Αναλυτική Επίλυση Πασσάλου Τριβής σε Δίστρωτο Έδαφος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αναλυτική Επίλυση Πασσάλου Τριβής σε Δίστρωτο Έδαφος"

Transcript

1 Αναλυτική Επίλυση Πασσάλου Τριβής σε Δίστρωτο Έδαφος Analytical Solution for a Friction Pile in a Two Layer Soil ΑΝΩΓΙΑΤΗΣ, Γ. Πολιτικός Μηχανικός, Διδάκτωρ Πανεπιστημίου Πατρών ΜΥΛΩΝΑΚΗΣ, Γ. Καθηγητής, Τμήμα Πολιτικών Μηχανικών, Πανεπιστήμιο Πατρών ΠΑΠΑΝΤΩΝΟΠΟΥΛΟΣ, Κ. Επίκουρος Καθηγητής, Πανεπιστημίου Πατρών ΠΕΡΙΛΗΨΗ : Αναπτύσσεται αναλυτικό προσομοίωμα τύπου Tajii για τη στατική απόκριση πασσάλου τριβής σε δίστρωτο έδαφος επί ανένδοτης βάσης. Το έδαφος προσομοιώνεται σύμφωνα με την υπόθεση του συνεχούς μέσου με δυο τμηματικώς ομοιογενείς στρώσεις. Η λύση αναπτύσσεται σύμφωνα με τη θεωρία των γενικευμένων συντεταγμένων μέσα από ένα σύνολο ιδιοσυναρτήσεων («στατικών ιδιομορφών»). Οι συντελεστές του αναπτύγματος είναι συζευγμένοι και υπολογίζονται μέσω της επίλυσης ενός συστήματος αλγεβρικών εξισώσεων. Ο πάσσαλος προσομοιώνεται ως σύνθετη ράβδος με χρήση ενός ψεύδο-τμήματος κάτω από την αιχμή. Οι προβλέψεις του μοντέλου βρίσκονται σε καλή συμφωνία με αριθμητικές λύσεις. ABSTRACT : An analytical odel of the Tajii type is developed for the static response of a floating pile in two-layer soil over a rigid base. The soil is odeled as a continuu, divided into two piece-wise hoogeneous layers. The solution is derived according to the theory of generalized coordinates through a set of pertinent eigenfunctions («static odes»). The corresponding Fourier coefficients are deterined through a set of siultaneous algebraic equations, equal to the nuber of odes eployed. The pile is odelled as a two-layer coposite rod, including a pseudo-pile segent under the tip. The predictions of the odel are in good agreeent with nuerical solutions. -. ΕΙΣΑΓΩΓΗ Η διερεύνηση της καθίζησης πασσάλων τριβής έχει προσελκύσει έντονο ερευνητικό ενδιαφέρον εδώ και δεκαετίες, όπως και αυτή των λυγηρών πασσάλων αιχμής. Οι πλειονότητα των σχετικών ερευνών εστιάζει στην ανάλυση του πασσάλου ως ράβδου πεπερασμένου μήκους σε ελαστικό ημίχωρο (Poulos & Davis 98, El Marsafawi et al., 99, Syngros 4). Ωστόσο, οι πάσσαλοι χρησιμοποιούνται συχνά αντί των επιφανειακών θεμελιώσεων σε εδάφη μικρής φέρουσας ικανότητας για τη μεταφορά φορτίων σε στρώματα μεγαλύτερου βάθους και ικανής αντοχής να φέρουν με ασφάλεια τα επιβαλλόμενα φορτία. Σημαντικά λιγότερες ερευνητικές προσπάθειες αφορούν το πρόβλημα πασσάλου σε εδαφικό στρώμα υπερκείμενο ανένδοτης βάσης (Chin et al., 99, Ai and Han, 9). Απλά αναλυτικά προσομοιώματα βασισμένα στη θεωρία Winler (Nova,974) εξαρτώνται από την επιλογή της στιφρότητας των ελατηρίων, η οποία δεν είναι τετριμμένη στην περίπτωση εδαφικής ανομοιογένειας και μάλιστα παρουσία πασσάλων τριβής, όπου απαιτείται και η εκτίμηση της στιφρότητας του ελατηρίου στη βάση του πασσάλου. Επιπρόσθετα, τριδιάστατα αναλυτικά προσομοιώματα τύπου Tajii (Tajii, 966) περιορίζονται στην ανάλυση πασσάλων αιχμής (Nogai & Nova, 976, Aiyoshi, 98, Anoyatis & Mylonais, ). Τριδάστατη αναλυτική λύση πασσάλου τριβής δεν έχει επιχειρηθεί μέχρι σήμερα.

2 Στην παρούσα εργασία αναπτύσσεται αναλυτικό προσομοίωμα τύπου Tajii για τη διερεύνηση της συμπεριφοράς πασσάλου τριβής σε δίστρωτο έδαφος επί ανένδοτης βάσης. Το προτεινόμενο προσομοίωμα υπερέχει έναντι των διαθέσιμων αριθμητικών λύσεων όπως τα πεπερασμένα ή τα συνοριακά στοιχεία, καθώς παρέχει λύσεις σε κλειστή μορφή για τη στιφρότητα στην κεφαλή του πασσάλου και το πεδίο των παραμορφώσεων και μετακινήσεων στο έδαφος. Στο πλαίσιο της προτεινόμενης λύσης, το εδαφικό μέσο προσομοιώνεται με δύο τμηματικώς ομοιογενείς στρώσεις οι οποίες χαρακτηρίζονται από διαφορετικά μέτρα διάτμησης και λόγους Poisson. Η εξίσωση ισορροπίας και οι συνοριακές συνθήκες στα όρια των στρώσεων παρέχουν ένα σύνολο ιδιοσυναρτήσεων («στατικών ιδιομορφών») βάσει των οποίων αναπτύσσεται η λύση, σύμφωνα με τη θεωρία των γενικευμένων συντεταγμένων. Στην περίπτωση που οι ιδιότητες των δυο στρωμάτων ταυτίζονται, οι ιδιομορφές εκφράζονται μέσω στοιχειωδών τριγωνομετρικών συναρτήσεων που αντιστοιχούν σε ομοιογενές έδαφος, όπως στην κλασική λύση. Στο πλαίσιο της υπόθεσης της επιπεδότητας των διατομών, ο πάσσαλος προσομοιώνεται ως σύνθετη ράβδος, η οποία χωρίζεται, με την ίδια λογική, σε δύο μέρη στο επίπεδο της εδαφικής διεπιφάνειας: το πάνω τμήμα αντιστοιχεί στον πραγματικό πάσσαλο, ενώ το κάτω τμήμα αντιστοιχεί σε έναν ψεύδο-πάσσαλο με ίδιες ιδιότητες με το γειτονικό έδαφος και χρησιμοποιείται για να προσομοιώσει το υλικό κάτω από την αιχμή του πασσάλου. Πάσσαλος και έδαφος θεωρούνται σε τέλεια επαφή, χωρίς σχετική ολίσθηση. Σε αντίθεση με την κλασική λύση, οι συντελεστές του αναπτύγματος Fourier είναι συζευγμένοι και υπολογίζονται μέσω της επίλυσης ενός συστήματος αλγεβρικών εξισώσεων τάξης ίσης με τον αριθμό των εμπλεκόμενων ιδιομορφών. Η εγκυρότητα της προσέγγισης ελέγχεται συστηματικά έναντι ακριβέστερων αριθμητικών λύσεων από τη βιβλιογραφία. Σχήμα. Γεωμετρία προβλήματος. Figure. Proble geoetry.. ΟΡΙΣΜΟΣ ΠΡΟΒΛΗΜΑΤΟΣ Στο Σχήμα απεικονίζεται μοναχικός κυλινδρικός συμπαγής πάσσαλος τριβής εγκιβωτισμένος σε δίστρωτο έδαφος υπερκείμενο ανένδοτης βάσης. Στην παρούσα εργασία ο πάσσαλος εδράζεται στην επιφάνεια του κάτω στρώματος (L = h). Ο ψευδοπάσσαλος, προσομοιώνει τη συμπεριφορά του εδάφους κάτω από την αιχμή χρησιμοποιώντας ένα μέτρο ελαστικότητας E t ίσο με την αντίστοιχη τιμή του περιβάλλοντος εδάφους. Η εδαφική ανομοιογένεια εκφράζεται μέσω της συνάρτησης: G z G G G h s( ) s s s z

