Γραμμικός και Ακέραιος προγραμματισμός

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γραμμικός και Ακέραιος προγραμματισμός"

Transcript

1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ ΔΜΠΣ «ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ» Γραμμικός και Ακέραιος προγραμματισμός Διπλωματική εργασία της φοιτήτριας Κιλιτζιράκη Στέλλα Επιβλέπων καθηγητής: Κολέτσος Ιωάννης Επίκουρος καθηγητής ΤΡΙΜΕΛΗΣ ΕΠΙΤΡΟΠΗ Κοκκίνης Βασίλειος, Επίκουρος Καθηγητής Κολέτσος Ιωάννης, Επίκουρος Καθηγητής Τυχόπουλος Ευάγγελος, Επίκουρος Καθηγητής ΑΘΗΝΑ, ΙΟΥΛΙΟΣ 2014 Σελίδα 1

2 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Επιχειρησιακή έρευνα 1.1. Εισαγωγή Η χρήση της επιχειρησιακής έρευνας Βήματα της μοντελοποίησης... 7 ΚΕΦΑΛΑΙΟ 2 Εισαγωγή στο γραμμικό προγραμματισμό 2.1. Εισαγωγή Το μαθηματικό μοντέλο του προβλήματος γραμμικού προγραμματισμού Γραφική επίλυση π.γ.π Μέθοδος Simplex Ειδικές περιπτώσεις της μεθόδου Simplex Τεχνητές μεταβλητές (Η Μ Μέθοδος) Το Δυϊκό πρόβλημα Η Δυική μέθοδος Simplex ΚΕΦΑΛΑΙΟ 3 Εισαγωγή στον ακέραιο προγραμματισμό 3.1. Εισαγωγή Το πρόβλημα ακέραιου προγραμματισμού της μορφής Επίλυση προβλημάτων ακέραιου προγραμματισμού με χρήση γραμμικού προγραμματισμού Η μέθοδος της απαρίθμησης (enumeration) Το πρόβλημα του σταθερού κόστους (The fixed charge problem) Η μέθοδος των διαδοχικών ορίων (branch and bound) Σελίδα 2

3 3.7. O αλγόριθμος των επιπέδων αποκοπής (Cutting Planes algorithm) ΚΕΦΑΛΑΙΟ 4 Επίλυση προβλημάτων ακέραιου προγραμματισμού 4.1. Παράδειγμα 1: επίλυση προβλημάτων ακέραιου προγραμματισμού με χρήση της μεθόδου Cutting Planes Παράδειγμα 2: επίλυση προβλημάτων ακέραιου προγραμματισμού με χρήση της μεθόδου Branch and Bound ΠΑΡΑΡΤΗΜΑ Π.1. Excel επίλυσης παραδείγματος Π.2. Excel επίλυσης παραδείγματος Π.3. Λογισμικό επίλυσης προβλημάτων επιχειρησιακής έρευνας ΒΙΒΛΙΟΓΡΑΦΙΑ 127 Σελίδα 3

4 Επιχειρησιακή Έρευνα [Operations Research (O.R.)] 1.1 Εισαγωγή Με την έλευση της βιομηχανικής επανάστασης, ο κόσμος γνώρισε μια αξιοσημείωτη ανάπτυξη στον χώρο των επιχειρήσεων. Αναπτύχθηκαν ραγδαία όσο στο μέγεθος τόσο και στην πολυπλοκότητα. Κομμάτι αυτής της αλλαγής ήταν η τεράστια αύξηση του καταμερισμού της εργασίας και ο κατακερματισμός των αρμοδιοτήτων διαχείρισης. Ωστόσο, επακόλουθο πρόβλημα αυτής της ανάπτυξης ήταν, ότι τα επιμέρους τμήματα των επιχειρήσεων προσπαθούσαν να εξελιχθούν σε σχετικά αυτόνομες αυτοκρατορίες με δικούς τους στόχους και προοπτικές αψηφώντας έτσι τους σκοπούς της συνολικής επιχείρησης. Αυτό που είναι ιδανικό για έναν τομέα μιας επιχείρησης συνήθως αποδεικνύεται επιζήμιο για κάποιον άλλο, με αποτέλεσμα να καταλήξουν να δουλεύουν για την ίδια επιχείρηση αλλά για διασταυρωμένους σκοπούς. Ένα επίσης πρόβλημα ήταν και είναι, ακόμα και σήμερα, η δυσκολία να κατανείμουν σωστά τους διαθέσιμους πόρους στους διάφορους τομείς με τέτοιο τρόπο ώστε να είναι αποτελεσματική η επιχείρηση ως σύνολο. Αυτού του είδους τα προβλήματα δημιούργησαν την ανάγκη να βρεθούν καλύτεροι τρόποι για την επίλυση τους δίνοντας έναυσμα για μια καινούργια επιστήμη, την Επιχειρησιακή Έρευνα (Operations Research). Ωστόσο, το ξεκίνημα της επιχειρησιακής έρευνας τοποθετείται περίπου στα χρόνια του δεύτερου παγκόσμιου πόλεμου, όπου ομάδες επιστημόνων κλήθηκαν για να προσεγγίσουν επιστημονικά, προβλήματα τακτικής και στρατηγικής όπως τη βέλτιστη κατανομή των περιορισμένων εφοδίων στις διάφορες στρατιωτικές επιχειρήσεις. Η επιτυχία της επιχειρησιακής έρευνας Σελίδα 4

5 Σελίδα 5 στην πολεμική προσπάθεια ώθησε το ενδιαφέρον να εφαρμοστεί τέτοιου είδους έρευνα και στη βιομηχανική επανάσταση που ακολούθησε του πολέμου. Η χρήση της επιχειρησιακής έρευνας εισήχθη σε ποικίλες επιχειρήσεις όπως την βιομηχανία, τις μεταφορές, την οικονομική διαχείριση, τον τομέα της υγείας, των τομέα των κατασκευών και διάφορους άλλους αποδεικνύοντας το εύρος της εφαρμογής της σε πληθώρα επιχειρήσεων. Υπήρξαν δύο παράγοντες που βοήθησαν στην ταχύτατη ανάπτυξη της επιχειρησιακής έρευνας. Πρώτος σημαντικός παράγοντας ήταν η ουσιαστική πρόοδος που σημειώθηκε νωρίς στην βελτίωση των τεχνικών της επιχειρησιακής έρευνας. Χαρακτηριστικό παράδειγμα είναι ότι πολλές τεχνικές - εργαλεία που χρησιμοποιούνται μέχρι σήμερα στην επιχειρησιακή έρευνα όπως ο γραμμικός προγραμματισμός, ο δυναμικός προγραμματισμός και ο έλεγχος αποθεμάτων, που ήταν σχετικά καλά ανεπτυγμένες πριν το τέλος της δεκαετίας του 50. Δεύτερος σημαντικός παράγοντας που έδωσε αρκετή ώθηση στην ανάπτυξη του τομέα ήταν η επανάσταση των υπολογιστών. Οι επιστήμονες είχαν να αντιμετωπίσουν πολύπλοκα προβλήματα που απαιτούσαν πολλές και επίπονες αριθμητικές πράξεις. Η εξέλιξη των ηλεκτρονικών υπολογιστών που μπορούσαν να εκτελούν υπολογισμούς χιλιάδες φορές ταχύτερα από ότι το ανθρώπινο χέρι έδωσε τρομερό πλεονέκτημα στην επιχειρησιακή έρευνα. Ακολούθως, βοήθησε και η μετέπειτα εξέλιξη των πανίσχυρων ατομικών υπολογιστών και των λογισμικών πακέτων που δημιουργήθηκαν πάνω σε τεχνικές τις επιχειρησιακής έρευνας καθιστώντας έτσι εύκολη την πρόσβαση σε αυτά από ένα μεγαλύτερο αριθμό ατόμων και επιχειρήσεων. Πέρα από την συνεισφορά της στους διάφορους κλάδους της βιομηχανίας, η επιχειρησιακή έρευνα έδωσε ώθηση κ στην περαιτέρω ανάπτυξη διαφόρων κλάδων των μαθηματικών μέσω της προσπάθειας επίλυσης σύνθετων προβλημάτων. Σήμερα αποτελεί αυτοτελή κλάδο των εφαρμοσμένων μαθηματικών, με μεγάλο θεωρητικό κ πρακτικό ενδιαφέρον.

6 1.2 Χρήση της επιχειρησιακής έρευνας Η Επιχειρησιακή έρευνα εφαρμόζεται σε προβλήματα που αφορούν την καθοδήγηση και των συντονισμό των δραστηριοτήτων μέσα σε ένα τομέα μίας επιχείρησης ή γενικότερα σε μία επιχείρηση ως σύνολο. Η φύση της επιχείρησης είναι ουσιαστικά ασήμαντη αφού όπως προαναφέρθηκε η επιχειρησιακή έρευνα εφαρμόστηκε από στρατιωτικές στρατηγικές έως τηλεπικοινωνίες, δημόσιες υπηρεσίες και αρκετές ακόμα επιχειρήσεις. Αφού προσδιοριστεί το πρόβλημα, το κομμάτι της έρευνας ξεκινάει την προσεκτική παρατήρηση και διατύπωσή του, συμπεριλαμβάνοντας την συλλογή όλων των σχετικών δεδομένων. Έπεται η κατασκευή ενός επιστημονικού μοντέλου με σκοπό την απεικόνιση της έννοιας του αρχικού προβλήματος. Στο επόμενο βήμα, και υποθέτοντας ότι το παραχθέν μοντέλο είναι μία αρκετά ακριβής αναπαράσταση των βασικών χαρακτηριστικών του υπάρχοντος προβλήματος, πραγματοποιούνται κατάλληλα πειράματα για να το ελέγξουν ή και να το τροποποιήσουν εάν είναι απαραίτητο, φτάνοντας έτσι στη κατασκευή του τελικού μαθηματικού μοντέλου. Αυτή η διαδικασία κατά κάποιο τρόπο, συνεπάγεται την δημιουργική ενασχόληση με τις θεμελιώδης αρχές τις κάθε επιχείρησης. Ακόμη ένα χαρακτηριστικό της επιχειρησιακής έρευνας είναι η οργανωτική δομή. Προσπαθεί να επιλύσει τη σύγκρουση συμφερόντων ανάμεσα στα συνθετικά μέρη μιας επιχείρησης, βοηθώντας έτσι την επιχείρηση στο σύνολο της. Αυτό δεν συνεπάγεται ότι για την επίλυση κάποιου προβλήματος δίνετε κατά βάση προτεραιότητα σε όλες τις πτυχές ενός οργανισμού αλλά ότι οι στόχοι που επιδιώκονται είναι συνεπής με αυτούς της επιχείρησης. Όλα αυτά τα χαρακτηριστικά της επιχειρησιακής έρευνας οδηγούν σε ακόμη ένα: είναι εμφανές ότι από κανένα μεμονωμένο άτομο δεν μπορεί να αναμένεται να είναι ειδικός σε όλες τις πτυχές τις επιχειρησιακής έρευνας. Ως εκ τούτου, κάθε ολοκληρωμένη μελέτη της επιχειρησιακής έρευνας σε κάποιο νέο πρόβλημα Σελίδα 6

