ΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
|
|
- Σωτήριος Παπανικολάου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΔΙΑΝΥΣΜΑΤΑ ΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 1) Δίνονται διανύσματα α και β, με α π = 4 και (α, β ) = 3 Αν ισχύει ότι το α (α + 2β ) = 28, να βρείτε: α) το εσωτερικό γινόμενο α β, β) το μέτρο του διανύσματος β, γ) το γινόμενο (α 2β ) (2α + β ). [Απ. 6, 3, -4] 2) Δίνονται τα διανύσματα α = (x, 1), β = (2, y) και γ = (x 5,3) για τα οποία ισχύει α β = 1 και γ β = 11.Να βρείτε α) τις τιμές των x, y β) τον πραγματικό αριθμό λ ώστε να ισχύει: (λα + β ) (β γ ) = 38 [Απ. x=3 y=5, λ=2] 3) Δίνονται δύο μη μηδενικά διανύσματα α και β για τα οποία ισχύει α β = α 2 π και (α, β ) = 3 α) Να αποδείξετε ότι β = 2 α β) Να βρείτε για ποια τιμή του λ R τα διανύσματα v = 2a + β και w = λa [Απ. λ=2] β είναι κάθετα. 4) Δίνεται διάνυσμα α και το μοναδιαίο διάνυσμα β με (α, β ) = 120 και α (α + β ) = 3 α) Να αποδείξετε ότι α = 2 β) θεωρούμε το διάνυσμα v για το οποίο ισχύει v //(α + 2β ) και (α 5β ) (v β )
2 i) να γράψετε το διάνυσμα v ως γραμμικό συνδιασμό των διανυσμάτων α και β ii) Να βρείτε το μέτρο του διανύσματας v [Απ. λ=2, v = 4] 5) Δίνονται διανύσματα α, β, γ για τα οποία ισχύουν α = 2 7, γ = 3, (γ, β ) = 60 και 3α β + β γ = 0 α) Να αποδείξετε ότι β = 6 β) Να υπολογίσετε τα εσωτερικά γινόμενα ) α β και ) α γ γ) Να βρείτε το μέτρο α + β + γ [Απ. α β = -6, α γ = -15, α + β + γ =7] 6) Για τα διανύσματα α, β δίνεται ότι α 1, β 2 και (, ) διανύσματα u 2α 3β, v α - 2β. Να υπολογίσετε: α) το εσωτερικό γινόμενο α β β) τα μέτρα u, v των διανυσμάτων u και v γ) το εσωτερικό γινόμενο u v δ) το συνημίτονο της γωνίας των διανυσμάτων u και v [Απ. α β = 1, u = 52 v = 13, u v = 23, ] ΕΥΘΕΙΑ 3. Έστω τα 7) Δίνεται το σημείοα Α(4,2) και τα διανύσματα α = (μ, 6) και β = (6, μ 1), με μ R για τα οποία ισχύει α β = 30. Να βρείτε: α) Τον αριθμό μ β) Την εξίσωση της ευθείας που διέρχεται από το Α και είναι: i) Παράλληλη στο διάνυσμα α ii) Κάθετη στο διάνυσμα β [Απ. μ=3, α = (3,6) και β = (6,2), y = 2x 6 και y = 3x + 14]
3 8) Δίνεται τρίγωνο ΑΒΓ, με Α(8,4) στο οποίο το ύψος ΒΔ βρίσκεται πάνω στην ευθεία y = 2x + 10 και η διάμεσος ΒΜ βρίσκεται πάνω στην ευθεία y = 3 x + 5. Να βρείτε: 4 4 α) Τις συντεταγμένες της κορυφής Β β) Τις εξισώσεις των πλευρών ΑΒ και ΑΓ γ) Το μήκος της διαμέσου ΒΜ δ) Τις συντεταγμένες τις κορυφής Γ ε) Την εξίσωση της μεσοκαθέτου της πλευράς ΒΓ [Απ. Β(6,-2), ΑΒ: y = 3x 20,ΑΓ: y = 1 x, M(2,1) και BM = 5, Γ( 4, 2), 2 x = 1] 9) Δίνεται η εξίσωση 3x 2 + 2y 2 + 7xy + 2x y 1 = 0 (1) α) Να αποδείξετε ότι η εξίσωση (1) παριστάνει δύο ευθείες, των οποίων να βρείτε τις εξισώσεις β) Να βρείτε την οξεία γωνία που σχηματίζουν οι ευθείες του ερωτήματος (α) [Απ. 3x + y 1 = 0 και x + 2y + 1 = 0, 45 ] 10) Δίνεται η εξίσωση: x 2 2y 2 xy 5x 2y + 4 = 0 (1) α) Να αποδείξετε ότι η εξίσωση (1) παριστάνει δύο ευθείες β) Έστω ότι η ευθεία (ζ): x + 2y 8λ = 0 τέμνει τις ευθείες του ερωτήματος (α) στα σημεία Α και Β. Αν Μ είναι το μέσο του (ΑΒ), τότε: i) Να βρείτε τις συντεταγμένες του Μ συναρτήσεις του λ ii) Να αποδείξετε ότι καθώς το λ μεταβάλλεται στο R, το σημείο Μ, κινείται πάνω σε ευθεία, της οποίας να βρείτε την εξίσωση. [Απ. x + y 1 = 0 και x 2y 4 = 0, M(2 2λ, 5λ 1), 5χ + 2υ 8 = 0] 11) Έστω ε 1 η ευθεία που διέρχεται από το σημείο Ν( 1,3) και τέμνει τους άξονες x x και y y στα σημεία Α και Β αντίστοιχα, ώστε το Ν να είναι μέσο του (ΑΒ). α) Να βρείτε την εξίσωση της ευθείας ε 1 β) Θεωρούμε τα σημεία Τ( 5,1) και Σ(2a 7,5 4a). Αν το σημείο Σ ανήκει στην ευθεία ε 1, να βρείτε: i) Τον αριθμό α ii) Τη μεσοκάθετο ε 2 του ευθύγραμμου τμήματος ΤΣ iii) Την οξεία γωνία που σχηματίζουν οι ευθείες ε 1 και ε 2
