ΚΥΚΛΟΣ. και ακτίνα 1 3. Σ Λ
|
|
- Ὑπατια Δαγκλής
- 8 χρόνια πριν
- Προβολές:
Transcript
1 1 ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΣΤΡΙΤΣΙΟΥ ΚΥΚΛΟΣ ΕΠΙΜΕΛΕΙΑ: Kωνσταντόπουλος Κων/νος Μαθηματικός ΜSc 1. Σε κάθε μια από τις παρακάτω περιπτώσεις να κυκλώσετε το γράμμα Σ, αν ο ισχυρισμός είναι αληθής διαφορετικά να κυκλώσετε το γράμμα Λ. 1. Η εξίσωση x y x y 0 με, 0 παριστάνει πάντα κύκλο. Σ Λ. Η εξίσωση x y 1 3 παριστάνει κύκλο με κέντρο 0,0 και ακτίνα 1 3. Σ Λ 3. Ο κύκλος C : x 1 y 4 εφάπτεται στον xx. Σ Λ 4. Ο κύκλος C : x 1 y 1 εφάπτεται στον xx. Σ Λ 5. Ο κύκλος C : x 1 y 1 1 εφάπτεται και στους δύο άξονες. Σ Λ 6. Η εφαπτομένη οποιουδήποτε κύκλου με ακτίνα ρ>0, στο σημείο του Μ(α,β) θα έχει εξίσωση: αx+βy=ρ. Σ Λ 7. Έστω Α,Β δύο διαφορετικά σημεία του επιπέδου. Ο γεωμετρικός τόπος των σημείων Μ για τα οποία ισχύει: MAMB 0 είναι κύκλος διαμέτρου ΑΒ. Σ Λ 8. Η εξίσωση x y x 3 y 4 0 με παριστάνει σημείο. Σ Λ 9. Τα σημεία Α(4,) και Β(-,) είναι συμμετρικά ως προς το κέντρο του κύκλου C : x 1 y 9. Σ Λ 10. O κύκλος C : x y 5 τέμνει την ευθεία : x y σε δύο αντιδιαμετρικά σημεία. Σ Λ 11. Οι κύκλοι C x y και C x y έχουν δύο κοινά 1 : 1 : σημεία. Σ Λ 1. Η εξίσωση x y x y 0 παριστάνει για κάθε 0 κύκλο στον οποίο εφάπτεται η ευθεία : xy 0. Σ Λ 13. Η εξίσωση x y x 1 0, 0 παριστάνει οικογένεια κύκλων των οποίων ο γεωμετρικός τόπος των κέντρων είναι μία ευθεία. Σ 14. Οι κύκλοι C x y και C x y εφάπτονται εξωτερικά. 1 : 1 4 : Η ευθεία : x y1 0 εφάπτεται στον κύκλο Σ C : x y x y Η εξίσωση x y xy παριστάνει κύκλο. Σ Λ Σ Λ Λ Λ
2 *. Κυκλώστε τη σωστή απάντηση σε κάθε μια από τις παρακάτω περιπτώσεις. 1. Αν η ευθεία : 4x3y3 0 εφάπτεται του κύκλου τότε το ισούται με: C : x 3 y 4 A: 5 B: 3 G: 3 D: 5 3 E: Η ευθεία : yx εφάπτεται στον κύκλο C : x y 5 όταν ο ισούται με: A: -5 B: 5 G: 5 D: 5 Ε: 5 3. Ο κύκλος C : x y 4, εφάπτεται A: στον xx B: στον yy G: και στους δύο άξονες D: δεν έχουμε στοιχεία για να γνωρίζουμε 1 4. Η εξίσωση x y x y 0 παριστάνει: A: κύκλο B: ένα σημείο G: δύο ευθείες D: δύο κύκλους Ε: τίποτα από τα πρηγούμενα 5. Αν η εξίσωση x y x y 0 γνωρίζουμε ότι παριστάνει κύκλο, τότε για την εξίσωση x y x y 0 μπορούμε να πούμε: A: παριστάνει σίγουρα κύκλο B: παριστάνει σίγουρα σημείο G: δεν παριστάνει κύκλο αλλά δεν είμαστε σίγουροι αν παριστάνει σημείο ή είναι αδύνατη D: δεν έχουμε στοιχεία για να γνωρίζουμε x y 1 x y 1 0 παριστάνει: 6. Η εξίσωση A: έναν κύκλο και μία ευθεία B: έναν κύκλο και ένα σημείο εκτός αυτού Γ: έναν κύκλο Δ: δύο κύκλους Ε: έναν κύκλο και δύο ευθείες 3 7. Η εξίσωση x xy x 0 παριστάνει: Α: έναν κύκλο και μία ευθεία Β: έναν κύκλο και ένα σημείο εκτός αυτού Γ: έναν κύκλο Δ: δύο κύκλους Ε: έναν κύκλο και δύο ευθείες 8. Ο κύκλος C : x y 4x 4y 0 και η ευθεία : x y1 0: Α: έχουν ένα κοινό σημείο B: έχουν δύο κοινά σημεία αντιδιαμετρικά Γ: έχουν δύο κοινά σημεία αλλά όχι αντιδιαμετρικά Δ: δεν έχουν κανένα κοινό σημείο Ε: δεν έχουμε επαρκή στοιχεία για να γνωρίζουμε
3 3 9. Η ευθεία yx 1 τέμνει τον κύκλο C : x 1 y 345 στα Α,Β όπου ΑΒ=διάμετρος του C αν και μόνο αν: A: 3 Β: 1 Γ: 0 D: 1 Ε: για καμία τιμή του 10. Για την εξίσωση x x y y 0, γνωρίζουμε ότι: A: παριστάνει σίγουρα κύκλο B: είναι σίγουρα αδύνατη Γ: παριστάνει σίγουρα σημείο D: δεν παριστάνει κύκλο αλλά δεν είμαστε σίγουροι αν παριστάνει σημείο ή είναι αδύνατη Ε: δεν είμαστε σίγουροι γιατί εξαρτάται από τις τιμές των Α,Β,Γ. 11. Δίνεται ο κύκλος C : x 3 y 9 και κέντρο Κ. a) Το κέντρο του κύκλου Κ είναι το σημείο: A:(3,-) B: (-3,-) G: (-3,) D:(3,) E:(5,0) b) H ακτίνα του κύκλου C είναι: A: 9 B: 3 G: 3 D: 81 E: 7 c) O κύκλος C εφάπτεται: A: μόνο στον άξονα x x B: μόνο στον άξονα y y G: και των δύο αξόνων x x και y y D: της ευθείας y=x Ε: κανένα από τα προηγούμενα d) Από το κέντρο του κύκλου C διέρχεται η ευθεία: A: 3x-y=4 B: y=3x+5 G: x+3y=0 D: 3x-y=5 E: y=3x+ e) H απόσταση του κέντρου Κ του κύκλου από την αρχή των