7 απαιτεί μία ομάδα από άτομα που να έχουν διαφορετικές γνώσεις και υπόβαθρο. Έτσι, κάθε ομάδα επιχειρησιακής έρευνας πρέπει να περιλαμβάνει άτομα με γνώσεις μαθηματικών, στατιστικής, θεωρίας πιθανοτήτων, οικονομικών, διοίκησης επιχειρήσεων, πληροφορικής, μηχανικής και των τεχνικών της επιχειρησιακής έρευνας. Τα οφέλη της επιχειρησιακής έρευνας είναι σημαντικά. Στόχος δεν είναι η πρόσκαιρη βελτίωση της υπάρχουσας κατάστασης αλλά να εξευρίσκει την καλύτερη πορεία δράσης. Αποτέλεσμα αυτού είναι σαφώς τα οικονομικά οφέλη αλλά και άλλα οφέλη εξίσου σημαντικά για την μετέπειτα πορεία της επιχείρησης όπως οι βελτιωμένες υπηρεσίες προς τους πελάτες και η καλύτερη άσκηση του διαχειριστικού ελέγχου. 1.3 Βήματα της μοντελοποίησης Οι μαθηματικές τεχνικές αποτελούν ένα βασικό κομμάτι για την επίλυση των προβλημάτων της επιχειρησιακής έρευνας, βρίσκονται όμως στο τέλος της μελέτης του προβλήματος. Συχνά προαπαιτείται μία ολόκληρη διαδικασία - αλληλουχία φάσεων για κάθε πρόβλημα επιχειρησιακής έρευνας για να φτάσουμε στον κατάλληλο μαθηματικό τύπο και να προχωρήσουμε στην επίλυση του. Συνοπτικά οι συνήθεις φάσεις μίας τέτοιας μελέτης είναι: Ο καθορισμός του προβλήματος και η συλλογή των σχετικών δεδομένων. Η πρώτη σειρά εργασιών περιλαμβάνει την μελέτη του σχετικού προβλήματος και την ανάπτυξη μίας καλά καθορισμένης μορφής. Αυτό περιλαμβάνει τον προσδιορισμό κατάλληλων στόχων, τους περιορισμούς σε αυτά που μπορούν να γίνουν, τις αλληλεξαρτήσεις που πιθανόν να υπάρχουν ανάμεσα στους διάφορους τομείς μίας επιχείρησης, το χρονικό περιθώριο για την λήψη αποφάσεων και πολλά άλλα. Η διαδικασία προσδιορισμού του προβλήματος είναι εξαιρετικά Σελίδα 7

8 σημαντική γιατί επηρεάζει το πόσο σχετικά θα είναι το συμπέρασμα με το αρχικό πρόβλημα. Διατύπωση ενός μαθηματικού μοντέλου Τα μαθηματικά μοντέλα ενός επιχειρησιακού προβλήματος είναι ένα σύστημα εξισώσεων και άλλων σχετικών μαθηματικών εκφράσεων που εκπροσωπούν το πρόβλημα. Έτσι, εάν υπάρχουν n ποσοτικές αποφάσεις που πρέπει να παρθούν παριστάνονται ως μεταβλητές απόφασης (έστω x 1,x 2,,x n ) των οποίων οι τιμές είναι και οι ζητούμενες. Έπειτα, η κατάλληλη μέτρηση της απόδοσης (πχ το κέρδος) εκφράζεται ως μία μαθηματική συνάρτηση των μεταβλητών απόφασης (πχ P =3x 1 +x x n ). Αυτή η συνάρτηση ονομάζεται αντικειμενική συνάρτηση. Οι όποιοι περιορισμοί των τιμών που μπορούν να πάρουν αυτές οι μεταβλητές απόφασης επίσης εκφράζονται με μαθηματικό τρόπο κυρίως με την βοήθεια εξισώσεων ή ανισοτήτων ( πχ x 1 + 3x 2 25 ) και ονομάζονται περιορισμοί. Οι σταθερές στους περιορισμούς και στην αντικειμενική συνάρτηση ονομάζονται παράμετροι του μοντέλου. Τελικά το πρόβλημα υπόκειται στην επιλογή των κατάλληλων τιμών για τις μεταβλητές απόφασης έτσι ώστε αυτές να μεγιστοποιούν ή να ελαχιστοποιούν την αντικειμενική συνάρτηση. Ανάπτυξη υπολογιστικών αλγορίθμων όπου αυτό είναι απαραίτητο. Έλεγχος του μοντέλου και τροποποίηση του εάν αυτό απαιτείται. Εφαρμογή του μοντέλου Σελίδα 8

9 1.4 Εφαρμογές Επιχειρησιακής Έρευνας σε υπάρχουσες επιχειρήσεις Όπως προαναφέρθηκε η επιχειρησιακή έρευνα βρίσκει εφαρμογή σε αρκετούς τομείς όπως η βιομηχανία, οι μεταφορές, η αστική ανάπτυξη, το εμπόριο, η χρηματοδότηση, η υγεία, κ.λπ.. για τη βελτιστοποίηση των διαθέσιμων πόρων και των παροχών, κυρίως για οικονομικούς λόγους. Ο παρακάτω πίνακας παρουσιάζει μερικά παραδείγματα πραγματικής χρήσης της Επιχειρησιακής Έρευνας από διάφορες οργανώσεις και τα κέρδη ή / και την εξοικονόμηση πόρων που τελικά επιτεύχθηκε ως αποτέλεσμα. Επιχείρηση Εφαρμογή Έτος Ετήσια κέρδη Texaco Inc. Βελτιστοποίηση ανάμιξης συστατικών προκειμένου τα καύσιμα να συμμορφώνονται με τις απαιτήσεις ποιότητας $30 εκατομμύρια IBM Ενσωμάτωση εθνικού δικτύου ανταλλακτικών για τη βελτίωση των υπηρεσιών υποστήριξης πελατών 1990 $20 εκατομμύρια κ ταχύτερη εξυπηρέτηση πελατών American Airlines Σχεδιασμός τιμολόγησης, υπεράριθμων κρατήσεων και συντονισμός πτήσεων 1992 $500 εκατομμύρια επιπλέον έξοδα AT&T Ανάπτυξη ηλεκτρονικού 1993 $750 Σελίδα 9

10 Επιχείρηση Εφαρμογή Έτος συστήματος για το σχεδιασμό τηλεφωνικών κέντρων για την υποστήριξη πελατών Ετήσια κέρδη εκατομμύρια Procter Gamble & Επανασχεδιασμός του συστήματος παραγωγής και διανομής της Βόρειας Αμερικής για τη μείωση του κόστους και τη βελτίωση της παρεχόμενης ταχύτητας στην αγορά 1997 $200 εκατομμύρια Hewlett- Packard Επανασχεδιασμός του μεγέθους και της θέσης των αποθεμάτων ασφαλείας στη γραμμή παραγωγής εκτυπωτών που συμβαδίζουν με τη ζήτηση 1998 $280 εκατομμύρια Σελίδα 10

11 Γραμμικός προγραμματισμός [Linear Programming (L.P.)] 2.1 Εισαγωγή Υπάρχουν πολλά παραδείγματα μαθηματικών μοντέλων στην επιχειρησιακή έρευνα. Ένα ιδιαίτερα σημαντικό είδος είναι και το μοντέλο του γραμμικού προγραμματισμού (linear programming). Ιστορική αναδρομή 1936 Ο W.W. Leontief δημοσίευσε τις " Ποσοτικές σχέσεις εισόδου και εξόδου στα οικονομικά συστήματα των ΗΠΑ", το οποίο ήταν ένα γραμμικό μοντέλο χωρίς αντικειμενική συνάρτηση 1939 Ο Kantoravich (Ρωσία) πράγματι διατύπωσε και έλυσε ένα πρόβλημα ΓΠ Ο Hitchcock θέτει το πρόβλημα της μεταφοράς (ειδική περίπτωση ΓΠ). 2ος Παγκόσμιος Πόλεμος Οι συμμαχικές δυνάμεις διαμορφώνουν και λύνουν διάφορα προβλήματα ΓΠ που σχετίζονται με το στρατό. Σελίδα 11 Ο όρος «γραμμικός» σημαίνει ότι οι μαθηματικές συναρτήσεις που εμφανίζονται τόσο στην αντικειμενική συνάρτηση όσο και στους περιορισμούς υποχρεούνται να είναι γραμμικές συναρτήσεις ενώ ο όρος «προγραμματισμός» δεν αναφέρεται σε γλώσσα προγραμματισμού αλλά είναι συνώνυμο του σχεδιασμού. Η πιο κοινή εφαρμογή του περιλαμβάνει προβλήματα κατανομής περιορισμένων πόρων ανάμεσα σε ανταγωνιστικές δραστηριότητες με τον βέλτιστο δυνατό τρόπο. Τα γραμμικά μοντέλα προγραμματισμού κατασκευάστηκαν για να επιλύσουν ποικίλα προβλήματα, όπως για παράδειγμα τη σύνθεση προϊόντων που μεγιστοποιούν το κέρδος ή την κατανομή των καλλιεργειών σε εκτάσεις που μεγιστοποιούν το συνολικό καθαρό κέρδος. Ο γραμμικός προγραμματισμός βρίσκει εφαρμογή και σε

12 διάφορα άλλα προβλήματα διαφόρων επιστημών που δεν έχουν και τόσο επιχειρηματικό χαρακτήρα. Χαρακτηριστικό πρόβλημα ιατρικής φύσεως που ανάγεται όμως σε πρόβλημα γραμμικού προγραμματισμού μπορεί να είναι ο σχεδιασμός ακτινοθεραπείας που επιτίθεται αποτελεσματικά σε έναν όγκο με παράλληλη ελαχιστοποίηση των ζημιών που πιθανόν να προκληθούν στους υγιείς ιστούς που τον περιβάλλουν. Στην πραγματικότητα, οποιοδήποτε πρόβλημα του οποίου το μαθηματικό μοντέλο ταιριάζει με την πολύ γενική μορφή του γραμμικού μοντέλου προγραμματισμού είναι ένα πρόβλημα γραμμικού προγραμματισμού. Η πρώτη και πλέον σημαντική μέθοδος για την επίλυση προβλημάτων γραμμικού προγραμματισμού αναπτύχθηκε από τον George Bernard Dantzig τη δεκαετία του 1940 και ονομάζεται μέθοδος Simplex, βασικό εργαλείο μέχρι και σήμερα. Παράδειγμα: Μία βιομηχανική επιχείρηση κατασκευάζει τεσσάρων ειδών προϊόντα σε δικές της εγκαταστάσεις χρησιμοποιώντας τρείς τύπους μηχανής για την παραγωγή τους. Η διεύθυνση πωλήσεων όμως αποφασίζει να διακόψει την παραγωγή ενός εξ αυτών των προϊόντων που δεν αποφέρει τα επιθυμητά κέρδη στην επιχείρηση. Έτσι, περισσεύει χρόνος παραγωγής ο οποίος θα μοιραστεί στα υπόλοιπα τρία προϊόντα των οποίων η παραγωγή θα συνεχιστεί. Η διαθέσιμη παραγωγική ικανότητα των μηχανών της επιχείρησης σε ώρες ανά εβδομάδα είναι: Τύπος μηχανής Παραγωγική ικανότητα (Ώρες ανά εβδομάδα) Τύπος Τύπος Τύπος 3 50 Ο αριθμός των μηχανωρών που απαιτούνται για κάθε μονάδα από τα τρία προϊόντα είναι: Σελίδα 12

13 Τύπος μηχανής Προϊόν 1 Προϊόν 2 Προϊόν 3 Τύπος Τύπος Τύπος Το τμήμα πωλήσεων εκτιμάει ότι μπορούν να πωλούνται 30 μονάδες ανά εβδομάδα για το προϊόν 1, 20 μονάδες ανά εβδομάδα για το προϊόν 2 ενώ για το τρίτο οι ποσότητες που μπορούν να πωληθούν ξεπερνάνε τις ποσότητες που μπορούν να παραχθούν. Το κέρδος ανά μονάδα προϊόντος είναι 10, 12 και 8 ευρώ αντίστοιχα για τα προϊόντα 1, 2 και 3. Με βάση τα δεδομένα της επιχείρησης, πρέπει να βρεθεί ένα κατάλληλο μοντέλο γραμμικού προγραμματισμού για τον προσδιορισμό της ποσότητας κάθε προϊόντος που πρέπει να παράγει η επιχείρηση έτσι ώστε να έχει τα μέγιστα δυνατά κέρδη. Κατασκευή του μαθηματικού μοντέλου: Σκοπός είναι η μεγιστοποίηση των κερδών της επιχείρησης. Συμβολίζουμε με x 1, x 2, x 3 τους αριθμούς των μονάδων από τα προϊόντα 1,2 και 3 που παράγονται ανά εβδομάδα.επομένως η αντικειμενική συνάρτηση προς μεγιστοποίηση είναι: f(x) = 10x x 2 + 8x 3 Η συνάρτηση αυτή όμως περιορίζεται από άλλες συνθήκες που διατυπώνονται στο πρόβλημα. Ο πρώτος περιορισμός είναι ότι για τα προϊόντα 1,2 και 3 μπορούν να διατεθούν μόνο 200 ώρες από τον τύπο μηχανής 1. Οι ώρες που θα εργάζεται η μηχανή 1 είναι: 8x 1 + 2x 2 + 3x 3 που όμως δεν γίνεται να ξεπερνάνε τις 200 επομένως: 8x 1 + 2x 2 + 3x Με όμοια σκέψη προκύπτουν και οι άλλοι 2 περιορισμοί: 4x 1 + 3x x 1 + x 3 50 Σελίδα 13

