Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων
|
|
- Αμύντας Κεδίκογλου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων
2 Εισαγωγή Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Δ03-2 Οι ενεργειακές μέθοδοι αποτελούν τη βάση για υπολογισμό των μετακινήσεων, καθώς η μετακίνηση εισέρχεται στην έκφραση του έργου που ισούται με δύναμη επί μετακίνηση. Σύμφωνα με την αρχή διατήρησης της ενέργειας, το έργο των εξωτερικών δυνάμεων ισούται με την ελαστική ενέργεια παραμόρφωσης (εσωτερικό έργο). Η πρώτη μέθοδος που βασίζεται στην αρχή διατήρησης της ενέργειας (μέθοδος πραγματικού έργου) έχει σημαντικούς περιορισμούς: η μετακίνηση (μετάθεσηήστροφή) μπορεί να υπολογιστεί μόνο στην περίπτωση που ο φορέας φορτίζεται με ένα συγκεντρωμένο φορτίο και μόνο κατά τη διεύθυνση του επιβαλλόμενου εξωτερικού φορτίου.
3 Εισαγωγή ( ) Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Δ03-3 Η αρχή των δυνατών έργων (ΑΔΕ) είναι η πλέον εύχρηστη μέθοδος, αφού μπορεί να χρησιμοποιηθεί για τον υπολογισμό της μετακίνησης οποιουδήποτε σημείου του φορέα, σε οποιαδήποτε διεύθυνση και για τυχαία φόρτιση. Η μέθοδος μπορεί να εφαρμοστεί σε ελαστικά ή ανελαστικά προβλήματα και σε περιπτώσεις υποχωρήσεων στηρίξεων και θερμοκρασιακών μεταβολών. Βασική παραδοχή: Θεωρούμε ότι τα φορτία ασκούνται αρκετά αργά, ώστε να μην παράγεται κινητική ενέργεια και θερμότητα.
4 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Έργο Εξωτερικών Δυνάμεων Δ03-4 Έργο Δύναμης: Ορίζεται το γινόμενο της δύναμης επί τη συγγραμμική της μετατόπιση (νοουμένου ότι η δύναμη είναι σταθερή). w = Fδ όπου δ είναι η συνιστώσα της μετατόπισης κατά τη διεύθυνση της δύναμης. Όταν η δύναμη κινείται κάθετα στον άξονα εφαρμογής της, το έργο είναι μηδέν.
5 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Έργο Εξωτερικών Δυνάμεων (...) Δ03-5 Αν η μετατόπιση δεν είναι συγγραμμική με τον άξονα εφαρμογής της δύναμης, το συνολικό έργο μπορεί να υπολογιστεί αθροίζοντας το έργο που παράγει κάθε συνιστώσα της δύναμης που δρα κατά τη διεύθυνση των συνιστωσών μετατοπίσεων δ και δ αντίστοιχα: x y w = F δ + F δ x x y y
6 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Έργο Εξωτερικών Δυνάμεων (...) Δ03-6 Αν η δύναμη μεταβάλλεται (κατά μέτρο) όσο πραγματοποιείται η μετατόπιση, και αν η σχέση μεταξύ της δύναμης F και της συγγραμμικής μετατόπισης δ είναι γνωστή, τότε το έργο μπορεί να υπολογιστεί με ολοκλήρωση. Η μετατόπιση διαιρείται σε μια σειρά από στοιχειώδη τμήματα απειροστού μήκους dδ. Το έργο που αφορά το στοιχειώδες τμήμα ισούται με dw = F dδ Το συνολικό έργο προκύπτει αθροίζοντας τη συνεισφορά όλων των dw: δ w = F dδ = Εμβαδόν κάτω από την καμπύλη F δ 0
7 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Έργο Εξωτερικών Δυνάμεων (...) Δ03-7 Έργο Ροπής: Ορίζεται το γινόμενο της ροπής επί τη γωνία περιστροφής (νοουμένου ότι η ροπή είναι σταθερή). w = Mθ όπου θ είναι η γωνία περιστροφής. Ανηροπήμεταβάλλεται(κατά μέτρο) όσο πραγματοποιείται η περιστροφή, και αν η σχέση μεταξύ της ροπής M και της περιστροφής θ είναι γνωστή, τότε το έργο μπορεί να υπολογιστεί με ολοκλήρωση: θ w = M dθ = Εμβαδόν κάτω από την καμπύλη M θ 0
8 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Έργο Εξωτερικών Δυνάμεων (...) Δ03-8 Γραμμικώς ελαστική συμπεριφορά Αν το υλικό ακολουθεί το νόμο του Hooke, δηλαδήανηεπιβαλλόμενηδύναμηήροπή μεταβάλλεται γραμμικά με τη μετατόπιση, καθώςαυξάνειαπότομηδένσεμιατελική τιμή F ή M, τότε το παραγόμενο έργο δίνεται από τις σχέσεις w = 1 Fδ 2 για δύναμη w 1 = Mθ 2 για ροπή
9 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Ελαστική Ενέργεια Παραμόρφωσης σε Δικτύωμα Δ03-9 Όταν μια ράβδος δικτυώματος φορτίζεται με εξωτερικό φορτίο P τότε η αξονική δύναμη F της ράβδου ισούται με P. Αν η ράβδος συμπεριφέρεται ελαστικά (ισχύει ο νόμος του Hooke), τότε η ελαστική ενέργεια παραμόρφωσης U που αποθηκεύεται στη ράβδο λόγω δύναμης που μεταβάλλεται γραμμικά από μηδέν μέχρι F, όταν το μήκος της ράβδου μεταβάλλεται κατά ΔL, ισούται με 1 U = FΔL 2 (1) F FL με Δ L = = (2) K AE όπου L είναι το μήκος της ράβδου, Α το εμβαδόν της διατομής, E το μέτρο ελαστικότητας, και F ητελικήτιμήτηςαξονικής δύναμης. 2 F L U = Αντικαθιστώντας στην (1) την (2) προκύπτει: 2AE