αξόνων είναι: A: 1 B: 5 G: 6 D: 13 E: 5 ΑΣΚΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Δίνονται τα σημεία Α(4,-) και Β(1,). a) Να βρείτε τα σημεία Μ του άξονα x x για τα οποία ισχύει η σχέση MAMB 0 b) Να βρείτε την εξίσωση του κύκλου που έχει διάμετρο το τμήμα ΑΒ. c) Να βρείτε τις εφαπτόμενες του προηγούμενου κύκλου που διέρχονται από τα σημεία Μ του (a) ερωτήματος. d) Να βρείτε την εξίσωση του κύκλου που έχει κέντρο το Α και εφάπτεται του x x. 5 5 [Απ: a) M(0,0) ή M(5,0), b) C: x y 4, c) ε1:x=0 και ε:x=5 d)x y. Αποδείξτε ότι η ευθεία yx 3 εφάπτεται του κύκλου 4 4 ] C : x y x 1 0 και βρείτε το σημείο επαφής. [Απ:Α(,-1) ]
4 4 3. Έστω ο κύκλος C x y : a) Να αποδείξετε ότι η ευθεία : 3x3y3 0 εφάπτεται στον κύκλο C. b) Nα βρείτε το σημείο τομής Μ της ευθείας (ε) με τον άξονα x x και μετά την άλλη εφαπτομένη (η) του κύκλου C που διέρχεται από το Μ. c) Να βρείτε την οξεία γωνία των ευθειών (ε) και (η). [Απ: b) M( 3,0 ), : 3x 3y 3 0 c) 60 0 ] 4. Να βρείτε την εξίσωση της χορδής ΑΒ του κύκλου C : x y 5 όταν: a) Το σημείο Μ(1,) είναι το μέσο της b) Διέρχεται από το σημείο Ν(-1,3) και έχει μήκος ίσο με 8. [Απ: a) x+y-5=0, b) y=3, 3x-4y+15=0] 5. Αποδείξτε ότι οι εφαπτόμενες που φέρνουμε από το σημείο Α(-1,7) στον κύκλο C : x y 5 είναι κάθετες. [Απ: (ε):4x-3y+5=0, (δ): -3x-4y+5=0 ] 6. Από το σημείο Μ(4,3) φέρνουμε τις εφαπτόμενες στον κύκλο C : x y. Αν Α,Β είναι τα σημεία επαφής, να βρείτε: a) Την εξίσωση της ευθείας ΑΒ. b) Την απόσταση του κέντρου του κύκλου από την ΑΒ. [Απ: a) 4x+3y-=0, b) /5 ] 7. Έστω ο κύκλος με εξίσωση C : x a y 4 για τον οποίο γνωρίζουμε ότι εφάπτεται στον y y και δεν έχει ως εφαπτομένη την ευθεία (ε): x=4. a) Να βρεθεί ο α. b) Να βρεθεί η εξίσωση της εφαπτομένης του στο σημείο του που έχει τετμημένη -1 και θετική τεταγμένη. 8. Να βρείτε την ευθεία της οικογένειας x y x y [Απ: a) α=-, b) x 3y 0 ] 5 0, που ορίζει στον κύκλο C : x 1 y 4 χορδή μήκους 6. [Απ: 3x+y-6=0 ή 3x-y=0 ] 9. Να βρεθεί η εξίσωση του κύκλου που διέρχεται από το σημείο Α(1,0) και εφάπτεται στις ευθείες 3x+y+6=0 και 3x+y-1= Δίνεται η εξίσωση [Απ: C : x y x y x 1 0, ή C : x y ] a) Να αποδείξετε ότι για κάθε παριστάνει κύκλο του οποίου να προσδιορίσετε το κέντρο και την ακτίνα. b) Να βρείτε εκείνον από τους παραπάνω κύκλους ο οποίος αποκόπτει από την ευθεία ( ) : yx 1 χορδή η οποία είναι διάμετρος.
5 5 11. Δίνεται η εξίσωση [Απ: a) (,0) και x y x y 0,. 1, b) C : x y x 1 0 ] a) Να αποδειχθεί ότι παριστάνει κύκλο για κάθε. b) Βρείτε τη τιμή του αν η χορδή που ορίζεται στον κύκλο από την ευθεία y x 1 φαίνεται από την αρχή των αξόνων με ορθή γωνία. c) Βρείτε τον γεωμετρικό τόπο των κέντρων των κύκλων. [Απ: b) 1, c) y 1. Δίνεται η εξίσωση x y x , (1). a) Να βρεθούν οι τιμές του για τις οποίες η (1) παριστάνει κύκλο και βρείτε το κέντρο και την ακτίνα του. b) Για τις παραπάνω τιμές του βρείτε τον γεωμετρικό τόπο του κέντρου του κύκλου. c) Για τις παραπάνω τιμές του δείξτε ότι ο κύκλος διέρχεται από σταθερό σημείο. d) Βρείτε το ώστε ο κύκλος (1) να εφάπτεται στην ευθεία : 4x 3y 0. [Απ: a) 0, K,1, * 13. Δίνεται η εξίσωση x y 6x 8 y 0,,, b) y 1, εκτός το Α(1,1), c) A(1,1), d) 10 ή (1). x] 10 ] 9 a) Να δείξετε ότι η (1) παριστάνει κύκλο για κάθε τιμή των, ο οποίος διέρχεται από την αρχή των αξόνων Ο(0,0). b) Έστω ότι για τους πραγματικούς αριθμούς, ισχύει 3 0. I. Να δείξετε ότι, οι όλοι οι κύκλοι που ορίζονται από την εξίσωση * x y 6x 8 y 0,, έχουν τα κέντρα τους σε ευθεία που διέρχεται από την αρχή των αξόνων. II. Να βρείτε τα, έτσι ώστε, αν Α,Β είναι τα σημεία τομής του αντίστοιχου κύκλου με την ευθεία : x y 0 να ισχύει 0, όπου Ο η αρχή των αξόνων. III. Για τις τιμές των, που βρήκατε στο II ερώτημα υπολογίστε το εμβαδόν του τριγώνου ΑΟΒ., y x, ΙΙ) 1,, ΙΙΙ) 10 τ.μ] 3 x1 4y 4 (1) [Απ: b) Ι) 3, Δίνεται η εξίσωση: a) Να δείξετε ότι η (1) παριστάνει κύκλο C του οποίου να βρείτε το κέντρο Κ και την ακτίνα ρ.