3 όπου Η[ ] είναι η συνάρτηση Heaviside, η οποία ισούται με μονάδα για z > h και μηδενίζεται για z < h. Η ειδική περίπτωση πασσάλου τριβής σε ομοιογενές έδαφος αντιμετωπίζεται θέτοντας G s = G s και ν s = ν s. 3. ΠΕΡΙΓΡΑΦΗ ΠΡΟΣΟΜΟΙΩΜΑΤΟΣ 3. Ανάλυση εδάφους Κάθε στρώμα αναλύεται ξεχωριστά όπως στην περίπτωση του πασσάλου σε ομοιογενές έδαφος (Anoyatis & Mylonais, ), με τη διαφορά ότι σε κάθε στρώμα επιβάλλονται διαφορετικές οριακές συνθήκες. Από την ισορροπία των κατακόρυφων δυνάμεων σε τυχαίο εδαφικό στοιχείο εξάγεται η μερική διαφορική εξίσωση σε όρους τάσεων (τ ir ) r r z i όπου τ = τ rz (r,z) η κατακόρυφη διατμητική τάση που ασκείται στο επίπεδο rz, σ = σ z (r,z) είναι η κατακόρυφη ορθή τάση και ο δείκτης i =, αντιστοιχεί στο άνω και κάτω στρώμα, αντίστοιχα. Λαμβάνοντας υπόψη την αξονική συμμετρία του προβλήματος και αμελώντας την επίδραση της οριζόντιας εδαφικής μετακίνησης στις τάσεις η οποία μπορεί να θεωρηθεί εύλογα μικρή συγκριτικά με την κατακόρυφη οι σχέσεις τάσεων μετακινήσεων γράφονται στην παρακάτω απλοποιημένη μορφή (Ανωγιάτης, 3): i u z i - η si Gs( z) τi - Gs ( z) ui r όπου u i = u i (r,z) είναι η κατακόρυφη εδαφική μετακίνηση, η si είναι μια αδιάστατη παράμετρος που εξαρτάται αποκλειστικά από τον λόγο Poisson και για το παρόν πρόβλημα ισούται με (/(-ν si )) /. Αντικαθιστώντας τις Εξισώσεις στην Εξίσωση, λαμβάνεται η εξίσωση ισορροπίας σε όρους μετακινήσεων u u u r r r z i i i si Εκφράζοντας την εδαφική μετακίνηση ως u(r,z) = R(r) Z(z) σύμφωνα με τη μέθοδο χωριζομένων μεταβλητών λαμβάνεται η γενική λύση της ανωτέρω εξίσωσης u A I ( q r ) B K ( q r ) C sin z D cos z i i i i i i i όπου q i = α η si, I () and K ( ) είναι οι τροποποιημένες συναρτήσεις Bessel μηδενικής τάξης, πρώτου και δεύτερου είδους, αντίστοιχα και α είναι μια πραγματική θετική μεταβλητή με διαστάσεις /Μήκος. Τέλος, οι A, B, C, D είναι σταθερές ολοκλήρωσης που υπολογίζονται από τις οριακές συνθήκες του προβλήματος. Λαμβάνοντας υπόψη τις συνθήκης μηδενικής ορθής τάσης στην ελεύθερη επιφάνεια του εδάφους και μηδενικής μετατόπισης στη βάση του, καθώς και τη συμβιβαστότητα των ορθών τάσεων και μετακινήσεων στη διεπιφάνεια των δυο στρωμάτων προκύπτει η έκφραση G cos cos sin sin s s h h h h s G s

4 μέσω της οποίας υπολογίζονται οι στατικές ιδιοτιμές α =,, 3, του δίστρωτου εδάφους, οι οποίες καταδεικνύουν πως η ανάπτυξη του κατακόρυφου πεδίου των μετατοπίσεων στο εδαφικό μέσο οφείλει να γίνει βάσει συγκεκριμένων τριγωνομετρικών όρων ("μηκών κύματος"). Το πεδίο μετακινήσεων και διατμητικών τάσεων στο έδαφος γράφεται αντίστοιχα ως εξής: u( r, z) B K ( q r ) ( z ) τ( r, z) B q K ( q r ) G ( z) ( z ) s όπου Φ( ) είναι η ιδιοσυνάρτηση (στατική ιδιομορφή) που εξαρτάται από τα χαρακτηριστικά του κάθε στρώματος ( z) ( z) ( z) ( z) ( z h ) όπου cos z, z h cos h sin ( H z), h z H sin h όπου το σύμβολο στο δεύτερο σκέλος της ιδιομορφής αντιστοιχεί στο συνολικό βάθος του εδαφικού μέσου (όχι σε συνάρτηση Heaviside). Η συνθήκη ορθογωνικότητας στο συγκεκριμένο τύπο προβλημάτων περιλαμβάνει τη συναρτησιακή μεταβολή του μέτρου διάτμησης με το βάθος H G ( z) ( z) ( z) dz, s 3. Ανάλυση πασσάλου Θεμελιώδες στοιχείο της παρούσας μεθόδου αποτελεί η ανάπτυξη της συνάρτησης μετακίνησης (βύθισης) του πασσάλου, και κατ επέκταση των ορθών τάσεων κατά μήκος του δομικού στοιχείου, μέσω συνημιτονικών σειρών Fourier w( z) C Y ( z), z H p ( z) E(z) C Y (z), z H όπου Y( ) είναι οι ιδιομορφές του πασσάλου,y ( ) η αντίστοιχη πρώτη παράγωγός τους ως προς τη χωρική μεταβλητή z, και C οι συντελεστές Fourier του αναπτύγματος που θα προσδιοριστούν στη συνέχεια. Η συνάρτηση E(z) περιγράφει τη μεταβολή του μέτρου ελαστικότητας με το βάθος στη στήλη πασσάλου και δίνεται από τη σχέση:

5 E( z) Ep Et Ep ( z L ) Κατ αναλογία οι ιδιομορφές Y(z) γράφονται Y ( z) Y ( z) Y ( z) Y ( z) ( z L ) Οι επιμέρους ιδιομορφές Y ( ) και Y ( ) βασίζονται στην ανάλυση του δίστρωτου εδαφικού στρώματος που παρουσιάστηκε παραπάνω και δίνονται από τις σχέσεις: Y ( z) cos p z, Y ( z) p sin p z, z h cos p L cos p L Y ( z) sin[ p ( H z)], Y ( z) p cos p ( H z) h z H sin ph sin ph όπου p είναι οι ιδιοτιμές της στήλης πασσάλου και Y ( ) και Y ( ) οι αντίστοιχες παράγωγοι ως προς τη μεταβλητή z. Η μεθοδολογία που ακολουθείται στην ανάλυση του πασσάλου ικανοποιεί τις συνθήκες συμβιβαστότητας των ορθών τάσεων και κατακόρυφων μετακινήσεων στη διεπιφάνεια πασσάλου ψευδοπασσάλου, από την οποία προκύπτει η παρακάτω εξίσωση ιδιοτιμών Ep cos pl cos ph sin pl sin ph E t η οποία είναι ανάλογη της αντίστοιχης έκφρασης για το δίστρωτο εδαφικό υλικό όπως παρουσιάζεται στην Εξίσωση, με τη διαφορά ότι η ανάλυση της στήλης του πασσάλου γίνεται σύμφωνα με την παραδοχή της επιπεδότητας των διατομών (από την οποία απουσιάζει ο λόγος Poisson) και όχι της θεωρίας του συνεχούς μέσου. Οι ιδιοτιμές p υπολογίζονται από τη λύση της παραπάνω εξίσωσης, η οποία επιτυγχάνεται αριθμητικά. Ας σημειωθεί ότι στην ειδική περίπτωση όπου E p = E t, η Εξίσωση απλοποιείται στην απλή σχέση cos p H = που αντιστοιχεί σε πάσσαλο που εδράζεται απευθείας στην ανένδοτη βάση (Ανωγιάτης, 3). Σύμφωνα με τα παραπάνω, η διαφορική εξίσωση ισορροπίας του πασσάλου που προκύπτει από την ισορροπία των κατακόρυφων δυνάμεων σε ένα στοιχειώδες τμήμα της γράφεται w E(z) Ap d ( d /, z) F( z) z όπου τ είναι η κατακόρυφη εδαφική αντίδραση στην περιφέρεια του πασσάλου και F(z) οι δυνάμεις σώματος κατά μήκος του πασσάλου, οι οποίες αναλύονται ως εξής: P ( z) ( z) dz P s H H s s F( z) F G ( z) ( z), F H G ( z) ( z) dz G ( z) ( z) dz