4 [Απ. A( λ+3 λ, 0) και Β(0, λ + 3), λ=3, α=2, ε 2: x 2y + 2 = 0, 45 ] 12) Η ευθεία (ε): λx 4y + λ + 2 = 0 απέχει από την αρχή των αξόνων απόσταση ίση με 1. Να βρείτε: α) Τον αριθμό λ β) Τα σημεία του άξονα x x που απέχουν από την ευθεία ε απόσταση ίση με 2 γ) Τα σημεία του άξονα y y που ισαπέχουν από την ευθεία ε και από την αρχή των αξόνων. [Απ. λ=3, α = 5 ή α = 5,β = 5 ή β = 5] ) Οι παράλληλες ευθείες ε 1 : y = λx + λ και ε 2 : y = λx + 2 απέχουν απόσταση ίση με 1. α) Να βρείτε τον αριθμό λ β) Να βρείτε τη μεσοπαράλληλη ζ των ε 1 και ε 2 γ) Έστω η ευθεία ε 3 που διέρχεται από το σημείο Α(4,2) και τέμνει την ε 1 σε σημείο με τετμημένη 7. Να βρείτε: i) Την εξίσωση της ευθείας ε 3 ii) Τις διχοτόμους των γωνιών που σχηματίζουν οι ευθείες ε 2 και ε 3 [Απ. λ = 3 4, ε 1: 3x 4y + 3 = 0 και ε 2 : 3x 4y + 8 = 0, ζ: 6x 8y + 11 = 0, Β(7,6), ε 3 : 4χ 3υ 10 = 0, δ 1 : x + y 18 = 0 και δ 2 : 7x 7y 2 = 0] 14) Δίνεται η εξίσωση: (α 1)x + (3α 13)y 11α + 41 = 0 (1) α) να αποδείξετε ότι η εξίσωση (1) παριστάνει ευθεία για κάθε α R β) Να αποδείξετε ότι για τις διάφορες τιμές του α R οι ευθείες που παριστάνει η εξίσωση (1) διέρχονται από σταθερό σημείο γ) Έστω ε 1 και ε 2 οι ευθείες που προκύπτουν από την εξίσωση (1) για α = 5 και α = 4 αντίστοιχα i) Να βρείτε την οξεία γωνία που σχηματίζουν οι ευθείες ε 1 και ε 2 ii) Έστω ε 3 η ευθεία που διέρχεται από το σημείο Τ( 3,4) και σχηματίζει γωνία 135 ο με τον άξονα x x. Να βρείτε το εμβαδόν του τριγώνου που σχηματίζεται από τις ευθείες ε 1, ε 2, ε 3 [Απ: β) Α(2,3), γ) 45 ο, 10 τ.μ.] 15) Δίνονται οι εξισώσεις:
5 λx + (λ 1)y λ = 0 (1) και (λ + 2)x + λy 5λ = 0 (2) α) Να αποδείξετε ότι καθεμία από τις εξισώσεις (1) και (2) παριστάνει ευθεία για κάθε λ R β) Έστω ότι οι ευθείες ε 1 και ε 2 που παριστάνουν οι εξισώσεις (1) και (2) αντίστοιχα, είναι παράλληλες γ) Να αποδείξετε ότι λ = 2 δ) Να βρείτε την απόσταση των ευθειών ε 1 και ε 2 ε) Να βρείτε το σημείο Α της ευθείας ε 1 που έχει τη μικρότερη απόσταση από την αρχή των αξόνων στ) Αν Α(6,3), να βρείτε σημείο Β της ευθείας ε 2, ώστε ΑΒ = 5 [Απ: ii) 2 5 iii) 2x+y-10=0 iv) A(6,3)] 16) Δίνονται τα διανύσματα α, β 0 και η εξίσωση: 6 α β x 4 α β y 2α β = 0 (1) α) Να αποδείξετε ότι η εξίσωση (1) παριστάνει ευθεία ε β) Αν α β, να αποδείξετε ότι η ευθεία ε είναι ο άξονας x x γ) Αν η ευθεία ε διέρχεται από το σημείο Α(1, 1), να αποδείξετε ότι α β δ) Αν η ευθεία ε διέρχεται από το σημείο Β(3,2), τότε να βρείτε: i) Τη γωνία των διανυσμάτων α και β ii) Την απόσταση του σημείου Μ ( α +2β 2 α 2β 2 ευθεία ε [Απ. 60 ο, d(μ,ε)=3] α β, 1) από την ΚΥΚΛΟΣ 17) Θεωρούμε την εξίσωση: x 2 + y 2 2αx + 4y + 2α = 0 όπου α R α) Να αποδείξετε ότι η εξίσωση αυτή παριστάνει κύκλο για κάθε α R
6 β) Να βρείτε τις τιμές του πραγματικού αριθμού α ώστε η ακτίνα του κύκλου αυτού να είναι ίση με 2 γ) Να βρείτε τον α R ώστε το κέντρο του κύκλου να βρίσκεται στην ευθεία (ε): 5x + 3y + 1 = 0 δ) Να βρείτε τον α R ώστε ο κύκλος να διέρχεται από την αρχή των αξόνων. [Απ. α = 0 ή α = 2, α = 1, α = 0] 18) Δίνεται η εξίσωση: x 2 + y 2 + λx + (4 λ)y 2λ 14 = 0 (1) α) Να αποδείξετε ότι η εξίσωση (1) παριστάνει κύκλο για κάθε λ R β) Έστω ότι το κέντρο του κύκλου C, που παριστάνει η εξίσωση (1), ανήκει στην ευθεία: (ζ): 5x + 3y + 4 = 0. Να βρείτε: i) Τον αριθμό λ, καθώς και το κέντρο και την ακτίνα του κύκλου C ii) Τις εφαπτομένες του κύκλου που είναι παράλληλες στην ευθεία (η): 4x + 2y 2018 = 0 iii) Να δείξετε ότι το σημείο Ρ(-1,3) είναι εξωτερικό σημείο του κύκλου C iv) Τις εφαπτομένες του κύκλου C που διέρχονται από το σημείο Ρ(-1,3) [Απ. λ=-2 τελικά Κ(1,-3) και ρ= 20, y = 2x + 9 και y = 2x 11, 2x y + 5 = 0 και x + 2y 5 = 0] 19) Δίνεται η εξίσωση: x 2 + y 2 + λx + (2λ 4)y 4λ 1 = 0 (1) α) Να αποδείξετε ότι η εξίσωση (1) παριστάνει κύκλο για κάθε λ R β) Να αποδείξετε ότι τα κέντρα των κύκλων που παριστάνει η εξίσωση (1) για τις διάφορες τιμές του λ R κινούνται σε ευθεία της οποίας να βρείτε την εξίσωση γ) Αν ο κύκλος C που παριστάνει η εξίσωση (1) διέρχεται από το σημείο Α(1,2), τότε να βρείτε: i) Τον αριθμό λ, το κέντρο Κ και την ακτίνα ρ του κύκλου C ii) Την εφαπτόμενη (ε) του κύκλου C στο σημείο του Α iii) Τις εφαπτομένες του κύκλου C που είναι κάθετες στην ευθεία ε [Απ. Κ( λ, 2 λ) άρα y = 2x + 2, λ=4, 3x + 4y 11 = 0, 4x 3y + 27 = 0 2 και 4x 3y 23 = 0] 20) Δίνεται κύκλος C κέντρου Κ( 1,3) που εφάπτεται στον άξονα x x. α) Να βρείτε την εξίσωση του κύκλου C β) Θεωρούμε το σημείο Α( 1, 3). Να βρείτε:
7 i) Τις εφαπτομένες του κύκλου C που διέρχονται από το σημείο Α ii) Την οξεία γωνία που σχηματίζουν οι παραπάνω εφαπτομένες [Απ. (x + 1) 2 + (y 3) 2 = 9, 3x y = 0 και 3x + y = 0, 60 ο ] 21) Δίνεται η εξίσωση: x 2 + y 2 8x + 4y + 6 = 0 (1) α) Να αποδείξετε ότι η εξίσωση (1) παριστάνει κύκλο C, του οποίου να βρείτε το κέντρο και την ακτίνα β) Να βρείτε το μήκος της χορδής του κύκλου C που έχει μέσο το σημείο Μ(2, 1) γ) Να βρείτε τις ευθείες που είναι παράλληλες στη (ζ): y = 3x και ορίζουν στον κύκλο C χορδές με μήκος 4. [Απ. Κ(4,-2) ρ = 14, μήκος χορδής 6, y = 3x 24 και y = 3x 4] 22) Δίνεται η εξίσωση: (x 1) 2 + (y + 3) λ(3x + y 10) = 0 (1) α) Να αποδείξετε ότι η εξίσωση (1) παριστάνει κύκλο για κάθε λ R β) Να αποδείξετε ότι οι κύκλοι που παριστάνει η (1) για τις διάφορες τιμές του λ R διέρχονται από δύο σταθερά σημεία Α και Β τα οποία και να βρείτε γ) Έστω ότι το κέντρο Κ του κύκλου C που παριστάνει η εξίσωση (1) ανήκει στην ευθεία (ζ): 2x + y + 8 = 0. Να βρείτε: i) Τον αριθμό λ ii) Το εμβαδόν του τριγώνου ΑΚΒ [Απ. Α(3,1) και Β(5,-5), λ=2, Κ(-2,-4) (ΑΚΒ)=20 τ.μ.] 23) Δίνεται τρίγωνο ΑΒΓ, με Γ(1, 3), του οποίου η πλευρά ΑΒ βρίσκεται στην ευθεία x 7y + 38 = 0 και το ύψος ΑΔ βρίσκεται στην ευθεία x + 3y 12 = 0. Να βρείτε: α) Τις συντεταγμένες τις κορυφής Α β) Την εξίσωση της ευθείας στην οποία ανήκει η πλευρά ΒΓ και τις συντεταγμένες της κορυφής Β γ) Τις μεσοκαθέτους των πλευρών ΑΒ και ΑΓ δ) Την εξίσωση του περιγεγραμμένου κύκλου C του τριγώνου ΑΒΓ ε) Την εφαπτομένη (ε) του κύκλου C στο σημείο Α και την απόσταση του σημείου Γ από την ευθεία (ε) [Απ. Α(-3,5), ΒΓ: 3x y 6 = 0, Β(4,6), 7x + y 9 = 0 και x 2y + 3 = 0, Κ(1,2), ρ=(κα)=5 C: (x 1) 2 + (y 2) 2 = 25, (ε): 4x 3y + 27 = 0 και d(γ, ε) = 8]
8 24) Δίνεται η εξίσωση x 2 + y 2 2xσυνθ 2yημθ 1 = 0, 0 θ < 2π α) Να αποδείξετε ότι για κάθε θ η εξίσωση αυτή παριστάνει κύκλο, του οποίου να προσδιορίσετε το κέντρο και την ακτίνα β) Αν θ = π, να βρείτε την εξίσωση της εφαπτομένης του κύκλου στο 2 σημείο Ν(1,2) γ) Να αποδείξετε ότι για τις διάφορες τιμές του θ τα κέντρα των παραπάνω κύκλων βρίσκονται σε κύκλο με κέντρο το Ο(0,0) και ακτίνα ρ=1 δ) Δίνονται τα σημεία Τ(ημφ 4, συνφ + 2), φ R. Να αποδείξετε ότι τα παραπάνω σημεία κινούνται σε κύκλο, του οποίου να βρείτε το κέντρο και την ακτίνα ε) Να αποδείξετε ότι τα σημεία Α ( 2λ, λ4 +4 λ 2 +2 λ 2 +2 ημικύκλιο με κέντρο την αρχή των αξόνων ), λ R κινούνται σε [Απ. Κ(συνθ, ημθ), ρ = 2, C: x 2 + y 2 2y 1 = 0, K(0,1), (ε): y = x + 3, (x + 4) 2 + (y 2) 2 = 1, x 2 + y 2 = 1, x 2 + y 2 = 1, y > 0 ] 25) Δίνονται οι κύκλοι C 1 : x 2 + y 2 = 5 και C 2 : x 2 + y 2 10x 20y + 45 = 0 α) Να βρείτε τα κέντρα και τις ακτίνες των παραπάνω κύκλων β) Να βρείτε τις εφαπτομένες του κύκλου C 2 που είναι παράλληλες στο διάνυσμα ΟΚ, όπου Ο η αρχή των αξόνων και Κ το κέντρο του κύκλου C 2. γ) Να αποδείξετε ότι οι κύκλοι C 1, C 2 εφάπτονται εξωτερικά δ) Να βρείτε την εξίσωση του κύκλου C 3, στον οποίο εφάπτονται εσωτερικά οι κύκλοι C 1 και C 2 [Απ. Κ(5,10) ρ 2 = 4 5, y = 2x 20 και y = 2x + 26, (OK) = ρ 1 + ρ 2, (x 4) 2 + (y 8) 2 = 125] 26) Δίνεται η εξίσωση x 2 + y 2 + 4(2λ 1)x 6λy + 25λ 2 16λ = 0 (1), λ R α) Να αποδείξετε ότι παριστάνει κύκλο για κάθε τιμή του πραγματικού αριθμού λ, του οποίου να βρείτε το κέντρο και την ακτίνα. β) Να βρείτε την εξίσωση της γραμμής στην οποία κινείται το κέντρο του κύκλου γ) Να αποδείξετε ότι οι κύκλοι που αντιπροσωπεύονται από τη (1), εφάπτονται σε δύο ευθείες, οι οποίες και να βρεθούν.
