρίζες της εξίσωσης y + ( 5λ + μ)y

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. Μονάδες 8 Β. η εξίσωση της μεσοκάθετης της ΑΓ Μονάδες 9

ΘΕΜΑΤΑ. Μονάδες 8 Β. η εξίσωση της μεσοκάθετης της ΑΓ Μονάδες 9 ΓΕΛ ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β 331 Α. α. Τι ονομάζουμε εσωτερικό γινόμενο των μη μηδενικών διανυσμάτων α, β. Μονάδες 5 β. Εάν ορίζονται οι συντελεστές διεύθυνσης των διανυσμάτων α, β αντιστοίχως να δείξετε ότι:

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΟΡΙΣΜΟΣ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ 1. Να υπολογιστεί το εσωτερικό γινόμενο a δύο διανυσμάτων a και αν: ι) a a 5, 7,(, ) 5, ιι) a 5,,( a, ). 6 6. Το διάνυσμα

Διαβάστε περισσότερα

ΘΕΜΑ 1. Α. Να δείξετε ότι η ευθεία ε: αx + βy + γ = 0, ( α + β 0), είναι παράλληλη στο. (Μονάδες: 5) Β. ΣΩΣΤΟ ΛΑΘΟΣ

ΘΕΜΑ 1. Α. Να δείξετε ότι η ευθεία ε: αx + βy + γ = 0, ( α + β 0), είναι παράλληλη στο. (Μονάδες: 5) Β. ΣΩΣΤΟ ΛΑΘΟΣ Ε4 ΘΕΜΑ 1 Α. Να δείξετε ότι η ευθεία ε: αx + βy + γ = 0, ( α + β 0), είναι παράλληλη στο δ = ( β, α). (Μονάδες: 5) Β. ΣΩΣΤΟ ΛΑΘΟΣ 1. Η απόσταση του 0(0,0) από την x + y + = 0 είναι.. Η εξίσωση y = xy παριστάνει

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A [Επιλογή Ιαν.. Εμβαδόν Τριγώνου ΣΤΟΧΟΙ: Ο µαθητής ϖρέϖει: να είναι ικανός να υϖολογίζει την αϖόσταση σηµείου αϖό ευθεία να είναι ικανός να υϖολογίζει το εµβαδό ενός τριγώνου αϖό τις συντεταγµένες των κορυφών

Διαβάστε περισσότερα

Ευθείες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 1 1 /

Ευθείες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 1 1 / Ευθείες Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr / / 0 8 Κατεύθυνση Κεφάλαιο 59 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο

Διαβάστε περισσότερα

Συνδυαστικά θέματα στον κύκλο

Συνδυαστικά θέματα στον κύκλο Συνδυαστικά θέματα στον κύκλο 1. Δίνεται ο κύκλος C που έχει κέντρο την αρχή των αξόνων και διέρχεται από το σημείο Α(-3,4).Να βρείτε : i) εξίσωση του κύκλου ii) την εφαπτομένη του κύκλου στο σημείο Α,

Διαβάστε περισσότερα

Ευθείες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 1 1 /

Ευθείες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 1 1 / Ευθείες Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr / / 0 8 Κατεύθυνση Κεφάλαιο 59 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο

Διαβάστε περισσότερα

12. Το εμβαδόν ενός τριγώνου ΑΒΓ είναι ίσο με

12. Το εμβαδόν ενός τριγώνου ΑΒΓ είναι ίσο με ΓΕΝΙΚΟ ΥΚΕΙΟ ΚΑΤΡΙΤΙΟΥ ΕΠΙΜΕΕΙΑ: Kωνσταντόπουλος Κων/νος Μαθηματικός ΜSc Η ΕΥΘΕΙΑ ΤΟ ΕΠΙΠΕΔΟ. ε κάθε μια από τις παρακάτω περιπτώσεις να κυκλώσετε το γράμμα, αν ο ισχυρισμός είναι αληθής διαφορετικά να

Διαβάστε περισσότερα

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;

Διαβάστε περισσότερα

Ευθείες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 /

Ευθείες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 / Ευθείες Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3. 8 8. 8 8 Kgllykos..gr / 7 / 8 Κατεύθυνση Κεφάλαιο 3 ασκήσεις και τεχνικές σε σελίδες εκδόσεις Καλό πήξιμο τηλ. Οικίας