6 6 b) Να δείξετε ότι το σημείο 1 0, είναι εσωτερικό του κύκλου που ορίζεται από την (1) και να βρείτε την ευθεία (ε) που ορίζει στον κύκλο χορδή με μέσο το. c) Να βρείτε τα σημεία του κύκλου C που ορίζεται από την (1), τα οποία η απόστασή τους από το Ο είναι μέγιστη και ελάχιστη 1 [Απ: a),0,ρ=1, b) 1 0, x y c) 3 1,0,,0 ] 15. Δίνεται η εξίσωση: x y x 4y 3 0 (1), όπου. a) Να δείξετε ότι η (1) παριστάνει κύκλο C για κάθε του οποίου να βρείτε το κέντρο Κ και την ακτίνα ρ. b) Για να βρείτε την εξίσωση της εφαπτομένης του κύκλου C που είναι κάθετη στην ευθεία (ε): x y 0. c) Να βρείτε το γεωμετρικό τόπο των κέντρων των κύκλων που ορίζονται από την (1). [Απ: a),,ρ=, b) y x, y x 4 c) 16. Δίνεται η εξίσωση: x y x y 3 0 (1), όπου. y με 1 x 1] a) Να δείξετε ότι η (1) παριστάνει κύκλο C για κάθε του οποίου να βρείτε το κέντρο Κ και την ακτίνα ρ. b) Να δείξετε ότι τα κέντρα των κύκλων που ορίζονται από την (1) ανήκουν σε κύκλο του οποίου να βρείτε το κέντρο και την ακτίνα. c) Να δείξετε ότι η ευθεία (ε): x y 3 0 εφάπτεται του κύκλου C για κάθε. [Απ: a), 17. Δίνεται η εξίσωση: x y x 4y 5 0 (1),.,ρ=, b) x y 1] a) Να βρείτε τις τιμές του ώστε η (1) να παριστάνει κύκλο. b) Να βρείτε τον κύκλο C που ορίζεται από την (1) και εφάπτεται της ευθείας (ε): y x 1. c) Να βρείτε το γεωμετρικό τόπο των κέντρων των κύκλων που παριστάνει η (1). d) Να βρείτε τη μέγιστη και την ελάχιστη απόσταση των σημείων του κύκλου C του (b) ερωτήματος από το Ο. [Απ: a) 1 ή 1, b) x y x y c) y με x 1 και x 1
7 7 d) min= 13, max= 13 ] 18. Δίνεται η εξίσωση: x y 1 x y 1 (1),. a) Να δείξετε ότι η (1) παριστάνει κύκλο C για κάθε του οποίου να βρείτε το κέντρο Κ και την ακτίνα ρ. b) Να βρείτε εκείνον τον κύκλο που ορίζεται από την (1) και εφάπτεται στον άξονα xx. [Απ: a),,ρ= 1 4 4, b) C x y, C x y 1 : 1 1 : ] 19. Θεωρούμε έναν πληθυσμό από 1999 μυρμήγκια. Κάθε μυρμήγκι χαρακτηρίζεται από έναν αριθμό n 1,,3, και κινείται επάνω στο καρτεσιανό επίπεδο Οxy διαγράφοντας μία τροχιά με εξίσωση: x 1 y nx y 1 Nα δείξετε ότι:. a) H τροχιά κάθε μυρμηγκιού είναι κύκλος και να βρεθούν οι συντεταγμένες του κέντρου του. b) Κατά την κίνησή τους όλα τα μυρμήγκια διέρχονται από ένα σταθερό σημείο Α ( που είναι η φωλιά τους ). Ποιες είναι οι συντεταγμένες του σημείου Α; c) Οι τροχιές όλες των μυρμηγκιών εφάπτονται της ευθείας : x y1 0 στο σημείο Α. [Απ: a) n 1, n, b) 1,0 0. Σε ορθοκανονικό σύστημα αναφοράς Οxy με xy, παριστάνουμε τα σημεία μιας περιοχής. Στο 1,6 είναι τοποθετημένος ένας πομπός κινητής ] τηλεφωνίας. Η λήψη σε κάθε σημείο της περιοχής θεωρείται πολύ καλή, αν αυτό βρίσκεται στον κυκλικό δίσκο που ορίζεται από τον κύκλο C1, ο οποίος έχει κέντρο K και ακτίνα ρ1= 10, ενώ η λήψη θεωρείται καλή αν το σημείο είναι εξωτερικό του C1 και εσωτερικό του κύκλου C, που γράφεται με κέντρο Κ και ακτίνα ρ=4. a) Γράψτε τις εξισώσεις των C1, C. b) Εξετάστε αν η λήψη στα σημεία Α(10,7) και Β(9,4) είναι καλή ή πολύ καλή. c) Ένας αυτοκινητόδρομος της περιοχής (ευθεία) έχει εξίσωση : x y1 0. Εξετάστε αν υπάρχει τμήμα του αυτοκινητόδρομου στο οποίο η λήψη είναι καλή ή πολύ καλή.