14 Επίσης, από το προϊόν 1 μπορούν να πωλούνται 30 μονάδες ανά εβδομάδα επομένως: x 1 30 και από το προϊόν 2 μπορούν να πωλούνται 20 μονάδες ανά εβδομάδα άρα x Επιπρόσθετα είναι φανερό ότι οι μεταβλητές αφού εκφράζουν μονάδες προϊόντος θα είναι μη αρνητικές. x 1 0, x 2 0, x 3 0 Συνοψίζοντας, το πρόβλημα παίρνει τελικά την μορφή max f(x) = 10x x 2 + 8x 3 υπό τους περιορισμούς: 8x 1 + 2x 2 + 3x x 1 + 3x x 1 + X 3 50 x 1 30 X 2 20 και x 1 0, x 2 0, x 3 0. Σελίδα 14

15 Το μαθηματικό μοντέλο του προβλήματος γραμμικού προγραμματισμού Η γενική μορφή ενός προβλήματος γραμμικού προγραμματισμού (π.γ.π.) είναι: Να προσδιοριστούν οι τιμές των μεταβλητών x 1,x 2,,x n που μεγιστοποιούν ή ελαχιστοποιούν την γραμμική συνάρτηση: f(x) = (c 1 x 1 + c 2 x c n x n ) και συγχρόνως ικανοποιούν: α 11 x 1 + α 12 x α 1n x n, b 1 α 21 x 1 + α 22 x α 2n x n, b 2 α m1 x 1 + α m2 x α mn x n, b m Επιπρόσθετα, υποθέτουμε ότι ισχύει x 1,x 2,,x n 0. όπου τα α ij, b i και c j είναι γνωστές πραγματικές σταθερές. ( i = 1,2,...,m και j = 1,2,...,n ) Συνοπτικά μπορεί να γραφτεί και στη μορφή: max ή min z = υπό τους περιορισμούς: n j=1 ij j i n j=1 c x α x, =, b, i = 1,...,m j j x j 0, j = 1,...,n Σημειώνουμε ότι λόγω της ταυτότητας min f(x) = -max (-f(x)) που ισχύει για κάθε γραμμική συνάρτηση f(x), κάθε πρόβλημα ελαχιστοποίησης μπορεί να μετατραπεί σε ένα ισοδύναμο πρόβλημα μεγιστοποίησης. Σελίδα 15

16 Η γραμμική συνάρτηση f(x) που θέλουμε να μεγιστοποιήσουμε ονομάζεται αντικειμενική συνάρτηση (objective function). Οι παραπάνω γραμμικές εξισώσεις ή ανισώσεις ονομάζονται συνθήκες ή περιορισμοί (constrains) του προβλήματος γραμμικού προγραμματισμού. Η περιοχή που ορίζουν αυτοί οι περιορισμοί ονομάζεται εφικτή περιοχή (feasible area) ενώ ως εφικτή λύση (feasible solution) ονομάζεται κάθε λύση που ικανοποιεί όλους τους περιορισμούς. Άριστη λύση (optimal solution) είναι η εφικτή λύση που μεγιστοποιεί ή ελαχιστοποιεί την αντικειμενική συνάρτηση σε ολόκληρη την εφικτή περιοχή. Οι συντελεστές c j αναφέρονται και ως συντελεστές κέρδους (ή κόστους αντίστοιχα εάν αναφερόμαστε σε πρόβλημα ελαχιστοποίησης) ενώ τα α ij, b i είναι οι παράμετροι (parameters) του προβλήματος. Εάν όλοι οι περιορισμοί είναι εξισώσεις ή ανισώσεις της ίδιας φοράς, τότε το πρόβλημα μπορεί να γραφτεί συνοπτικά και σε μορφή πινάκων: T w = max c x Ax, =, b x 0 x1 c1 b1 0 x 2 c 2 b 2 0 όπου x =, c =, b =, 0 = x c b 0 n n m και Α = α α α α α α α α α n n m1 m2 mn Πληθώρα πρακτικών προβλημάτων μπορούν να αναδιατυπωθούν ως προβλήματα γραμμικού προγραμματισμού, να εκφραστούν με Σελίδα 16

17 μαθηματικά μοντέλα και να επιλυθούν με διάφορες μεθόδους γραμμικού προγραμματισμού. Τα βασικά στοιχεία ενός μοντέλου γραμμικού προγραμματισμού Για μια δεδομένη κατάσταση ενός προβλήματος, υπάρχουν ορισμένες βασικές συνθήκες στοιχεία που συνθέτουν ένα πρόβλημα γραμμικού προγραμματισμού. 1. Το μοντέλο του γραμμικού προγραμματισμού προϋποθέτει ότι όλοι οι παράμετροι του προβλήματος είναι γνωστές με απόλυτη βεβαιότητα. (Στην περίπτωση που μερικοί ή όλοι οι συντελεστές της αντικειμενικής συνάρτησης ή των περιορισμών είναι τυχαίες μεταβλητές το πρόβλημα γίνεται πρόβλημα στοχαστικού προγραμματισμού.) 2. Γραμμικότητα (αναλογικότητα και προσθετικότητα): Όλες οι συναρτήσεις του προβλήματος, αντικειμενική συνάρτηση και περιορισμοί πρέπει να είναι γραμμικές ως προς τις άγνωστες μεταβλητές x j, j = 1,...,n. Αυτό σημαίνει ότι πρέπει να ισχύουν οι ιδιότητες της αναλογικότητας και της προσθετικότητας, δηλαδή εάν y είναι μια συνάρτηση n μεταβλητών και α j, j = 1,...,n είναι σταθερές, πρέπει να ισχύει: y(α 1 x 1 + α 2 x α n x n ) = α 1 y(x 1 ) + α 2 y(x 2 ) α 2 y(x 2 ) Σε πολλές περιπτώσεις στις οποίες δεν ισχύει απόλυτα η προϋπόθεση της γραμμικότητας μπορεί να γίνει μια αρκετά καλή προσέγγιση με γραμμικές συναρτήσεις. 3. Περιορισμένοι πόροι: περιορισμένη ποσότητα εργασίας, υλικός εξοπλισμός και χρηματοδότηση. Σελίδα 17

18 4. Αντικειμενικός στόχος: αναφέρεται στο στόχο για βελτιστοποίηση (μεγιστοποίηση κέρδους ή ελαχιστοποίηση κόστους). 5. Ομογένεια: προϊόντα, εργάτες, μηχανές και παραγωγικότητα θεωρούνται ότι είναι πανομοιότυπα μεταξύ τους. 6. Το μοντέλο του γραμμικού προγραμματισμού υποθέτει ότι κάθε δραστηριότητα (δηλ μεταβλητή) είναι συνεχής και επομένως άπειρα διαιρετή. Αυτό συνεπάγεται ότι όλα τα επίπεδα δραστηριοτήτων και όλες οι χρήσεις πόρων επιτρέπεται να πάρουν κλασματικές τιμές ή ακέραιες τιμές. Όταν η υπόθεση της διαιρετότητας δεν ισχύει υπάρχουν δύο ενδεχόμενα : a. Να αγνοηθεί η υπόθεση αυτή, να λυθεί το πρόβλημα με μεθόδους γραμμικού προγραμματισμού, και οι τιμές των μεταβλητών να στρογγυλευθούν στην κοντινότερη ακέραια μονάδα. Η μέθοδος αυτή εφαρμόζεται κυρίως όταν οι τιμές των μεταβλητών είναι μεγάλες. b. Όταν οι τιμές των μεταβλητών είναι μικρές (π.χ. 0 ή 1) όπως σε πολλά προβλήματα επενδύσεων τότε πρέπει να χρησιμοποιηθούν τεχνικές του ακέραιου προγραμματισμού. Σελίδα 18

19 2.3 Γραφική επίλυση Όταν στην μαθηματική διατύπωση του προβλήματος γραμμικού προγραμματισμού υπάρχουν δύο μόνο μεταβλητές, και συνεπώς δύο διαστάσεις, τότε μπορεί να λυθεί χρησιμοποιώντας γραφική επίλυση. Παράδειγμα: Έστω το πρόβλημα μεγιστοποίησης που προκύπτει από κάποιο πρόβλημα γραμμικού προγραμματισμού. max z = 50x x 2 με περιορισμούς: 5x 1 + 2x x 1 + 4x 2 19 x 1 2 και x 1 0, x 2 0. Εισάγουμε σύστημα ορθογώνιων συντεταγμένων με άξονες x 1 και x 2 και παρατηρούμε ότι κάθε σημείο στο πρώτο τεταρτημόριο έχει συντεταγμένες x 1, x 2 0 επομένως ικανοποιεί τους περιορισμούς μη αρνητικότητας των μεταβλητών. Συνεχίζοντας, βρίσκουμε το σύνολο των ζευγών (x 1,x 2 ) που ικανοποιούν τους περιορισμούς. Αυτό επιτυγχάνεται εφόσον σύρουμε τα ευθύγραμμα τμήματα που περικλείουν την περιοχή των επιτρεπτών τιμών. Η σκιαγραφημένη περιοχή στο διάγραμμα 2.1 περικλείει όλες τις τιμές των (x 1,x 2 ) που επιτρέπονται από τους περιορισμούς x 1 0, x 2 0 και x 1 2. διάγραμμα x2 Σελίδα x1

20 Χαράσσοντας και τους υπόλοιπους περιορισμούς 5x 1 + 2x x 1 + 4x 2 19 η γραμμοσκιασμένη περιοχή στο διάγραμμα 2.2 είναι αυτή που περιέχει όλες τις επιτρεπτές τιμές των (x 1,x 2 ). Αυτό το χωρίο των εφικτών λύσεων ονομάζεται εφικτή περιοχή του προβλήματος. 7 x2 6 5 x1= x1+2x2=13 3x1+4x2=19 διάγραμμα x1 Σελίδα 20 Για την επίλυση του προβλήματος όμως, θα πρέπει να βρούμε το σημείο ή τα σημεία εάν υπάρχουν, που μεγιστοποιούν την τιμή της αντικειμενικής συνάρτησης. Για κάθε σταθερή τιμή της z, θεωρούμενης σαν παραμέτρου, η εξίσωση z = 50x x 2 είναι ευθεία. Για κάθε διαφορετική τιμή της z όμως λαμβάνουμε και μία διαφορετική ευθεία. Είναι γνωστό ότι όλες αυτές οι ευθείες είναι παράλληλες μεταξύ τους, επειδή έχουν ίδιο συντελεστή διεύθυνσης. Σχεδιάζουμε λοιπόν τις ευθείες αυτές, για τις διάφορες τιμές του z, ψάχνοντας να βρούμε την ευθεία με την μεγαλύτερη τιμή της z που να έχει ένα τουλάχιστον κοινό σημείο με την εφικτή περιοχή. Οι παράλληλες ευθείες στο διάγραμμα 2.3 αντιπροσωπεύουν την αντικειμενική συνάρτηση για τρεις διαφορετικές τιμές του z. Είναι προφανές ότι η z 1 δεν είναι η μέγιστη τιμή της z διότι η ευθεία μπορεί να μετακινηθεί