10 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων:Δ03-10 Ελαστική Ενέργεια Παραμόρφωσης σε Δικτύωμα (...) Στην περίπτωση που το μέγεθος της αξονικής δύναμης παραμένει σταθερό όσο το μήκος της ράβδου μεταβάλλεται κατά ΔL για παράδειγμα, σε θερμοκρασιακές μεταβολές η ελαστική ενέργεια παραμόρφωσης ισούται με: U = FΔL Η ενέργεια που αποθηκεύεται σε ένα σώμα μπορεί να απεικονιστεί γραφικά. Αν η μεταβολή του μεγέθους της αξονικής δύναμης της ράβδου σχεδιαστεί ως προς τη μεταβολή του μήκους ΔL, τότε το εμβαδόν κάτω από την καμπύλη ισούται με την ελαστική ενέργεια παραμόρφωσης U. Μεταβλητό μέγεθος δύναμης Σταθερό μέγεθος δύναμης
11 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων:Δ03-11 Ελαστική Ενέργεια Παραμόρφωσης σε Δοκούς Η μεταβολή της ελαστικής ενέργειας παραμόρφωσης du που αποθηκεύεται σε τμήμα δοκού λόγω ροπής Μ, που μεταβάλλεται γραμμικά από μηδέν μέχρι Μ, όταν οι πλευρές του τμήματος της δοκού περιστρέφονται κατά γωνία dθ, ισούται με du = 1 2 Mdθ (1) και dθ = Mdx (2) EI όπου E είναι το μέτρο ελαστικότητας και I είναι η ροπή αδράνειας της διατομής ως προς τον ουδέτερο άξονα. Αντικαθιστώντας στην (1) την (2) προκύπτει: Mdx 2 L M = = 2 du U dx 2EI 0 2EI
12 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων:Δ03-12 Ελαστική Ενέργεια Παραμόρφωσης σε Δοκούς (...) Στην περίπτωση που το μέγεθος της ροπής παραμένει σταθερό όσο η γωνία περιστροφής της δοκού είναι dθ, η μεταβολήτης ελαστικής ενέργειας παραμόρφωσης ισούται με: du = Mdθ Αν η μεταβολή του μεγέθους της ροπής της δοκού σχεδιαστεί ως προς dθ, τότε το εμβαδόν κάτω από την καμπύλη ισούται με την ελαστική ενέργεια παραμόρφωσης U. Μεταβλητό μέγεθος ροπής Σταθερό μέγεθος ροπής
13 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων:Δ03-13 Αρχή Διατήρησης της Ενέργειας (Πραγματικό Έργο) Σύμφωνα με την αρχή διατήρησης της ενέργειας: W = U όπου W είναι το έργο των εξωτερικών δυνάμεων και U είναι η ελαστική ενέργεια παραμόρφωσης (εσωτερικό έργο). Η μέθοδος της αρχής διατήρησης της ενέργειας μπορεί να εφαρμοστεί σε φορείς που φορτίζονται μόνο με ένα φορτίο.
14 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων:Δ03-14 Αρχή Διατήρησης της Ενέργειας σε Δικτυώματα Για να υπολογιστεί η μετακίνηση σε ένα σημείο του δικτυώματος λόγω του φορτίου P, που μεταβάλλεται γραμμικά από το μηδέν μέχρι την τελική τιμή P, εξισώνουμε το έργο των εξωτερικών δυνάμεων W = ( P 2)δ με το 2 εσωτερικό έργο U = ( F L) (2 AE) : P F δ = 2 L 2 2AE όπου P και δ είναι συγγραμμικά και το Σ δηλώνει άθροισμα της ενέργειας όλων των ράβδων του δικτυώματος.
15 Παράδειγμα Π3-1 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων:Δ03-15 Χρησιμοποιώντας τη μέθοδο του πραγματικού έργου, να υπολογιστεί η οριζόντια μετακίνηση δ x του σημείου Β του δικτυώματος. Σε όλες τις ράβδους Α=2.4 in 2 και E=30,000 kips/in 2. Αφού το φορτίο P=30 kips είναι συγγραμμικό με τη ζητούμενη μετακίνηση, μπορούμε να εφαρμόσουμε τη μέθοδο του πραγματικού έργου: W P F = δ = 2 L U x 2 2AE Οι τιμές των δυνάμεων των ράβδων F φαίνονται στο σχήμα (50) (25)(12) ( 40) (20)(12) ( 30) (15)(12) δ x = (2.4)(30,000) 2(2.4)(30,000) 2(2.4)(30,000) δ x = 0.6 in Αν και το σημείο Β μετακινείται και κατακόρυφα προς τα κάτω, όπως φαίνεται στο σχήμα, δεν μπορούμε να υπολογίσουμε τη μετακίνηση αυτή επειδή το φορτίο δεν ασκείται στην κατακόρυφη διεύθυνση. ΠΠΜ220: Στατική Ανάλυση Κατασκευών II
16 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων:Δ03-16 Αρχή Δυνατών Έργων: Δικτυώματα Η αρχή των δυνατών έργων (ΑΔΕ) μπορεί να χρησιμοποιηθεί για τον υπολογισμό της μετακίνησης οποιουδήποτε σημείου του φορέα, σε οποιαδήποτε διεύθυνση και για τυχαία φόρτιση. Η μέθοδος μπορεί να εφαρμοστεί σε ελαστικά ή ανελαστικά προβλήματα και σε περιπτώσεις υποχωρήσεων στηρίξεων και θερμοκρασιακών μεταβολών. Η μέθοδος συνίσταται στην εφαρμογή ενός δυνατού (νοητού) φορτίου στο σημείο και κατά τη διεύθυνση της ζητούμενης μετακίνησης. Καθώς ο φορέας παραμορφώνεται υπό την επίδραση των πραγματικών φορτίων του φορέα, εξωτερικό δυνατό έργο W παράγεται από το δυνατό φορτίο καθώς «διανύει» τηνπραγματικήμετακίνησητουφορέα. Σύμφωνα με την αρχή διατήρησης της ενέργειας, ισοδύναμη ποσότητα δυνατής ενέργειας παραμόρφωσης αποθηκεύεται στο φορέα: W = U U (1)
17 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων:Δ03-17 Αρχή Δυνατών Έργων: Δικτυώματα (...) H δυνατή ενέργεια παραμόρφωσης U που αποθηκεύεται στο φορέα ισούται με το γινόμενο των εσωτερικών δυνάμεων N που αναπτύσσονται στα μέλη λόγω του δυνατού φορτίου (και μόνον αυτού) επί τις παραμορφώσεις ΔL (βραχύνσεις ή επιμηκύνσεις) των μελών που προκαλούνται από τα πραγματικά φορτία: 1 δ = N ΔL (2) Οι δυνάμεις και στα δύο μέλη της Εξ. (1) αφορούν στο δυνατό σύστημα, ενώ οι μετακινήσεις και οι παραμορφώσεις στο πραγματικό σύστημα.