6 Οι συντελεστές F του αναπτύγματος προσδιορίζονται λαμβάνοντας υπόψη την ορθογωνικότητα των εδαφικών ιδιομορφών στην Εξίσωση, εκφράζοντας το συγκεντρωμένο φορτίο στην κεφαλή ως P δ(z), με δ(z) να συμβολίζει την κατανομή δέλτα (Dirac). Αντικαθιστώντας τις Εξισώσεις,, και στην και θεωρώντας τέλεια επαφή στη διεπιφάνεια πασσάλου εδάφους [w(z) = u(d/,z)], η εξίσωση που περιγράφει την κίνηση του πασσάλου, κάνοντας χρήση της ορθογωνικότητας των εδαφικών ιδιομορφών κατόπιν περεταίρω αμιγώς μαθηματικής αντιμετώπισης (λεπτομερής περιγραφή δίνεται στη διδακτορική διατριβή του Ανωγιάτη (3)) γράφεται ξανά ως εξής: C N H H p s K( s ) A E( z) Y ( z) ( z) dz K ( s ) s K ( s ) G ( z) Y ( z) ( z) dz P όπου s = α η s d/. Η παραπάνω μαθηματική έκφραση αποτελεί εναλλακτική διατύπωση ενός συστήματος αλγεβρικών εξισώσεων πλήθους ίσου με τον αριθμό των ιδιομορφών που χρησιμοποιούνται στην ανάλυση, από τη λύση του οποίου προσδιορίζονται οι συζευγμένοι συντελεστές C. 4. ΑΡΙΘΜΗΤΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ Στον Πίνακα παρουσιάζονται αποτελέσματα από το προτεινόμενο προσομοίωμα, μια ανάλυση πεπερασμένων στοιχείων υψηλής ακρίβειας (Syngros, 4) και τη λύση με χρήση συναρτήσεων Green που προτάθηκε από τους Kaynia και Kausel (El Marsafawi et al., 99). Επιλέγεται απόσταση από τον πόδα του πασσάλου έως την ανένδοτη βάση ίση με 8 μήκη πασσάλου, ώστε να προσομοιώνονται ικανοποιητικά οι συνθήκες ημίχωρου και ταυτόχρονα να μην απαιτούνται περισσότερες από ιδιομορφές για την εξαγωγή αξιόπιστων αποτελεσμάτων. Ο συγκεκριμένος περιορισμός της απόστασης γίνεται πιο χαλαρός στην περίπτωση ιδιαίτερα λυγηρών πασσάλων (L/d = 6), για τους οποίους η εύλογη υπόθεση h = 8 L οδηγεί σε απαγορευτικά βαθύ εδαφικό προφίλ που απαιτεί πολύ μεγάλο αριθμό ιδιομορφών ώστε να εξασφαλισθεί ακρίβεια στα αποτελέσματα. Μια λεπτομερής διερεύνηση της επίδρασης του αριθμού των ιδιομορφών παρουσιάζεται στη διδακτορική διατριβή του Ανωγιάτη (3). Όπως φαίνεται ξεκάθαρα στον Πίνακα, μεγαλύτερες τιμές του λόγου E p /E s οδηγούν σε μεγαλύτερες αποκλίσεις για το δεδομένο αριθμό ιδιομορφών. Πίνακας. Κανονικοποιημένη στιφρότητα πασσάλου K/E s d. Table. Noralized pile head stiffness K/E s d. L/d E p /E s Προτεινόμενο Syngros προσομοίωμα (4) Στιφρότητα πασσάλου, K / E s d El. Marsafawi et al. (99) Απόκλιση (%) l=8l(α) (S) (M) (A)-(S)/(S) (A)-(M)/(M) Τα αποτελέσματα από τους El Marsafawi et al. (99) και Syngros (4) αφορούν πασσάλους σε ημίχωρο N = ιδιομορφές

7 Σχήμα. Μεταβολή του συντελεστή επιρροής καθίζησης με τη λυγηρότητα του πασσάλου. Σύγκριση με δημοσιευμένες λύσεις. N =, ν s =.499, E p /E s =, b =, N = 5. Figure. Variation of settleent influence factor with pile slenderness. Coparison against published solutions, N =, ν s =.499, E p /E s =, b =, N = 5. Σχήμα 3. Load transfer behaviour of single piles in hoogeneous soil stratu. Coparisons with published solutions; N =, ν s =.499, H/L =, L/d =, E p /E s = Figure 3. Load transfer behaviour of single piles in hoogeneous soil stratu. Coparisons with published solutions; N =, ν s =.499, H/L =, L/d =, E p /E s = Σε γενικές γραμμές οι αποκλίσεις από τις πιο αυστηρές αριθμητικές λύσεις κυμαίνονται μεταξύ 9 και 6 %, κάτι που αναδεικνύει την καλή απόδοση του αναλυτικού προσομοιώματος ακόμη και στην περίπτωση του ελαστικού ημίχωρου. Αριθμητικά αποτελέσματα για τον συντελεστή επιρροής καθίζησης I w (= E s d w /P) από το προτεινόμενο προσομοίωμα και τρεις λύσεις από τη βιβλιογραφία παρουσιάζονται στο Σχήμα. Όλες οι μέθοδοι παρέχουν παρόμοιες τιμές για την περίπτωση H/L =. Ωστόσο, για

8 μικρότερη απόσταση μεταξύ του πόδα του πασσάλου και της ανένδοτης βάσης (H/L =.), τα προτεινόμενα αποτελέσματα βρίσκονται σε πολύ καλή συμφωνία με τα αποτελέσματα των Chin et al. (99) και Ai and Han (9) για L/d >, ενώ όλα τα αποτελέσματα από τον Poulos (974) βρίσκονται εμφανώς χαμηλότερα. Φαίνεται πως για μικρές τιμές του h το προσομοίωμα υπερεκτιμά τις εδαφικές μετακινήσεις. Αυτό μπορεί να αποδοθεί στην σημαντική επίδραση της εδαφικής στήλης κάτω από τον πάσσαλο που έχει προσομοιωθεί σύμφωνα με τη θεωρία επιπεδότητας των διατομών. Αποτελέσματα για τη μεταβολή του αξονικού φορτίου κατά μήκος του πασσάλου παρουσιάζονται στο Σχήμα 3. Παρατηρείται πολύ καλή συμφωνία του προτεινόμενου προσομοιώματος με τις αριθμητικές λύσεις των Chow (989) και Ai & Han (9). 4. ΣΥΜΠΕΡΑΣΜΑΤΑ Το προτεινόμενο προσομοίωμα αποτελεί επέκταση της οικογένειας προσομοιώματων τύπου Tajii που έχουν προταθεί για την απόκριση πασσάλων αιχμής. Η ανάλυση πασσάλου τριβής εντός δίστρωτου έδαφικού στρώματος στηρίζεται στη μαθηματική τεχνική που έχει αναπτυχθεί για την αντίστοιχη ανάλυση πασσάλου αιχμής. Τα αποτελέσματα βρίσκονται σε πολύ καλή συμφωνία με αριθμητικές δημοσιευμένες λύσεις τόσο για την περίπτωση εδαφικού στρώματος όσο και ελαστικού ημίχωρου. 5. ΕΥΧΑΡΙΣΤΙΕΣ Η παρούσα έρευνα χρηματοδοτήθηκε από την Επιτροπή Ερευνών του Πανεπιστήμιου Πατρών μέσω του Προγράμματος Κ. Καραθεοδωρή (#C.58). 6. ΒΙΒΛΙΟΓΡΑΦΙΑ Ανωγιάτης, Γ. (3), Συμβολή στην κινηματική και αδρανειακή ανάλυση πασσάλων μέσω αναλυτικών και πειραματικών μεθόδων. Διδακτορική Διατριβή, Πανεπιστήμιο Πατρών. Ai, Z. and J. Han (9). Boundary eleent analysis of axially loaded piles ebedded in a ultilayered soil. Coputers and Geotechnics, 36(3), pp Aiyoshi, T. (98), Soil pile interaction in vertical vibration induced through a frictional interface. Earthquae Engineering & Structural Dynaics, (), pp Chin, J. T., Y. K. Chow, and H. G. Poulos (99). Nuerical analysis of axially loaded vertical piles and pile groups. Coputers and Geotechnics, 9(4), pp Chow, Y. K. (989). Axially loaded piles and pile groups ebedded in a cross anisotropic soil. Geotechnique, 39(), pp. 3. El Marsafawi, H., A. M. Kaynia, and M. Nova (99). Interaction factors and the superposition ethod for pile group dynaic analysis. Report GEOT9, Geotechnical Research Centre, The University of Western Ontario. Nogai, T. and M. Nova (976). Soil pile interaction in vertical vibration. Earthquae Engineering & Structural Dynaics, 4(3), pp Nova, M. (974). Dynaic stiffness and daping of piles. Canadian Geotechnical Journal, (4), pp Poulos, H. G. (974). Soil echanics new horizons, Chapter Theoretical analysis of pile behaviour. In Lee (974). Poulos, H. G. and E. Davis (98). Pile foundation analysis and design. New Yor: Wiley. Syngros, C. (4), Seisic response of piles and pile supported bridge piers evaluated through case histories. Ph. D. thesis, City University of New Yor. Tajii, H. (966). Earthquae response of foundation structures. Technical Report of the Faculty of Science and Engineering (in Japanese), Nihon University.