21 προς τα πάνω και να υπάρχουν ακόμα κοινά σημεία της με την εφικτή περιοχή. Συνεχίζουμε, παίρνοντας ακόμα μεγαλύτερες τιμές για το z έως ότου φτάσουμε στην ευθεία που έχει ένα κοινό σημείο με το χωρίο των εφικτών λύσεων και δίνει την μεγαλύτερη τιμή στην z. Η ευθεία αυτή, όπως φαίνεται και στο διάγραμμα 2.3, περνάει από το σημείο Α(1,4) και έτσι έχουμε z = 50*1 + 30*4 = 170 η οποία είναι η μέγιστη τιμή που μπορεί να πάρει η z υπόψιν των περιορισμών. Το σημείο Α ονομάζεται άριστη ή βέλτιστη λύση. z = 50x1+30x2 = 170 x2 6 z = 50x1+30x2 = Α(1,4) z = 50x1+30x2 = x1 διάγραμμα Όμοια δουλεύουμε και σε περιπτώσεις ελαχιστοποίησης. Βασικά στοιχεία που αφορούν τη λύση είναι: Η εφικτή περιοχή είναι πολύεδρο (στον R n ) Εάν η εφικτή περιοχή είναι φραγμένο σύνολο τότε η άριστη λύση επιτυγχάνεται σε μία κορυφή της εφικτής περιοχής. Εάν δύο ή περισσότερες κορυφές είναι άριστες λύσεις, τότε και κάθε κυρτός συνδυασμός τους είναι άριστη λύση Σελίδα 21

22 Υπάρχουν προβλήματα γραμμικού προγραμματισμού τα οποία ενδέχεται να μην έχουν μία βέλτιστη λύση αλλά άπειρες. Αυτό σημαίνει ότι υπάρχει παραπάνω από ένα ζεύγος συντεταγμένων (x 1,x 2 ) που να μεγιστοποιούν την αντικειμενική συνάρτηση. Η μέγιστη τιμή αυτή της z είναι μοναδική αλλά υπάρχει άπειρος αριθμός δυνατών λύσεων (διάγραμμα 2.4). Έστω το πρόβλημα γραμμικού προγραμματισμού: max z = 3x 1 + 2x 2 υπό τους περιορισμούς: x 1 4 2x x 1 + 4x 2 36 όπου x 1, x 2 0 διάγραμμα z = 3x 1 + 2x 2 κάθε σημείο πάνω στην μαύρη γραμμή είναι άριστη λύση, κάθε μία εκ των οποίων δίνει max z = εφικτή περιοχή Σελίδα 22

23 Επιπρόσθετα, υπάρχει και η περίπτωση της μη εύρεσης βέλτιστης λύσης. Αυτό συμβαίνει όταν δεν έχει καμία εφικτή λύση, δηλαδή δεν υπάρχουν σημεία που να επαληθεύουν ταυτόχρονα όλους τους περιορισμούς. Για παράδειγμα, εάν στο προηγούμενο πρόβλημα προσθέσουμε τον περιορισμό 3x 1 + 5x 2 40, είναι αδύνατο να ικανοποιηθούν όλοι οι περιορισμοί μαζί. (διάγραμμα 2.5). διάγραμμα Σελίδα 23

24 2.4 Μέθοδος Simplex Η μέθοδος simplex είναι η γενική διαδικασία επίλυσης προβλημάτων γραμμικού προγραμματισμού με περισσότερες από δύο μεταβλητές. Είναι μία συστηματική διαδικασία, ένας αλγόριθμος, που επαναλαμβάνεται μέχρι να βρεθεί το επιθυμητό αποτέλεσμα. Για να εφαρμοστεί η μέθοδος simplex το πρόβλημα γραμμικού προγραμματισμού πρέπει να είναι γραμμένο στην κανονική μορφή, δηλαδή να είναι της μορφής: T z = min ή max c x Ax = b x 0 Πρώτο βήμα είναι η μετατροπή των ανισοτήτων σε ισότητες. Αυτό επιτυγχάνεται με την εισαγωγή των χαλαρών μεταβλητών (slack variables), ή αλλιώς βοηθητικών μεταβλητών. Η εισαγωγή αυτών των μεταβλητών δεν αλλάζει το χαρακτήρα των περιορισμών ή της αντικειμενικής συνάρτησης. Οι μεταβλητές αυτές εισάγονται στην αντικειμενική συνάρτηση με μηδενικούς συντελεστές. Παράδειγμα: Έστω ο περιορισμός του προηγούμενου παραδείγματος, x 1 2 Η χαλαρή μεταβλητή είναι η διαφορά των δύο μελών της ανισότητας: x 3 = 2 x 1 και αφού x 1 2 τότε x 3 0. Έτσι, ο αρχικός περιορισμός x 1 2 μπορεί να γραφτεί ως x 1 + x 3 = 2 με x 1 0 και x 3 0. Εισάγοντας χαλαρές μεταβλητές σε όλες τις ανισότητες του προβλήματος, μπορούμε να το ξαναγράψουμε στην κανονική του μορφή: Σελίδα 24

25 max z = 50x x 2 + 0x 3 + 0x 4 + 0x 5 με περιορισμούς: x 1 + x 3 = 2 5x 1 + 2x 2 + x 4 = 13 3x 1 + 4x 2 + x 5 = 19 και x 1 0, x 2 0, x 3 0, x 4 0,x 5 0. Αφού το πρόβλημα μετατραπεί στην κανονική μορφή, ξεκινώντας από μία βασική δυνατή λύση, δηλαδή μία κορυφή του εφικτού συνόλου. Από την κορυφή αυτή μπορούμε κατά μήκος ακμών, να πάμε σε άλλες γειτονικές κορυφές. Κάποιες εξ αυτών μας απομακρύνουν από την βέλτιστη, κάποιες άλλες όμως βαθμιαία την προσεγγίζουν. Η μέθοδος Simplex ουσιαστικά πραγματοποιεί άλματα από κορυφή σε κορυφή, όπου η αντικειμενική συνάρτηση έχει βελτιωμένη τιμή, μεγαλύτερη ή μικρότερη, ανάλογα με το αν έχουμε να λύσουμε ένα πρόβλημα μεγιστοποίησης ή ελαχιστοποίησης. Συνεχίζοντας με τον τρόπο αυτό τη μετακίνηση κατά μήκος των ακμών του εφικτού συνόλου, φτάνουμε τελικά σε μία κορυφή, όπου η αντικειμενική συνάρτηση βελτιστοποιείται. Κάθε άλλη κορυφή δίνει χειρότερη τιμή για την αντικειμενική συνάρτηση. Η βέλτιστη λύση έχει βρεθεί και η διαδικασία της μεθόδου Simplex τερματίζεται. Συνήθως για την αρχική βασική δυνατή λύση θεωρούμε τις χαλαρές μεταβλητές ως βασικές, ενώ θέτουμε τις υπόλοιπες μεταβλητές ίσες με μηδέν. Οι μεταβλητές που αρχικά παίρνουν τιμές ίσες με το μηδέν ονομάζονται μη βασικές μεταβλητές (nonbasic variables) ενώ οι υπόλοιπες ονομάζονται βασικές μεταβλητές (basic variables). Αντίστοιχα η λύση που προκύπτει ονομάζεται βασική λύση, ενώ εάν όλες οι βασικές μεταβλητές είναι μη αρνητικές τότε η λύση που προκύπτει ονομάζεται βασική εφικτή λύση. Αντίθετα, εκφυλισμένη βασική λύση ονομάζεται κάθε βασική λύση που έχει μία ή περισσότερες βασικές μεταβλητές ίσες με το μηδέν. Σελίδα 25

26 Αφού προσδιορίσουμε μία αρχική βασική δυνατή λύση, τότε με βάση τα δεδομένα του προβλήματος κατασκευάζουμε τον αρχικό πίνακα tableau της μεθόδου simplex, με τον ακόλουθο τρόπο: στην πρώτη στήλη c b γράφονται οι συντελεστές που έχουν οι βασικές μεταβλητές x 1,x 2,...,x n στην αντικειμενική συνάρτηση. στην δεύτερη στήλη γράφονται οι βασικές μεταβλητές στις επόμενες n στήλες γράφονται οι συντελεστές όλων των μεταβλητών που περιέχονται στους περιορισμούς, ενώ στην τελευταία στήλη γράφονται οι γνωστοί όροι του διανύσματος b, στη πρώτη γραμμή γράφονται οι συντελεστές cπου έχουν όλες οι μεταβλητές στην αντικειμενική συνάρτηση, στη τελευταία γραμμή η οποία ονομάζεται και γραμμή σχετικού κόστους, γράφονται οι διαφορές z j c j. Τα z j δίνονται από την σχέση: z j = α 1j c b1 + α 2j c b α mj c bm όπου j=1,...,n και στο τελευταίο κελί της τελευταίας στήλης γράφεται η τιμή της αντικειμενικής συνάρτησης z. Σημειώνεται ότι οι m στήλες των m βασικών μεταβλητών σχηματίζουν τον μοναδιαίο διάστασης m πίνακα. Σελίδα 26

27 Αρχικός πίνακας Simplex: c j c 1 c 2... c m... c n c b βασικές μετ/τές x 1 x 2... x m... x n γνωστοί όροι διαν/τος b c b1 x 1 α 11 α α 1m... α 1n b 1 c b2 x 2 α 21 α α 2m... α 2n b 2 c bm x m α m1 α m2... α mm... α mn b m z j z 1 z 2... z m... z n Z z j c j z 1 c 1 z 2 c 2... z m c m... z n c n Α. Πρόβλημα μεγιστοποίησης i. Εάν z j c j 0 για κάθε j = 1,...,n, τότε η λύση που βρήκαμε είναι βέλτιστη και σταματάμε τον αλγόριθμο simplex. ii. αν ισχύει z j c j = 0 για μία τουλάχιστον μη βασική μεταβλητή τότε έχουμε απειρία λύσεων. αν ισχύει z j c j > 0 για όλες τις μη βασικές μεταβλητές τότε η βέλτιστη λύση είναι και μοναδική. Εάν z j c j < 0 για μία τουλάχιστον μεταβλητή x j τότε η λύση που βρήκαμε δεν είναι η βέλτιστη και συνεχίζουμε τον αλγόριθμο simplex με την κατασκευή ενός καινούργιου πίνακα. Εάν υπάρχει κάποιο k = 1,..,n τέτοιο ώστε z k c k < 0, τότε μπαίνει στη βάση η μεταβλητή x k που αντιστοιχεί στο στοιχείο αυτό. Εάν υπάρχουν περισσότερα από ένα στοιχεία τέτοια ώστε Σελίδα 27

28 z j c j < 0, τότε μπαίνει στη βάση η μεταβλητή που ανήκει στο μικρότερο αρνητικό στοιχείο. Η στήλη στην οποία ανήκει η μεταβλητή x k ονομάζεται στήλη οδηγός. Εάν α ik > 0 για κάποιο i = 1,...,m τότε βγαίνει από την βάση η μεταβλητή x r για την οποία ισχύει: bi br x r = min = αik > 0 α α ik rk Η γραμμή στην οποία ανήκει η μεταβλητή x k που βγαίνει από τη βάση ονομάζεται γραμμή οδηγός και το στοιχείο α ik με το οποίο διαιρούμε το b i ονομάζεται στοιχείο οδηγός ή πιλότος. Εάν α ik 0 για όλα τα i, τότε δεν υπάρχει μη πεπερασμένη βέλτιστη λύση. Αφού βρούμε τη μη βασική μεταβλητή η οποία μπαίνει στη βάση και τη βασική που βγαίνει από βάση κατασκευάζουμε ένα νέο πίνακα simplex ως εξής: διαιρούμε όλα τα στοιχεία που βρίσκονται στην γραμμή οδηγό με το στοιχείο οδηγό, και την καινούργια γραμμή που προκύπτει καταλαμβάνει στο πίνακα τη θέση που κατείχε η γραμμή οδηγός στον αρχικό πίνακα και έπειτα για να υπολογίσουμε και τις υπόλοιπες γραμμές του καινούργιου πίνακα πολλαπλασιάζουμε τα στοιχεία της γραμμής που βρήκαμε στο προηγούμενο βήμα με το αντίστοιχο στοιχείο κάθε γραμμής που υπάρχει στη στήλη οδηγό στον αρχικό πίνακα και το γινόμενο που προκύπτει το αφαιρούμε από τα στοιχεία της αντίστοιχης γραμμής του αρχικού πίνακα. Στη συνέχεια, κάνουμε έλεγχο στις διαφορές z j c j που προκύπτουν στον νέο πίνακα και ελέγχουμε ποια από τις περιπτώσεις i) και ii) ισχύει. Έτσι είτε ο αλγόριθμος τελειώνει, είτε συνεχίζεται δημιουργώντας και επόμενο πίνακα simplex. Σελίδα 28