9 [Απ. Κ(2 4λ, 3λ), ρ = 2, 3x + 4y 6 = 0, 3x + 4y 16 = 0 και 3x + 4y + 4 = 0] ΠΑΡΑΒΟΛΗ 27) Δίνεται η εξίσωση C: x 2 + y 2 6kx 8ky = 0, k R α) Να αποδείξετε ότι η παραπάνω εξίσωση παριστάνει κύκλο ( για κάθε k R ) του οποίου να βρείτε το κέντρο και την ακτίνα β) Να βρεθεί ο γεωμετρικός τόπος των κέντρων των κύκλων γ) Να δείξετε ότι οι κύκλοι C διέρχονται από το σημείο Ο(0,0) για κάθε k R δ) Έστω C 1 ο κύκλος για k = 1 και η ευθεία (ε): y = λx + 2. Να βρείτε το λ R ώστε η ευθεία (ε) να τέμνει τον κύκλο C 1 σε δύο σημεία Α και Β έτσι ώστε ΑΟΒ = 90 ε) Να βρεθεί η εξίσωση της παραβολής, η οποία διέρχεται από το κέντρο του προηγούμενου κύκλου για k = 1 και έχει διευθετούσα την ευθεία x = p. Να βρεθεί η εστία και η διευθετούσα της παραβολής. 2 [Απ. Κ(3k, 4k), ρ = 5 k, y = 4 3 x χωρίς το Ο(0,0), λ = 2 3, y2 = 16 3 x ] 28) Δίνεται κύκλος C: x 2 + y 2 = 25 και ε 1 και ε 2 οι εφαπτομένες του κύκλου από το σημείο Μ(0, 10). Αν Α και Β είναι τα σημεία επαφής των ε 1, ε 2 με τον κύκλο, να βρείτε: α) Τις εξισώσεις των εφαπτομένων ε 1 και ε 2 β) Τις συντεταγμένες των σημείων επαφής Α και Β γ) Την εξίσωση της παραβολής που έχει κορυφή την αρχή των αξόνων και διέρχεται από τα σημεία Α και Β [Απ. ε 1 : x 3 y 10 = 0 και ε 2 : x 3 + y + 10 = 0, A( 5 3, ), B(, 5 ), C: x 2 = 15 y] 2 29) Δίνεται η παραβολή y 2 = 4x. Να βρείτε: α) Την εστία και τη διευθετούσα της παραβολής β) Τις ευθείες που διέρχονται από την εστία της παραβολής και απέχουν από την αρχή των αξόνων απόσταση ίση με 2 2 γ) Την εξίσωση της εφαπτομένης της παραβολής που είναι παράλληλη στην ευθεία y = x 1 [Απ. Ε(1,0) δ: x = 1, y = x 1 και y = x + 1, y = x + 1]
10 30) Δίνεται τρίγωνο ΑΒΓ του οποίου η κορυφή Β έχει συντεταγμένες (2,0), το ύψος ΑΔ και η διάμεσος ΑΜ έχουν αντίστοιχα εξισώσεις y = x + 3 και y = 2x 9. Να βρείτε: α) Τι συντεταγμένες της κορυφής Α β) Τις εξισώσεις των πλευρών ΑΒ και ΒΓ γ) Τις συντεταγμένες της κορυφής Γ δ) Την εξίσωση του περιγεγραμμένου κύκλου του τριγώνου ΑΔΓ ε) Τις εξισώσεις των εφαπτομένων του κύκλου που διέρχονται από την αρχή των αξόνων στ) Την εξίσωση της παραβολής που έχει εστία το σημείο Β Βιβλιογραφία Μαθηματικά Β' λυκείου (Εκδότης: Εκδόσεις Μπάρλας) Μαθηματικά Β λυκείου -Συγγραφείς: Βασίλης Γ. Παπαδάκης (Εκδότης: Σαββάλας) ( ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ -ΜΑΜΑΛΗΣ ΠΑΝΑΓΙΩΤΗΣ, ΜΙΧΑΗΛΟΓΛΟΥ ΣΤΕΛΙΟΣ, ΤΟΛΗΣ ΕΥΑΓΓΕΛΟΣ (Εκδότης: ΛΙΒΑΝΗΣ)
Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία Εξίσωση ευθείας
Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία - 1-1. 2-18575 Εξίσωση ευθείας Δίνονται τα σημεία Α(1,2) και Β (5,6 ). α) Να βρείτε την εξίσωση της ευθείας που διέρχεται από
Διαβάστε περισσότεραΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο
Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ - ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1. Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε = 5 + 2 α) Να γράψετε το διάνυσμα β) Να δείξετε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 0/04/018 ΕΩΣ 14/04/018 ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη 1 Απριλίου 018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη ε του κύκλου
Διαβάστε περισσότερακαι 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.
Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ
Διαβάστε περισσότεραπ (α,β). Έστω τα διανύσματα π (α,β) να βρεθούν:
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Β ΚΑΤΕΥΘΥΝΣΗΣ 1. Για τα διανύσματα α, β δίνεται ότι α =1, β = και u α β, v α - β.να υπολογίσετε: π (α,β). Έστω τα διανύσματα α. το εσωτερικό γινόμενο α β β. τα μέτρα u, v των διανυσμάτων
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ - ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1. Δίνεται παραλληλόγραμμο ΑΒΓΔ με τρεις κορυφές τα σημεία Α (1,1), Γ (4,3) και Δ (,3). α) Να υπολογίσετε τα μήκη
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )
ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Δίνεται η ευθεία (ε) με εξίσωση: 2x y1 0 καθώς και το σημείο Μ(3,0). α. Να βρείτε την εξίσωση μιας ευθείας (η) που περνά από το Μ και είναι κάθετη στην ευθεία (ε). β. Να
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και
Διαβάστε περισσότεραΤράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12
Τράπεζα 0- Πολλαπλασιασμός αριθμού με διάνυσμα.58 Θεωρούμε τα διανύσματα α,β,γ και τυχαίο σημείο Ο. Αν α β 5γ, α 3β 4γ και 3α β 6γ, τότε: α) να εκφράσετε τα διανύσματα, συναρτήσει των διανυσμάτων α,β,γ.
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ
Ευθεία ΣΥΝΤΕΛΕΣΤΗΣ ΔΙΕΥΘΥΝΣΗΣ ΕΥΘΕΙΑΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ 1. Να βρεθεί ο συντελεστής διεύθυνσης της ευθείας ε, αν αυτή έχει εξίσωση: 5x 6 i) y = x- 1 ii) y = 3 5x iii) y iv) x = y + 3 10 v) 18x-6y
Διαβάστε περισσότεραΚΥΚΛΟΣ. Μ(x,y) Ο C ΘΕΩΡΙΑ ΕΠΙΜΕΛΕΙΑ: ΣΩΣΤΟ-ΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΧΡΑΣ ΓΙΑΝΝΗΣ ΑΣΚΗΣΕΙΣ. 3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ
Φ3 ΚΥΚΛΟΣ y Μ(x,y) A(x,y) ε Ο C x ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΘΕΩΡΙΑ ΣΩΣΤΟ-ΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ ΚΕΝΤΡΙΚΟ 3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ Ν. ΣΜΥΡΝΗΣ 0-0 ΘΕΩΡΙΑ. Τι ονομάζεται κύκλος με κέντρο το σημείο K( x0,
Διαβάστε περισσότερα1,y 1) είναι η C : xx yy 0.
ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.