Δυναμικός Συντελεστής Winkler για Αξονικώς Φορτιζόμενο Πάσσαλο Αιχμής σε Ανένδοτη Βάση. Dynamic Winkler Modulus for Axially Loaded End-Bearing Piles

Δυναμικός Συντελεστής Winkler για Αξονικώς Φορτιζόμενο Πάσσαλο Αιχμής σε Ανένδοτη Βάση. Dynamic Winkler Modulus for Axially Loaded End-Bearing Piles Δυναμικός Συντελεστής Winkler για Αξονικώς Φορτιζόμενο Πάσσαλο Αιχμής σε Ανένδοτη Βάση Dynamic Winkler Modulus for Axially Loaded End-Bearing Piles ΑΝΩΓΙΑΤΗΣ, Γ.Μ. Υποψήφιος Διδάκτωρ, Πανεπιστήμιο Πατρών,

Διαβάστε περισσότερα

8.1.7 Κινηματική Κάμψη Πασσάλων

8.1.7 Κινηματική Κάμψη Πασσάλων Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

Γενικευμένα Mονοβάθμια Συστήματα

Γενικευμένα Mονοβάθμια Συστήματα Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Γενικευμένα Mονοβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Δυναμική Ανάλυση Ραβδωτών Φορέων 1 1. Είδη γενικευμένων μονοβαθμίων συστημάτων xu

Διαβάστε περισσότερα

0.3m. 12m N = N = 84 N = 8 N = 168 N = 32. v =0.2 N = 15. tot

0.3m. 12m N = N = 84 N = 8 N = 168 N = 32. v =0.2 N = 15. tot ΚΕΦΑΛΑΙΟ : Αριθµητικές Εφαρµογές... Παράδειγµα γ: Ελαστική ευστάθεια πασσαλοθεµελίωσης Το παράδειγµα αυτό αφορά την µελέτη της ελαστικής ευστάθειας φορέως θεµελίωσης, ο οποίος αποτελείται από µια πεδιλοδοκό

Διαβάστε περισσότερα

«Αριθμητική και πειραματική μελέτη της διεπιφάνειας χάλυβασκυροδέματος στις σύμμικτες πλάκες με χαλυβδόφυλλο μορφής»

«Αριθμητική και πειραματική μελέτη της διεπιφάνειας χάλυβασκυροδέματος στις σύμμικτες πλάκες με χαλυβδόφυλλο μορφής» ΠΕΡΙΛΗΨΗ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ «Αριθμητική και πειραματική μελέτη της διεπιφάνειας χάλυβασκυροδέματος στις σύμμικτες πλάκες με χαλυβδόφυλλο μορφής» του Θεμιστοκλή Τσαλκατίδη, Δρ. Πολιτικού Μηχανικού

Διαβάστε περισσότερα

ΕΝΕΡΓΕΙΑΚΗ ΛΥΣΗ ΓΙΑ ΣΥΜΠΕΡΙΦΟΡΑ ΑΞΟΝΙΚΑ ΦΟΡΤΙΖΟΜΕΝΟΥ ΠΑΣΣΑΛΟΥ ΜΕ ΧΡΗΣΗ ΚΑΜΠΥΛΩΝ τ-w και P b -w b

ΕΝΕΡΓΕΙΑΚΗ ΛΥΣΗ ΓΙΑ ΣΥΜΠΕΡΙΦΟΡΑ ΑΞΟΝΙΚΑ ΦΟΡΤΙΖΟΜΕΝΟΥ ΠΑΣΣΑΛΟΥ ΜΕ ΧΡΗΣΗ ΚΑΜΠΥΛΩΝ τ-w και P b -w b ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΚΗ ΛΥΣΗ ΓΙΑ ΣΥΜΠΕΡΙΦΟΡΑ ΑΞΟΝΙΚΑ ΦΟΡΤΙΖΟΜΕΝΟΥ ΠΑΣΣΑΛΟΥ ΜΕ ΧΡΗΣΗ ΚΑΜΠΥΛΩΝ τ-w και P b -w b ΔΙΑΤΡΙΒΗ ΓΙΑ ΜΕΤΑΠΤΥΧΙΑΚΟ

Διαβάστε περισσότερα

ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55

ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55 ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55 ΚΕΦΑΛΑΙΟ 3 ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 3.. Εισαγωγή Αναφέρθηκε ήδη στο ο κεφάλαιο ότι η αναπαράσταση της ταλαντωτικής

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ

ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ έκδοση DΥΝI-DCMB_2016b Copyright

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Ανάπτυξη αρνητικών τριβών σε οµάδες πασσάλων: Αποτίµηση επιπτώσεων στους επιµέρους πασσάλους

Ανάπτυξη αρνητικών τριβών σε οµάδες πασσάλων: Αποτίµηση επιπτώσεων στους επιµέρους πασσάλους Ανάπτυξη αρνητικών τριβών σε οµάδες πασσάλων: Αποτίµηση επιπτώσεων στους επιµέρους πασσάλους Development of negative friction in pile groups: Effects on piles constituting the group ΚΩΜΟ ΡΟΜΟΣ, A. ΜΠΑΡΕΚΑ,

Διαβάστε περισσότερα

Θεμελιώσεις τεχνικών έργων. Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας

Θεμελιώσεις τεχνικών έργων. Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Θεμελιώσεις τεχνικών έργων Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Ορισμός Θεμελίωση (foundation) είναι το κατώτερο τμήμα μιας κατασκευής και αποτελεί τον τρόπο διάταξης των δομικών

Διαβάστε περισσότερα

11. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων

11. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων 11. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 2 Θέματα Εισαγωγή Διατύπωση ΜΠΣ Βάσει Μετακινήσεων Γενική

Διαβάστε περισσότερα

8.4.2 Ρευστοποίηση (ΙΙ)

8.4.2 Ρευστοποίηση (ΙΙ) Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

Εκτίμηση της στροφικής ικανότητας χαλύβδινων δοκών στις υψηλές θερμοκρασίες θεωρώντας την επιρροή των αρχικών γεωμετρικών ατελειών

Εκτίμηση της στροφικής ικανότητας χαλύβδινων δοκών στις υψηλές θερμοκρασίες θεωρώντας την επιρροή των αρχικών γεωμετρικών ατελειών Βόλος 29-3/9 & 1/1 211 Εκτίμηση της στροφικής ικανότητας χαλύβδινων δοκών στις υψηλές θερμοκρασίες θεωρώντας την επιρροή των αρχικών γεωμετρικών ατελειών Δάφνη Παντούσα και Ευριπίδης Μυστακίδης Εργαστήριο

Διαβάστε περισσότερα

ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ

ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ Πρόλογος...11 Πίνακας κυριότερων συμβόλων...13 ΚΕΦΑΛΑIΟ 1: Εισαγωγή 21 ΚΕΦΑΛΑIΟ 2: Απόκριση μεμονωμένου πασσάλου υπό κατακόρυφη φόρτιση 29 2.1 Εισαγωγή...29 2.2 Οριακό και επιτρεπόμενο

Διαβάστε περισσότερα

8.1.7 υσκαμψία υπό γραμμικές συνθήκες

8.1.7 υσκαμψία υπό γραμμικές συνθήκες Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΗΛΕΚΤΡΙΚΟΥ ΔΥΝΑΜΙΚΟΥ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

προς τον προσδιορισμό εντατικών μεγεθών, τα οποία μπορούν να υπολογιστούν με πολλά εμπορικά λογισμικά.

