Multi Post. Ενδοριζικοί άξονες ανασύστασης
|
|
- Αγάθη Αξιώτης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Multi Post Ενδορζοί άξς ανασύσασης MultiPost Σύσηµα νδορζών αξόνων α αποαάσαση µ ρηνώδη υλά Το σύσηµα Multi Post ης D+Z που πρλαµβάν άξς αασυασµένους από αθαρό άνο ίνα ένα ύολο σο χρσµό α δοµασµένο σύσηµα α αποαάσαση µ σφάνς σοβαρά ασραµµένων δών, α οποία όµως δαηρούν αόµα προδολοά νλώς ανέπαφς ς ρίζς ους. Το πλέηµα αυής ης µθόδου ίνα η δαήρηση ων δών, µ ην προϋπόθση ό έχ προηηθί µα πυχηµένη νδοδή θραπία. Τέοου ίδους ανασυσάσς µπορούν να ανέξουν α πολλά χρόνα α να χρησµοποηθούν ως σήρµα α προσθές ρασίς.
2 Βασές πληροφορίς α ην ένδξη α ην φαρµοή υλνδρών νδορζών αξόνων α αποαάσαση µ ρηνώδη υλά α συσάσς α ην παρασυή ολοβώµαος Ο άξς σάα σ πρπώσς όπου α νρά δόνα δν προσφέρουν παρίς σφαναίους σληρούς σούς α παρασυή ολοβώµαος. Ο βασός σόχος α ην χρήση αξόνων ίνα να δηµουρήσουµ υποδοµή α σφαναίς ανασυσάσς. 1. Κρήρα αξολόησης Η ρίζα πρέπ να ίνα προδολοά υής. Όαν άνουµ ανασύσαση µ ρηνώδη υλά, η βλάβη δν πρέπ να ίνα άω από ο όρο ων ούλων. Ο ναποµένς σοί δν πρέπ να ίνα ρηδσµένο α πρέπ να έχ προηηθί µα πυχηµένη νδοδή θραπία. Γα οµαλή αανοµή ων πέσων που ασούνα σο δόν ή ση ρίζα, ο όρο παρασυής πρέπ να ίνα 2 mm χαµηλόρα από ην πφάνα ης ρίζας. (Σάδο 6) 2. Ρζός σωλήνας Ο άξας πρέπ να µίσ σωλήνα σ βάθος ουλάχσ 2/3 ου συνολού µήους ου α πρέπ να έχ έλα φαρµοή σα οχώµαά ου. Σ πρίπωση µάλης ωνόηας ου σοµίου ου ρζού σωλήνα, δν πυχάνα ού παρής συράηση ού σαθρόηα ου άξα. Τό η λύση ίνα χυός άξας. 3. Πάχος οχώµαος Γα να αποφυχθί ο άαµα ης ρίζας, ο οίχωµα ου ρζού σωλήνα σο λπόρο σηµίο ου πρέπ να έχ πάχος ουλάχσ ο µσό ης δαµέρου ου άξα. (Σχέδο 7) 4. Επλοή δαµέρου άξα Η δάµρος ου άξα πρέπ να ίνα όσο ο δυναόν µαλύρη, λαµβάνας υπόψη ο µήος ου ρζού σωλήνα α ο πάχος ου οχώµαος.
3 5. Επφάνα ης ρίζας Καά η χρήση νδορζών αξόνων µ φαλές συράησης, αυή η φαλή πρέπ να παά ξολολήρου πάνω σην πφάνα ης ρίζας µέσα σην παρασυασµένη ένθη ολόηα (Σάδο 5), ης οποίας ο βάθος παρασυής πρέπ να ίνα 1-2 mm. (Σάδο 2) 6. Ενδορζή συράηση Γα να πυχθί µέσος βαθµός συράησης, απαία χρήση συολληής ίας. Οποαδήπο νά α οπές µπορούν πίσης να λίσουν µ η χρήση ης ίας. 7. Σφαναία ανασύσαση Όπως έχ ήδη αναφρθί, ο νδορζοί άξς ίνα σχδασµένο α να συραούν α υλά ης ανασύσασης, α οποία αναθσούν ους χαµένους σούς ου δού α συολλούνα άρσα σο ναποµένων δόν. Η ρίζα, ο άξας α ο υλό ανασύσασης δηµουρούν ένα συµπαές, λουρό σύνολο. Εάν ένα δόν ανασυσαθί µ αυόν ρόπο, µπορί να δχθί σφάνη. Επίσης, σ ένα µρώς νωδό φαναό όξο αυό µπορί να χρησµύσ ως πολύµο σήρµα α µαλύρς προσθές ρασίς. Ωσόσο, αυό δν πρέπ να δηµουρί ην νύπωση ό ένας νδορζός άξας µπορί από µόνος ου να υποσηρίξ προσθές αασυές. Ο άξας δν ίνα σχδασµένος α να απορροφά άσς, αλλά α να σαθροποί ο δόν α να ξασφαλίζ ην οµαλή αανοµή ων πέσων σ όλη ην ανασύσαση. Εάν η Παρασυή που αολουθί ην ανασύσαση δν πραµαοποηθί σύµφωνα µ ους νούς ανόνς ή άν ο άξας δν οποθηθί σύµφωνα µ ς προαναφρθίσς συσάσς, ό ασούµνα φορία α άλλς πδράσς µπορούν να οδηήσουν σην απουχία ης ανασύσασης. (Σχέδο 8) Σην πόµνς 2 σλίδς αολουθούν ο δασάσς, σ φυσό µέθος.