Διαβάστε περισσότερα

44 Ευθεία Τύποι - Βασικές έννοιες Εξίσωση ευθείας EΥΘΕΙΑ: Τύποι - Βασικές έννοιες α Η εξίσωση ευθείας (ε) η οποία διέρχεται από το σημείο ( x,y) συντε

44 Ευθεία Τύποι - Βασικές έννοιες Εξίσωση ευθείας EΥΘΕΙΑ: Τύποι - Βασικές έννοιες α Η εξίσωση ευθείας (ε) η οποία διέρχεται από το σημείο ( x,y) συντε Ο μαθητής που έχει μελετήσει το κεφάλαιο της ευθείας θα πρέπει να είναι σε θέση: Να βρίσκει τον συντελεστή διεύθυνσης μιας ευθείας Να διατυπώνει τις συνθήκες παραλληλίας και καθετότητας δύο ευθειών, και

Διαβάστε περισσότερα

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5.

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Ευθεία Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Εξίσωση γραμμής Συντελεστής διεύθυνσης ευθείας Συνθήκες καθετότητας και παραλληλίας ευθειών Εξίσωση ευθείας ειδικές περιπτώσεις Σχόλιο Το σημείο είναι ο θεμελιώδης λίθος της

Διαβάστε περισσότερα

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 63 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Η Εξίσωση Αx + Βy + Γ = 0, με Α 0 ή Β 0 Έστω ε μια ευθεία στο καρτεσιανό επίπεδο Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Σ (, 0 β ) και έχει συντελεστή διεύθυνσης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΑΝΥΣΜΑΤΑ Επιμέλεια: Άλκης Τζελέπης ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΝΝΟΙΑ - ΠΡΑΞΕΙΣ. Αν τα διανύσματα,, σχηματίζουν τρίγωνο, να αποδείξετε ότι το ίδιο συμβαίνει

Διαβάστε περισσότερα

(Μονάδες 8) γ) Για την τιμή του λ που βρήκατε στο ερώτημα β), να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ (Μονάδες 10)

(Μονάδες 8) γ) Για την τιμή του λ που βρήκατε στο ερώτημα β), να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ (Μονάδες 10) ΘΕΜΑ 4 Σε τρίγωνο ΑΒΓ είναι AB= ( λ, λ+ 1), AΓ = ( 3 λ, λ 1) είναι το μέσο της πλευράς ΒΓ AΜ= λ, λ α) Να αποδείξετε ότι ( ), όπου λ 0 και λ, και Μ (Μονάδες 7) β) Να βρείτε την τιμή του λ για την οποία

Διαβάστε περισσότερα

β = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ...

β = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ... Αµυραδάκη 0, Νίκαια (104903576) ΝΟΕΜΒΡΙΟΣ 01 ΘΕΜΑ 1 ο i) Αν Α( x 1, y 1 ) και Β(x, y ) δυο σηµεία του καρτεσιανού επιπέδου και (x, y) οι συντεταγµένες του µέσου Μ του ΑΒ, να αποδείξετε ότι : x 1 + x x

Διαβάστε περισσότερα

φέρουμε μια οποιαδήποτε χορδή ΑΒ του κύκλου και την προεκτείνουμε κατά τμήμα

φέρουμε μια οποιαδήποτε χορδή ΑΒ του κύκλου και την προεκτείνουμε κατά τμήμα 1. Δίνεται ο κύκλος + y ρ, όπου ρ>0. Από το σημείο A( - ρ,0) του C C :x = φέρουμε μια οποιαδήποτε χορδή ΑΒ του κύκλου και την προεκτείνουμε κατά τμήμα BM = AB. Να αποδείξετε ότι το Μ κινείται πάνω σε ένα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. γ)να υπολογίσετε το μέτρο του διανύσματος u. δ)αν το διάνυσμα v,

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. γ)να υπολογίσετε το μέτρο του διανύσματος u. δ)αν το διάνυσμα v, ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 1. Δίνονται τα διανύσματα a, για τα οποία ισχύουν : 4, 5 και α)να αποδείξετε ότι 10 β)να βρείτε τη γωνία των και. 5. 8 γ)να υπολογίσετε το μέτρο του διανύσματος u. δ)αν το διάνυσμα