18 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων:Δ03-18 Αρχή Δυνατών Έργων: Δικτυώματα (...) Παραμορφώσεις ράβδων από εξωτερικό φορτίο P Οι παραμορφώσεις των ράβδων που οφείλονται σε εξωτερικό φορτίο μπορούν να εκφραστούν στη μορφή N Δ L = = K NL EA (3) Άρα, η διατύπωση της ΑΔΕ, Εξ. (2), παίρνει τη μορφή 1 δ = N Δ L = NNL EA (4)
19 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων:Δ03-19 Αρχή Δυνατών Έργων: Δικτυώματα (...) Παραμορφώσεις ράβδων από θερμοκρασιακή μεταβολή ΔΤ Καθώς η θερμοκρασία του μέλους μεταβάλλεται, το μήκος του μεταβάλλεται. Συγκεκριμένα, αύξηση της θερμοκρασίας (ΔΤ>0) προκαλεί επιμήκυνση του μέλους και μείωση της θερμοκρασίας (ΔΤ<0) προκαλεί βράχυνση του μέλους. Σε κάθε περίπτωση η μεταβολή του μήκους του μέλους δίνεται από: Δ L = α ΔT L θερμ (5) όπου α = συντελεστής θερμικής διαστολής μέλους ΔΤ = μεταβολή θερμοκρασίας L = μήκος μέλους Άρα, η διατύπωση της ΑΔΕ, εξίσωση (2), παίρνει τη μορφή 1 δ = N Δ L = Ν α ΔT L (6)
20 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων:Δ03-20 Αρχή Δυνατών Έργων: Δικτυώματα (...) Παραμορφώσεις ράβδων από κατασκευαστική ατέλεια ΔL κατ Είναι πιθανόν το μήκος ενός μέλους δικτυώματος να διαφέρει από το επιθυμητό λόγω κατασκευαστικής ατέλειας. Σε τέτοια περίπτωση, η μετακίνηση ενός κόμβου του δικτυώματος από την αναμενόμενη θέση του μπορεί να προσδιοριστεί απευθείας από την Εξ. (2): 1 δ = N ΔL κατ (7)
21 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων:Δ03-21 Αρχή Δυνατών Έργων: Δικτυώματα (...) Παραμορφώσεις ράβδων από υποχώρηση στηρίξεων Δ Σε κατασκευές που θεμελιώνονται σε χαλαρά εδάφη μπορεί να παρατηρηθεί υποχώρηση των στηρήξεων τους. Η υποχώρησηαυτή, όταν είναι διαφορική, συνοδεύεται από περιστροφή των μέλων και μετακίνηση των κόμβων του φορέα. Αν ο φορέας είναι ισοστατικός, δεν αναπτύσσεται εσωτερική ένταση αφού η κατασκευή μπορεί να αναπροσαρμοστεί στη νέα θέση των στηρίξεων. Αντίθετα, αν ο φορέας είναι υπερστατικός, η υποχώρηση των στηρίξεων συνοδεύεται εν δυνάμει από ανάπτυξη μεγάλων εσωτερικών δυνάμεων. Το μέγεθος αυτών των δυνάμεων είναι συνάρτηση της ακαμψίας των μελών. Καθώς ο φορέας υπόκειται σε υποχώρηση Δ των στηρίξεων του, εξωτερικό έργο παράγουν, εκτός από το δυνατό φορτίο, και οι αντιδράσεις R στις μετατοπισμένες στηρίξεις. Άρα, η διατύπωση της ΑΔΕ, εξίσωση (2), παίρνει τη μορφή 1 δ + RΔ = N ΔL (8)
22 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων:Δ03-22 Αρχή Δυνατών Έργων: Δικτυώματα (...) Μεθοδολογία για προσδιορισμό των μετακινήσεων κόμβων δικτυώματος βάσει της ΑΔΕ: N Πραγματική ένταση Για τη δοσμένη (πραγματική) φόρτιση, υπολογίζουμε τις αξονικές δυνάμεις N στις ράβδους του δικτυώματος (με τη μέθοδο των κόμβων ή τη μέθοδο των τομών). Δυνατή ένταση N Στον κόμβο που ζητείται η μετακίνηση, εφαρμόζουμε μια μοναδιαία δύναμη κατά τη διεύθυνση της ζητούμενης μετακίνησης. Για τη φόρτιση αυτή, που δεν περιλαμβάνει τα πραγματικά (δοσμένα) φορτία του φορέα, υπολογίζουμε τις αξονικές δυνάμεις N στις ράβδους του δικτυώματος (με τη μέθοδο των κόμβων ή τη μέθοδο των τομών) και τις αντιδράσεις στις στηρίξεις. Θεωρούμε τις εφελκυστικές δυνάμεις θετικές και τις θλιπτικές δυνάμεις αρνητικές.
23 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων:Δ03-23 Αρχή Δυνατών Έργων: Δικτυώματα (...) Διατύπωση της ΑΔΕ και προσδιορισμός της ζητούμενης μετακίνησης : όπου 1 δ R Δ ΔL κατ N N L α = δυνατό εξωτερικό μοναδιαίο φορτίο, ασκούμενο σε κόμβο του δικτυώματος κατά τη διεύθυνση της μετακίνησης = πραγματική μετακίνηση του θεωρούμενου κόμβου (προκαλούμενη από τα πραγματικά φορτία του φορέα) = οι αντιδράσεις στις μετατοπισμένες στηρίξεις λόγω του δυνατού εξωτερικού μοναδιαίου φορτίου = πραγματική υποχώρηση στηρίξεων = κατασκευαστική ατέλεια = εσωτερική αξονική δύναμη στη ράβδο του δικτυώματος προκαλούμενη από τα πραγματικά φορτία του φορέα = εσωτερική αξονική δύναμη στη ράβδο του δικτυώματος προκαλούμενη από το δυνατό εξωτερικό μοναδιαίο φορτίο = μήκος, E = μέτρο ελαστικότητας, A = εμβαδόν διατομής = συντελεστής θερμικής διαστολής, ΔΤ = μεταβολή θερμοκρασίας δ N 1 δ + RΔ = Ν Δ L = Ν L + α ΔT L + ΔL EA κατ (9)
24 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων:Δ03-24 Αρχή Δυνατών Έργων: Δικτυώματα (...) Ανητιμήτουδ που προκύπτει από την Εξ. (9) είναι θετική, η μετακίνηση έχει την ίδια φορά με το επιβαλλόμενο μοναδιαίο φορτίο. Αντίθετα, ανητιμήτουδ είναι αρνητική, η μετακίνηση έχει αντίθετη φορά απ αυτήν του επιβαλλόμενου μοναδιαίου φορτίου.
Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια)
Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια) Παράδειγμα Π4-1 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Δ04-2 Χρησιμοποιώντας την ΑΔΕ, να υπολογιστούν οι μετακινήσεις δ x και δ y του κόμβου
Διαβάστε περισσότεραΕνεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια)
Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια) ο Θεώρημα Castigliano Δ06- Το ο ΘεώρημαCastigliano αποτελεί μια μέθοδο υπολογισμού της μετακίνησης (μετάθεσης ή στροφής) ενός σημείου του φορέα είτε
Διαβάστε περισσότεραΜέθοδος των Δυνάμεων
Μέθοδος των Δυνάμεων Εισαγωγή Μέθοδος των Δυνάμεων: Δ07-2 Η Μέθοδος των Δυνάμεων ή Μέθοδος Ευκαμψίας είναι μία μέθοδος για την ανάλυση γραμμικά ελαστικών υπερστατικών φορέων. Ανκαιημέθοδοςμπορείναεφαρμοστείσεπολλάείδηφορέων
Διαβάστε περισσότεραΜέθοδος των Δυνάμεων (συνέχεια)
Μέθοδος των υνάμεων (συνέχεια) Παράδειγμα Π8-1 Μέθοδος των υνάμεων: 08-2 Να υπολογιστούν οι αντιδράσεις και να σχεδιαστεί το διάγραμμα ροπών κάθε μέλους του πλαισίου. [ΕΙ σταθερό] Το πλαίσιο στο σχήμα
Διαβάστε περισσότεραιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 24-27 Αρχή υνατών Έργων (Α Ε) Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 και Τρίτη, 9 Νοεµβρίου, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
Διαβάστε περισσότεραΜέθοδος των Δυνάμεων (συνέχεια)
Μέθοδος των Δυνάμεων (συνέχεια) Δοκοί σε Ελαστικές Στηρίξεις Μέθοδος των Δυνάμεων: Δ10-2 Οι στηρίξεις κάποιων φορέων είναι δυνατό να μετακινηθούν υπό την επίδραση της εξωτερικής φόρτισης. Για παράδειγμα,
Διαβάστε περισσότεραΓεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης
Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Εισαγωγή Παραμορφώσεις Ισοστατικών Δοκών και Πλαισίων: Δ22-2 Οι κατασκευές, όταν υπόκεινται σε εξωτερική φόρτιση, αναπτύσσουν
Διαβάστε περισσότερα2.1 Παραμορφώσεις ανομοιόμορφων ράβδων
ΑΞΟΝΙΚΗ ΦΟΡΤΙΣΗ 9 Αξονική φόρτιση. Παραμορφώσεις ανομοιόμορφων ράβδων. Ελαστική ράβδος ΑΒ μήκους, Γ B μέτρου ελαστικότητας Ε και / συντελεστή θερμικής διαστολής α, είναι πακτωμένη στα σημεία Α και Β και
Διαβάστε περισσότεραΜέθοδος των Δυνάμεων (συνέχεια)
Μέθοδος των Δυνάμεων (συνέχεια) Υποχωρήσεις Στηρίξεων Μέθοδος των Δυνάμεων: Οι υποχωρήσεις στηρίξεων, η θερμοκρασιακή μεταβολή και τα κατασκευαστικά λάθη προκαλούν ένταση στους υπερστατικούς φορείς. Η
Διαβάστε περισσότεραιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 30-34 Μέθοδοι επίλυσης υπερστατικών φορέων: Μέθοδοι των δυνάµεων Τρίτη, 16, Τετάρτη, 17, Παρασκευή 19 Τρίτη, 23, και Τετάρτη 24 Νοεµβρίου 2004 Πέτρος
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1
ΔΕΔΟΜΕΝΑ: ΘΕΜΑ 1 Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα Μ, Q, N (3.5 μονάδες) β) η κατακόρυφη βύθιση του κόμβου 7 λόγω της φόρτισης και μιας ομοιόμορφης μείωσης της θερμοκρασίας
Διαβάστε περισσότεραιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 13-15 Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη, 5, και Τετάρτη, 6 και Παρασκευή 8 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
Διαβάστε περισσότεραΠ A N E Π I Σ T H M I O Θ E Σ Σ A Λ I A Σ TMHMA MHXANOΛOΓΩN MHXANIKΩN
EPΓΣTHPIO MHXNIKHΣ KI NTOXHΣ TΩN YΛIKΩN Λεωφόρος θηνών Πεδίον Άρεως 84 όλος Πρόβλημα Π N E Π I Σ T H M I O Θ E Σ Σ Λ I Σ TMHM MHXNOΛOΓΩN MHXNIKΩN MHXNIKH ΤΩΝ ΥΛΙΚΩΝ Ι Σειρά Ασκήσεων Διευθυντής: Kαθηγητής
Διαβάστε περισσότερα6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών
6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε
Διαβάστε περισσότεραΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας
ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής Διδάσκων: Γιάννης Χουλιάρας Ισοστατικά πλαίσια με συνδέσμους (α) (β) Στατική επίλυση ισοστατικών πλαισίων
Διαβάστε περισσότεραΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ
ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ έκδοση DΥΝI-DCMB_2016b Copyright
Διαβάστε περισσότεραΜέθοδοι των Μετακινήσεων
Μέθοδοι των Μετακινήσεων Εισαγωγή Μέθοδοι των Μετακινήσεων: Δ14-2 Στη Μέθοδο των Δυνάμεων (ή Ευκαμψίας), που έχουμε ήδη μελετήσει, επιλέγουμε ως άγνωστα υπερστατικά μεγέθη αντιδράσεις ή εσωτερικές δράσεις.