προς τον προσδιορισμό εντατικών μεγεθών, τα οποία μπορούν να υπολογιστούν με πολλά εμπορικά λογισμικά. ΜΕΤΑΛΛΟΝ [ ΑΝΤΟΧΗ ΑΜΦΙΑΡΘΡΩΤΩΝ ΚΥΚΛΙΚΩΝ ΤΟΞΩΝ ΚΟΙΛΗΣ ΚΥΚΛΙΚΗΣ ΔΙΑΤΟΜΗΣ ΥΠΟ ΟΜΟΙΟΜΟΡΦΑ ΚΑΤΑΝΕΜΗΜΕΝΟ ΚΑΤΑΚΟΡΥΦΟ ΦΟΡΤΙΟ ΚΑΤΑ ΤΟΝ ΕΚ3 Χάρης Ι. Γαντές Δρ. Πολιτικός Μηχανικός, Αναπληρωτής Καθηγητής & Χριστόφορος

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 1. Εισαγωγικές έννοιες στην μηχανική των υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενο μαθήματος Μηχανική των Υλικών: τμήμα των θετικών επιστημών που

Διαβάστε περισσότερα

ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ

ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,

Διαβάστε περισσότερα

Πρόβλεψη συµπεριφοράς διεπιφάνειας υποστυλώµατος ενισχυµένου µε πρόσθετες στρώσεις οπλισµένου σκυροδέµατος

Πρόβλεψη συµπεριφοράς διεπιφάνειας υποστυλώµατος ενισχυµένου µε πρόσθετες στρώσεις οπλισµένου σκυροδέµατος Πρόβλεψη συµπεριφοράς διεπιφάνειας υποστυλώµατος ενισχυµένου µε πρόσθετες στρώσεις οπλισµένου σκυροδέµατος Α.Π.Λαµπρόπουλος, Ο.Θ.Τσιούλου Φοιτητές Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Πατρών Σ.Η.

Διαβάστε περισσότερα

Το ελαστικο κωνικο εκκρεμε ς

Το ελαστικο κωνικο εκκρεμε ς Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,

Διαβάστε περισσότερα

Εισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Βασικές εξισώσεις

Εισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Βασικές εξισώσεις Εισηγητής: Αλέξανδρος Βαλσαμής Θεμελιώσεις Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Βασικές εξισώσεις Φέρουσα Ικανότητα Επιφανειακών θεμελιώσεων (πεδίλων) Φέρουσα Ικανότητα Τάσεις κάτω από το

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΛΥΣΕΩΝ ΚΑΝΟΝΙΣΤΙΚΩΝ ΙΑΤΑΞΕΩΝ ΚΑΙ

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Πολυβάθμια Συστήματα. Ε.Ι. Σαπουντζάκης. Καθηγητής ΕΜΠ. Δυναμική Ανάλυση Ραβδωτών Φορέων

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Πολυβάθμια Συστήματα. Ε.Ι. Σαπουντζάκης. Καθηγητής ΕΜΠ. Δυναμική Ανάλυση Ραβδωτών Φορέων Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Πολυβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Συστήματα με Κατανεμημένη Μάζα και Δυσκαμψία 1. Εξίσωση Κίνησης χωρίς Απόσβεση: Επιβαλλόμενες

Διαβάστε περισσότερα

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 9-, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΤΑΞΙΝΟΜΗΣΗ ΜΕΡΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή Διδάσκων: Γιάννης Χουλιάρας Επίλυση υπερστατικών φορέων Για την επίλυση των ισοστατικών φορέων (εύρεση αντιδράσεων και μεγεθών έντασης) αρκούν

Διαβάστε περισσότερα

ιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1

ιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 30-34 Μέθοδοι επίλυσης υπερστατικών φορέων: Μέθοδοι των δυνάµεων Τρίτη, 16, Τετάρτη, 17, Παρασκευή 19 Τρίτη, 23, και Τετάρτη 24 Νοεµβρίου 2004 Πέτρος

Διαβάστε περισσότερα

Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης

Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης Εισαγωγή Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης: Δ18- Η δυναμική μετατόπιση u(t) είναι δυνατό να προσδιοριστεί με απ ευθείας αριθμητική ολοκλήρωση της εξίσωσης

Διαβάστε περισσότερα

Συμπεράσματα Κεφάλαιο 7.

Συμπεράσματα Κεφάλαιο 7. 7. ΣΥΜΠΕΡΑΣΜΑΤΑ Ο κύριος στόχος της παρούσας διατριβής ήταν η προσομοίωση της σεισμικής κίνησης με τη χρήση τρισδιάστατων προσομοιωμάτων για τους εδαφικούς σχηματισμούς της ευρύτερης περιοχής της Θεσσαλονίκης.

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 005-06 ΔΙΑΛΕΞΗ 13 Θεμελιώσεις με πασσάλους : Εγκάρσια φόρτιση πασσάλων 1.05.005 1. Κατηγορίες πασσάλων. Αξονική φέρουσα ικανότητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΘΕΜΕΛΙΩΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών

ΚΕΦΑΛΑΙΟ 6 ΘΕΜΕΛΙΩΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών ΚΕΦΑΛΑΙΟ 6 ΘΕΜΕΛΙΩΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ κύριο ερώτημα ΘΕΜΕΛΙΩΣΗ ΑΝΩΔΟΜΗΣ το γενικό πρόβλημα πως θα αντιδράσει η απεριόριστη σε έκταση εδαφική μάζα??? ζητούμενο όχι «θραύση» εδαφικής μάζας εύρος καθιζήσεων

Διαβάστε περισσότερα

Αλληλεπίδραση Ανωδοµής-Βάθρων-Θεµελίωσης-Εδάφους σε Τοξωτή Οδική Μεταλλική Γέφυρα µε Σύµµικτο Κατάστρωµα

Αλληλεπίδραση Ανωδοµής-Βάθρων-Θεµελίωσης-Εδάφους σε Τοξωτή Οδική Μεταλλική Γέφυρα µε Σύµµικτο Κατάστρωµα ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Αλληλεπίδραση Ανωδοµής-Βάθρων- Θεµελίωσης-Εδάφους σε Τοξωτή Οδική Μεταλλική Γέφυρα µε Σύµµικτο Κατάστρωµα ΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

Εργαστήριο Αντισεισμικής Τεχνολογίας Σχολή Πολιτικών Μηχανικών Εθνικό Μετσόβιο Πολυτεχνείο

Εργαστήριο Αντισεισμικής Τεχνολογίας Σχολή Πολιτικών Μηχανικών Εθνικό Μετσόβιο Πολυτεχνείο Εργαστήριο Αντισεισμικής Τεχνολογίας Σχολή Πολιτικών Μηχανικών Εθνικό Μετσόβιο Πολυτεχνείο Δυναμική Αλληλεπίδραση Εδάφους Κατασκευής: Ιστορική Εξέλιξη και Σύγχρονη Πρακτική Κ. Σπυράκος, Καθηγητής ΕΜΠ /ντής

Διαβάστε περισσότερα

Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια)

Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια) Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια) Εξίσωση Κίνησης Μονοβάθμιου Συστήματος: Επιρροή Μόνιμου Φορτίου Βαρύτητας Δ03-2 Μέχρι τώρα στη διατύπωση της εξίσωσης κίνησης δεν έχει ληφθεί υπόψη το

Διαβάστε περισσότερα

Κεφ. 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Κεφ. 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Κεφ 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές 71 Εισαγωγή πρότυπες εξισώσεις 7 Εξισώσεις πεπερασμένων διαφορών πέντε και εννέα σημείων 73 Οριακές συνθήκες μικτού τύπου και ακανόνιστα