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Β Λυκείου Κύκλος. Ασκήσεις Κύκλος

Μαθηµατικά Κατεύθυνσης Β Λυκείου Κύκλος. Ασκήσεις Κύκλος Ασκήσεις Κύκλος 1. Να βρείτε αν οι παρακάτω εξισώσεις παριστάνουν κύκλο. Έπειτα να βρείτε το κέντρο και την ακτίνα τους. i) x 2 + y 2 2x 4y + 1 = 0 (Απ.: (x 1) 2 + (y 2) 2 = 4) x 2 + y 2 2x + 4y + 5 =

Διαβάστε περισσότερα

5 Γενική µορφή εξίσωσης ευθείας

5 Γενική µορφή εξίσωσης ευθείας 5 Γενική µορφή εξίσωσης ευθείας Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Κάθε ευθεία έχει εξίσωση της µορφής: Ax + By +Γ= 0, µε Α 0 ηβ 0 () και αντιστρόφως κάθε εξίσωση της µορφής () παριστάνει ευθεία γραµµή.

Διαβάστε περισσότερα

i. εστίες Ε' (-4, 0), Ε(4, 0) και η απόσταση των κορυφών είναι 5, ii. εστίες Ε'(0, -10), Ε(0, 10) και η απόσταση των κορυφών είναι 8.

i. εστίες Ε' (-4, 0), Ε(4, 0) και η απόσταση των κορυφών είναι 5, ii. εστίες Ε'(0, -10), Ε(0, 10) και η απόσταση των κορυφών είναι 8. ΥΠΕΡΒΟΛΗ ΕΞΙΣΩΣΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΥΠΕΡΒΟΛΗΣ 1) Να βρεθεί η εξίσωση της υπερβολής αν έχει: i) Εστιακή απόσταση γ=0 και άξονα β=16, 5 ii) Άξονα α=16 και εκκεντρότητα ε=. 4 ) Να βρείτε την εξίσωση της υπερβολής,

Διαβάστε περισσότερα

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R Κεφάλαιο 4ο: ΚΩΝΙΚΕΣ ΤΟΜΕΣ Α. ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση ( x x ) + ( y y ) = k, k R είναι πάντοτε εξίσωση κύκλου. o o. * Η εξίσωση x + y + Ax + By + Γ = 0 παριστάνει κύκλο

Διαβάστε περισσότερα

Έστω ε μια ευθεία του καρτεσιανού επιπέδου, με εξίσωση ) ένα σημείο εκτός αυτής. Θέλουμε y (1)

Έστω ε μια ευθεία του καρτεσιανού επιπέδου, με εξίσωση ) ένα σημείο εκτός αυτής. Θέλουμε y (1) 7 ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ Απόσταση Σημείου από Ευθεία Έστω ε μια ευθεία του καρτεσιανού επιπέδου, με εξίσωση M ( x, y ) ένα σημείο εκτός αυτής Θέλουμε y να υπολογίσουμε την απόσταση d( M, ε) του ε σημείου M από

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος». * Συντελεστής διεύθυνσης µιας ευθείας (ε) είναι η εφαπτοµένη της γωνίας που σχηµατίζει η ευθεία (ε) µε τον άξονα x x. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

Μαθηματικά προσανατολισμού Β Λυκείου

Μαθηματικά προσανατολισμού Β Λυκείου Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI

Διαβάστε περισσότερα

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8)

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες 10) γ) Να βρείτε

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος ΔΙΑΝΥΣΜΑΤΑ 8556 ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =.. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. α. Τι ονομάζουμε εσωτερικό γινόμενο δύο διανυσμάτων, β

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. α. Τι ονομάζουμε εσωτερικό γινόμενο δύο διανυσμάτων, β O A M B ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ Ο ΘΕΜΑ ον : α α. Τι ονομάζουμε εσωτερικό γινόμενο δύο διανυσμάτων, β. Μονάδες 5 β. Αν α, ν

Διαβάστε περισσότερα

2ο ΓΕΛ ΣΥΚΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ : Η ΥΠΕΡΒΟΛΗ. ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ 2ο ΓΕΛ ΣΥΚΕΩΝ