4 Ελ ο δέ ς ρυπάν απόαν οξ ί δω οα σάλ Κλ δί αξ όν ωναπόαν οξ ί δω οα σάλ Φρέ ζ απα ούραςμ π άλ υψηδ αμαν ού 1 1 Άξ ς αν ούμ έ θουςαπό αθαρότ άν ο Άξ ςμ άλ ουμ έ θουςαπό αθαρότ άν ο
5 ΣΕνδορ ζ ώναξόνωντ ανί ου Mul t i PostD+Z
_Σχήµα 2_. Σελίδα 1 από 5. τον οποίο γίνεται η µεταπτωτική κίνηση. Άξονας περιστροφής τροχού. Άξονας γύρω από. τον οποίο γίνεται η µεταπτωτική κίνηση
ιονύσης Μηρόπουλος Κίνηση σερεού Παραηρήσεις ση µεαπωική κίνηση ενός σρεφόµενου ροχού Η ανάρηση αυή έγινε µε αφορµή: 1) Την πολύ καλή και ενδιαφέρουσα ανάρηση ου συναδέλφου Νίκου αµαόπουλου µε ίλο «Μεαπωική
ΚΙΝΗΤΙΚΗ ΑΛΥΣΩΤΩΝ ΑΝΤΙΔΡΑΣΕΩΝ ΠΟΛΥΜΕΡΙΣΜΟΥ ΚΑΙ ΜΟΡΙΑΚΗ ΚΑΤΑΝΟΜΗ ΤΩΝ ΛΑΜΒΑΝΟΜΕΝΩΝ ΠΡΟΪΟΝΤΩΝ
ΚΙΝΗΤΙΚΗ ΑΛΥΣΩΤΩΝ ΑΝΤΙΔΡΑΣΕΩΝ ΠΟΛΥΜΕΡΙΣΜΟΥ ΚΑΙ ΜΟΡΙΑΚΗ ΚΑΤΑΝΟΜΗ ΤΩΝ ΛΑΜΒΑΝΟΜΕΝΩΝ ΠΡΟΪΟΝΤΩΝ Η ρόοδος ης ανίδρασης μορί να υολογισί: Τιλοδόηση διλών δσμών Μαβολή ου όγκου ου μέσου ης ανίδρασης Μέρηση ης
α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε
Ἦχος Νη α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε στη η και ε πι κα α θε ε ε ε δρα α λοι οι µων ου ουκ ε ε κα θι ι σε ε ε
Γιάννη Σ. Μπούταλη Αναπληρωτή Καθηγητή Δ.Π.Θ. ΛΥΣΗ ΤΩΝ ΕΞΙΣΩΣΕΩΝ ΚΑΤΑΣΤΑΣΗΣ βοηθητικές σημειώσεις στο μάθημα ΣΑΕ ΙΙ
Γιάννη Σ Μπούαλη Αναπληρωή Καθηγηή ΔΠΘ ΛΥΣΗ ΤΩΝ ΕΞΙΣΩΣΕΩΝ ΚΑΤΑΣΤΑΣΗΣ βοηθηικές σημειώσεις σο μάθημα ΣΑΕ ΙΙ Ξάνθη, Μάιος 7 Ι Μπούαλη Λύση ων εξισώσεων καάσασης ΛΥΣΗ ΤΩΝ ΕΞΙΣΩΣΕΩΝ ΚΑΤΑΣΤΑΣΗΣ Σε αυό ο κεφάλαιο
ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ: ΣΧΕ ΙΑΣΜΟΣ ΣΥΓΚΟΙΝΩΝΙΑΚΩΝ ΕΡΓΩΝ - ΟΙΚΟΝΟΜΙΚΑ ΣΤΟΙΧΕΙΑ ΤΟΞΑ ΣΥΝΑΡΜΟΓΗΣ ΣΙ ΗΡΟ ΡΟΜΙΚΗΣ
Ε. Μ. ΠΟΛΥΤΕΧΝΕΙΟ Τµήµα Αγρονόµων-Τοπογράφων Μηχανικών Εργασήριο Συγκοινωνιακής Τεχνικής ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ: ΣΧΕ ΙΑΣΜΟΣ ΣΥΓΚΟΙΝΩΝΙΑΚΩΝ ΕΡΓΩΝ - ΟΙΚΟΝΟΜΙΚΑ ΣΤΟΙΧΕΙΑ ΤΟΞΑ ΣΥΝΑΡΜΟΓΗΣ ΣΙ ΗΡΟ ΡΟΜΙΚΗΣ 1. Τόξο
ΑΛΛΑΓΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΟΥ ΑΞΟΝΑ ΠΕΡΙΣΤΡΟΦΗΣ ΣΤΡΕΦΟΜΕΝΟΥ ΣΩΜΑΤΟΣ 90º. 180º ω. Οι απαντήσεις και τα σχετικά σχόλια
Φυσική καεύθυνσης Γ Σερεό σώµα ΑΛΛΑΓΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΟΥ ΑΞΟΝΑ ΠΕΡΙΣΤΡΟΦΗΣ ΣΤΡΕΦΟΜΕΝΟΥ ΣΩΜΑΤΟΣ άξονας 9º 18º Ο ροχός ου σχήµαος έχει ροπή αδράνειας Ι και σρέφεαι γύρ από ον άξονά ου µε γνιακή αχύηα µέρου.
Εργαστηριακή Άσκηση Το σύστημα αναμονής M/G/1
Εργασηριακή Άσκηση 4 5 Το σύσημα αναμονής M/G/ Γιάννης Γαροφαλάκης, Καθηγηής Αθανάσιος Ν.Νικολακόπουλος, Phd(c) Σκοπός ης παρούσας εργασίας είναι η εξερεύνηση ων βασικών ιδιοήων ενός από α κλασικόερα μονέλα
ΦΥΣΙΚΗ Ι. ΣΤΑΤΙΚΗ ΙΣΟΡΡΟΠΙΑ ΣΩΜΑΤΟΣ Ισορροπία Σωματιδίου Στατική Ισορροπία Στερεού Σώματος
ΔΥΝΑΜΕΙΣ Διανυσμαική Φύση ης Δύναμης Σύνθεση Δυνάμεων ΡΟΠΗ Η Έννοια ης Ροπής Ροπή Πολλών Δυνάμεων Ζεύγος Δυνάμεων ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Α. Καραμπαρμπούνης, Ε. Συλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 4 5 ΣΤΑΤΙΚΗ ΙΣΟΡΡΟΠΙΑ
ΙΙΙ. ΔΙΑΤΗΡΗΣΗ (ΙΣΟΖΥΓΙΟ) ΓΡΑΜΜΙΚΗΣ ΟΡΜΗΣ ΑΣΥΜΠΙΕΣΤΗ ΡΟΗ. LT και μονάδες στο SI, kgm/s 2 ή N. υνισταμένη. υνισταμένη. d dt. d dt.