Διαβάστε περισσότερα

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 13-15 Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη, 5, και Τετάρτη, 6 και Παρασκευή 8 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος

ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 24-27 Αρχή υνατών Έργων (Α Ε) Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 και Τρίτη, 9 Νοεµβρίου, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

Ενότητα: Διαμήκης Αντοχή Πλοίου- Ορθές τάσεις λόγω κάμψης

Ενότητα: Διαμήκης Αντοχή Πλοίου- Ορθές τάσεις λόγω κάμψης ΔΙΑΜΗΚΗΣ ΑΝΤΟΧΗ ΠΛΟΙΟΥ Ενότητα: Διαμήκης Αντοχή Πλοίου- Ορθές τάσεις λόγω κάμψης Α. Θεοδουλίδης Η αντοχή του πλοίου Διαμήκης αντοχή Εγκάρσια αντοχή Τοπική αντοχή Ανάλυση του σύνθετου εντατικού πεδίου Πρωτεύουσες,

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Δυναμικά Μοντέλα Συνεχούς Μέσου

Δυναμική Μηχανών I. Δυναμικά Μοντέλα Συνεχούς Μέσου Δυναμική Μηχανών I 8 1 Δυναμικά Μοντέλα Συνεχούς Μέσου 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Μοντελοποίηση

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική

Κλασική Ηλεκτροδυναμική Κλασική Ηλεκτροδυναμική Ενότητα 12: Συνάρτηση Green από ιδιοσυναρτήσεις Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να μελετήσει την συνάρτηση Green από

Διαβάστε περισσότερα

Μηχανική Πετρωμάτων Τάσεις

Μηχανική Πετρωμάτων Τάσεις Μηχανική Πετρωμάτων Τάσεις Δρ Παντελής Λιόλιος Σχολή Μηχανικών Ορυκτών Πόρων Πολυτεχνείο Κρήτης http://minelabmredtucgr Τελευταία ενημέρωση: 28 Φεβρουαρίου 2017 Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 4 ΕΝΕΡΓΕΙΑΚΕΣ ΜΕΘΟ ΟΙ ΜΕΛΕΤΗΣ ΕΥΣΤΑΘΕΙΑΣ

ΚΕΦΑΛΑΙΟ 4 4 ΕΝΕΡΓΕΙΑΚΕΣ ΜΕΘΟ ΟΙ ΜΕΛΕΤΗΣ ΕΥΣΤΑΘΕΙΑΣ ΚΕΦΑΛΑΙΟ 4 4 ΕΝΕΡΓΕΙΑΚΕΣ ΜΕΘΟ ΟΙ ΜΕΛΕΤΗΣ ΕΥΣΤΑΘΕΙΑΣ 4.1 Εισαγωγή Η μέθοδος Euler, η οποία παρουσιάστηκε στο Kεφάλαιο 3 και εφαρμόστηκε για την παρουσίαση προβλημάτων γεωμετρικά μη γραμμικής συμπεριφοράς,

Διαβάστε περισσότερα

8.1.7 Σχεδιασμός και μη-γραμμική ανάλυση

8.1.7 Σχεδιασμός και μη-γραμμική ανάλυση Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

Τελική γραπτή εξέταση διάρκειας 2,5 ωρών

Τελική γραπτή εξέταση διάρκειας 2,5 ωρών τηλ: 410-74178, fax: 410-74169, www.uth.gr Τελική γραπτή εξέταση διάρκειας,5 ωρών Ονοματεπώνυμο: Αριθμός Μητρώου Φοιτητή: Μάθημα: Εδαφομηχανική Ι, 5 ο εξάμηνο. Διδάσκων: Ιωάννης-Ορέστης Σ. Γεωργόπουλος,

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A. 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A. 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3 1.1 Κατασκευές και δομοστατική 3 1.2 Διαδικασία σχεδίασης κατασκευών 4 1.3 Βασικά δομικά στοιχεία 6 1.4 Είδη κατασκευών 8 1.4.1 Δικτυώματα 8

Διαβάστε περισσότερα

ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ

ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ 1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών ΠΜΣ οµοστατικός Σχεδιασµός και Ανάλυση Κατασκευών Εργαστήριο Μεταλλικών Κατασκευών Μεταπτυχιακή ιπλωµατική Εργασία ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ

Διαβάστε περισσότερα

Επαλήθευση πασσάλου Εισαγωγή δεδομένων

Επαλήθευση πασσάλου Εισαγωγή δεδομένων Επαλήθευση πασσάλου Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 28.0.205 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : CSN 73 20 R Πάσσαλος Συντ ασφάλειας πάσσαλου θλίψης

Διαβάστε περισσότερα

Δυναμική ανάλυση μονώροφου πλαισίου

Δυναμική ανάλυση μονώροφου πλαισίου Κεφάλαιο 1 Δυναμική ανάλυση μονώροφου πλαισίου 1.1 Γεωμετρία φορέα - Δεδομένα Χρησιμοποιείται ο φορέας του Παραδείγματος 3 από το βιβλίο Προσομοίωση κατασκευών σε προγράμματα Η/Υ (Κίρτας & Παναγόπουλος,

Διαβάστε περισσότερα

10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ)

10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ) 10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ) Χειμερινό εξάμηνο 2018 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Διατύπωση εξισώσεων ΜΠΣ βάσει μετακινήσεων

Διαβάστε περισσότερα

Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων

Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 02.11.2005 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 199211 : Καθιζήσεις Μέθοδος

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα Εξισώσεις

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΥΑΓΓΕΛΙΑΣ Π. ΛΟΥΚΟΓΕΩΡΓΑΚΗ Διπλωματούχου Πολιτικού Μηχανικού ΟΛΟΚΛΗΡΩΜΕΝΟ

Διαβάστε περισσότερα

ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:

ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων: ΔΕΔΟΜΕΝΑ: ΘΕΜΑ Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα, Q (2.5 μονάδες) β) να υπολογιστεί το μέτρο και η φορά της κατακόρυφης μετατόπισης στο μέσο του τμήματος (23) ( μονάδα) Δίνονται:

Διαβάστε περισσότερα

website:

website: Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 5-6 ΔΙΑΛΕΞΗ 7 Πεδιλοδοκοί και Κοιτοστρώσεις..6 Πεδιλοδοκοί και Κοιτοστρώσεις Η θεμελίωση μπορεί να γίνει με πεδιλοδοκούς ή κοιτόστρωση

Διαβάστε περισσότερα

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Δ03-2 Οι ενεργειακές μέθοδοι αποτελούν τη βάση για υπολογισμό των μετακινήσεων, καθώς η μετακίνηση εισέρχεται

Διαβάστε περισσότερα

Η μηχανική επαφής και η στατική των πέτρινων γεφυριών

Η μηχανική επαφής και η στατική των πέτρινων γεφυριών Η μηχανική επαφής και η στατική των πέτρινων γεφυριών Καθηγητής Γεώργιος Σταυρουλάκης Σχολή Μηχανικών Παραγωγής και Διοίκησης, Πολυτεχνείο Κρήτης Επίκουρη Καθηγήτρια Μαρία Σταυρουλάκη Σχολή Αρχιτεκτόνων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ ΑΝΑΛΥΣΗΣ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ ΑΝΑΛΥΣΗΣ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ ΑΝΑΛΥΣΗΣ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ

Διαβάστε περισσότερα

ΑΚΡΟΒΑΘΡΟ ver.1. Φακής Κωνσταντίνος, Πολιτικός μηχανικός 1/8

ΑΚΡΟΒΑΘΡΟ ver.1. Φακής Κωνσταντίνος, Πολιτικός μηχανικός 1/8 ΑΚΡΟΒΑΘΡΟ ver.1 Πρόκειται για ένα υπολογιστικό φύλλο που αναλύει και διαστασιολογεί ακρόβαθρο γέφυρας επί πασσαλοεσχάρας θεμελίωσης. Είναι σύνηθες να επιλύεται ένα φορέας ανωδομής επί εφεδράνων, να λαμβάνονται

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΘΕΜΕΛΙΩΔΕΙΣ ΝΟΜΟΙ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ

ΤΥΠΟΛΟΓΙΟ ΘΕΜΕΛΙΩΔΕΙΣ ΝΟΜΟΙ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ ΤΥΠΟΛΟΓΙΟ ΘΕΜΕΛΙΩΔΕΙΣ ΝΟΜΟΙ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ Θεώρημα της Μεταφοράς Rols Taspo To Μετατρέπει τη διατύπωση ενός θεμελιώδη νόμου ενός κλειστού συστήματος σ αυτήν για έναν όγκο ελέγχου Ο ρυθμός της εκτατικής