2ο ΓΕΛ ΣΥΚΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ : Η ΥΠΕΡΒΟΛΗ. ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ 2ο ΓΕΛ ΣΥΚΕΩΝ ο ΓΕΛ ΣΥΚΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ : Η ΥΠΕΡΒΟΛΗ ΣΧΟΛΙΚΟ ΕΤΟΣ 013-014 ΕΠΙΜΕΛΕΙΑ : ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ ο ΓΕΛ ΣΥΚΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Η ΥΠΕΡΒΟΛΗ ΟΡΙΣΜΟΣ: Έστω Ε και Ε δύο σημεία του

Διαβάστε περισσότερα

Ερωτήσεις αντιστοίχισης

Ερωτήσεις αντιστοίχισης Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΤΗΝ ΕΥΘΕΙΑ ΓΡΑΜΜΗ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΤΗΝ ΕΥΘΕΙΑ ΓΡΑΜΜΗ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΤΗΝ ΕΥΘΕΙΑ ΓΡΑΜΜΗ ΓΙΑ ΕΡΓΑΣΙΑ ΣΤΗΝ ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΔΗΜΗΤΡΗΣ ΝΤΡΙΖΟΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ / ΘΕΜΑ Δίνεται το κυρτό τετράπλευρο ΑΒΓΔ

Διαβάστε περισσότερα

Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-2004

Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-2004 Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-004 Περιεχόµενα 1 Θέµατα 1999.......................................... 3 Θέµατα 000..........................................

Διαβάστε περισσότερα

ΚΥΚΛΟΣ. και ακτίνα 1 3. Σ Λ

ΚΥΚΛΟΣ. και ακτίνα 1 3. Σ Λ 1 ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΣΤΡΙΤΣΙΟΥ ΚΥΚΛΟΣ ΕΠΙΜΕΛΕΙΑ: Kωνσταντόπουλος Κων/νος Μαθηματικός ΜSc 1. Σε κάθε μια από τις παρακάτω περιπτώσεις να κυκλώσετε το γράμμα Σ, αν ο ισχυρισμός είναι αληθής διαφορετικά να κυκλώσετε

Διαβάστε περισσότερα

ΜαθηΜατικα κατεύθύνσησ β λυκείου. επιμέλεια: Βρύσαλησ ΔηΜητρησ

ΜαθηΜατικα κατεύθύνσησ β λυκείου. επιμέλεια: Βρύσαλησ ΔηΜητρησ ΜαθηΜατικα κατεύθύνσησ β λυκείου επιμέλεια: Βρύσαλησ ΔηΜητρησ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΑΡΑΤΗΡΗΣΕΙΣ ΔΙΑΝΥΣΜΑΤΑ ΕΥΘΕΙΑ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ ΕΠΙΜΕΛΕΙΑ ΔΗΜΗΤΡΗΣ ΒΡΥΣΑΛΗΣ ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

Επαναληπτικά Θέµατα Εξετάσεων

Επαναληπτικά Θέµατα Εξετάσεων Επαναληπτικά Θέµατα Εξετάσεων Καθηγητές : Νικόλαος Κατσίπης 25 Απριλίου 2014 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας ευχόµαστε καλό διάβασµα και...

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟ ΚΥΚΛΟ. 1. Να βρεθεί η εξίσωση του κύκλου που περνά από τα σηµεία Α(2,0) και Β(0,0) και έχει το κέντρο του στην ευθεία 2x-3y=0

ΑΣΚΗΣΕΙΣ ΣΤΟ ΚΥΚΛΟ. 1. Να βρεθεί η εξίσωση του κύκλου που περνά από τα σηµεία Α(2,0) και Β(0,0) και έχει το κέντρο του στην ευθεία 2x-3y=0 ΑΣΚΗΣΕΙΣ ΣΤΟ ΚΥΚΛΟ 1. Να βρεθεί η εξίσωση του κύκλου που περνά από τα σηµεία Α(2,0) και Β(0,0) και έχει το κέντρο του στην ευθεία 2x-3y=0 2. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σηµείο Κ(1,2)

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 1

Σημειώσεις Μαθηματικών 1 Σημειώσεις Μαθηματικών 1 Αναλυτική Γεωμετρία Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 4 Αναλυτική Γεωμετρία 4.1 Εξίσωση Καμπύλης Έστω C μια καμπύλη στο R. H C αποτελείται από άπειρα σημεία Μ(x,y). Έξίσωση μιας

Διαβάστε περισσότερα

Γιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Μαθηματικά. Θετικής & Τεχνολογικής Κατεύθυνσης.

Γιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Μαθηματικά. Θετικής & Τεχνολογικής Κατεύθυνσης. Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ Μαθηματικά Θετικής & Τεχνολογικής Κατεύθυνσης Β Ενιαίου Λυκείου Μαθηματικά Κατεύθυνσης B Λυκείου Περιεχόμενα ΚΕΦΑΛΑΙΟ : Διανύσματα Η θεωρία

Διαβάστε περισσότερα

Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ)

Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ) ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΕΥΘΕΙΑ Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ) 1. Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία με τον

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

Μαθηματικά προσαματολισμού Β Λσκείοσ

Μαθηματικά προσαματολισμού Β Λσκείοσ Μαθηματικά προσαματολισμού Β Λσκείοσ Ο κύκλος Στέλιος Μιταήλογλοσ wwwaskisopolisgr Κύκλος Εξίσωση κύκλου Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με M x, y του κέντρο το σημείο 0

Διαβάστε περισσότερα

ΛΥΣΗ Έστω x = λ-1 και y = 2λ+3, τότε λ = x+1 (1) και λ = (2). Αυτό σημαίνει ότι ο γεωμετρικός τόπος των σημείων Μ είναι η ευθεία y = 2x+5.

ΛΥΣΗ Έστω x = λ-1 και y = 2λ+3, τότε λ = x+1 (1) και λ = (2). Αυτό σημαίνει ότι ο γεωμετρικός τόπος των σημείων Μ είναι η ευθεία y = 2x+5. . Να βρεθεί ο γεωμετρικός τόπος των σημείων Μ (λ -, λ ), λ R. - Έστω λ- και λ, τότε λ () και λ (). - Από τις () και () έχουμε:. Αυτό σημαίνει ότι ο γεωμετρικός τόπος των σημείων Μ είναι η ευθεία.. Να αποδείξετε

Διαβάστε περισσότερα

201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ Α. ΘΕΩΡΙΑ. i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η

201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ Α. ΘΕΩΡΙΑ. i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η 201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ - 1-1. Να αποδείξετε ότι: Α. ΘΕΩΡΙΑ i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η C : x 2 y 2 ρ 2. Να αποδείξετε ότι η εφαπτομένη του κύκλου C: χ 2 + ψ 2 = ρ 2

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ. (Μονάδες 8) (Μονάδες 10) (Μονάδες 7) ΘΕΜΑ 2. AM, όπου ΑΜ είναι η διάμεσος. (Μονάδες 7)

ΔΙΑΝΥΣΜΑΤΑ. (Μονάδες 8) (Μονάδες 10) (Μονάδες 7) ΘΕΜΑ 2. AM, όπου ΑΜ είναι η διάμεσος. (Μονάδες 7) ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ Άσκηση Δίνονται τα διανύσματα a και με a, = 3 και a =, =. α) Να βρείτε το εσωτερικό γινόμενο a. β) Αν τα διανύσματα a + και κ a + είναι κάθετα να βρείτε την τιμή του κ. γ) Να βρείτε το

Διαβάστε περισσότερα

Μαθηματικές Συναντήσεις

Μαθηματικές Συναντήσεις Μαθηματικές Συναντήσεις ΣΗΜΕΙΩΜΑ 7ο / ΝΟΕΜΒΡΙΟΣ 4-ΙΑΝΟΥΑΡΙΟΣ 5 ΜΙΑ ΠΡΟΤΑΣΗ ΘΕΜΑΤΩΝ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ, ΤΗΝ ΕΥΘΕΙΑ ΓΡΑΜΜΗ ΚΑΙ ΤΙΣ ΚΩΝΙΚΕΣ ΤΟΜΕΣ (4α θέματα) Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμβούλου Μαθηματικών

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

πλευρές του κείνται στις ευθείες : 4χ-3ψ+7=0, 3χ+2ψ-16=0, χ-5ψ+6=0. (ΑΒ=5, ΒΓ= 13,