ΚΥΚΛΟΣ. Μ(x,y) Ο C ΘΕΩΡΙΑ ΕΠΙΜΕΛΕΙΑ: ΣΩΣΤΟ-ΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΧΡΑΣ ΓΙΑΝΝΗΣ ΑΣΚΗΣΕΙΣ. 3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ
Φ3 ΚΥΚΛΟΣ y Μ(x,y) A(x,y) ε Ο C x ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΘΕΩΡΙΑ ΣΩΣΤΟ-ΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ ΚΕΝΤΡΙΚΟ 3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ Ν. ΣΜΥΡΝΗΣ 0-0 ΘΕΩΡΙΑ. Τι ονομάζεται κύκλος με κέντρο το σημείο K( x0,
Συνδυαστικά θέματα στον κύκλο
Συνδυαστικά θέματα στον κύκλο 1. Δίνεται ο κύκλος C που έχει κέντρο την αρχή των αξόνων και διέρχεται από το σημείο Α(-3,4).Να βρείτε : i) εξίσωση του κύκλου ii) την εφαπτομένη του κύκλου στο σημείο Α,
ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0
ΚΕΦΑΛΑΙΟ 3 Ο Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0 2. Να βρεθεί η εξίσωση της εφαπτομένης του κύκλου x
12. Το εμβαδόν ενός τριγώνου ΑΒΓ είναι ίσο με
ΓΕΝΙΚΟ ΥΚΕΙΟ ΚΑΤΡΙΤΙΟΥ ΕΠΙΜΕΕΙΑ: Kωνσταντόπουλος Κων/νος Μαθηματικός ΜSc Η ΕΥΘΕΙΑ ΤΟ ΕΠΙΠΕΔΟ. ε κάθε μια από τις παρακάτω περιπτώσεις να κυκλώσετε το γράμμα, αν ο ισχυρισμός είναι αληθής διαφορετικά να
201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ Α. ΘΕΩΡΙΑ. i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η
201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ - 1-1. Να αποδείξετε ότι: Α. ΘΕΩΡΙΑ i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η C : x 2 y 2 ρ 2. Να αποδείξετε ότι η εφαπτομένη του κύκλου C: χ 2 + ψ 2 = ρ 2
Κύκλος. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο 3 48 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α
Κύκλος Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglyks.gr 1 3 / 1 1 / 2 0 1 6 Κατεύθυνση Κεφάλαιο 3 48 ασκήσεις και τεχνικές σε 5 σελίδες εκδόσεις Καλό πήξιμο Τα πάντα για
x y Ax By Εξίσωση Κύκλου Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με κέντρο το σημείο Εφαπτομένη Κύκλου Η εφαπτομένη του κύκλου
ΚΥΚΛΟΣ Εξίσωση Κύκλου Έστω Oy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με κέντρο το σημείο O(, ) και ακτίνα ρ έχει εξίσωση y y ε Εφαπτομένη Κύκλου Η εφαπτομένη του κύκλου y ρ στο σημείο του
Ασκήσεις Κύκλος. 6. Για ποια τιμή του λ το σημείο Μ(2λ + 1, λ) ανήκει στον κύκλο με εξίσωση (x 3) 2 + (y + 4) 2 = 100
Ασκήσεις Κύκλος 1. Να βρείτε το κέντρο και την ακτίνα του κύκλου (x + 5) + (y 5) =. Να βρείτε το κέντρο και την ακτίνα του κύκλου x + y 8x + 4y + 11 = 0 3. Ποια πρέπει να είναι η ακτίνα του κύκλου (x 1)
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Δίνεται η ευθεία (ε) με εξίσωση: 2x y1 0 καθώς και το σημείο Μ(3,0). α. Να βρείτε την εξίσωση μιας ευθείας (η) που περνά από το Μ και είναι κάθετη στην ευθεία (ε). β. Να
ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ
ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ 1. Α. Έστω x, y και x, y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. i. Να εκφράσετε (χωρίς απόδειξη) το εσωτερικό γινόμενο των διανυσμάτων και συναρτήσει των συντεταγμένων τους.
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ
Ευθεία ΣΥΝΤΕΛΕΣΤΗΣ ΔΙΕΥΘΥΝΣΗΣ ΕΥΘΕΙΑΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ 1. Να βρεθεί ο συντελεστής διεύθυνσης της ευθείας ε, αν αυτή έχει εξίσωση: 5x 6 i) y = x- 1 ii) y = 3 5x iii) y iv) x = y + 3 10 v) 18x-6y
ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R
Κεφάλαιο 4ο: ΚΩΝΙΚΕΣ ΤΟΜΕΣ Α. ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση ( x x ) + ( y y ) = k, k R είναι πάντοτε εξίσωση κύκλου. o o. * Η εξίσωση x + y + Ax + By + Γ = 0 παριστάνει κύκλο
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΥΚΛΟΣ
ο ΓΕΛ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ 03-03 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΥΚΛΟΣ ΕΠΙΜΕΛΕΙΑ: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΤΥΠΟΛΟΓΙΟ ΒΓ=ΑΓ ΑΒ ΑΜ= ΑΒ+ΑΓ ( ) u= x i+ y j= ( x, y) u = x + y y λ =, x 0 u x Συντεταγμένες
Κύκλος. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο 3 48 ασκήσεις. εκδόσεις. Καλό πήξιμο / 1 2 /
Κύκλος Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 1 9 / 1 2 / 2 0 1 8 Κατεύθυνση Κεφάλαιο 48 ασκήσεις και τεχνικές σε σελίδες εκδόσεις Καλό
ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο
Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό
β = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ...
Αµυραδάκη 0, Νίκαια (104903576) ΝΟΕΜΒΡΙΟΣ 01 ΘΕΜΑ 1 ο i) Αν Α( x 1, y 1 ) και Β(x, y ) δυο σηµεία του καρτεσιανού επιπέδου και (x, y) οι συντεταγµένες του µέσου Μ του ΑΒ, να αποδείξετε ότι : x 1 + x x
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και
Επαναληπτικά συνδυαστικα θέµατα
Επαναληπτικά συνδυαστικα θέµατα Θέµα ο A. Αν α, β µη µηδενικά διανύσµατα και ισχύει α+ β + α β =, τότε να δείξετε ότι: i. αβ και ii. Αν α β τότε ισχύει α + β =. 4 4 B. Να βρεθούν οι τιµές του λ ώστε η
117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού
117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά Μαθηματικού Περιεχόμενα 1. Διανύσματα (47) ελ. - 9. Ευθεία (18) ελ. 10-1 3. Κύκλος (13).ελ. 13-15 4. Παραβολή (14) ελ. 16-18 5. Έλλειψη (18)..
και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.
Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ
Επαναληπτικά Θέµατα Εξετάσεων
Επαναληπτικά Θέµατα Εξετάσεων Καθηγητές : Νικόλαος Κατσίπης 25 Απριλίου 2014 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας ευχόµαστε καλό διάβασµα και...
Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου
Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Θέμα A. Να αποδείξετε ότι η εξίσωση της εφαπτομένης του κύκλου στο σημείο του Α, ) είναι 8 μονάδες) Β. Να δώσετε τον ορισμό
Επαναληπτικά Θέµατα Εξετάσεων
Επαναληπτικά Θέµατα Εξετάσεων Καθηγητής : Νικόλαος. Κατσίπης 19 Απριλίου 2013 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας εύχοµαι καλό διάβασµα και...
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και
Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία Εξίσωση ευθείας
Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία - 1-1. 2-18575 Εξίσωση ευθείας Δίνονται τα σημεία Α(1,2) και Β (5,6 ). α) Να βρείτε την εξίσωση της ευθείας που διέρχεται από
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ - ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1. Δίνεται παραλληλόγραμμο ΑΒΓΔ με τρεις κορυφές τα σημεία Α (1,1), Γ (4,3) και Δ (,3). α) Να υπολογίσετε τα μήκη
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 0/04/018 ΕΩΣ 14/04/018 ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη 1 Απριλίου 018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη ε του κύκλου
φέρουμε μια οποιαδήποτε χορδή ΑΒ του κύκλου και την προεκτείνουμε κατά τμήμα
1. Δίνεται ο κύκλος + y ρ, όπου ρ>0. Από το σημείο A( - ρ,0) του C C :x = φέρουμε μια οποιαδήποτε χορδή ΑΒ του κύκλου και την προεκτείνουμε κατά τμήμα BM = AB. Να αποδείξετε ότι το Μ κινείται πάνω σε ένα
ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ
ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 1 Στο ορθογώνιο σύστημα αξόνων Οxψ θεωρούμε τα σημεία Α, Β, τα οποία έχουν τετμημένες τις ρίζες της εξίσωσης x - (4λ+6μ)x - 005 = 0 και τεταγμένες τις ρίζες
π (α,β). Έστω τα διανύσματα π (α,β) να βρεθούν:
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Β ΚΑΤΕΥΘΥΝΣΗΣ 1. Για τα διανύσματα α, β δίνεται ότι α =1, β = και u α β, v α - β.να υπολογίσετε: π (α,β). Έστω τα διανύσματα α. το εσωτερικό γινόμενο α β β. τα μέτρα u, v των διανυσμάτων
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ - ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1. Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε = 5 + 2 α) Να γράψετε το διάνυσμα β) Να δείξετε
Μαθηματικά προσαματολισμού Β Λσκείοσ
Μαθηματικά προσαματολισμού Β Λσκείοσ Ο κύκλος Στέλιος Μιταήλογλοσ wwwaskisopolisgr Κύκλος Εξίσωση κύκλου Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με M x, y του κέντρο το σημείο 0
= π 3 και a = 2, β =2 2. a, β
1 of 68 Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. γ) Να
Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12
Τράπεζα 0- Πολλαπλασιασμός αριθμού με διάνυσμα.58 Θεωρούμε τα διανύσματα α,β,γ και τυχαίο σημείο Ο. Αν α β 5γ, α 3β 4γ και 3α β 6γ, τότε: α) να εκφράσετε τα διανύσματα, συναρτήσει των διανυσμάτων α,β,γ.
(x - 1) 2 + (y + 1) 2 = 8.
ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ Θέµα 1 Για τις διάφορες τιµές του λ R να βρεθούν οι σχετικές θέσεις της ευθείας ε: y=λx-2 και του κύκλου C: x 2 +y 2 =1 Θέµα 2 Να βρεθεί ο γεωµετρικός τόπος των σηµείων
ΘΕΜΑ ίνονται τα διανύσµαταα, β. α) Να υπολογίσετε τη γωνία. β) Να αποδείξετε ότι 2α+β= β) το συνηµίτονο της γωνίας των διανυσµάτων
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΣΕ ΟΛΗ ΤΗΝ ΥΛΗ! ΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΙΑΝΥΣΜΑ ΘΕΜΑ 005 Θεωρούµε τα σηµεία Ρ, Λ, Κ και Μ του επιπέδου για τα οποία ισχύει η σχέση 5ΡΛ
Μαθηματικά Κατεύθυνσης (Προσανατολισμού)
Θέματα ενδοσχολικών εξετάσεων στα Μαθηματικά Προσανατολισμού Β Λυκείου Σχ έτος 03-04, Ν Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Μαθηματικά Κατεύθυνσης (Προσανατολισμού) ΣΧΟΛΙΚΟ
Ο κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ έχει εξίσωση: B,- 2 A 2
3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΚΥΚΛΟΣ Κύκλος είναι ο γεωμετρικός τόπος των σημείων του επιπέδου που απέχουν σταθερή απόσταση από ένα σταθερό σημείο του επιπέδου αυτού. Το σταθερό σημείο
ΔΙΑΝΥΣΜΑΤΑ 1. Να αποδειχθεί ότι τα μέσα των πλευρών τετραπλεύρου είναι κορυφές παραλληλογράμμου.
ΔΙΑΝΥΣΜΑΤΑ 1. Να αποδειχθεί ότι τα μέσα των πλευρών τετραπλεύρου είναι κορυφές παραλληλογράμμου.. Δίνεται ένα παραλληλόγραμμο ΑΒΓΔ και ένα οποιοδήποτε σημείο Ρ του χώρου. Να αποδειχτεί ότι: P A P 0. 3.
Μαθηματικά προσανατολισμού Β Λυκείου. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΟΕΦΕ α φάση. Διανύσματα
Μαθηματικά προσανατολισμού Β Λυκείου wwwaskisopolisgr ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΟΕΦΕ 00-018α φάση Διανύσματα 1 Σε σύστημα συντεταγμένων Oxy θεωρούμε τρία σημεία Α, Β, Γ του μοναδιαίου κύκλου, για τα οποία υπάρχει
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Β MΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α1. Αν Α(x 1, y 1 ) και Β(x, y ) είναι σημεία του καρτεσιανού επιπέδου και (x, y) οι συντεταγμένες
ΑΣΚΗΣΗ ΣΤΟΝ ΚΥΚΛΟ. Ε. i) Να βρείτε τη σχετική θέση των τροχιών του 4ου και του 12ου μαθητή.