29 Παρατήρηση: Επειδή στα περισσότερα πραγματικά προβλήματα οι αρνητικές τιμές των μεταβλητών αποφάσεων δεν έχουν σημασία στη διαμόρφωση του μοντέλου του γραμμικού προγραμματισμού, συμπεριλαμβάνουμε στους περιορισμούς την υπόθεση μη αρνητικότητας. Υπάρχουν όμως εξαιρέσεις προβλημάτων, όπου κάποια από τις μεταβλητές μπορεί να είναι ορισμένη με τέτοιο τρόπο ώστε να επιτρέπεται να λαμβάνει και αρνητικές τιμές. Η μέθοδος Simplex όμως απαιτεί όλες οι μεταβλητές να παίρνουν μη αρνητικές τιμές. Για αυτό το λόγο, χρησιμοποιούμε τους κατάλληλους μετασχηματισμούς που αναφέρονται παρακάτω, ώστε σε όλες τις μεταβλητές του προβλήματος να ισχύει ο περιορισμός μη αρνητικότητας. a. Εάν μία μεταβλητή απόφασης x i μπορεί να πάρει ορισμένες αρνητικές τιμές δηλαδή x i K i όπου Κ είναι μία αρνητική σταθερά, τότε ο περιορισμός μπορεί να μετατραπεί ως εξής: x i = x i - K i με x i 0. Τελικά, ο όρος (x i + K i ) θα αντικαταστήσει την μεταβλητή x i στο πρόβλημα και η x i να μην μπορεί να είναι αρνητική. b. Εάν κάποια μεταβλητή απόφασης δεν έχει κάτω φράγμα στις αρνητικές τιμές που μπορεί να λάβει, την αντικαθιστούμε στο πρόβλημα με τη διαφορά δύο νέων μη αρνητικών μεταβλητών, δηλαδή: x i = x i - x i όπου x i, x i 0. Επειδή οι x i, x i μπορεί να έχουν μόνο μη αρνητικές τιμές, η διαφορά τους μπορεί να είναι οποιαδήποτε τιμή, θετική ή αρνητική. Σελίδα 29

30 Παράδειγμα: Να λυθεί το πρόβλημα max z = 3x 1 + x 2 + 4x 3 με τους περιορισμούς όπου 6x 1 + 3x 2 + 5x x 1 + 4x 2 + 5x 3 20 x 1 0, x 2 0, x 3 0. Χρησιμοποιώντας τις χαλαρές μεταβλητές x 4 και x 5 το πρόβλημα μετατρέπεται στην κανονική του μορφή: max z = 3x 1 + x 2 + 4x 3 +0x 4 + 0x 5 με τους περιορισμούς 6x 1 + 3x 2 + 5x 3 + x 4 = 25 3x 1 + 4x 2 + 5x 3 + x 5 = 20 όπου x 1 0, x 2 0, x 3 0, x 4 0, x 5 0. Δημιουργούμε τον αρχικό πίνακα simplex: πίνακας 1 c j c b βασικές μεταβλητές x 1 x 2 x 3 x 4 x 5 b i 0 x x z j z j c j Σελίδα 30

31 Τα z j υπολογίζονται πολλαπλασιάζοντας τους συντελεστές των στηλών κάθε μεταβλητής με τους αντίστοιχους συντελεστές των μεταβλητών της αντικειμενικής συνάρτησης που βρίσκονται στη βάση και παίρνοντας το άθροισμα τους. Δηλαδή: z 1 = = 0 z 4 = = 0 z 2 = = 0 z 5 = = 0 z 3 = = 0 b i = = 0 Για την γραμμή z j c j αφαιρούμε τα z j από τα c j επομένως έχουμε: z 1 c 1 = 0-3 = -3 z 4 c 4 = 0-0 = 0 z 2 c 2 = 0-1 = -1 z 5 c 5 = 0-0 = 0 z 3 c 3 = 0-4 = - 4 Η αρχική βασική λύση είναι: (x 1, x 2,x 3, x 4, x 5 ) = (0,0,0,25,20). Αυτή η λύση δεν είναι βέλτιστη αφού ότι z j c j 0 για j = 1,2,3, επομένως συνεχίσουμε τον αλγόριθμο simplex με την κατασκευή ενός καινούργιου πίνακα. Επειδή: min (z 1 c 1, z 2 c 2, z 3 c 3 ) = min (-3,-1,-4) = -4 = z 3 c 3 η μεταβλητή που θα μπει στη βάση είναι η x 3. Άρα η στήλη x 3 είναι η στήλη οδηγός. Για να βρούμε ποια μεταβλητή θα βγει από τη βάση ψάχνουμε το b i min = min, = min5,4 = 4 x3 5 5 Επομένως η γραμμή x 5 είναι η γραμμή οδηγός και βγαίνει από την βάση. Το στοιχείο 5 είναι το στοιχείο οδηγός. Στον καινούργιο πίνακα οι βασικές μεταβλητές θα είναι η x 4 και η x 3. Διαιρούμε τη γραμμή οδηγό (x 5 ) με το στοιχείο οδηγό (5) ,4,5,0,1,20 : 5 =,,1,0,, και τη γραμμή που προκύπτει την βάζουμε στον νέο πίνακα στη θέση που είχε η γραμμή x 5 στον αρχικό πίνακα. Σελίδα 31

32 Η γραμμή x 4 υπολογίζεται ως εξής: = 3,-1,0,1,-1,5. 6,3,5,1,0,25-5,,1,0,,4 = 6,3,5,1,0,25-3,4,5,0,1,20 Με τον ίδιο τρόπο όπως στον αρχικό πίνακα υπολογίζουμε τα z j : 3 12 z 1 = = z 2 = = 5 5 z 4 = = z 5 = = 5 5 z 3 = = 4 και b i = = 16 και τις διαφορές z j c j : 12 3 z 1 - c 1 = - 3 = z 2 - c 2 = - 1 = 5 5 z 3 c 3 = 4-4 = 0 z 4 c 4 = 0-0 = z 5 - c 5 = - 0 = Επομένως ο δεύτερος πίνακας είναι: πίνακας 2 c j c b βασικές μεταβλητές x 1 x 2 x 3 x 4 x 5 b i 0 x x z j z j c j Σελίδα 32

33 3 Παρατηρούμε ότι z 1 - c 1 = Επομένως η λύση (x 1,x 2,x 3,x 4,x 5 ) = (0,0,4,5,0) δεν είναι η βέλτιστη. Επομένως συνεχίζουμε στην κατασκευή ενός καινούργιου πίνακα. 3 Επειδή z 1 - c 1 = - είναι η μόνη αρνητική διαφορά στο πίνακα, η 5 μεταβλητή x 1 μπαίνει στη βάση. Όμως b x i min = min, = min, = 3 1 και επομένως από τη βάση βγαίνει η μεταβλητή x 4.Η γραμμή x 4 είναι η γραμμή οδηγός ενώ το στοιχείο 3 είναι το στοιχείο οδηγός. Συνεπώς στο καινούργιο πίνακα οι βασικές μεταβλητές θα είναι η x 1 και η x 3. Διαιρούμε την γραμμή οδηγό (x 4 ) με το στοιχείο οδηγό, το 3, ,-1,0,1,-1,5 : 3 = 1,-,0,,-, και τη νέα γραμμή που προκύπτει τη βάζουμε στο νέο πίνακα στη θέση που είχε η γραμμή x 4. Η γραμμή x 3 υπολογίζεται ως εξής: ,,1,0,,4-1,-,0,,-, = ,,1,0,,4 -,-,0,,-1,1 = 0,1,1,-,, Υπολογίζουμε τα z j : z 1 = =3 z 4 = = z 2 = = 3 z 5 = = Σελίδα 33

34 5 z 3 = = 4 και b i = = 17 3 και τις διαφορές z j c j : 1 1 z 1 c 1 = 3-3 =0 z 4 - c 4 = - 0 = z 2 c 2 = 3-1 = 2 z 5 - c 5 = - 0 = 5 5 z 3 c 3 = 4-4 = 0 Επομένως ο τρίτος πίνακας της μεθόδου simplex είναι: πίνακας 3 c b c j βασικές μεταβλητές 3 x x x 1 x 2 x 3 x 4 x 5 b i z j z j c j Παρατηρούμε ότι z j c j 0 για όλα τα j = 1,2,3,4,5 επομένως η 5 λύση: x 1 =, x 2 = 0, x 3 = 3, x 4 = 0, x 5 = 0 3 που βρήκαμε στον πίνακα 3 είναι η βέλτιστη λύση. Τελικά, η μεγίστη τιμή που μπορεί να πάρει η αντικειμενική συνάρτηση z είναι: max z = 3x 1 + x 2 + 4x 3 = 17 Σελίδα 34

35 Β. Πρόβλημα ελαχιστοποίησης i. Εάν z j c j 0 για κάθε j=1,...,n, τότε η λύση που βρήκαμε είναι βέλτιστη και σταματάμε τον αλγόριθμο simplex. αν ισχύει z j c j < 0 για όλες τις μη βασικές μεταβλητές τότε η βέλτιστη λύση είναι και μοναδική. αν ισχύει z j c j = 0 για μία τουλάχιστον μη βασική μεταβλητή τότε έχουμε απειρία λύσεων. ii. Εάν z j c j > 0 για μία τουλάχιστον μεταβλητή x j τότε η λύση που βρήκαμε δεν είναι η βέλτιστη και συνεχίζουμε τον αλγόριθμο simplex με την κατασκευή ενός καινούργιου πίνακα. Εάν υπάρχει κάποιο k = 1,..,n τέτοιο ώστε z k c k > 0, τότε μπαίνει στη βάση η μεταβλητή x k που αντιστοιχεί στο στοιχείο αυτό. Εάν υπάρχουν περισσότερα από ένα στοιχεία τέτοια ώστε z j c j > 0, τότε μπαίνει στη βάση η μεταβλητή που ανήκει στο μεγαλύτερο θετικό στοιχείο. Έπειτα προσδιορίζουμε την μεταβλητή η οποία θα βγει από την βάση και κατασκευάζουμε έναν νέο πίνακα simplex ακολουθώντας ακριβώς την ίδια διαδικασία που περιγράφηκε προηγουμένως για την περίπτωση της μεγιστοποίησης. Σελίδα 35