πλευρές του κείνται στις ευθείες : 4χ-3ψ+7=0, 3χ+2ψ-16=0, χ-5ψ+6=0. (ΑΒ=5, ΒΓ= 13, 1 Η Ευθεία στο Επίπεδο Η Ευθεία στο Επίπεδο 1 Να βρεθεί το είδος των γωνιών του τριγώνου που οι πλευρές του κείνται στις ευθείες : 4χ-3ψ+3=0, 3χ+4ψ+4=0, χ-7ψ+8=0. (90, 45, 45 ) 2 Να βρεθεί το μήκος των

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΑΠΟ ΤΗΝ ΘΕΩΡΙΑ ΔΙΑΝΥΣΜΑΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΔΙΑΝΥΣΜΑΤΟΣ Αρχή και Πέρας Φορέας Διεύθυνση (Συγγραμμικά διανύσματα) Μέτρο Κατεύθυνση (Ομόρροπα Αντίρροπα διανύσματα)

Διαβάστε περισσότερα

Επαναληπτικές ασκήσεις για το Πάσχα.

Επαναληπτικές ασκήσεις για το Πάσχα. Μαθηματικά B Γυμνασίου Επαναληπτικές ασκήσεις για το Πάσχα. Άλγεβρα. Κεφάλαιο 1 ο. 1. Να υπολογιστούν οι παρακάτω αριθμητικές παραστάσεις : 1 7 1 7 1 1 ) - 1 4 : ) -1 1 : 1 4 10 9 6. Να λυθούν οι εξισώσεις:

Διαβάστε περισσότερα

3.1. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας

3.1. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας 3. Ασκήσεις σχολικού βιβλίου σελίδας 87 89 Οµάδας. Να βρείτε την εξίσωση του κύκλου µε κέντρο την αρχή των αξόνων σε καθεµιά από τις παρακάτω περιπτώσεις : (i) Όταν διέρχεται από το σηµείο Α(, 3 ) (ii)

Διαβάστε περισσότερα

Δ 1. Να βρείτε στο επίπεδο ενός τριγώνου ΑΒΓ σηµεία Μ και Ρ τέτοια ώστε να ισχύουν συγχρόνως : i. ΜΑ ΜΒ 3ΜΓ = Ο ii. 2 PA 2PB+ 3PΓ = Ο και στη συνέχεια

Δ 1. Να βρείτε στο επίπεδο ενός τριγώνου ΑΒΓ σηµεία Μ και Ρ τέτοια ώστε να ισχύουν συγχρόνως : i. ΜΑ ΜΒ 3ΜΓ = Ο ii. 2 PA 2PB+ 3PΓ = Ο και στη συνέχεια 185 Δ 1. Να βρείτε στο επίπεδο ενός τριγώνου ΑΒΓ σηµεία Μ και Ρ τέτοια ώστε να ισχύουν συγχρόνως : i. ΜΑ ΜΒ 3ΜΓ = Ο ii. 2 PA 2PB+ 3PΓ = Ο και στη συνέχεια να αποδείξετε ότι το ΑΒΜΡ είναι παρ/µο. Δ 2. Δίνεται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΣΥΝΤΕΛΕΣΤΗΣ ΔΙΕΥΘΥΝΣΗΣ ΕΥΘΕΙΑΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ 1. Να βρεθεί ο συντελεστής διεύθυνσης της ευθείας ε, αν αυτή έχει εξίσωση: i) y = x- 1 ii) y = 3 5x 5x 6 iii) y iv) x = y + 3 10 v) 18x-6y +

Διαβάστε περισσότερα

Μονάδες 5,5 γ) Αν τα διανύσματα a, είναι μη μηδενικά και θ είναι η γωνία των a. λ 0. Για ποια από τις παρακάτω τιμές του λ τα διανύσματα a.

Μονάδες 5,5 γ) Αν τα διανύσματα a, είναι μη μηδενικά και θ είναι η γωνία των a. λ 0. Για ποια από τις παρακάτω τιμές του λ τα διανύσματα a. ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ 1 ο (Πανελλήνιες θετικής κατεύθυνσης Β Λυκείου 1999) Α. Έστω a ( x1,) y1 και ( x,) y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. α) Να εκφράσετε (χωρίς απόδειξη) το

Διαβάστε περισσότερα