Διαβάστε περισσότεραΜαθηματικά προσανατολισμού Β Λυκείου. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΟΕΦΕ α φάση. Διανύσματα
Μαθηματικά προσανατολισμού Β Λυκείου wwwaskisopolisgr ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΟΕΦΕ 00-018α φάση Διανύσματα 1 Σε σύστημα συντεταγμένων Oxy θεωρούμε τρία σημεία Α, Β, Γ του μοναδιαίου κύκλου, για τα οποία υπάρχει
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0
ΚΕΦΑΛΑΙΟ 3 Ο Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0 2. Να βρεθεί η εξίσωση της εφαπτομένης του κύκλου x
Διαβάστε περισσότεραΤράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ
Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων
Διαβάστε περισσότεραφέρουμε μια οποιαδήποτε χορδή ΑΒ του κύκλου και την προεκτείνουμε κατά τμήμα
1. Δίνεται ο κύκλος + y ρ, όπου ρ>0. Από το σημείο A( - ρ,0) του C C :x = φέρουμε μια οποιαδήποτε χορδή ΑΒ του κύκλου και την προεκτείνουμε κατά τμήμα BM = AB. Να αποδείξετε ότι το Μ κινείται πάνω σε ένα
Διαβάστε περισσότεραΘέματα εξετάσεων στα Μαθηματικά προσανατολισμού της Β Λυκείου παλαιοτέρων ετών
wwwaskisopolisgr Θέματα εξετάσεων στα Μαθηματικά προσανατολισμού της Β Λυκείου παλαιοτέρων ετών Διανύσματα Δίνεται τρίγωνο ΑΒΓ με AB, ΑΓ και ˆΑ 60 Να βρείτε: α) ΑΒ ΑΓ β) Το μέτρο της διαμέσου ΑΔ γ) Τη
Διαβάστε περισσότεραΤάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε
Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;
Διαβάστε περισσότερα= π 3 και a = 2, β =2 2. a, β
1 of 68 Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. γ) Να
Διαβάστε περισσότεραΜαθηματικά Προσανατολισμού Θετικών Σπουδών Β Λυκείου
ΑΣΚΗΣΕΙΣ 1. Να βρείτε το συντελεστή διεύθυνσης της ευθείας που διέρχεται από τα σημεία Α, Β, όταν α) Α(2, 5), Β(1, -3) β) Α(-3, -5), Β(-5, 7) γ) Α(0, 4), Β(2, -6). 2. Να βρείτε τη γωνία που σχηματίζει
Διαβάστε περισσότεραΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ
ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ 1. Α. Έστω x, y και x, y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. i. Να εκφράσετε (χωρίς απόδειξη) το εσωτερικό γινόμενο των διανυσμάτων και συναρτήσει των συντεταγμένων τους.
Διαβάστε περισσότεραΘΕΜΑ ίνονται τα διανύσµαταα, β. α) Να υπολογίσετε τη γωνία. β) Να αποδείξετε ότι 2α+β= β) το συνηµίτονο της γωνίας των διανυσµάτων
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΣΕ ΟΛΗ ΤΗΝ ΥΛΗ! ΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΙΑΝΥΣΜΑ ΘΕΜΑ 005 Θεωρούµε τα σηµεία Ρ, Λ, Κ και Μ του επιπέδου για τα οποία ισχύει η σχέση 5ΡΛ
Διαβάστε περισσότεραΓενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B
151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.
Διαβάστε περισσότεραΜαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία
Ασκήσεις Ευθεία 1. Να βρεθεί η εξίσωση της ευθείας η οποία διέρχεται από το σηµείο τοµής των ευθειών 3x + 4y 11 = 0 και 2x 3y + 21 = 0 και να γίνει η γραφική της παράσταση όταν είναι: i) παράλληλη στην
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Β MΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α1. Αν Α(x 1, y 1 ) και Β(x, y ) είναι σημεία του καρτεσιανού επιπέδου και (x, y) οι συντεταγμένες
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου
Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Θέμα A. Να αποδείξετε ότι η εξίσωση της εφαπτομένης του κύκλου στο σημείο του Α, ) είναι 8 μονάδες) Β. Να δώσετε τον ορισμό
Διαβάστε περισσότεραΈστω ε μια ευθεία του καρτεσιανού επιπέδου, με εξίσωση ) ένα σημείο εκτός αυτής. Θέλουμε y (1)
7 ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ Απόσταση Σημείου από Ευθεία Έστω ε μια ευθεία του καρτεσιανού επιπέδου, με εξίσωση M ( x, y ) ένα σημείο εκτός αυτής Θέλουμε y να υπολογίσουμε την απόσταση d( M, ε) του ε σημείου M από
Διαβάστε περισσότεραΕπιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015
Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή
Διαβάστε περισσότεραΘΕΜΑΤΑ. Μονάδες 8 Β. η εξίσωση της μεσοκάθετης της ΑΓ Μονάδες 9
ΓΕΛ ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β 331 Α. α. Τι ονομάζουμε εσωτερικό γινόμενο των μη μηδενικών διανυσμάτων α, β. Μονάδες 5 β. Εάν ορίζονται οι συντελεστές διεύθυνσης των διανυσμάτων α, β αντιστοίχως να δείξετε ότι:
Διαβάστε περισσότεραβ = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ...
Αµυραδάκη 0, Νίκαια (104903576) ΝΟΕΜΒΡΙΟΣ 01 ΘΕΜΑ 1 ο i) Αν Α( x 1, y 1 ) και Β(x, y ) δυο σηµεία του καρτεσιανού επιπέδου και (x, y) οι συντεταγµένες του µέσου Μ του ΑΒ, να αποδείξετε ότι : x 1 + x x
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΑΠΟ ΤΗΝ ΘΕΩΡΙΑ ΔΙΑΝΥΣΜΑΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΔΙΑΝΥΣΜΑΤΟΣ Αρχή και Πέρας Φορέας Διεύθυνση (Συγγραμμικά διανύσματα) Μέτρο Κατεύθυνση (Ομόρροπα Αντίρροπα διανύσματα)
Διαβάστε περισσότεραΘΕΜΑ 1. Α. Να δείξετε ότι η ευθεία ε: αx + βy + γ = 0, ( α + β 0), είναι παράλληλη στο. (Μονάδες: 5) Β. ΣΩΣΤΟ ΛΑΘΟΣ
Ε4 ΘΕΜΑ 1 Α. Να δείξετε ότι η ευθεία ε: αx + βy + γ = 0, ( α + β 0), είναι παράλληλη στο δ = ( β, α). (Μονάδες: 5) Β. ΣΩΣΤΟ ΛΑΘΟΣ 1. Η απόσταση του 0(0,0) από την x + y + = 0 είναι.. Η εξίσωση y = xy παριστάνει
Διαβάστε περισσότεραΜαθηματικά Κατεύθυνσης (Προσανατολισμού)
Θέματα ενδοσχολικών εξετάσεων στα Μαθηματικά Προσανατολισμού Β Λυκείου Σχ έτος 03-04, Ν Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Μαθηματικά Κατεύθυνσης (Προσανατολισμού) ΣΧΟΛΙΚΟ
Διαβάστε περισσότεραΦΑΣΜΑ GROUP προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι.