Διαβάστε περισσότερα

ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ

ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,

Διαβάστε περισσότερα

z=± Η εξίσωση αυτή μας λέει αμέσως ότι η συνάρτηση Green σε δύο διαστάσεις είναι

z=± Η εξίσωση αυτή μας λέει αμέσως ότι η συνάρτηση Green σε δύο διαστάσεις είναι στο άπειρο το αποτέλεσμα απειρίζεται λογαριθμικά. Αυτή η συμπεριφορά του δυναμικού Coulomb σε δύο διαστάσεις δεν μπορεί να εξαλειφθεί με τον ίδιο τρόπο όπως η απόκλιση (86 διότι έχει φυσική αφετηρία :

Διαβάστε περισσότερα

ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ

ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρικής Ισχύος Εργαστήριο Υψηλών Τάσεων ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ (Αριθμητικές μέθοδοι υπολογισμού

Διαβάστε περισσότερα

ΠEPIEXOMENA. σελ. iii ΠΡΟΛΟΓΟΣ KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ,

ΠEPIEXOMENA. σελ. iii ΠΡΟΛΟΓΟΣ KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ, v ΠEPIEXOMENA ΠΡΟΛΟΓΟΣ ΠEPIEXOMENA iii v KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ, ΣΧΕ ΙΑΣΜΟΣ ΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 1 1.1 Εισαγωγή 1 1.2 H µέθοδος των τοµών 2 1.3 Ορισµός της τάσης 3 1.4 Ο τανυστής των τάσεων

Διαβάστε περισσότερα

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ Αθήνα, Απρίλιος 13 1. Η Έννοια του Οριακού Στρώματος Το οριακό στρώμα επινοήθηκε για

Διαβάστε περισσότερα

6. Δυναμική Ανάλυση Μονοβαθμίων Συστημάτων (ΜΒΣ)

6. Δυναμική Ανάλυση Μονοβαθμίων Συστημάτων (ΜΒΣ) ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ 6. Δυναμική Ανάλυση Μονοβαθμίων Συστημάτων (ΜΒΣ) Χειμερινό εξάμηνο 2018 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

11. Χρήση Λογισμικού Ανάλυσης Κατασκευών

11. Χρήση Λογισμικού Ανάλυσης Κατασκευών ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 11. Χρήση Λογισμικού Ανάλυσης Κατασκευών Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Μοντελοποίηση κατασκευής

Διαβάστε περισσότερα

Σημειώσεις του μαθήματος Μητρωϊκή Στατική

Σημειώσεις του μαθήματος Μητρωϊκή Στατική ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σημειώσεις του μαθήματος Μητρωϊκή Στατική Π. Γ. Αστερής Αθήνα, Μάρτιος 017 Περιεχόμενα Κεφάλαιο 1 Ελατήρια σε σειρά... 1.1 Επιλογή μονάδων και καθολικού

Διαβάστε περισσότερα

Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7. Αιµίλιος Κωµοδρόµος, Καθηγητής, Εργαστήριο Υ.Γ.Μ. Πανεπιστήµιο Θεσσαλίας Τµήµα Πολιτικών Μηχανικών

Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7. Αιµίλιος Κωµοδρόµος, Καθηγητής, Εργαστήριο Υ.Γ.Μ. Πανεπιστήµιο Θεσσαλίας Τµήµα Πολιτικών Μηχανικών Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7 Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7 Υπολογισµός Φέρουσας Ικανότητας Ευρωκώδικας 7 Αστράγγιστες Συνθήκες Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7 [ c b s i q] R k

Διαβάστε περισσότερα

ΜΔΕ: Αναλυτικό πρόγραμμα - Ύλη Μαθήματος 2018

ΜΔΕ: Αναλυτικό πρόγραμμα - Ύλη Μαθήματος 2018 1 ΚΕΦΑΛΑΙΟ 1 ΜΔΕ: Αναλυτικό πρόγραμμα - Ύλη Μαθήματος 2018 Αντικείμενο του μαθήματος είναι η μελέτη Μερικών Διαφορικών Εξισώσεων. Τον όρο Μερική Διαφορική Εξίσωση θα συμβολίζουμε με (ΜΔΕ). Η ιστοσελίδα

Διαβάστε περισσότερα

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΚΤΙΡΙΩΝ ΑΠΌ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ ΓΙΑ ΣΕΙΣΜΙΚΕΣ ΔΡΑΣΕΙΣ Προσομοίωση κτιρίων από τοιχοποιία με : 1) Πεπερασμένα στοιχεία 2) Γραμμικά στοιχεί

ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΚΤΙΡΙΩΝ ΑΠΌ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ ΓΙΑ ΣΕΙΣΜΙΚΕΣ ΔΡΑΣΕΙΣ Προσομοίωση κτιρίων από τοιχοποιία με : 1) Πεπερασμένα στοιχεία 2) Γραμμικά στοιχεί ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΚΤΙΡΙΩΝ ΑΠΌ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ ΓΙΑ ΣΕΙΣΜΙΚΕΣ ΔΡΑΣΕΙΣ Η σεισμική συμπεριφορά κτιρίων από φέρουσα τοιχοποιία εξαρτάται κυρίως από την ύπαρξη ή όχι οριζόντιου διαφράγματος. Σε κτίρια από φέρουσα

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού

Διαβάστε περισσότερα

Βαθιές Θεµελιώσεις Εισαγωγή

Βαθιές Θεµελιώσεις Εισαγωγή Φέρουσα Ικανότητα Απόκριση Πασσαλοθεµελιώσεων Προσδιορισµός Απόκρισης Μεµονωµένου Πασσάλου Γεωτεχνικές Μέθοδοι Εµπειρικές Μέθοδοι (DIN 4014) Μέθοδος t-z Δοκιµαστική Φόρτιση 3-D ανάλυση Αρνητικές Τριβές

Διαβάστε περισσότερα

Καθ. Βλάσης Κουµούσης

Καθ. Βλάσης Κουµούσης ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ Καθ. Βλάσης Κουµούσης Κυλινδρικά Κελύφη Καµπτική Θεωρία Οι µεµβρανικές δυνάµεις που προσδιορίζει η µεµβρανική θεωρία

Διαβάστε περισσότερα

Εισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά

Εισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Εισηγητής: Αλέξανδρος Βαλσαμής Θεμελιώσεις Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Το πρόβλημα Γεωτεχνική Επιστήμη Συνήθη προβλήματα Μέσο έδρασης των κατασκευών (θεμελιώσεις) Μέσο που πρέπει

Διαβάστε περισσότερα

8ο Φοιτητικό Συνέδριο «Επισκευές Κατασκευών 2002», Μάρτιος 2002

8ο Φοιτητικό Συνέδριο «Επισκευές Κατασκευών 2002», Μάρτιος 2002 8ο Φοιτητικό Συνέδριο «Επισκευές Κατασκευών 2002», Μάρτιος 2002 Εργασία Νο 13 ΕΝΙΣΧΥΣΗ ΔΟΚΟΥ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΩΝ ΜΟΝΟΛΙΘΙΚΟΤΗΤΑΣ ΜΕ ΧΡΗΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ANSYS ΟΙΚΟΝΟΜΟΥ ΜΙΧΑΛΗΣ ΠΙΣΤΕΝΤΗΣ ΓΕΩΡΓΙΟΣ

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 8β Θεμελιώσεις με πασσάλους : Αξονική φέρουσα ικανότητα εμπηγνυόμενων πασσάλων με στατικούς τύπους 25.12.2005

Διαβάστε περισσότερα

ΣΤΡΕΠΤΙΚΗ ΑΝΑΛΥΣΗ ΡΑΒΔΩΝ ΣΤΑΘΕΡΗΣ Η ΜΕΤΑΒΛΗΤΗΣ ΔΙΑΤΟΜΗΣ

ΣΤΡΕΠΤΙΚΗ ΑΝΑΛΥΣΗ ΡΑΒΔΩΝ ΣΤΑΘΕΡΗΣ Η ΜΕΤΑΒΛΗΤΗΣ ΔΙΑΤΟΜΗΣ Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ Τομέας Β Δομοστατικού Σχεδιασμού ΣΤΡΕΠΤΙΚΗ ΑΝΑΛΥΣΗ ΡΑΒΔΩΝ ΣΤΑΘΕΡΗΣ Η ΜΕΤΑΒΛΗΤΗΣ ΔΙΑΤΟΜΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΣΦΗΝΑΡΟΛΑΚΗ ΕΛΕΥΘΕΡΙΑ