ΑΣΚΗΣΗ ΣΤΟΝ ΚΥΚΛΟ Θεωρούμε μια ομάδα 5 μαθητών Κάθε μαθητής χαρακτηρίζεται από έναν αριθμό μ =,,,,5 και κινείται στο καρτεσιανό επίπεδο Ο xy διαγράφοντας τροχιά με εξίσωση: Cμ x y μx μy μ μ : + + + 6 6
ΑΣΚΗΣΕΙΣ ΣΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ. 1. Να βρείτε την απόσταση του σημείου Μ( ημθ, συνθ) από την ευθεία: i) ε : y = -xεφθ ii) ε : xσυνθ - yημθ = 2
ΑΠΟΣΤΑΣΗ ΣΗΜΕΙΟΥ ΑΠΟ ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ ΣΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ 1. Να βρείτε την απόσταση του σημείου Μ( ημθ, συνθ) από την ευθεία: i) ε : y = -xεφθ ii) ε : xσυνθ - yημθ = 4. α) Να βρεθεί η απόσταση του σημείου
ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΚΥΚΛΟΣ ΠΑΡΑΒΟΛΗ ΕΛΛΕΙΨΗ. Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ) (χ-χ 0
ΤΟΙΧΕΙΑ ΘΕΩΡΙΑ ΚΥΚΟ Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ), y + y = r χ +ψ =ρ Κ(0,0) ρ x x y (χ-χ 0 ) +(ψ-ψ 0 ) =ρ Κ(χ 0,ψ 0 ) ρ (χ-χ 0 ) (χ -χ 0 )+(ψ-ψ 0 ) (ψ-ψ )=ρ Παρατήρηση : Η εξίσωση : χ +ψ
Επαναληπτικά συνδυαστικα θέµατα
Επαναληπτικά συνδυαστικα θέµατα A. Αν α, β i. αβ Θέµα ο µη µηδενικά διανύσµατα και ισχύει α+ β + α β =, τότε να δείξετε ότι: και ii. Αν α β τότε ισχύει α + β =. B. Να βρεθούν οι τιµές του λ ώστε η εξίσωση
Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015
Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο
1,y 1) είναι η C : xx yy 0.
ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.
3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ
ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Νρεθεί η εξίσωση του κύκλου σε καθεμιά από τις παρακάτω περιπτώσεις: α) έχει κέντρο την αρχή των αξόνων και ακτίνα β) έχει κέντρο το σημείο (3, - ) και ακτίνα 5 γ) έχει κέντρο το σημείο
ΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΔΙΑΝΥΣΜΑΤΑ ΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 1) Δίνονται διανύσματα α και β, με α π = 4 και (α, β ) = 3 Αν ισχύει ότι το α (α + 2β ) = 28, να βρείτε: α) το εσωτερικό γινόμενο α β, β) το μέτρο
ΘΕΜΑΤΑ. Μονάδες 8 Β. η εξίσωση της μεσοκάθετης της ΑΓ Μονάδες 9
ΓΕΛ ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β 331 Α. α. Τι ονομάζουμε εσωτερικό γινόμενο των μη μηδενικών διανυσμάτων α, β. Μονάδες 5 β. Εάν ορίζονται οι συντελεστές διεύθυνσης των διανυσμάτων α, β αντιστοίχως να δείξετε ότι:
Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ
Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων
Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου
Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Θέμα 1 Α. Να αποδείξετε ότι αν α,β τότε α //β α λβ, λ. είναι δύο διανύσματα, με β 0, Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας
4. Να βρεθεί η προβολή του σημείου Ρ=(6,1,5) πάνω στην ευθεία ε: x ={3,1,2}+λ{1,2,1},, και η απόστασή του από αυτήν.
ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΙI Α Σ Κ Η Σ Ε Ι Σ ΑΚΑΔ. ΕΤΟΣ 009-00 Κ Ε Φ Α Λ Α Ι Ο V Ι. Δίνονται οι ευθείες δ: x ={,0,0}+λ{,,}, ε: x -x + x -=0, x -x =. Να εξετάσετε αν οι ευθείες δ, ε είναι ασύμβατες. Αν ναι, βρείτε
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος
ΔΙΑΝΥΣΜΑΤΑ 8556 ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =.. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες
ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές)
ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Κωνικές τοµ ές) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής
Μαθηματικές Συναντήσεις
Μαθηματικές Συναντήσεις ΣΗΜΕΙΩΜΑ 7ο / ΝΟΕΜΒΡΙΟΣ 4-ΙΑΝΟΥΑΡΙΟΣ 5 ΜΙΑ ΠΡΟΤΑΣΗ ΘΕΜΑΤΩΝ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ, ΤΗΝ ΕΥΘΕΙΑ ΓΡΑΜΜΗ ΚΑΙ ΤΙΣ ΚΩΝΙΚΕΣ ΤΟΜΕΣ (4α θέματα) Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμβούλου Μαθηματικών
= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8)
ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες 10) γ) Να βρείτε
ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ
taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά
Β ΛΥΚΕΙΟΥ. ΕΥΘΕΙΑ ΚΑΙ ΚΥΚΛΟΣ (εχθροί ή φίλοι;) c πάνω στην οποία κινείται το σημείο Μ. M x, y. x 2λ 1 και. 3 λ Υπάρχει λ ώστε.
Β ΛΥΚΕΙΟΥ ΕΥΘΕΙΑ ΚΑΙ ΚΥΚΛΟΣ (εχθροί ή φίλοι;) Του Κώστα Βακαλόπουλου Στο άρθρο που ακολουθεί παραθέτουμε μια σειρά από ασκήσεις στις οποίες συνυπάρχουν άλλοτε αρμονικά και άλλοτε ανταγωνιστικά οι δύο βασικές
Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999
Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 999 Ζήτηµα ο Α. Έστω a, ) και β, ) δύο διανύσµατα του καρτεσιανού επιπέδου Ο. α) Να εκφράσετε χωρίς απόδειξη) το εσωτερικό γινόµενο των διανυσµάτων a και
ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών)
ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής
9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ
ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα
(Μονάδες 8) γ) Για την τιμή του λ που βρήκατε στο ερώτημα β), να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ (Μονάδες 10)
ΘΕΜΑ 4 Σε τρίγωνο ΑΒΓ είναι AB= ( λ, λ+ 1), AΓ = ( 3 λ, λ 1) είναι το μέσο της πλευράς ΒΓ AΜ= λ, λ α) Να αποδείξετε ότι ( ), όπου λ 0 και λ, και Μ (Μονάδες 7) β) Να βρείτε την τιμή του λ για την οποία
i. εστίες Ε' (-4, 0), Ε(4, 0) και η απόσταση των κορυφών είναι 5, ii. εστίες Ε'(0, -10), Ε(0, 10) και η απόσταση των κορυφών είναι 8.