Σύγχρονο www.fasma.fro.gr ΦΑΣΜΑ GROUP προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. Μαθητικό Φροντιστήριο Κατά το πέρας της εξέτασης οι λύσεις θα αναρτηθούν στο και στο site του φροντιστηρίου. 5ης Μαρτίου 111 ΠΕΤΡΟΥΠΟΛΗ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (16) -2- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου -3- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β
Διαβάστε περισσότερα1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. α. Τι ονομάζουμε εσωτερικό γινόμενο δύο διανυσμάτων, β
O A M B ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ Ο ΘΕΜΑ ον : α α. Τι ονομάζουμε εσωτερικό γινόμενο δύο διανυσμάτων, β. Μονάδες 5 β. Αν α, ν
Διαβάστε περισσότερα117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού
117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά Μαθηματικού Περιεχόμενα 1. Διανύσματα (47) ελ. - 9. Ευθεία (18) ελ. 10-1 3. Κύκλος (13).ελ. 13-15 4. Παραβολή (14) ελ. 16-18 5. Έλλειψη (18)..
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (39) -2- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου -3- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β
Διαβάστε περισσότεραΗ γενική μορφή της εξίσωσης ευθείας είναι η από τα Α, Β διάφορο του μηδενός
ΕΥΘΕΙΑ Να προσέχεις ότι: Η γενική μορφή της εξίσωσης ευθείας είναι η από τα Α, Β διάφορο του μηδενός Ax+By+Γ=0, με κάποιο Η εξίσωση της ευθείας που διέρχεται από ένα σημείο Α(x 0,y 0 ) και έχει συντελεστή
Διαβάστε περισσότεραΜαθηµατικά Κατεύθυνσης Β Λυκείου Κύκλος. Ασκήσεις Κύκλος
Ασκήσεις Κύκλος 1. Να βρείτε αν οι παρακάτω εξισώσεις παριστάνουν κύκλο. Έπειτα να βρείτε το κέντρο και την ακτίνα τους. i) x 2 + y 2 2x 4y + 1 = 0 (Απ.: (x 1) 2 + (y 2) 2 = 4) x 2 + y 2 2x + 4y + 5 =
Διαβάστε περισσότερα= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8)
ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες 10) γ) Να βρείτε
Διαβάστε περισσότεραΒ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 27 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 18/1/016 ΕΩΣ 05/01/017 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη 7 Δεκεμβρίου 016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Αν ( xy, )
Διαβάστε περισσότεραΕρωτήσεις αντιστοίχισης
Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =
Διαβάστε περισσότερα) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A
[Επιλογή Ιαν.. Εμβαδόν Τριγώνου ΣΤΟΧΟΙ: Ο µαθητής ϖρέϖει: να είναι ικανός να υϖολογίζει την αϖόσταση σηµείου αϖό ευθεία να είναι ικανός να υϖολογίζει το εµβαδό ενός τριγώνου αϖό τις συντεταγµένες των κορυφών
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΑΝΥΣΜΑΤΑ Επιμέλεια: Άλκης Τζελέπης ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΝΝΟΙΑ - ΠΡΑΞΕΙΣ. Αν τα διανύσματα,, σχηματίζουν τρίγωνο, να αποδείξετε ότι το ίδιο συμβαίνει
Διαβάστε περισσότερα(Μονάδες 8) γ) Για την τιμή του λ που βρήκατε στο ερώτημα β), να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ (Μονάδες 10)
ΘΕΜΑ 4 Σε τρίγωνο ΑΒΓ είναι AB= ( λ, λ+ 1), AΓ = ( 3 λ, λ 1) είναι το μέσο της πλευράς ΒΓ AΜ= λ, λ α) Να αποδείξετε ότι ( ), όπου λ 0 και λ, και Μ (Μονάδες 7) β) Να βρείτε την τιμή του λ για την οποία
Διαβάστε περισσότεραΕπαναληπτικά Θέµατα Εξετάσεων
Επαναληπτικά Θέµατα Εξετάσεων Καθηγητές : Νικόλαος Κατσίπης 25 Απριλίου 2014 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας ευχόµαστε καλό διάβασµα και...
Διαβάστε περισσότεραΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R
Κεφάλαιο 4ο: ΚΩΝΙΚΕΣ ΤΟΜΕΣ Α. ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση ( x x ) + ( y y ) = k, k R είναι πάντοτε εξίσωση κύκλου. o o. * Η εξίσωση x + y + Ax + By + Γ = 0 παριστάνει κύκλο
Διαβάστε περισσότεραΑσκήσεις Κύκλος. 6. Για ποια τιμή του λ το σημείο Μ(2λ + 1, λ) ανήκει στον κύκλο με εξίσωση (x 3) 2 + (y + 4) 2 = 100
Ασκήσεις Κύκλος 1. Να βρείτε το κέντρο και την ακτίνα του κύκλου (x + 5) + (y 5) =. Να βρείτε το κέντρο και την ακτίνα του κύκλου x + y 8x + 4y + 11 = 0 3. Ποια πρέπει να είναι η ακτίνα του κύκλου (x 1)
Διαβάστε περισσότερα2.1 Εξίσωση ευθείας-συντελεστής διεύθυνσης
1 Εξίσωση ευθείας-συντελεστής διεύθυνσης 1 Έστω η ευθεία (ε) η οποία διέρχεται από τα σημεία Α(, μ), Β(5, μ), όπου Να βρείτε το μ σε καθεμιά από τις παρακάτω περιπτώσεις : α) η(ε) σχηματίζει γωνία 135
Διαβάστε περισσότερα32 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α1) Έστω το διάνυσμα a=
32 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α1) Έστω το διάνυσμα a= ( xy, ). Να ορίσετε τις έννοιες α)μέτρο του διανύσματος και β) συντελεστής διεύθυνσης του διανύσματος Α2) Να γράψετε τους τύπους
Διαβάστε περισσότεραΟ κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ έχει εξίσωση: B,- 2 A 2
3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΚΥΚΛΟΣ Κύκλος είναι ο γεωμετρικός τόπος των σημείων του επιπέδου που απέχουν σταθερή απόσταση από ένα σταθερό σημείο του επιπέδου αυτού. Το σταθερό σημείο
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος
ΔΙΑΝΥΣΜΑΤΑ 8556 ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =.. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ o Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων α, β. Μονάδες 4 Β. Να αποδείξετε ότι το εσωτερικό γινόµενο δύο διανυσµάτων
Διαβάστε περισσότεραB ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 10/4/017 ΕΩΣ /4/017 ΤΑΞΗ: ΜΑΘΗΜΑ: B ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τετάρτη 1 Απριλίου 017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη του
Διαβάστε περισσότερα2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ
63 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Η Εξίσωση Αx + Βy + Γ = 0, με Α 0 ή Β 0 Έστω ε μια ευθεία στο καρτεσιανό επίπεδο Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Σ (, 0 β ) και έχει συντελεστή διεύθυνσης
Διαβάστε περισσότεραΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»
Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος». * Συντελεστής διεύθυνσης µιας ευθείας (ε) είναι η εφαπτοµένη της γωνίας που σχηµατίζει η ευθεία (ε) µε τον άξονα x x. Σ Λ. * Ο συντελεστής διεύθυνσης
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να
Διαβάστε περισσότεραΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές)
ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Κωνικές τοµ ές) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής
Διαβάστε περισσότερα2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5.