Διαβάστε περισσότερα

9. Χρήση Λογισμικού Ανάλυσης Κατασκευών

9. Χρήση Λογισμικού Ανάλυσης Κατασκευών 9. Χρήση Λογισμικού Ανάλυσης Κατασκευών Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Μοντελοποίηση κατασκευής Κατανομή φορτίων πλακών

Διαβάστε περισσότερα

Ενότητα: Υπολογισμός διατμητικών τάσεων

Ενότητα: Υπολογισμός διατμητικών τάσεων ΔΙΑΜΗΚΗΣ ΑΝΤΟΧΗ ΠΛΟΙΟΥ Ενότητα: Υπολογισμός διατμητικών τάσεων Α. Θεοδουλίδης Υπολογισμός διατμητικών τάσεων Η ύπαρξη διατμητικών τάσεων οφείλεται στην διατμητική δύναμη Q(x): Κατανομή διατμητικών τάσεων

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ

ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ Εισαγωγή στη μέθοδο των πεπερασμένων στοιχείων Α. Θεοδουλίδης Η Μεθοδος των Πεπερασμένων στοιχείων Η Μέθοδος των ΠΣ είναι μια

Διαβάστε περισσότερα

Ν. Σαμπατακάκης Αν. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών

Ν. Σαμπατακάκης Αν. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών ΚΕΦΑΛΑΙΟ 4 ΘΕΜΕΛΙΩΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ κύριο ερώτημα ΘΕΜΕΛΙΩΣΗ ΑΝΩΔΟΜΗΣ το γενικό πρόβλημα πως θα αντιδράσει η απεριόριστη σε έκταση εδαφική μάζα??? ζητούμενο όχι «θραύση» ρ η εδαφικής μάζας εύρος καθιζήσεων

Διαβάστε περισσότερα

Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί των οποίων εδράζεται µοναδικό ορθογωνικό υποστύλωµα.

Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί των οποίων εδράζεται µοναδικό ορθογωνικό υποστύλωµα. CSI Hellas, Φεβρουάριος 2004 Τεχνική Οδηγία 1 Πέδιλα στα οποία εδράζονται υποστυλώµατα ορθογωνικής διατοµής Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί

Διαβάστε περισσότερα

Μέθοδος των Δυνάμεων

Μέθοδος των Δυνάμεων Μέθοδος των Δυνάμεων Εισαγωγή Μέθοδος των Δυνάμεων: Δ07-2 Η Μέθοδος των Δυνάμεων ή Μέθοδος Ευκαμψίας είναι μία μέθοδος για την ανάλυση γραμμικά ελαστικών υπερστατικών φορέων. Ανκαιημέθοδοςμπορείναεφαρμοστείσεπολλάείδηφορέων

Διαβάστε περισσότερα

Ενεργειακή Λύση για υσκαµψία Πασσάλων σε Ανοµοιογενές Έδαφος

Ενεργειακή Λύση για υσκαµψία Πασσάλων σε Ανοµοιογενές Έδαφος Ενεργειακή Λύση για υσκαµψία Πασσάλων σε Ανοµοιογενές Έδαφος Energy Solution for Pile Stiffness in Inhomogeneous Soil ZΗΝΑ Α. Χ. Πολιτικός Μηχανικός, Geotechnical Engineer, Ove Arup & Partners lt, Lonon

Διαβάστε περισσότερα

Πολυβάθμια Συστήματα. (συνέχεια)

Πολυβάθμια Συστήματα. (συνέχεια) Πολυβάθμια Συστήματα (συνέχεια) Ορθογωνικότητα Ιδιομορφών Πολυβάθμια Συστήματα: Δ21-2 Μία από τις σπουδαιότερες ιδιότητες των ιδιομορφών είναι η ορθογωνικότητα τους ως προς τα μητρώα μάζας [m] και ακαμψίας

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 Β5. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας

Διαβάστε περισσότερα

Πειραματική Αντοχή Υλικών Ενότητα:

Πειραματική Αντοχή Υλικών Ενότητα: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πειραματική Αντοχή Υλικών Ενότητα: Λυγισμός Κωνσταντίνος Ι.Γιαννακόπουλος Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

«ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. Πολ. Μηχανικών Ακ. Έτος

«ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. Πολ. Μηχανικών Ακ. Έτος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. Πολ. Μηχανικών Ακ. Έτος 01-014 ΙΑΛΕΞΗ 1: ΟΡΙΖΟΝΤΙΑ ΦΟΡΤΙΣΗ ΜΕΜΟΝΩΜΕΝΩΝ ΠΑΣΣΑΛΩΝ Οι διαλέξεις υπάρχουν στην

Διαβάστε περισσότερα

. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως.

. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως. Μάθημα: Εδαφομηχανική Ι, 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επιστημονικός Συνεργάτης Τμήματος Πολιτικών Έργων Υποδομής, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Υδατική ροή

Διαβάστε περισσότερα

ιερεύνηση της συµπεριφοράς οµάδας πασσάλων εδραζοµένων σε βραχώδες υπόβαθρο

ιερεύνηση της συµπεριφοράς οµάδας πασσάλων εδραζοµένων σε βραχώδες υπόβαθρο ιερεύνηση της συµπεριφοράς οµάδας πασσάλων εδραζοµένων σε βραχώδες υπόβαθρο Response evaluation of pile groups based οn rock ΜΠΑΡΕΚΑ Σ., Πολιτικός Μηχανικός, Υπ. ιδάκτωρ, Π.Θ ΛΑΖΟΥ Η Ρ., Πολιτικός Μηχανικός,

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΤΙΡΙΟΥ ΜΕ ΕΑΚ, ΚΑΝΟΝΙΣΜΟ 84 ΚΑΙ ΚΑΝΟΝΙΣΜΟ 59 ΚΑΙ ΑΠΟΤΙΜΗΣΗ ΜΕ ΚΑΝ.ΕΠΕ.

ΣΧΕΔΙΑΣΜΟΣ ΚΤΙΡΙΟΥ ΜΕ ΕΑΚ, ΚΑΝΟΝΙΣΜΟ 84 ΚΑΙ ΚΑΝΟΝΙΣΜΟ 59 ΚΑΙ ΑΠΟΤΙΜΗΣΗ ΜΕ ΚΑΝ.ΕΠΕ. Σχεδιασμός κτιρίου με ΕΑΚ, Κανονισμό 84 και Κανονισμό 59 και αποτίμηση με ΚΑΝ.ΕΠΕ. ΣΧΕΔΙΑΣΜΟΣ ΚΤΙΡΙΟΥ ΜΕ ΕΑΚ, ΚΑΝΟΝΙΣΜΟ 84 ΚΑΙ ΚΑΝΟΝΙΣΜΟ 59 ΚΑΙ ΑΠΟΤΙΜΗΣΗ ΜΕ ΚΑΝ.ΕΠΕ. ΡΑΥΤΟΠΟΥΛΟΥ ΜΑΡΙΝΑ Περίληψη Αντικείμενο

Διαβάστε περισσότερα

Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης

Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης Σχεδιασµός φορέων από σκυρόδεµα µε βάση τον Ευρωκώδικα 2 Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης Καττής Μαρίνος, Αναπληρωτής Καθηγητής ΕΜΠ Λιβαδειά, 26 Σεπτεµβρίου 2009 1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 005-06 ΔΙΑΛΕΞΗ Φέρουσα Ικανότητα Επιφανειακών Θεμελιώσεων 0.03.007 P Καμπύλες τάσεωνπαραμορφώσεων του εδάφους Γραμμική συμπεριφορά

Διαβάστε περισσότερα

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας 7 Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας Συζευγµένες ταλαντώσεις Βιβλιογραφία F S Crawford Jr Κυµατική (Σειρά Μαθηµάτων Φυσικής Berkeley, Τόµος 3 Αθήνα 979) Κεφ H J Pai Φυσική των ταλαντώσεων

Διαβάστε περισσότερα