ΙΙΙ. ΔΙΑΤΗΡΗΣΗ (ΙΣΟΖΥΓΙΟ) ΓΡΑΜΜΙΚΗΣ ΟΡΜΗΣ ΑΣΥΜΠΙΕΣΤΗ ΡΟΗ Έσω ένα υδραυλικό σύσημα ο οποίο περιέχεαι σε έναν όγκο ελέγχου C συνολικού όγκου και ο οποίο αναλλάσει μάζα με ο περιβάλλον με ρυθμούς (παροχές
ΣΥΝΕΛΙΞΗ ΣΤΟ ΠΕ ΙΟ ΤΟΥ ΧΡΟΝΟΥ
ΣΥΝΕΛΙΞΗ ΣΤΟ ΠΕ ΙΟ ΤΟΥ ΧΡΟΝΟΥ Για κάθε γραµµικό και χρονικά αναλλοίωο σύσηµα συνεχούς χρόνου ισχύει όι η απόκριση y() ου όαν αυό διεγείρεαι από είσοδο x() δίνεαι από η σχέση: y () = x( ) h ( ) d = x ()
Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο
ΠΑΝΕΠΙΣΤΗΜΙΟ Θ ΕΣΣΑΛ ΙΑΣ ΠΟΛ Υ ΤΕΧ ΝΙΚ Η ΣΧ ΟΛ Η ΤΜΗΜΑ ΜΗΧ ΑΝΟΛ ΟΓ Ω Ν ΜΗΧ ΑΝΙΚ Ω Ν Β ΙΟΜΗΧ ΑΝΙΑΣ ΑΝΑΜΟΡΦΩΣΗ Π Π Σ ΣΥ ΝΟΠ Τ Ι Κ Η Ε Κ Θ Ε ΣΗ ΠΕ 4 Α Ν Α ΠΤ Υ Ξ Η Κ Α Ι ΠΡ Ο Σ Α Ρ Μ Ο Γ Η ΕΝ Τ Υ ΠΟ Υ Κ Α
Μεγαλύτερες περιπέτειες
Μεγαλύερες εριέειες Μεά ην ανάρηση «Ένα σύσημα σωμάων σε εριέειες» ας άμε ένα βήμα αρακάω, ση μελέη ου συσήμαος σωμάων και ης εφαρμογής ου γενικευμένου νόμου ου Νεύωνα. --------------------------------------
2 1 1+ ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ:2 ο - ΠΑΡΑΓΡΑΦΟΣ: 2.1 2.2. Γιάννης Ζαµπέλης Μαθηµατικός
ΚΕΦΑΛΑΙΟ: ο - ΠΑΡΑΓΡΑΦΟΣ:.. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 4 5 Γιάννης Ζαµπέλης Μαθηµατικός 8575 Β (Αναρτήθηκ 8 4 ) ίνονται τα σηµία Α(,) και Β(5,6). α) Να βρίτ την ξίσωση της υθίας που διέρχται από τα σηµία Α και B.
ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ
ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ V. ΜΙΚΡΟΠΛΑΣΤΙΚΟΤΗΤΑ ΤΩΝ ΚΡΥΣΤΑΛΛΩΝ 1. Εισαγωγή Ση µέχρι ώρα συζήησή µας για ην µηχανική συµπεριφορά ων µεαλλικών υλικών, όπου εξεάσαµε ην ελασική και ην πλασική ους συµπεριφορά
Π α σα πνο η αι νε σα τω τον Κυ ρι. Π α σα πνο η αι νε σα α τω τον. Ἕτερον. Τάξις Ἑωθινοῦ Εὐαγγελίου, Ὀ Ν Ψαλµός. Μέλος Ἰωάννου Ἀ. Νέγρη.
Τάξις Ἑωθινοῦ Εὐαγγελίου, Ὀ Ν Ψαλµός. Μέλος Ἰωάννου Ἀ. Νέγρη. Κυ ρι ε ε λε η σον Ἦχος Πα Α µην Π α σα πνο η αι νε σα τω τον Κυ ρι ον Ἕτερον. Π α σα πνο η αι νε σα α τω τον Κυ υ ρι ι ον 1 ΙΩΑΝΝΟΥ Α. ΝΕΓΡΗ
TO MONTEΛΟ ΤΗΕ ΕΡΠΙΣΗΣ (Reptation Model)
TO MOTEΛΟ ΤΗΕ ΕΡΠΙΣΗΣ (epttion Moel) Η έννοια ου σωλήνα (tube) σις περιελίξεις (entglements). Αλληλεπιδράσεις-interpenetrtion Τοπολογικοί περιορισμοί (σην lterl/κάθεη κίνηση) Tube moel [e Gennes ; Ewrs
Πως λύνεται ένα πρόβληµα.
Πως λύνεαι ένα πρόβληµα. Όπως έχουµε ήδη αναφέρει, α βήµαα για ην παραγωγή λογισµικού είναι: 1. Καανόηση προβλήµαος 2. Επίλυση ου προβλήµαος 3. Λογικός έλεγχος ης λύσης (αν υπάρχουν λάθη πήγαινε σο 1.)