Ευθεία Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Εξίσωση γραμμής Συντελεστής διεύθυνσης ευθείας Συνθήκες καθετότητας και παραλληλίας ευθειών Εξίσωση ευθείας ειδικές περιπτώσεις Σχόλιο Το σημείο είναι ο θεμελιώδης λίθος της
Διαβάστε περισσότερα3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ
ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Νρεθεί η εξίσωση του κύκλου σε καθεμιά από τις παρακάτω περιπτώσεις: α) έχει κέντρο την αρχή των αξόνων και ακτίνα β) έχει κέντρο το σημείο (3, - ) και ακτίνα 5 γ) έχει κέντρο το σημείο
Διαβάστε περισσότεραΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ΣΤΟΝ ΚΥΚΛΟ Μαθηματικά θετικού προσανατολισμού β λυκείου
ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ΣΤΟΝ ΚΥΚΛΟ Μαθηματικά θετικού προσανατολισμού β λυκείου 016-017 Σε αυτή την προσπάθεια πρωτοστάτησε ο Βασίλης Μαυροφρύδης και έδωσαν το παρόν αξιόλογοι συνάδελφοι, προτείνοντας και λύνοντας
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ 1. Δίνεται τετράγωνο ΑΒΓΔ.Σε καθεμία από τις παρακάτω περιπτώσεις να βρείτε το άθροισμα.
Διαβάστε περισσότερα1 x και y = - λx είναι κάθετες
Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία (ε) με τον άξονα. Σ Λ. * Ο συντελεστής διεύθυνσης
Διαβάστε περισσότερα201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ Α. ΘΕΩΡΙΑ. i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η
201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ - 1-1. Να αποδείξετε ότι: Α. ΘΕΩΡΙΑ i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η C : x 2 y 2 ρ 2. Να αποδείξετε ότι η εφαπτομένη του κύκλου C: χ 2 + ψ 2 = ρ 2
Διαβάστε περισσότερα( ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΗΣ Β ΛΥΚΕΙΟΥ ( ) ( ) λx + 2 λ y + λ + 4 = 0. Α Βαθ. Β Βαθ. Μ.Ο. Ενδεικτικές Λύσεις
ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ : 7077 594 ΑΡΤΑΚΗΣ Κ. ΤΟΥΜΠΑ THΛ : 99 9494 www.syghrono.gr ΕΠΩΝΥΜΟ:........................ ΟΝΟΜΑ:........................... ΤΜΗΜΑ:........................... ΗΜΕΡΟΜΗΝΙΑ:.....................
Διαβάστε περισσότεραΠολλαπλασιασμός αριθμού με διάνυσμα
Μαθηματικά Προσανατολισμού Β Λυκείου Επανάληψη Χριστουγέννων Αφού κάνετε μια επανάληψη στο πρώτο κεφάλαιο και θυμηθείτε όλους τους τύπους και τις μεθοδολογίες, να λύσετε τις παρακάτω ασκήσεις από την τράπεζα
Διαβάστε περισσότερα3 η δεκάδα θεµάτων επανάληψης
η δεκάδα θεµάτων επανάληψης. Έστω η υπερβολή x y. Να βρείτε Tις ασύµπτωτες και την εκκεντρότητα της υπερβολής. i Tις εφαπτόµενες της υπερβολής που είναι παράλληλες στην ευθεία (ε) : x + y + 0 ii Tο εµβαδόν
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014)
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου 4 ο ΘΕΜΑ Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (9//4) Θέματα 4 ης Ομάδας Μαθηματικά Προσανατολισμού Β Λυκείου GI_V_MATHP_4_866 [παράγραφος
Διαβάστε περισσότεραΜαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης. Διανύσματα ΚΑΤΗΓΟΡΙΑ 8. Εσωτερικό γινόµενο διανυσµάτων. Ασκήσεις προς λύση 1-50
Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης Διανύσματα Εσωτερικό γινόµενο διανυσµάτων. ΚΑΤΗΓΟΡΙΑ 8 Ασκήσεις προς λύση 1-50 1. Θεωρούμε τα σημεία Α(1,2), Β(4,1). Να βρείτε σημείο Μ του άξονα
Διαβάστε περισσότεραΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ. i) Μία ευθεία με συντελεστή διεύθυνσης ίσο με το μηδέν, θα είναι παράλληλη στον άξονα των y.
ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ Θέμα Α. Να αποδείξετε ότι ο συντελεστής διεύθυνσης ευθείας στο επίπεδο της μορφής x y 0, με 0, 0 θα δίνεται από τον τύπο. ( μονάδες) Β. Να γράψετε τους τύπους του εμβαδού
Διαβάστε περισσότεραv Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o α Α Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β Μονάδες 4 Β Να αποδείξετε ότι το εσωτερικό γινόµενο
Διαβάστε περισσότεραΕπαναληπτικά Θέµατα Εξετάσεων
Επαναληπτικά Θέµατα Εξετάσεων Καθηγητής : Νικόλαος. Κατσίπης 19 Απριλίου 2013 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας εύχοµαι καλό διάβασµα και...
Διαβάστε περισσότεραΔΙΑΝΥΣΜΑΤΑ 1. Να αποδειχθεί ότι τα μέσα των πλευρών τετραπλεύρου είναι κορυφές παραλληλογράμμου.
ΔΙΑΝΥΣΜΑΤΑ 1. Να αποδειχθεί ότι τα μέσα των πλευρών τετραπλεύρου είναι κορυφές παραλληλογράμμου.. Δίνεται ένα παραλληλόγραμμο ΑΒΓΔ και ένα οποιοδήποτε σημείο Ρ του χώρου. Να αποδειχτεί ότι: P A P 0. 3.
Διαβάστε περισσότεραΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ
ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 1 Στο ορθογώνιο σύστημα αξόνων Οxψ θεωρούμε τα σημεία Α, Β, τα οποία έχουν τετμημένες τις ρίζες της εξίσωσης x - (4λ+6μ)x - 005 = 0 και τεταγμένες τις ρίζες
Διαβάστε περισσότερα2ο ΓΕΛ ΣΥΚΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ : Η ΥΠΕΡΒΟΛΗ. ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ 2ο ΓΕΛ ΣΥΚΕΩΝ
ο ΓΕΛ ΣΥΚΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ : Η ΥΠΕΡΒΟΛΗ ΣΧΟΛΙΚΟ ΕΤΟΣ 013-014 ΕΠΙΜΕΛΕΙΑ : ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ ο ΓΕΛ ΣΥΚΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Η ΥΠΕΡΒΟΛΗ ΟΡΙΣΜΟΣ: Έστω Ε και Ε δύο σημεία του
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΥΚΛΟΣ
ο ΓΕΛ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ 03-03 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΥΚΛΟΣ ΕΠΙΜΕΛΕΙΑ: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΤΥΠΟΛΟΓΙΟ ΒΓ=ΑΓ ΑΒ ΑΜ= ΑΒ+ΑΓ ( ) u= x i+ y j= ( x, y) u = x + y y λ =, x 0 u x Συντεταγμένες
Διαβάστε περισσότερα1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: 2π 3
Ερωτήσεις ανάπτυξης 1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: α) ω = 3 π β) ω = 2π 3 γ) ω = π 2. * Να βρείτε τη γωνία ω που σχηµατίζει µε τον άξονα
Διαβάστε περισσότεραy 2 =2px με εστία Ε(p/2, 0) και διευθετούσα δ: x=-p/2.