Διαβάστε περισσότεραΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών
ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών Ασκήσεις για λύση Η ράβδος του σχήματος είναι ομοιόμορφα μεταβαλλόμενης κυκλικής 1 διατομής εφελκύεται αξονικά με δύναμη Ρ. Αν D d είναι οι διάμετροι των ακραίων
Διαβάστε περισσότεραΔρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1
Σχήμα 1 Εξαιτίας της συνιστώσας F X αναπτύσσεται εντός του υλικού η ορθή τάση σ: N σ = A N 2 [ / ] Εξαιτίας της συνιστώσας F Υ αναπτύσσεται εντός του υλικού η διατμητική τάση τ: τ = mm Q 2 [ N / mm ] A
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ Πορεία επίλυσης. Ευρίσκεται
Διαβάστε περισσότεραΕπίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,,
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 12 η Επίλυση 2ας Προόδου & Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη 5 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
Διαβάστε περισσότεραΕνότητα: Θερμικές τάσεις σε πλοία
ΔΙΑΜΗΚΗΣ ΑΝΤΟΧΗ ΠΛΟΙΟΥ Ενότητα: Θερμικές τάσεις σε πλοία Α. Θεοδουλίδης Θερμικές τάσεις σε πλοία Η ανάπτυξη θερμικών τάσεων σε πλοία οφείλεται: (α) στην επίδραση της ηλιακής ακτινοβολίας (β) στη μεταφορά
Διαβάστε περισσότεραιάλεξη 7 η, 8 η και 9 η
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 7 η, 8 η και 9 η Ανάλυση Ισοστατικών οκών και Πλαισίων Τρίτη,, 21, Τετάρτη,, 22 και Παρασκευή 24 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 Β5. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας
Διαβάστε περισσότεραΜάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 015 3. Δοκοί (φορτία NQM) Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 3. Δοκοί (φορτία NQΜ)/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής με τα διάφορα είδη φορτίων.
Διαβάστε περισσότεραΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:
ΔΕΔΟΜΕΝΑ: ΘΕΜΑ Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα, Q (2.5 μονάδες) β) να υπολογιστεί το μέτρο και η φορά της κατακόρυφης μετατόπισης στο μέσο του τμήματος (23) ( μονάδα) Δίνονται:
Διαβάστε περισσότεραΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι Ακαδηµαϊκό Έτος 2004 Χειµερινό Εξάµηνο Τελική Εξέταση 8:30-11:30 π.µ.
Διαβάστε περισσότεραΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ
ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΔΙΔΑΣΚΩΝ: ΓΚΟΥΝΤΑΣ Δ. ΙΩΑΝΝΗΣ ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ / ΚΑΤΕΥΘΥΝΣΗ ΑΝΤΙΡΡΥΠΑΝΣΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης CreatveCommons. Για
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα Εξισώσεις
Διαβάστε περισσότεραΑΣΚΗΣΗ 17 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:
ΑΣΚΗΣΗ 7 ΔΕΔΟΜΕΝΑ: Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα M, Q (2.5 μονάδες) β) να υπολογιστεί το μέτρο και η φορά της κατακόρυφης μετατόπισης στο μέσο του τμήματος (23) ( μονάδα)
Διαβάστε περισσότερα20/10/2016. Δρ. Σωτήρης Δέμης. Εργαστηριακές Σημειώσεις Κάμψη Ξυλινης Δοκού. Πανεπιστημιακός Υπότροφος
Εργαστηριακές Σημειώσεις Κάμψη Ξυλινης Δοκού Δρ. Σωτήρης Δέμης Πανεπιστημιακός Υπότροφος Τσιμεντοπολτός Περιλαμβάνονται διαγράμματα από τα βιβλία «Μηχανική των Υλικών» και «Δομικά Υλικά» του Αθανάσιου
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα
Διαβάστε περισσότεραΜάθημα: Στατική ΙΙ 9 Φεβρουαρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 011 Διδάσκων:, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
Διαβάστε περισσότεραΑΣΚΗΣΗ 6. Διαλέγουμε ως υπερστατικά μεγέθη τις κατακόρυφες αντιδράσεις στις τρεις αριστερές στηρίξεις.
Άσκηση 6 Μέθοδος των υνάμεων ΑΣΚΗΣΗ 6 ΕΟΜΕΝΑ: Για τη δοκό του σχήματος με ίσα ανοίγματα και ροπές αδρανείας σταθερές αλλά όχι ίδιες σε κάθε άνοιγμα, ζητείται να μορφωθεί το διάγραμμα ροπών κάμψεως. 6 mm
Διαβάστε περισσότεραΕξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια)
Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια) Εξίσωση Κίνησης Μονοβάθμιου Συστήματος: Επιρροή Μόνιμου Φορτίου Βαρύτητας Δ03-2 Μέχρι τώρα στη διατύπωση της εξίσωσης κίνησης δεν έχει ληφθεί υπόψη το
Διαβάστε περισσότερα5. Θερμικές τάσεις και παραμορφώσεις
5. Θερμικές τάσεις και παραμορφώσεις Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 5. Θερμικές Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών 2015 1 Περιεχόμενα ενότητας Επίδραση ορθών τάσεων στη μεταβολή
Διαβάστε περισσότεραAΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ
ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) 371 AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) ΑΣΚΗΣΗ 1 Το µηκυνσιόµετρο στο σηµείο Α της δοκού του σχήµατος καταγράφει θλιπτική παραµόρφωση ίση µε 0.05. Πόση
Διαβάστε περισσότερα1. Ανασκόπηση Μεθόδων Ευκαμψίας (δυνάμεων)
ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 1. Ανασκόπηση Μεθόδων Ευκαμψίας (δυνάμεων) Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος 1 Θέματα Μέθοδος
Διαβάστε περισσότερα14/2/2008 1/5 ΑΝΤΟΧΗ ΠΛΟΙΟΥ - ΤΥΠΟΛΟΓΙΟ ΓΙΑ ΕΞΕΤΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΠΕΡΙΟΔΟΥ
14//008 1/5 ΑΝΤΟΧΗ ΠΛΟΙΟΥ - ΤΥΠΟΛΟΓΙΟ ΓΙΑ ΕΞΕΤΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΠΕΡΙΟΔΟΥ 007-008 Το τυπολόγιο έχει παραχθεί αποκλειστικά για χρήση κατά την εξέταση του μαθήματος ΑΝΤΟΧΗ ΠΛΟΙΟΥ ΚΑΜΨΗ ΣΕ ΗΡΕΜΟ ΝΕΡΟ Διόρθωση
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ
ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ Συγγραμμικές δυνάμεις 1 ος -2 ος νόμος του Νεύτωνα 1. Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες; α. Μια δύναμη μπορεί να προκαλέσει αλλαγή στην κινητική
Διαβάστε περισσότεραΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15 1. Εισαγωγικές έννοιες... 17 1.1 Φορτία... 17 1.2 Η φέρουσα συμπεριφορά των βασικών υλικών... 22 1.2.1 Χάλυβας... 23 1.2.2 Σκυρόδεμα... 27 1.3 Η φέρουσα συμπεριφορά
Διαβάστε περισσότεραΔρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1
Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι
Διαβάστε περισσότερα2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση
2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,
Διαβάστε περισσότεραΕπαναλήψεις. Τετάρτη, 1 & Παρασκευή,, 3 εκεµβρίου 2004. komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk. Πέτρος Κωµοδρόµος
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι Επαναλήψεις Τετάρτη, 1 & Παρασκευή,, 3 εκεµβρίου 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1 Θέµατα
Διαβάστε περισσότερα2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων)
ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων) Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος,
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016 A2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr A2. Δικτυώματα/ Μηχανική Υλικών 1 Τι είναι ένα δικτύωμα Είναι ένα σύστημα λεπτών,
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 1. Εισαγωγικές έννοιες στην μηχανική των υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενο μαθήματος Μηχανική των Υλικών: τμήμα των θετικών επιστημών που
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 016 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής
Διαβάστε περισσότεραΓενικευμένα Mονοβάθμια Συστήματα
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Γενικευμένα Mονοβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Δυναμική Ανάλυση Ραβδωτών Φορέων 1 1. Είδη γενικευμένων μονοβαθμίων συστημάτων xu
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 017 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής
Διαβάστε περισσότεραΜέθοδος Επικόμβιων Μετατοπίσεων
Μέθοδος Επικόμβιων Μετατοπίσεων Εισαγωγή Μέθοδος Επικόμβιων Μετατοπίσεων: Δ18-2 Τα περισσότερα προγράμματα Η/Υ έχουνωςθεμελιώδηβάση τους τη Μέθοδο Επικόμβιων Μετατοπίσεων. Στη Μέθοδο των Επικόμβιων Μετατοπίσεων,
Διαβάστε περισσότερα2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων)
ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων) Εαρινό εξάμηνο 2019 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 A2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr A2. Δικτυώματα/ Μηχανική Υλικών 1 Τι είναι ένα δικτύωμα Είναι ένα σύστημα λεπτών,
Διαβάστε περισσότεραΔιδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : , 12:00-15:00 ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : --, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΑΡ. ΜΗΤΡ :.......
Διαβάστε περισσότεραΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας
ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή Διδάσκων: Γιάννης Χουλιάρας Επίλυση υπερστατικών φορέων Για την επίλυση των ισοστατικών φορέων (εύρεση αντιδράσεων και μεγεθών έντασης) αρκούν
Διαβάστε περισσότεραΑΣΚΗΣΗ 8. Για το φορέα του σχήματος να μορφωθούν τα διαγράμματα M, Q, N για ομοιόμορφο φορτίο και θερμοκρασιακή φόρτιση.
ΑΣΚΗΣΗ 8 ΕΟΜΕΝΑ: Για το φορέα του σχήματος να μορφωθούν τα διαγράμματα, Q, N για ομοιόμορφο φορτίο και θερμοκρασιακή φόρτιση. ίνονται: 50 KNm I/ A 0, T T 5 C 0 h 0,5m 5 C l l 0m T a t 5 C / C ΕΠΙΛΥΣΗ:
Διαβάστε περισσότεραΣημειώσεις του μαθήματος Μητρωϊκή Στατική
ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σημειώσεις του μαθήματος Μητρωϊκή Στατική Π. Γ. Αστερής Αθήνα, Μάρτιος 017 Περιεχόμενα Κεφάλαιο 1 Ελατήρια σε σειρά... 1.1 Επιλογή μονάδων και καθολικού
Διαβάστε περισσότεραΣτοιχεία Μηχανών. Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά
Στοιχεία Μηχανών Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά Ύλη μαθήματος -ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΜΗΧΑΝΙΚΗΣ ΥΛΙΚΩΝ -ΑΞΟΝΕΣ -ΚΟΧΛΙΕΣ -ΙΜΑΝΤΕΣ -ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ ΒΑΘΜΟΛΟΓΙΑ ΜΑΘΗΜΑΤΟΣ: 25% πρόοδος 15% θέμα
Διαβάστε περισσότεραΚεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα
Κεφάλαιο 6β Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Ροπή Ροπή ( ) είναι η τάση που έχει μια δύναμη να περιστρέψει ένα σώμα γύρω από κάποιον άξονα. d είναι η κάθετη απόσταση του άξονα περιστροφής
Διαβάστε περισσότεραΠλαστική Κατάρρευση Δοκών
Πλαστική Κατάρρευση Δοκών ΠΕΡΙΕΧΟΜΕΝΑ Σταδιακή Μελέτη Πλαστικής Κατάρρευσης o Παράδειγμα 1 (ισοστατικός φορέας) o Παράδειγμα 2 (υπερστατικός φορέας) Αμεταβλητότητα Φορτίου Πλαστικής Κατάρρευσης Προσδιορισμός
Διαβάστε περισσότεραΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα
ΠΠΜ : Ανάλυση Κατασκευών με Μητρώα, 08 - η Πρόοδος ΠΠΜ : Ανάλυση Κατασκευών με Μητρώα η Ενδιάμεση Πρόοδος Ακαδημαϊκό Έτος 07 8, Εαρινό Εξάμηνο Πέμπτη, Φεβρουαρίου, 08, 9:00-0:00 π.μ. (60 λεπτά) Όνομα:
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ
ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή
Διαβάστε περισσότεραΑΣΚΗΣΗ 6 - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ
ΑΣΚΗΣΗ - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ Να γίνει πλήρης ανάλυση του μεταλλικού δικτυώματος του σχήματος. Ολες οι συνδέσεις των ράβδων στους κόμβους είναι αρθρωτού τύπου. Επί πλέον, ο ένας εκ των άνω κόμβων μπορεί
Διαβάστε περισσότεραΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα
ΠΑΡΑΡΤΗΜΑ Γ Επικαμπύλια και Επιφανειακά Ολοκληρώματα Η αναγκαιότητα για τον ορισμό και την περιγραφή των ολοκληρωμάτων που θα περιγράψουμε στο Παράρτημα αυτό προκύπτει από το γεγονός ότι τα μεγέθη που
Διαβάστε περισσότεραΠΠΜ 220: Στατική Ανάλυση Κατασκευών Ι
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος Γενικές οδηγίες: Ακαδηµαϊκό Έτος 2004 Χειµερινό Εξάµηνο ΠΠΜ 220: Στατική Ανάλυση Κατασκευών Ι 3 η Σειρά Ασκήσεων
Διαβάστε περισσότεραΣυνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης
5.1. Μορφές κάµψης ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης Η γενική κάµψη (ή κάµψη), κατά την οποία εµφανίζεται στο φορέα (π.χ. δοκό) καµπτική ροπή (Μ) και τέµνουσα δύναµη (Q) (Σχ. 5.1.α).