36 2.5 Ειδικές περιπτώσεις της μεθόδου Simplex Στο προηγούμενο παράδειγμα δεν αναφέρθηκε κανένα πρόβλημα από θέμα επιλογών. Υπάρχουν όμως υποπεριπτώσεις της μεθόδου οι οποίες είναι: 1. Εισερχόμενη βασική μεταβλητή Στο πρώτο επαναληπτικό βήμα επιλέγεται η μη βασική μεταβλητή με την μεγαλύτερη κατά απόλυτο τιμή του αρνητικού συντελεστή ως η εισερχόμενη βασική μεταβλητή. Έστω υποθετικά ότι υπάρχουν δύο η περισσότερες μη βασικές μεταβλητές που έχουν την ίδια μεγαλύτερη κατά απόλυτο τιμή στους αρνητικούς συντελεστές τους. Στην περίπτωση αυτή η επιλογή μεταξύ των υποψήφιων μεταβλητών γίνεται αυθαίρετα. Τελικά θα βρεθεί η άριστη λύση άσχετα από την επιλογή της μεταβλητής αλλά δεν υπάρχει κατάλληλη μέθοδος που να μπορεί να προβλέψει ποια επιλογή θα οδηγήσει σε αυτή την άριστη λύση γρηγορότερα. Σελίδα Εξερχόμενη βασική μεταβλητή Εάν σε δύο ή περισσότερες βασικές μεταβλητές αντιστοιχεί το ίδιο μικρότερο πηλίκο σημαίνει ότι οποιαδήποτε από αυτές μπορεί να είναι η εξερχόμενη βασική μεταβλητή. Έχει μεγάλη σημασία για τους λόγους: Πρώτον, όλες οι βασικές μεταβλητές που ισοβαθμούν για εξερχόμενες φτάνουν στο μηδέν καθώς η εισερχόμενη βασική μεταβλητή αυξάνεται. Έτσι, εκείνες που δεν θα επιλεχτούν για να γίνουν η εξερχόμενη μεταβλητή θα έχουν την τιμή μηδέν στη νέα βασική εφικτή λύση. Οι μεταβλητές αυτές ονομάζονται εκφυλισμένες βασικές μεταβλητές και η νέα λύση εκφυλισμένη. Δεύτερον, εάν μία από τις εκφυλισμένες βασικές μεταβλητές διατηρήσει την τιμή μηδέν μέχρι να επιλεχτεί εξερχόμενη βασική μεταβλητή σε επόμενη επανάληψη, η αντίστοιχη εισερχόμενη βασική μεταβλητή πρέπει και αυτή να παραμείνει μηδέν, επειδή δεν είναι δυνατό να αυξηθεί χωρίς να γίνει η εξερχόμενη μεταβλητή αρνητική και επομένως η τιμή του z δεν αλλάζει. Τέλος εάν η τιμή του z παραμένει η ίδια αντί να

37 αυξάνεται σε κάθε επανάληψη, τότε η μέθοδος πέφτει σε βρόγχο όπου επαναλαμβάνεται περιοδικά η ίδια αλληλουχία λύσεων. Εάν και τέτοιες περιπτώσεις είναι θεωρητικά δυνατές ωστόσο δεν συμβαίνουν συχνά σε πραγματικά προβλήματα. 3. Καμία εξερχόμενη βασική μεταβλητή Κατά την εφαρμογή του επαναληπτικού βήματος μπορεί να μην υπάρχει υποψήφια εξερχόμενη βασική μεταβλητή. Αυτό συμβαίνει όταν η εισερχόμενη βασική μεταβλητή μπορεί να αυξηθεί απεριόριστα χωρίς να δίνει αρνητικές τιμές σε καμία από τις βασικές μεταβλητές. Η ερμηνεία αυτής της περίπτωσης είναι ότι οι περιορισμοί δεν εμποδίζουν την αύξηση της αντικειμενικής συνάρτησης. Αυτό συμβαίνει όταν έχουν παραλειφθεί οι σχετικοί περιορισμοί ή όταν η διαμόρφωση τους είναι εσφαλμένη. 4. Εναλλακτικές άριστες λύσεις Όταν ένα πρόβλημα έχει παραπάνω από μία άριστες λύσεις τότε τουλάχιστον μία από τις μη βασικές μεταβλητές έχει μηδέν στην τελική εξίσωση, έτσι αυξάνοντας κάθε τέτοια μεταβλητή δεν αλλάζει η τιμή του z. Οι άλλες άριστες λύσεις μπορούν να βρεθούν κάνοντας επιπλέον βήματα της μεθόδου simplex επιλέγοντας κάθε φορά σαν εισερχόμενη βασική μεταβλητή μια μη βασική μεταβλητή με συντελεστή μηδέν. Παράδειγμα: Να λυθεί το πρόβλημα γραμμικού προγραμματισμού: z= max (-x 1 + 2x 2-3x 3 ) υπό τους περιορισμούς: x 1 - x 2 + x 3 + 2x 4 = 10 2x 2 - x 3 1 x 2 + 2x 4 8 x 1, x 2, x 3, x 4 0 Σελίδα 37

38 Μετατρέπουμε το πρόβλημα στην κανονική μορφή: z=max (-x 1 + 2x 2-3x 3 ) υπό τους περιορισμούς: x 1 - x 2 + x 3 + 2x 4 = 10 2x 2 - x 3 + x 5 = 1 x 2 + 2x 4 + x 6 = 8 x 1, x 2, x 3, x 4, x 5, x 6 0 Ο αρχικός πίνακας simplex είναι ο πίνακας 1 c j c b βασικές μεταβλητές x 1 x 2 x 3 x 4 x 5 x 6 b i -1 x x x z j z j c j Παρατηρούμε ότι z 2 c 2 = -1 < 0 και z 4 c 4 = -2 < 0.Επιλέγουμε το μεγαλύτερο κατά απόλυτη τιμή επομένως η εισερχόμενη στήλη στον 2 ο πίνακα simplex είναι η x 4. Η γραμμή x 6 είναι η εξερχόμενη αφού 10 8 min{b i/x 4} = min, = min 5,4 = Επομένως ο επόμενος πίνακας simplex θα είναι: Σελίδα 38

39 πίνακας 2 c j c b βασικές μεταβλητές x 1 x 2 x 3 x 4 x 5 x 6 b i -1 x x x 4 0 ½ ½ 4 z j z j c j Παρατηρούμε ότι z j c j 0 για j = 1,..,5 άρα έχουμε άριστη λύση την x 1 =2, x 2 = 0, x 3 = 0, x 4 = 4, x 5 = 1, x 6 = 0 με z = -2. Όμως στον άριστο πίνακα η x 2 είναι μη βασική στήλη και βρήκαμε ότι z j c j = 0. Αυτό σημαίνει ότι η λύση που βρήκαμε δεν είναι η μοναδική άριστη λύση. Στην περίπτωση αυτή η x 2 θα γίνει η εισερχόμενη ενώ θα εξάγουμε οποιαδήποτε από τις x 1, x 5, x 4 και έτσι θα βρούμε μία ακόμα άριστη λύση. Συνεχίζοντας ομοίως συμπεραίνουμε ότι έχουμε πρόβλημα απείρων λύσεων. Λόγω θεωρήματος ισχύει ότι εάν δύο ή περισσότερες κορυφές είναι άριστες λύσεις τότε και κάθε κυρτός συνδυασμός τους είναι λύση δηλαδή εάν κ 1, κ 2 είναι λύσεις τότε και κ= λκ 1 + (1-λ)κ 2 με 0<λ<1 είναι επίσης λύσεις. Σελίδα 39

40 2.6 Τεχνητές μεταβλητές H Μ - μέθοδος Η μέθοδος Simplex απαιτεί για ένα πρόβλημα γραμμικού προγραμματισμού να είναι στην κανονική μορφή και ο πίνακας Α να περιέχει τον μοναδιαίο, έτσι ώστε το b να δίνει μια αρχική βασική εφικτή λύση. Εάν ο Α δεν περιέχει τον μοναδιαίο πίνακα δεν είναι πάντα εφικτό να τροποποιήσουμε το πρόβλημα ώστε να τον περιέχει. Η Μ-Μέθοδος με χρήση τεχνητών μη αρνητικών μεταβλητών μετατρέπει το πρόβλημα γραμμικού προγραμματισμού σε ισοδύναμο πρόβλημα που περιέχει ο πίνακας του τον μοναδιαίο. Οι μεταβλητές αυτές δεν αντιπροσωπεύουν κάποιο πραγματικό μέγεθος του προβλήματος και πρέπει να μηδενίζονται. Για αυτό και κατά την διαδικασία επίλυσης του προβλήματος προσπαθούμε σε κάθε επανάληψη να εξάγεται από τη βάση χωρίς να επανατοποθετείται μελλοντικά από μία τεχνητή μεταβλητή. Επιπρόσθετα, εισάγουμε τις τεχνητές μεταβλητές στην αντικειμενική συνάρτηση με συντελεστές που έχουν πολύ μεγάλες απόλυτες τιμές ούτως ώστε να αποτρέψουμε τις τυχόν επιπτώσεις που μπορεί να υπάρξουν πάνω στην άριστη λύση. Συνήθως σε προβλήματα μεγιστοποίησης ο συντελεστής των τεχνητών μεταβλητών είναι -Μ με Μ>0 ή +Μ εάν Μ<<0, ενώ σε προβλήματα ελαχιστοποίησης με Μ>0. Τέλος, κάθε βασική τεχνητή στήλη που φεύγει δεν ξαναεμφανίζεται στους πίνακες της μεθόδου simplex. Παράδειγμα: Να λυθεί το πρόβλημα γραμμικού προγραμματισμού: max (2x 1 3x 2 + x 3 + 2x 4 ) υπό τους περιορισμούς: x 1 + 2x 2 + x 3 + 2x 4 = 8 x 2 + x 3 + x 4 = 6 2x 3-3x 4 = 3 Σελίδα 40 με x i 0, για κάθε i = 1,...,4 Το πρόβλημα είναι σε κανονική μορφή και γράφεται σε μορφή πινάκων ως

41 T max c x Ax = b x 0 όπου 2 x x A = , c =, x = και b = x x 4 Όπως φαίνεται, στον πίνακα των περιορισμών του προβλήματος δεν σχηματίζεται ο μοναδιαίος υποπίνακας I 3 3, επομένως ο προσδιορισμός μίας αρχικής βασικής δυνατής λύσης δεν είναι εύκολος. Για αυτό εισάγουμε δύο τεχνητές μεταβλητές x 5 και x 6. Το πρόβλημα έχει τώρα την μορφή: max (2x 1 3x 2 + x 3 + 2x 4 + Μx 5 + Mx 6 ) υπό τους περιορισμούς: x 1 + 2x 2 + x 3 + 2x 4 = 8 x 2 + x 3 + x 4 + x 5 = 6 2x 3-3x 4 + x 6 = 3 με x i 0, για κάθε i = 1,...,6 και Μ << 0 Ο αρχικός πίνακας της μεθόδου simplex είναι: c j Μ Μ c b βασικές μετ/τές x 1 x 2 x 3 x 4 x 5 x 6 b i 2 x Μ x Μ x z j 2 4+Μ 2+3Μ 4-2Μ Μ Μ 16+9Μ z j c j 0 7+Μ 1+3Μ 2-2Μ 0 0 Σελίδα 41

42 πίνακας 2 Παρατηρούμε ότι: 2-2Μ>0 γιατί Μ<<0 7+Μ >1 + 3Μ ή 6 >2Μ αφού Μ<<0 επομένως η μεταβλητή που μπαίνει στη βάση είναι η x 3. Η γραμμή x 6 είναι η εξερχόμενη αφού min{b /x } = min,, = c b i c j Μ Μ βασικές μετ/τές 2 x Μ x x x 1 x 2 x 3 x 4 x 5 x 6 b i z j 2 4+Μ 1 z j c j 0 7+Μ M M Μ M Παρατηρούμε ότι: -3Μ/2 > 0 γιατί Μ<<0 7+Μ > (7+5Μ)/2 ή 7 > 3Μ αφού Μ<<0 επομένως η μεταβλητή που μπαίνει στη βάση είναι η x 4. Η γραμμή x 5 είναι η εξερχόμενη αφού min{b /x } = min, = i Σελίδα 42

43 πίνακας 3 c b c j Μ Μ βασικές μεταβλητές 2 x x x 3 0 z j 2 z j c j 0 x 1 x 2 x 3 x 4 x 5 x 6 b i Αφού z j c j 0 για κάθε j = 1,,4 έχουμε άριστη λύση την ,0,,,0, για το πρόβλημα με τις τεχνητές μεταβλητές, επομένως η άριστη λύση του αρχικού είναι η 41 max = ,0,, με Σημειώνεται ότι εάν στην άριστη λύση υπάρχουν τεχνητές μεταβλητές με θετική τιμή σημαίνει ότι το αρχικό πρόβλημα δεν έχει εφικτές λύσεις. Σελίδα 43