ΥΠΕΡΒΟΛΗ ΕΞΙΣΩΣΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΥΠΕΡΒΟΛΗΣ 1) Να βρεθεί η εξίσωση της υπερβολής αν έχει: i) Εστιακή απόσταση γ=0 και άξονα β=16, 5 ii) Άξονα α=16 και εκκεντρότητα ε=. 4 ) Να βρείτε την εξίσωση της υπερβολής,
ΔΙΑΝΥΣΜΑΤΑ. (Μονάδες 8) (Μονάδες 10) (Μονάδες 7) ΘΕΜΑ 2. AM, όπου ΑΜ είναι η διάμεσος. (Μονάδες 7)
ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ Άσκηση Δίνονται τα διανύσματα a και με a, = 3 και a =, =. α) Να βρείτε το εσωτερικό γινόμενο a. β) Αν τα διανύσματα a + και κ a + είναι κάθετα να βρείτε την τιμή του κ. γ) Να βρείτε το
ΚΕΦΑΛΑΙΟ 2ο Μιγαδικοί Αριθμοί (Νο 1) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΚΕΦΑΛΑΙΟ ο Μιγαδικοί Αριθμοί (Νο ) ΛΥΚΕΙΟ Α Λ Γ Ε Β Ρ Α Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ) ΕΝΝΟΙΑ
Η γενική μορφή της εξίσωσης ευθείας είναι η από τα Α, Β διάφορο του μηδενός
ΕΥΘΕΙΑ Να προσέχεις ότι: Η γενική μορφή της εξίσωσης ευθείας είναι η από τα Α, Β διάφορο του μηδενός Ax+By+Γ=0, με κάποιο Η εξίσωση της ευθείας που διέρχεται από ένα σημείο Α(x 0,y 0 ) και έχει συντελεστή
Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου
Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν
Μαθηματικά Προσανατολισμού Θετικών Σπουδών Β Λυκείου
ΑΣΚΗΣΕΙΣ 1. Να βρείτε το συντελεστή διεύθυνσης της ευθείας που διέρχεται από τα σημεία Α, Β, όταν α) Α(2, 5), Β(1, -3) β) Α(-3, -5), Β(-5, 7) γ) Α(0, 4), Β(2, -6). 2. Να βρείτε τη γωνία που σχηματίζει
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΛΛΕΙΨΗ
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΛΛΕΙΨΗ EΞΙΣΩΣΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΕΛΛΕΙΨΗΣ 1. Να βρείτε την εξίσωση της έλλειψης όταν: α) Έχει εστία Ε (-8,0) και μεγάλο άξονα 0 β) Έχει εστία Ε(0,3) και μεγάλο άξονα 8 γ) Έχει εστία Ε(4,0) και
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ
ΘΕΜΑ 1. Α. Να δείξετε ότι η ευθεία ε: αx + βy + γ = 0, ( α + β 0), είναι παράλληλη στο. (Μονάδες: 5) Β. ΣΩΣΤΟ ΛΑΘΟΣ
Ε4 ΘΕΜΑ 1 Α. Να δείξετε ότι η ευθεία ε: αx + βy + γ = 0, ( α + β 0), είναι παράλληλη στο δ = ( β, α). (Μονάδες: 5) Β. ΣΩΣΤΟ ΛΑΘΟΣ 1. Η απόσταση του 0(0,0) από την x + y + = 0 είναι.. Η εξίσωση y = xy παριστάνει
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. γ)να υπολογίσετε το μέτρο του διανύσματος u. δ)αν το διάνυσμα v,
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 1. Δίνονται τα διανύσματα a, για τα οποία ισχύουν : 4, 5 και α)να αποδείξετε ότι 10 β)να βρείτε τη γωνία των και. 5. 8 γ)να υπολογίσετε το μέτρο του διανύσματος u. δ)αν το διάνυσμα
2ο ΓΕΛ ΣΥΚΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ : Η ΥΠΕΡΒΟΛΗ. ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ 2ο ΓΕΛ ΣΥΚΕΩΝ
ο ΓΕΛ ΣΥΚΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ : Η ΥΠΕΡΒΟΛΗ ΣΧΟΛΙΚΟ ΕΤΟΣ 013-014 ΕΠΙΜΕΛΕΙΑ : ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ ο ΓΕΛ ΣΥΚΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Η ΥΠΕΡΒΟΛΗ ΟΡΙΣΜΟΣ: Έστω Ε και Ε δύο σημεία του
5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ. x, τότε ισχύει f(4) f(2). x τότε ισχύει. αν 1.
ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΣΤΡΙΤΣΙΟΥ ΕΠΙΜΕΛΕΙΑ: Kωνσταντόπουλος Κων/νος Μαθηματικός ΜSc 5. ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ. Σε κάθε μια από τις παρακάτω περιπτώσεις να κυκλώσετε το γράμμα Σ, αν ο ισχυρισμός είναι αληθής διαφορετικά
1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. α. Τι ονομάζουμε εσωτερικό γινόμενο δύο διανυσμάτων, β
O A M B ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ Ο ΘΕΜΑ ον : α α. Τι ονομάζουμε εσωτερικό γινόμενο δύο διανυσμάτων, β. Μονάδες 5 β. Αν α, ν
Μαθηµατικά Κατεύθυνσης Β Λυκείου Κύκλος. Ασκήσεις Κύκλος
Ασκήσεις Κύκλος 1. Να βρείτε αν οι παρακάτω εξισώσεις παριστάνουν κύκλο. Έπειτα να βρείτε το κέντρο και την ακτίνα τους. i) x 2 + y 2 2x 4y + 1 = 0 (Απ.: (x 1) 2 + (y 2) 2 = 4) x 2 + y 2 2x + 4y + 5 =
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΑΠΟ ΤΗΝ ΘΕΩΡΙΑ ΔΙΑΝΥΣΜΑΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΔΙΑΝΥΣΜΑΤΟΣ Αρχή και Πέρας Φορέας Διεύθυνση (Συγγραμμικά διανύσματα) Μέτρο Κατεύθυνση (Ομόρροπα Αντίρροπα διανύσματα)
3.4 ΤΡIΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. και g( x) 3x
1 ΓΕΝΙΚΟ ΥΚΕΙΟ ΚΑΤΡΙΤΙΟΥ ΕΠΙΜΕΕΙΑ: Kωνσταντόπουλος Κων/νος Μαθηματικός ΜSc ΤΡIΓΩΝΟΜΕΤΡΙΚΕ ΥΝΑΡΤΗΕΙ 1 ε κάθε μια από τις παρακάτω περιπτώσεις να κυκλώσετε το γράμμα, αν ο ισχυρισμός είναι αληθής διαφορετικά
ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )
ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε
Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο(0,0) τότε έχει εξίσωση της μορφής : x y και αντίστροφα. Ειδικότερα Ο κύκλος με κέντρο Ο(0,0)
. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν γνωρίζουμε το κέντρο του, και την ακτίνα του ρ. Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο, τότε έχει εξίσωση της μορφής : και αντίστροφα. Ειδικότερα
Ευθείες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 1 1 /
Ευθείες Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr / / 0 8 Κατεύθυνση Κεφάλαιο 59 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο
Έστω ε μια ευθεία του καρτεσιανού επιπέδου, με εξίσωση ) ένα σημείο εκτός αυτής. Θέλουμε y (1)
7 ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ Απόσταση Σημείου από Ευθεία Έστω ε μια ευθεία του καρτεσιανού επιπέδου, με εξίσωση M ( x, y ) ένα σημείο εκτός αυτής Θέλουμε y να υπολογίσουμε την απόσταση d( M, ε) του ε σημείου M από
Ευθείες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 1 1 /
Ευθείες Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr / / 0 8 Κατεύθυνση Κεφάλαιο 59 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο
ΕΠΑΝΑΛΗΨΗ ΔΙΑΝΥΣΜΑΤΑ
ΕΠΑΝΑΛΗΨΗ ΔΙΑΝΥΣΜΑΤΑ Στο ορθογώνιο σύστημα αξόνων Οxy θεωρούμε τα σημεία Α, Β, τα οποία έχουν τετμημένες τις ρίζες της εξίσωσης x - (4λ+6μ)x - 005 = 0 και τεταγμένες τις ρίζες της εξίσωσης y + ( 5λ + μ)y
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)
ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ ΣΥΝΕΙΡΜΟΣ
ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Σάββατο 4 Μαΐου 09 Διάρκεια Εξέτασης: ώρες ΘΕΜΑ Α Α.. Βιβλίο, 3. παράγραφος Α.. α. Σ β. Λ γ. Λ δ. Σ ε. Λ Α.3. α.
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ 1. Δίνεται τετράγωνο ΑΒΓΔ.Σε καθεμία από τις παρακάτω περιπτώσεις να βρείτε το άθροισμα.
ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΑΝΥΣΜΑΤΑ Επιμέλεια: Άλκης Τζελέπης ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΝΝΟΙΑ - ΠΡΑΞΕΙΣ. Αν τα διανύσματα,, σχηματίζουν τρίγωνο, να αποδείξετε ότι το ίδιο συμβαίνει
Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-2004
Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-004 Περιεχόµενα 1 Θέµατα 1999.......................................... 3 Θέµατα 000..........................................
y 2 =2px με εστία Ε(p/2, 0) και διευθετούσα δ: x=-p/2.
ΠΑΡΑΒΟΛΗ P Α δ (διευθετούσα) C (παραβολή) Μ (ΜΕ)=(ΜΡ) Κ Ε (εστία) Ορισμός: Παραβολή λέγεται ο γεωμ. τόπος των σημείων Μ του επιπέδου που ισαπέχουν από ένα σημείο Ε (Εστία) και μία ευθεία δ(διευθετούσα)
ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :
B ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 10/4/017 ΕΩΣ /4/017 ΤΑΞΗ: ΜΑΘΗΜΑ: B ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τετάρτη 1 Απριλίου 017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη του
ΑΣΚΗΣΕΙΣ ΣΤΟ ΚΥΚΛΟ. 1. Να βρεθεί η εξίσωση του κύκλου που περνά από τα σηµεία Α(2,0) και Β(0,0) και έχει το κέντρο του στην ευθεία 2x-3y=0
ΑΣΚΗΣΕΙΣ ΣΤΟ ΚΥΚΛΟ 1. Να βρεθεί η εξίσωση του κύκλου που περνά από τα σηµεία Α(2,0) και Β(0,0) και έχει το κέντρο του στην ευθεία 2x-3y=0 2. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σηµείο Κ(1,2)
Θέματα. , για. a 0. (8 μονάδες) Γ. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις:
Θέματα Θέμα 1 Α. Να δώσετε τον ορισμό της παραβολής. (5 μονάδες) Β. Να αποδείξετε ότι a v a, για a 0. (8 μονάδες) Γ. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: i) Ισχύει Σ Λ ii)
5. Η γραφική παράσταση της συνάρτησης f( x) 3 x έχει ασύμπτωτη τον θετικό ημιάξονα Οx. Σ Λ., τότε ισχύει
ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΣΤΡΙΤΣΙΟΥ ΕΠΙΜΕΛΕΙΑ: Kωνσταντόπουλος Κων/νος Μαθηματικός ΜSc 5 ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ Σε κάθε μια από τις παρακάτω περιπτώσεις να κυκλώσετε το γράμμα Σ, αν ο ισχυρισμός είναι αληθής διαφορετικά
Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε
Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ ΕΞΙΣΩΣΗ ΠΑΡΑΒΟΛΗΣ 8. Να βρεθεί η εξίσωση της παραβολής με κορυφή το (0, 0) στις παρακάτω περιπτώσεις: α) είναι συμμετρική ως προς το θετικό ημιάξονα Οx και έχει παράμετρο p = 5 β)
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Να γνωρίζει: α. την έννοια του μιγαδικού αριθμού και β. πότε δύο μιγαδικοί αριθμοί είναι ίσοι. Να μπορεί να βρίσκει: α. το άθροισμα,
2.1 Εξίσωση ευθείας-συντελεστής διεύθυνσης
1 Εξίσωση ευθείας-συντελεστής διεύθυνσης 1 Έστω η ευθεία (ε) η οποία διέρχεται από τα σημεία Α(, μ), Β(5, μ), όπου Να βρείτε το μ σε καθεμιά από τις παρακάτω περιπτώσεις : α) η(ε) σχηματίζει γωνία 135