Διαβάστε περισσότεραΚεφάλαιο 5 Φορείς με στοιχεία πεπερασμένης δυστένειας
Κεφάλαιο Φορείς με στοιχεία πεπερασμένης δυστένειας Σύνοψη Οι ασκήσεις 0, και του κεφαλαίου αυτού αφορούν σε κινητούς ατενείς φορείς, οι οποίοι συμπεριλαμβάνουν μεταξύ άλλων και στοιχεία πεπερασμένης δυστένειας
Διαβάστε περισσότεραΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η
ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η Σκοπός Σκοπός του πειράµατος είναι ο προσδιορισµός των χαρακτηριστικών τιµών αντοχής του υλικού που ορίζονταιστηκάµψη, όπωςτοόριοδιαρροήςσεκάµψηκαιτοόριοαντοχής
Διαβάστε περισσότεραΠαραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση)
Παραµόρφωση σε Σηµείο Σώµατος Η ολική παραµόρφωση στερεού σώµατος στη γειτονιά ενός σηµείου, Ο, δηλαδή η συνολική παραµόρφωση ενός µικρού τµήµατος (στοιχείου) του σώµατος γύρω από το σηµείο µπορεί να αναλυθεί
Διαβάστε περισσότεραΣεµινάριο Αυτοµάτου Ελέγχου
ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Αυτοµατισµού Σεµινάριο Αυτοµάτου Ελέγχου Ειδικά θέµατα Ανάλυσης συστηµάτων Σύνθεσης συστηµάτων ελέγχου Μελέτης στοχαστικών συστηµάτων. Καλλιγερόπουλος Σεµινάριο Αυτοµάτου Ελέγχου Ανάλυση
Διαβάστε περισσότερα1 η Επανάληψη ιαλέξεων
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι 1 η Επανάληψη ιαλέξεων Στατική Ανάλυση Ισοστατικών Φορέων Τρίτη,, 28 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk ΠΠΜ
Διαβάστε περισσότεραΑνάλυση Ισοστατικών ικτυωµάτων
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 5 η και 6 η Ανάλυση Ισοστατικών ικτυωµάτων Τετάρτη,, 15, Παρασκευή, 17 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΧΩΡΙΚΑ ΔΙΚΤΥΩΜΑΤΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 2. Δικτυώματα/ Μηχανική Υλικών 1 Σκοποί ενότητας Να είναι σε θέση ο φοιτητής να μπορεί να ελέγχει την ισο-στατικότητα
Διαβάστε περισσότεραΕπιταχύνοντας έναν αγωγό σε μαγνητικό πεδίο
Επιταχύνοντας έναν αγωγό σε μαγνητικό πεδίο Στο κύκλωμα του σχήματος η ράβδος Α με μήκος l = 1m, μάζα m = 0,4kg και αντίσταση = 1Ω, μπορεί να κινείται χωρίς χ τριβές σε επαφή με τους δυο κατακόρυφους (χωρίς
Διαβάστε περισσότεραΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : 8-9-, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......
Διαβάστε περισσότερα7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών
7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα
Διαβάστε περισσότεραΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ-ΕΠΙΠΕΔΑ ΔΙΚΤΥΩΜΑΤΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ-ΕΠΙΠΕΔΑ ΔΙΚΤΥΩΜΑΤΑ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Μ. Nεραντζάκη Αναπλ.