44 Το δυϊκό πρόβλημα Σε κάθε πρόβλημα γραμμικού προγραμματισμού, το οποίο καλείται πρωτεύων (Π), (primal), μπορεί να αντιστοιχηθεί ένα άλλο πρόβλημα το οποίο ονομάζεται δυϊκό (Δ), (dual). Η βέλτιστη δυνατή λύση του ενός εκ των δύο προβλημάτων, μας δίνει πληροφορίες για την βέλτιστη λύση και του άλλου. Επειδή αυτά τα δύο προβλήματα είναι στην πραγματικότητα συμπληρωματικά, γνωρίζοντας την λύση του ενός γνωρίζουμε και την λύση του άλλου. Στο γραμμικό προγραμματισμό κάθε πρόβλημα μεγιστοποίησης συνδέεται με ένα πρόβλημα ελαχιστοποίησης και το αντίθετο. Ένα τέτοιο παράδειγμα αποτελεί η συνάρτηση παραγωγής και η συνάρτηση κόστους. Έστω το πρόβλημα μεγιστοποίησης: (±) max z x = c 1 x 1 + c 2 x c n x n υπό τους περιορισμούς: α 11 x 1 + α 12 x α 1n x n b 1 α 21 x 1 + α 22 x α 2n x n b 2 α m1 x 1 + α m2 x α mn x n b n με x 1,x 2,,x n 0. Τότε το αντίστοιχο δυϊκό του παραπάνω προβλήματος είναι: (±) min z w = b 1 w 1 + b 2 w b n w n υπό τους περιορισμούς: α 11 w 1 + α 21 w α m1 w m c 1 α 12 w 1 + α 22 w α m2 w m c 2 α 1n w 1 + α 2n w α mn w m c m με w 1,w 2,,w m 0. Σελίδα 44

45 Τα δύο προβλήματα σε μορφή πινάκων γράφονται: Πρωτεύον πρόβλημα: Δυϊκό πρόβλημα: T max c x Ax = b x 0 T max b w T A w = c w 0 Η μετατροπή από πρωτεύον σε δυαδικό γίνεται με τα παρακάτω βήματα: Αρχικά, κάθε πρωτεύον πρόβλημα μεγιστοποίησης μετατρέπεται στο δυϊκό του σε πρόβλημα ελαχιστοποίησης και το αντίθετο. Στη συνέχεια η φορά των ανισοτήτων των τεχνολογικών περιορισμών αντιστρέφεται ενώ οι περιορισμοί μη αρνητικότητας των μεταβλητών παραμένουν. Οι μεταβλητές απόφασης x n αντικαθιστούνται από τις μεταβλητές απόφασης w m του δυϊκού. Έπειτα, οι γραμμές των συντελεστών των περιορισμών του πρωτεύοντος μετατρέπονται σε στήλες των συντελεστών του δυϊκού προβλήματος. Η γραμμή των συντελεστών της αντικειμενικής συνάρτησης του πρωτεύοντος μετατρέπεται σε στήλη των σταθερών όρων των τεχνολογικών περιορισμών του δυϊκού. Τέλος, η στήλη των σταθερών όρων των τεχνολογικών περιορισμών του Π μετατρέπεται σε γραμμή των συντελεστών της αντικειμενικής συνάρτησης του Δ. Παράδειγμα: Έστω το πρόβλημα max z x = 2x 1 + 3x 2 υπό τους περιορισμούς 4x 1 - x 2 12 x 1 - x 2 4 x 1 9 x 2 6 με x 1, x 2 0. Σελίδα 45

46 Τότε δυϊκό έχει την μορφή: min z w = 12w 1 + 4w 2 + 9w 3 + 6w 4 με περιορισμούς: 4w 1 + w 2 + w 3 2 -w 1 - w 2 + w 4 3 και w 1, w 2, w 3, w 4 0. Αυτή η μετατροπή μας δίνει το πλεονέκτημα να διαλέξουμε και να επιλύσουμε το πρόβλημα με το μικρότερο υπολογιστικό κόστος. Το κόστος αυτό, συνδέεται άμεσα με τον αριθμό των περιορισμών του προβλήματος ο οποίος καθορίζει την τάξη του πίνακα των βασικών διανυσμάτων στηλών. Δηλαδή εάν στο πρωτεύων πρόβλημα ο αριθμός των περιορισμών είναι αρκετά μεγάλος τότε στο δυϊκό του ο αριθμός των περιορισμών θα είναι σχετικά μικρός επομένως συμφέρει υπολογιστικά να λυθεί το δυϊκό αντί του πρωτεύοντος. Όπως φαίνεται και στο παραπάνω παράδειγμα αντί του αρχικού προβλήματος που περιέχει 4 περιορισμούς και 2 μεταβλητές είναι προτιμότερο να λυθεί το δυϊκό το οποίο έχει 2 περιορισμούς και 4 μεταβλητές. Οι κανόνες σχηματισμού του Δυϊκού προβλήματος ενός γενικού γραμμικού προβλήματος, που αφορούν τους περιορισμούς και τις μεταβλητές, βρίσκονται περιληπτικά στον πίνακα: max min περιορισμός = μεταβλητή ελεύθερη περιορισμός μεταβλητή 0 περιορισμός μεταβλητή 0 μεταβλητή ελεύθερη περιορισμός = μεταβλητή 0 περιορισμός μεταβλητή 0 περιορισμός Σελίδα 46

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα I

Επιχειρησιακή Έρευνα I Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex 1. Αλγόριθμός Simplex

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός 3.1 Εισαγωγή Πολλοί πιστεύουν ότι η ανάπτυξη του γραμμικού προγραμματισμού είναι μια από τις πιο σπουδαίες επιστημονικές ανακαλύψεις στα μέσα του εικοστού αιώνα.

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα I

Επιχειρησιακή Έρευνα I Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex (C) Copyright Α.

Διαβάστε περισσότερα

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Bέλτιστος σχεδιασμός με αντικειμενική συνάρτηση και περιορισμούς

Διαβάστε περισσότερα

z = c 1 x 1 + c 2 x c n x n

z = c 1 x 1 + c 2 x c n x n Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ

Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ 1 η Διάλεξη: Αναδρομή στον Μαθηματικό Προγραμματισμό 2019, Πολυτεχνική Σχολή Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Περιεχόμενα 1. Γραμμικός Προγραμματισμός

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016 Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Δυϊκότητα Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 1/12/2016 1 Το δυϊκό πρόβλημα Για κάθε πρόβλημα Γραμμικού Προγραμματισμού υπάρχει

Διαβάστε περισσότερα

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ 2013-2014 ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX ΔΥΙΚΟΤΗΤΑ Κάθε πρόβλημα γραμμικού προγραμματισμού συνδέεται με εάν άλλο πρόβλημα γραμμικού προγραμματισμού

Διαβάστε περισσότερα

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΙΣΗΓΗΤΗΣ: Δρ. Ιωάννης Σ. Τουρτούρας Μηχανικός Παραγωγής & Διοίκησης Δ.Π.Θ. Χρηματοδότηση Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό Πληροφοριακά Συστήματα Διοίκησης Εισαγωγή στον Γραμμικό Προγραμματισμό Τι είναι ο Γραμμικός Προγραμματισμός; Είναι το σημαντικότερο μοντέλο στη Λήψη Αποφάσεων Αντικείμενό του η «άριστη» κατανομή περιορισμένων

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΤΥΠΟΥ SIMPLEX. 2.1 Βασικές έννοιες - Ορισμοί

ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΤΥΠΟΥ SIMPLEX. 2.1 Βασικές έννοιες - Ορισμοί ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΤΥΠΟΥ SIMPLEX 2.1 Βασικές έννοιες - Ορισμοί Ο αλγόριθμος Simplex για τα προβλήματα γραμμικού προγραμματισμού, βλέπε Dntzig (1963), αποδίδει αρκετά καλά στην πράξη, ιδιαίτερα σε προβλήματα

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 7: Επίλυση με τη μέθοδο Simplex (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1)

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) 1 Προέλευση και ιστορία της Επιχειρησιακής Έρευνας Αλλαγές στις επιχειρήσεις Τέλος του 19ου αιώνα: βιομηχανική

Διαβάστε περισσότερα

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20 Μια από τις εταιρείες γάλακτος στην προσπάθειά της να διεισδύσει στην αγορά του παγωτού πολυτελείας επενδύει σε μια μικρή πιλοτική γραμμή παραγωγής δύο προϊόντων της κατηγορίας αυτής. Πρόκειται για οικογενειακές

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017

Τμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017 Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Η μέθοδος Simplex Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 19/01/2017 1 Πλεονεκτήματα Η μέθοδος Simplex Η μέθοδος Simplex είναι μια

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 3 3.1 Γενικά Τις τελευταίες δεκαετίες ένας μεγάλος αριθμός μεθόδων βελτιστοποίησης έχει αναπτυχθεί με βάση τη θεωρία του μαθηματικού λογισμού. Οι διάφοροι μαθηματικοί

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής

Διαβάστε περισσότερα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα I

Επιχειρησιακή Έρευνα I Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα EE 1&2 Εισαγωγή Μαθηματικός Προγραμματισμός - Γραμμικός

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Δημήτρης Φωτάκης Προσθήκες (λίγες): Άρης Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

Η μέθοδος Simplex. Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. Τμήμα Μηχανικών Πληροφορικής ΤΕ

Η μέθοδος Simplex. Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. Τμήμα Μηχανικών Πληροφορικής ΤΕ Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 Η μέθοδος Simplex Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 19/01/2017 1 Πλεονεκτήματα Η μέθοδος Simplex Η μέθοδος

Διαβάστε περισσότερα

ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX

ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX ΚΕΦΑΛΑΙΟ 3 ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX 3.1 Εισαγωγή Ο αλγόριθμος Simplex θεωρείται πλέον ως ένας κλασικός αλγόριθμος για την επίλυση γραμμικών προβλημάτων. Η πρακτική αποτελεσματικότητά του έχει

Διαβάστε περισσότερα

Ακέραιος Γραμμικός Προγραμματισμός

Ακέραιος Γραμμικός Προγραμματισμός Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος Γραμμικός Προγραμματισμός Όταν για

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη 5 ο Εξάμηνο 4 ο ΜΑΘΗΜΑ Δημήτρης Λέκκας Επίκουρος Καθηγητής dlekkas@env.aegean.gr Τμήμα Στατιστικής & Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών

Διαβάστε περισσότερα

Ακέραιος Γραμμικός Προγραμματισμός

Ακέραιος Γραμμικός Προγραμματισμός Τμήμα Πληροφορικής & Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων 2018-2019 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος- Γεωργία Φουτσιτζή Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος

Διαβάστε περισσότερα

Εισαγωγή στο Γραμμικό Προγραμματισμό

Εισαγωγή στο Γραμμικό Προγραμματισμό Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 Εισαγωγή στο Γραμμικό Προγραμματισμό Φουτσιτζή Γεωργία-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 15/10/2016 1 Περιεχόμενα Γραμμικός

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 3: Μαθηματικό Πρότυπο, Κανονική Μορφή, Τυποποιημένη Μορφή Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ. 4.1 Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων

ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ. 4.1 Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων ΚΕΦΑΛΑΙΟ 4 ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ 4. Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων Η περιγραφή του ΔΑΣΕΣ στο προηγούμενο κεφάλαιο έγινε με σκοπό να διευκολυνθούν οι αποδείξεις

Διαβάστε περισσότερα

Ακέραιος Γραμμικός Προγραμματισμός

Ακέραιος Γραμμικός Προγραμματισμός Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος Γραμμικός Προγραμματισμός Όταν για

Διαβάστε περισσότερα

Θεωρία Μεθόδου Simplex

Θεωρία Μεθόδου Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Επιχειρησιακή Έρευνα Ι Διδάσκων: Δρ. Σταύρος Τ. Πόνης Θεωρία Μεθόδου Simplex Άδεια Χρήσης

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Δυϊκότητα Θα δείξουμε πώς μπορούμε να αντιστοιχίσουμε ένα πρόβλημα ελαχιστοποίησης με ένα πρόβλημα ΓΠ στην συνήθη του μορφή. Ένα πρόβλημα στην συνήθη του μορφή μπορεί να είναι ένα κατασκευαστικό πρόβλημα,

Διαβάστε περισσότερα

Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού

Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 τελευταία ενημέρωση: 21/10/2016

Διαβάστε περισσότερα

Προβλήματα Μεταφορών (Transportation)