ΠΑΡΑΒΟΛΗ P Α δ (διευθετούσα) C (παραβολή) Μ (ΜΕ)=(ΜΡ) Κ Ε (εστία) Ορισμός: Παραβολή λέγεται ο γεωμ. τόπος των σημείων Μ του επιπέδου που ισαπέχουν από ένα σημείο Ε (Εστία) και μία ευθεία δ(διευθετούσα)
Διαβάστε περισσότεραΕπαναληπτικά συνδυαστικα θέµατα
Επαναληπτικά συνδυαστικα θέµατα A. Αν α, β i. αβ Θέµα ο µη µηδενικά διανύσµατα και ισχύει α+ β + α β =, τότε να δείξετε ότι: και ii. Αν α β τότε ισχύει α + β =. B. Να βρεθούν οι τιµές του λ ώστε η εξίσωση
Διαβάστε περισσότεραx y Ax By Εξίσωση Κύκλου Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με κέντρο το σημείο Εφαπτομένη Κύκλου Η εφαπτομένη του κύκλου
ΚΥΚΛΟΣ Εξίσωση Κύκλου Έστω Oy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με κέντρο το σημείο O(, ) και ακτίνα ρ έχει εξίσωση y y ε Εφαπτομένη Κύκλου Η εφαπτομένη του κύκλου y ρ στο σημείο του
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ
taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΛΛΕΙΨΗ
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΛΛΕΙΨΗ EΞΙΣΩΣΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΕΛΛΕΙΨΗΣ 1. Να βρείτε την εξίσωση της έλλειψης όταν: α) Έχει εστία Ε (-8,0) και μεγάλο άξονα 0 β) Έχει εστία Ε(0,3) και μεγάλο άξονα 8 γ) Έχει εστία Ε(4,0) και
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ. 1. Να βρείτε την απόσταση του σημείου Μ( ημθ, συνθ) από την ευθεία: i) ε : y = -xεφθ ii) ε : xσυνθ - yημθ = 2
ΑΠΟΣΤΑΣΗ ΣΗΜΕΙΟΥ ΑΠΟ ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ ΣΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ 1. Να βρείτε την απόσταση του σημείου Μ( ημθ, συνθ) από την ευθεία: i) ε : y = -xεφθ ii) ε : xσυνθ - yημθ = 4. α) Να βρεθεί η απόσταση του σημείου
Διαβάστε περισσότεραΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών)
ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής
Διαβάστε περισσότεραΜαθηματικά Β Λυκείου Εξεταζόμενη Ύλη: Διανύσματα Ευθεία Κύκλος Ημερομηνία: 01/03/2015. Θέμα Β. Θέμα Α. Α 1. Σχολικό Βιβλίο σελίδα 73.
Μαθηματικά Β Λυκείου Εξεταζόμενη Ύλη: Διανύσματα Ευθεία Κύκλος Ημερομηνία: /3/5 Θέμα Α Α. Σχολικό Βιβλίο σελίδα 73. Α.. Σχολικό Βιβλίο σελίδα 84. Α 3. i --> Σ, ii --> Σ, iii --> Λ, iv --> Λ, v --> Σ Θέμα
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE
1. Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: α) ω = 3 π β) ω = π 3 γ) ω = π. Να βρείτε τη γωνία ω που σχηµατίζει µε τον άξονα x x µια ευθεία ε, η οποία
Διαβάστε περισσότεραΜαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου
Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν
Διαβάστε περισσότεραΜαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 2001
Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 00 Ζήτηµα ο Α.. Έστω α, β, γ ακέραιοι αριθµοί. Να δείξετε ότι ισχύουν οι επόµενες ιδιότητες: α. Αν α β, τότε α λβ για κάθε ακέραιο λ. β. Αν α β και α
Διαβάστε περισσότερα(x - 1) 2 + (y + 1) 2 = 8.
ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ Θέµα 1 Για τις διάφορες τιµές του λ R να βρεθούν οι σχετικές θέσεις της ευθείας ε: y=λx-2 και του κύκλου C: x 2 +y 2 =1 Θέµα 2 Να βρεθεί ο γεωµετρικός τόπος των σηµείων
Διαβάστε περισσότερα: y=x+3, εξίσωση διαµέσου µ. : y= 2x+3 και κορυφή Β(4,1). Να προσδιορίσετε τις κορυφές Α και Γ του τριγώνου y= x+ 7 7 και y= 7x 5 αντίστοιχα.
Κεφάλαιο ο : Η ευθεία στο επίπεδο Θέµατα «Ανάπτυξης» Να βρείτε τις εξισώσεις των πλευρών τριγώνου ΑΒΓ του οποίου η κορυφή Α έχει συντεταγµένες (,5) και οι διάµεσοι ΒΕ και ΓΖ έχουν εξισώσεις x 4y + = 0
Διαβάστε περισσότεραΔΙΑΝΥΣΜΑΤΑ. (Μονάδες 8) (Μονάδες 10) (Μονάδες 7) ΘΕΜΑ 2. AM, όπου ΑΜ είναι η διάμεσος. (Μονάδες 7)
ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ Άσκηση Δίνονται τα διανύσματα a και με a, = 3 και a =, =. α) Να βρείτε το εσωτερικό γινόμενο a. β) Αν τα διανύσματα a + και κ a + είναι κάθετα να βρείτε την τιμή του κ. γ) Να βρείτε το
Διαβάστε περισσότεραΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ ΣΥΝΕΙΡΜΟΣ
ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Σάββατο 4 Μαΐου 09 Διάρκεια Εξέτασης: ώρες ΘΕΜΑ Α Α.. Βιβλίο, 3. παράγραφος Α.. α. Σ β. Λ γ. Λ δ. Σ ε. Λ Α.3. α.
Διαβάστε περισσότεραi. εστίες Ε' (-4, 0), Ε(4, 0) και η απόσταση των κορυφών είναι 5, ii. εστίες Ε'(0, -10), Ε(0, 10) και η απόσταση των κορυφών είναι 8.
ΥΠΕΡΒΟΛΗ ΕΞΙΣΩΣΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΥΠΕΡΒΟΛΗΣ 1) Να βρεθεί η εξίσωση της υπερβολής αν έχει: i) Εστιακή απόσταση γ=0 και άξονα β=16, 5 ii) Άξονα α=16 και εκκεντρότητα ε=. 4 ) Να βρείτε την εξίσωση της υπερβολής,
Διαβάστε περισσότερα