Διαβάστε περισσότεραΔρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1
Σχήμα 1 Τεχνικής Μηχανικής Διαγράμματα Ελευθέρου Σώματος (Δ.Ε.Σ.) Υπολογισμός Αντιδράσεων Διαγράμματα Φορτίσεων Διατομών (MNQ) Αντοχή Φορέα? Αντικείμενο Τεχνικής Μηχανικής Σχήμα 2 F Y A Γ B A Y B Y 1000N
Διαβάστε περισσότερα4.5 Αµφιέρειστες πλάκες
Τόµος B 4.5 Αµφιέρειστες πλάκες Οι αµφιέρειστες πλάκες στηρίζονται σε δύο απέναντι παρυφές, όπως η s1 στην εικόνα της 4.1. Αν µία αµφιέρειστη πλάκα στηρίζεται επιπρόσθετα σε µία ή δύο ακόµη παρυφές και
Διαβάστε περισσότεραΦυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο
Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 0 Κεφάλαιο Περιέχει: Αναλυτική Θεωρία Ερωτήσεις Θεωρίας Ερωτήσεις Πολλαπλής Επιλογής Ερωτήσεις Σωστού - λάθους Ασκήσεις ΘΕΩΡΙΑ 4- ΕΙΣΑΓΩΓΗ Στην μέχρι τώρα
Διαβάστε περισσότεραΕξαναγκασμένη Ταλάντωση. Τυχαία Φόρτιση (Ολοκλήρωμα Duhamel)
Εξαναγκασμένη Ταλάντωση Τυχαία Φόρτιση (Ολοκλήρωμα Duhamel) Εξαναγκασμένη Ταλάντωση: Τυχαία Φόρτιση: Απόκριση σε Τυχαία Φόρτιση: Βασική Ιδέα Δ10-2 Το πρόβλημα της κίνησης μονοβάθμιου συστήματος σε τυχαία
Διαβάστε περισσότεραΚεφάλαιο 2 Κινητοί ατενείς φορείς με ή χωρίς ελαστικές στηρίξεις/πακτώσεις
ΜΕΘΟΔΟΣ ΜΕΤΑΚΙΝΗΣΕΩΝ - ΑΣΚΗΣΕΙΣ Κεφάλαιο Κεφάλαιο Κινητοί ατενείς φορείς με ή χωρίς ελαστικές στηρίξεις/πακτώσεις Σύνοη Οι ασκήσεις έως 6 του κεφαλαίου αυτού, αφορούν σε κινητούς ατενείς φορείς. Στην Άσκηση
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 Εισαγωγή στο Μάθημα Μηχανική των Υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Εισαγωγή/ Μηχανική Υλικών 1 Χρονοδιάγραμμα 2017 Φεβρουάριος
Διαβάστε περισσότερα1 O ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΤΡΑΣ 2015 ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΨΩΜΑΘΙΑΝΟΣ ΕΜΜΑΝΟΥΗΛ
1 O ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΤΡΑΣ 2015 ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΨΩΜΑΘΙΑΝΟΣ ΕΜΜΑΝΟΥΗΛ ΔΥΝΑΜΗ Τις δυνάμεις τις διακρίνουμε βασικά με δύο τρόπους: Συντηρητικές Μη συντηρητικές
Διαβάστε περισσότεραΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ B B1. Σωστή απάντηση είναι η
Διαβάστε περισσότεραΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55
ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55 ΚΕΦΑΛΑΙΟ 3 ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 3.. Εισαγωγή Αναφέρθηκε ήδη στο ο κεφάλαιο ότι η αναπαράσταση της ταλαντωτικής
Διαβάστε περισσότεραΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα
ΠΠΜ 1: Ανάλυση Κατασκευών με Μητρώα, 017-1 η Πρόοδος ΠΠΜ 1: Ανάλυση Κατασκευών με Μητρώα 1 η Ενδιάμεση Πρόοδος Ακαδημαϊκό Έτος 016 17, Εαρινό Εξάμηνο Δευτέρα, 0 Φεβρουαρίου, 017, 9:00-10:00 π.μ. (60 λεπτά)
Διαβάστε περισσότεραΒΑΣΙΚΕΣ ΚΑΙ ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ. Από τη Φυσική της Α' Λυκείου
ΒΑΣΙΚΕΣ ΚΑΙ ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ Από τη Φυσική της Α' Λυκείου Δεύτερος νόμος Νεύτωνα, και Αποδεικνύεται πειραματικά ότι: Η επιτάχυνση ενός σώματος (όταν αυτό θεωρείται
Διαβάστε περισσότεραΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ
ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά
Διαβάστε περισσότεραΠΕΡΙΣΤΡΟΦΗ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΕΠΙΒΡΑΔΥΝΟΜΕΝΟΣ ΑΠΟ ΔΥΟ ΑΒΑΡΗΣ ΡΑΒΔΟΥΣ
ΠΕΡΙΣΤΡΟΦΗ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΕΠΙΒΡΑΔΥΝΟΜΕΝΟΣ ΑΠΟ ΔΥΟ ΑΒΑΡΗΣ ΡΑΒΔΟΥΣ Κυκλικός δίσκος ακτίνας R και μάζας m, περιστρέφεται με σταθερή γωνιακή ταχύτητα ω 0 (η τριβή στον άξονα περιστροφής θεωρείται αμελητέα).
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ Εισαγωγή Συστήματα συντεταγμένων. 7
Στατική των γραμμικών φορέων ix ΠΕΡΙΕΧΟΜΕΝΑ σελ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ. 1 1.1 Εισαγωγή.. 3 1.2 Συστήματα συντεταγμένων. 7 2. Η ΚΙΝΗΣΗ ΚΑΙ Η ΣΤΗΡΙΞΗ ΤΟΥ ΔΙΣΚΟΥ ΑΝΤΙΔΡΑΣΕΙΣ 13 2.1 Η κίνηση και η στήριξη
Διαβάστε περισσότερα3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4
Μηχανική Ι Εργασία #7 Χειμερινό εξάμηνο 8-9 Ν. Βλαχάκης. (α) Ποια είναι η ένταση και το δυναμικό του βαρυτικού πεδίου που δημιουργεί μια ομογενής σφαίρα πυκνότητας ρ και ακτίνας σε όλο το χώρο; Σχεδιάστε
Διαβάστε περισσότεραΕΠΙΠΕ Α ΙΚΤΥΩΜΑΤΑ. ομική Μηχανική Ι. Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙXΜΗΣ ΕΠΙΠΕ Α ΙΚΤΥΩΜΑΤΑ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ ομική Μηχανική Ι 1 Περιεχόμενα 1. Εισαγωγή 2. Μόρφωση επίπεδων
Διαβάστε περισσότεραΑ. Ροπή δύναµης ως προς άξονα περιστροφής
Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό
Διαβάστε περισσότεραΚεφάλαιο 1 Πάγιοι ατενείς φορείς υπό εξωτερικά φορτία και καταναγκασμούς
ΜΕΘΟΔΟΣ ΜΕΤΑΚΙΝΗΣΕΩΝ - ΑΣΚΗΣΕΙΣ Κεφάλαιο Κεφάλαιο Πάγιοι ατενείς φορείς υπό εξωτερικά φορτία και καταναγκασμούς Σύνοψη Οι ασκήσεις έως του κεφαλαίου αυτού αφορούν σε πάγιους ατενείς φορείς. Στην Άσκηση
Διαβάστε περισσότεραΛυμένες ασκήσεις. Έργο σταθερής δύναμης
Λυμένες ασκήσεις Έργο σταθερής δύναμης 1. Στο σώμα που απεικονίζεται δίπλα τα μέτρα των δυνάμεων είναι F = 20 N, F 1 = 20 N, T = 5 N, B = 40 N. Το σώμα μετατοπίζεται οριζόντια κατά S = 10 m. Να βρεθούν
Διαβάστε περισσότερα