Προβλήματα Μεταφορών (Transportation) Προβλήματα Μεταφορών (Transportation) Παραδείγματα Διατύπωση Γραμμικού Προγραμματισμού Δικτυακή Διατύπωση Λύση Γενική Μέθοδος Simplex Μέθοδος Simplex για Προβλήματα Μεταφοράς Παράδειγμα: P&T Co ΗεταιρείαP&T

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων

Τμήμα Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 2: Γραφική επίλυση προβληµάτων γραµµικού προγραµµατισµού(γ.π.) ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 1: Εισαγωγή στο Γραμμικό Προγραμματισμό (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

Βασική Εφικτή Λύση. Βασική Εφικτή Λύση

Βασική Εφικτή Λύση. Βασική Εφικτή Λύση Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10

ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10: Επαναληπτική Βελτίωση Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων

Τμήμα Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 1: Γραµµικός προγραµµατισµός(γ.π.) ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com http://vasilis-ismyrlis.webnode.gr/

Διαβάστε περισσότερα

Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014)

Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014) Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014) Θέμα 1 Μια επιχείρηση χρησιμοποιεί 3 πρώτες ύλες Α, Β, Γ για να παράγει 2 προϊόντα Π1 και Π2. Για την παραγωγή μιας μονάδας προϊόντος Α απαιτούνται 1

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Γραμμικός προγραμματισμός: Εισαγωγή Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 3 η /2017 Γραμμικός προγραμματισμός Είναι μια μεθοδολογία

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Πρόβλημα Μεταφοράς Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα To Πρόβλημα Μεταφοράς Μαθηματική Διατύπωση Εύρεση Αρχικής Λύσης Προσδιορισμός Βέλτιστης Λύσης

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ολοκληρωμένη μαθηματική τεχνική βελτιστοποίησης Ευρύτατο φάσμα εφαρμογών Εισαγωγή ακέραιων/λογικών/βοηθητικών μεταβλητών Δυνατότητα γραμμικοποίησης με 0-1 μεταβλητές

Διαβάστε περισσότερα

12/10/2015 LINEAR_PROGRAMMING_EBOOK ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ

12/10/2015 LINEAR_PROGRAMMING_EBOOK ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ Γραμμικός Προγραμματισμός είναι η διαδικασία εύρεσης μιας βέλτιστης λύσης μιας γραμμικής συνάρτησης, η οποία να είναι συμβατή με ένα πεπερασμένο σύνολο γραμμικών ανισοτήτων, δηλαδή,

Διαβάστε περισσότερα

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής Θεωρία Παιγνίων και Αποφάσεων Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Παίγνια μηδενικού αθροίσματος PessimisIc play Αμιγείς max-min και

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα I

Επιχειρησιακή Έρευνα I Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα EE 1&2 Εισαγωγή Μαθηματικός Προγραμματισμός - Γραμμικός

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 19: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Δυαδικό Πρόβλημα Εισαγωγή στην Ανάλυση Ευαισθησίας

Δυαδικό Πρόβλημα Εισαγωγή στην Ανάλυση Ευαισθησίας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Επιχειρησιακή Έρευνα Ι Διδάσκων: Δρ. Σταύρος Τ. Πόνης Δυαδικό Πρόβλημα Εισαγωγή στην Ανάλυση

Διαβάστε περισσότερα

Fermat, 1638, Newton Euler, Lagrange, 1807

Fermat, 1638, Newton Euler, Lagrange, 1807 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 1 Εισαγωγή Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 3 Μαρτίου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 18: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός και θεωρία Παιγνίων

Γραμμικός Προγραμματισμός και θεωρία Παιγνίων Σε αυτό το κεφάλαιο θα χρησιμοποιήσουμε πίνακες οι οποίοι δεν θα είναι γραμμικές εξισώσεις. Θα πρέπει λοιπόν να δούμε την γεωμετρική ερμηνεία των ανισώσεων. Μια ανίσωση διαιρεί τον n-διάστατο χώρο σε δύο

Διαβάστε περισσότερα

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Εισαγωγή Ασχολείται με το πρόβλημα της άριστης κατανομής των περιορισμένων πόρων μεταξύ ανταγωνιζόμενων δραστηριοτήτων μιας επιχείρησης

Διαβάστε περισσότερα

Η μέθοδος Simplex. Χρήστος Γκόγκος. Χειμερινό Εξάμηνο ΤΕΙ Ηπείρου

Η μέθοδος Simplex. Χρήστος Γκόγκος. Χειμερινό Εξάμηνο ΤΕΙ Ηπείρου Η μέθοδος Simplex Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 1 / 17 Η μέθοδος Simplex Simplex Είναι μια καθορισμένη σειρά επαναλαμβανόμενων υπολογισμών μέσω των οποίων ξεκινώντας από ένα αρχικό

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη

Διαβάστε περισσότερα

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 13: Μεθοδολογία Αλγορίθμων τύπου Simplex, Αναθεωρημένος Πρωτεύων Αλγόριθμος Simplex Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η επιχειρησιακή έρευνα επικεντρώνεται στη λήψη αποφάσεων από επιχειρήσεις οργανισμούς, κράτη κτλ. Στα πλαίσια της επιχειρησιακής έρευνας εξετάζονται οι ακόλουθες περιπτώσεις : Γραμμικός προγραμματισμός

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση γραμμικής αντικειμενικής συνάρτησης

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ

ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ Βασικός τελικός στόχος κάθε επιστηµονικής τεχνολογικής εφαρµογής είναι: H γενική βελτίωση της ποιότητας του περιβάλλοντος Η βελτίωση της ποιότητας ζωής Τα µέσα µε τα

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

1 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

1 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Παραδείγματα προβλημάτων γραμμικού προγραμματισμού Τα προβλήματα γραμμικού προγραμματισμού ασχολούνται με καταστάσεις όπου ένας αριθμός πλουτοπαραγωγικών πηγών, όπως άνθρωποι,

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Επίλυση προβλημάτων γραμμικού προγραμματισμού με χρήση κατάλληλου λογισμικού (Excel, Lindo)

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Επίλυση προβλημάτων γραμμικού προγραμματισμού με χρήση κατάλληλου λογισμικού (Excel, Lindo) ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Επίλυση προβλημάτων γραμμικού προγραμματισμού με χρήση κατάλληλου λογισμικού (Excel, Lindo) Μπουντούρης Ηρακλήs Επιβλέπουσα

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός (ΓΠ)

Γραµµικός Προγραµµατισµός (ΓΠ) Γραµµικός Προγραµµατισµός (ΓΠ) Περίληψη Επίλυση δυσδιάστατων προβληµάτων Η µέθοδος simplex Τυπική µορφή Ακέραιος Προγραµµατισµός Προγραµµατισµός Παραγωγής Προϊόν Προϊόν 2 Παραγωγική Δυνατότητα Μηχ. 4 Μηχ.

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Παράδειγμα ΕΠΙΠΛΟΞΥΛ Η βιοτεχνία ΕΠΙΠΛΟΞΥΛ παράγει δύο βασικά προϊόντα: τραπέζια και καρέκλες υψηλής ποιότητας. Η διαδικασία παραγωγής και για τα δύο προϊόντα περιλαμβάνει την

Διαβάστε περισσότερα

Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Περιεχόμενα 1 Γενικά στοιχεία γραμμικού προγραμματισμού 2 Παράδειγμα γραμμικού προγραμματισμού και γραφικής επίλυσης του 3 Γραμμικός προγραμματισμός

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση γραμμικής αντικειμενικής συνάρτησης

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ μέθοδοι των εσωτερικών σημείων

ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ μέθοδοι των εσωτερικών σημείων ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ Γραμμικός Προγραμματισμός είναι η διαδικασία εύρεσης μιας βέλτιστης λύσης μιας γραμμικής συνάρτησης, η οποία να είναι συμβατή με ένα πεπερασμένο σύνολο γραμμικών ανισοτήτων, δηλαδή, ο

Διαβάστε περισσότερα

Προβλήματα Ελάχιστου Κόστους Ροής σε Δίκτυο. Δίκτυα Ροής Ελάχιστου Κόστους (Minimum Cost Flow Networks)

Προβλήματα Ελάχιστου Κόστους Ροής σε Δίκτυο. Δίκτυα Ροής Ελάχιστου Κόστους (Minimum Cost Flow Networks) Προβλήματα Ελάχιστου Κόστους Ροής σε Δίκτυο Ορισμοί Παραδείγματα Δικτυακή Simplex (προβλήματα με και χωρίς φραγμούς). Δίκτυα Ροής Ελάχιστου Κόστους (Minimum ost Flow Networks) Ένα δίκτυο μεταφόρτωσης αποτελείται

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex

Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος 2006-07

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 9: Δυϊκή Θεωρία Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #3: Ακέραιος Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού Κεφάλαιο 6 Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού 1 Γραφική επίλυση Η γραφική μέθοδος επίλυσης μπορεί να χρησιμοποιηθεί μόνο για πολύ μικρά προβλήματα με δύο ή το πολύ τρεις μεταβλητές απόφασης.

Διαβάστε περισσότερα

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Παράδειγμα προβλήματος ελαχιστοποίησης Μια κατασκευαστική εταιρία κατασκευάζει εξοχικές κατοικίες κοντά σε γνωστά θέρετρα της Εύβοιας Η

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 21: Δυϊκή Θεωρία, Θεώρημα Συμπληρωματικής Χαλαρότητας και τρόποι χρήσης του Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ 2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική

Διαβάστε περισσότερα

Β. Βασιλειάδης. Επιχειρησιακή Έρευνα Διάλεξη 5 η -Αλγόριθμος Simplex

Β. Βασιλειάδης. Επιχειρησιακή Έρευνα Διάλεξη 5 η -Αλγόριθμος Simplex Β. Βασιλειάδης Επιχειρησιακή Έρευνα Διάλεξη 5 η -Αλγόριθμος Simplex Περιεχόμενα Ο αλγόριθμος Simplex Βασικά Βήματα Παραδείγματα Συμπεράσματα 1o Bήμα: εξάλειψη των ανισοτήτων Στη μαθηματική διατύπωση του

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Νοέμβριος 006 Αθήνα Κεφάλαιο ο Ακέραιος και μικτός προγραμματισμός. Εισαγωγή Μια από τις

Διαβάστε περισσότερα

Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης 3/4/2012. Lecture08 1

Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης 3/4/2012. Lecture08 1 Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Μεθοδολογία αλγορίθμων τύπου simplex (5) Βήμα 0: Αρχικοποίηση (Initialization). Στο βήμα

Διαβάστε περισσότερα

2. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

2. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ . ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Εισαγωγή Οι κλασσικές μέθοδοι αριστοποίησης βασίζονται κατά κύριο λόγο στο διαφορικό λογισμό. Ο Μαθηματικός Προγραμματισμός ο οποίος περιλαμβάνει τον Γραμμικό Προγραμματισμό

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 10: Ειδικές περιπτώσεις επίλυσης με τη μέθοδο simplex (2o μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1 ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Η εξίσωση α + βy = γ 1. Υπάρχουν προβλήματα που η επίλυση τους οδηγεί σε μια γραμμική εξίσωση με δύο αγνώστους, y και η οποία είναι της μορφής

Διαβάστε περισσότερα

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Η «OutBoard Motors Co» παράγει τέσσερα διαφορετικά είδη εξωλέμβιων (προϊόντα 1 4) Ο γενικός διευθυντής κ. Σχοινάς, ενδιαφέρεται

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ 1 ΕΙΣΑΓΩΓΗ 2 ΜΑΘΗΜΑΤΙΚΟΙ ΟΡΙΣΜΟΙ 3 ΜΟΝΤΕΛΟΠΟΙΗΣΗ Δρ. Δημήτρης Βαρσάμης Μάρτιος / 31

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ 1 ΕΙΣΑΓΩΓΗ 2 ΜΑΘΗΜΑΤΙΚΟΙ ΟΡΙΣΜΟΙ 3 ΜΟΝΤΕΛΟΠΟΙΗΣΗ Δρ. Δημήτρης Βαρσάμης Μάρτιος / 31 Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Μάρτιος 2014 Δρ. Δημήτρης

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Σχέση γραμμικού και ακέραιου προγραμματισμού Ενα πρόβλημα ακέραιου προγραμματισμού είναι

Διαβάστε περισσότερα