Η ΜΑΘΗΜΑΤΙΚΗ ΜΟΥΣΙΚΗ
Η ΜΑΘΗΜΑΤΙΚΗ ΜΟΥΣΙΚΗ ΕΙΣΑΓΩΓΗ Όπως είαι γωσό, η Μουσική είαι Μαθημαικά και (σο βάθος) υπάρχει, μία «αδιόραη αρμοία» μεαξύ αυώ ω δύο. Έα μουσικό έργο, διέπεαι από μαθημαικούς όμους, σε ό,ι αφορά ις σχέσεις
Σειρά Ασκήσεων στην Αντοχή των Υλικών
Σιρά Ακήων ην Ανοχή ων Υλικών Άκηη η Σο ημίο Α μιας πίπδης μαλλικής πιφάνιας μ μέρο λαικόηας 00 GP και λόγο Pissn 0.5 μρήθηκαν οι πιμηκύνις ις καυθύνις, και μ η διάαξη ων πιμηκυνιομέρων ου χήμαος, ως 900,
Εργαστήριο Ηλεκτρικών κυκλωμάτων
Εργασήριο Ηλεκρικών κυκλωμάων Αυό έργο χορηγείαι με άδεια Creaive Commons Aribuion-NonCommercial-ShareAlike Greece 3.. Σκοπός ων πειραμάων Ονομ/νυμο: Μηρόπουλος Σπύρος Τμήμα: Ε6 Το εργασήριο πραγμαοποιήθηκε
Θέματα Περασμένων Εξετάσεων και Απαντήσεις
Θέμαα Περασμένων Εξεάσεων και Απανήσεις Εξεάσεις Ιουνίου. ΘΕΜΑ.,5 μονάδα Δίνεαι ο ΓΧΑ σύσημα με κρουσική απόκριση iπ h co8 π π Να βρεθεί η έξοδός ου αν η είσοδός είναι co π co 6π co 8π i W, < Εφαρμόζονας
13. Συνήθεις διαφορικές εξισώσεις
Κ Χρισοδολίδης: Μαθηµαικό Σµπλήρµα για α Εισαγγικά Μαθήµαα Φσικής 67 3 Σνήθεις διαφορικές εξισώσεις 3 Ορισµοί Μια εξίσση πο περιέχει παραγώγος κάποιας σνάρησης, ονοµάζεαι διαφορική εξίσση ( Ε) Αν η σνάρηση
ναχω ή ι 23 & 30/12, 2/1.
Ω 6 αχ 23/12. Ω - Γ - Χ - - - - - - - - Θ 1, Θ - Ω: α 7.30 π.. π π ΩΩ. α υ α αφ α πα α 104 (ετteδ REST) α φα αα. π φυ α Ω α υαυ α α πφ α α αα. α απ "PAδδADIτ", π πα, αυυ. 2, - - : π α π αφυα. α αφ A, α
ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης
(Με ιδέες και υλικό από ΔΙΑΝΥΣΜΑΤΑ ΣΤΟΝ ΤΡΙΣΔΙΑΣΤΑΤΟ ΧΩΡΟ Καρεσιανές Συνεαγμένες Εσωερικό Γινόμενο Διανυσμάων Εξωερικό Γινόμενο Διανυσμάων Βαθμωό Γινόμενο Τριών Διανυσμάων ΔΥΝΑΜΕΙΣ Διανυσμαική Φύση ης
1. ** ίνεται τρίγωνο ΑΒΓ. Αν Μ και Ν είναι τα µέσα των πλευρών ΒΓ και ΓΑ να αποδείξετε ότι:
Ερωτήσεις ανάπτυξης 1. ** ίνεται τρίγωνο ΑΒΓ. Αν Μ και Ν είναι τα µέσα των πλευρών ΒΓ και ΓΑ να αποδείξετε ότι: α) ΑΜ = 1 2 ( ΑΒ + ΑΓ ) β) ΜΝ = 1 2 ΒΑ 2. ** ίνονται τα διανύσµατα ΑΒ και Α Β. Αν Μ και Μ
Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίας Δής Μαία Μά Ιία Αύα Εαέ Λό Τ Πώ Λό Τός 4ς (Δ, Ε, (-αί)) Εαέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 4ς (Δ, Ε, (-αί)) ΣΥΓΓΡΑΦΕΙΣ
κεφάλαιο 2 β Ββ βιβλίο 23
Β ιλίο 23 Γράφω το Β, : Β ιλίο...... Β Β Β 1B2 3... 1 2............... Β Β.............................. 24 Χρωματίζω ό,τι αρχίζει από : 25 Χρωματίζω μόνο τα κομμάτια της εικόνας που έχουν. Τι λέπω; Βρίσκω
οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A
οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A δ ` 3kς 3qz 3{9 ` ]l 3 # ~-?1 [ve 3 3*~ /[ [ ` ο `` ο ~ ο ```` ξα ~ ``` Πα```` α ` τρι ```ι ``` ι ` ι ~ και ``αι [D # ` 4K / [ [D`3k δδ 13` 4K[ \v~-?3[ve
Κεφάλαιο 8 ΑΝΑΛΥΣΗ ΒΙΟΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ ΣΤΟ ΠΕ ΙΟ ΤΗΣ ΣΥΧΝΟΤΗΤΑΣ
Κεφάλαιο 8 ΑΝΑΛΥΣΗ ΒΙΟΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ ΣΤΟ ΠΕ ΙΟ ΤΗΣ ΣΥΧΝΟΤΗΤΑΣ Θεωρούµε όι Έσω X µία διακριή χρονοσειρά 0 ± ±. µ x Ε{X } και γ { X X } E { [ X µ ][ X µ ] } ( 0 ± cov + + x x Το φάσµα ισχύος ης X ορίζεαι
ΚΕΦΑΛΑΙΟ 4: ΤΥΠΟΠΟΙΗΣΗ ΠΡΟΪΟΝΤΩΝ ΚΑΙ ΤΕΧΝΙΚΗ ΠΡΟΟ ΟΣ
ΚΕΦΑΛΑΙΟ 4: ΤΥΠΟΠΟΙΗΣΗ ΠΡΟΪΟΝΤΩΝ ΚΑΙ ΤΕΧΝΙΚΗ ΠΡΟΟ ΟΣ 4.1 Η ΥΙΟΘΕΤΗΣΗ ΝΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ: ΣΤΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ Όαν η εχνολογία εξελίσσεαι η πρώη ερώηση µας είναι καά πόσο θα υιοθεηθεί δεδοµένου ης µεγάλης εγκαεσηµένης
Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίας Δής Μαία Μά Ιία Αύα Εαέ Λό Τ Πώ Λό Α, Β, Γ Δύ Τός 8ς (Λ, - Μ, (-ήα)) Εαέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 8ς (Λ,
Ροπή δύναμης. Τι προκαλεί την επιτάχυνση ενός υλικού σημείου; Η άσκηση δύναμης F πάνω του. Τι προκαλεί την γωνιακή επιτάχυνση ενός στερεού σώματος;
Τι προκαλεί ην επιάχυνση ενός υλικού σημείου; Η άσκηση δύναμης F πάνω ου Τι προκαλεί ην γωνιακή επιάχυνση ενός σερεού σώμαος; Η ροπή δύναμης F Για να αλλάξουμε ην περισροφική καάσαση ενός σώμαος παίζουν
Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίς Δής Μί Μά Ιί Αύ Εέ Λό Τ Πώ Λό Τός 9ς (Μ, (έ) Ν,) Εέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 9ς (Μ, (έ) Ν,) ΣΥΓΓΡΑΦΕΙΣ Αή
Η Έννοια της τυχαίας ιαδικασίας
Η Έννοια ης υχαίας ιαδικασίας Η έννοια ης υχαίας διαδικασίας, βασίζεαι σην επέκαση ης έννοιας ης υχαίας µεαβληής, ώσε να συµπεριλάβει ο χρόνο. Σεκάθεαποέλεσµα s k ενόςπειράµαοςύχης ανισοιχούµε, σύµφωναµεκάποιοκανόνα,
Κανονισμός Πυροπροστασίας Κτιρίων (π.δ. 41/2018)
Κανονισμός Πυροπροσασίας Κιρίων (π.δ. 41/2018) Πεδίο Εφαρμογής Πεδίο Εφαρμογής Α. Σα κίρια ή μήμαα κιρίων, που ανεγείροναι μεά ην έναρξη ισχύος ου και ων οποίων οι χρήσεις εμπίπουν σε μία από ις περιπώσεις
ΚΑΜΠΤΙΚΗ ΕΝΙΣΧΥΣΗ ΜΕ ΠΡΟΣΘΕΤΕΣ ΣΤΡΩΣΕΙΣ ΣΚΥΡΟ ΕΜΑΤΟΣ Ε ΟΜΕΝΑ
Σ. Η. ΔΡΙΤΣΟΣ, 07 ΚΑΜΠΤΙΚΗ ΕΝΙΣΧΥΣΗ ΜΕ ΠΡΟΣΘΕΤΕΣ ΣΤΡΩΣΕΙΣ ΣΚΥΡΟ ΕΜΑΤΟΣ Ε ΟΜΕΝΑ οκός Οπλισµένου Σκυροέµαος Ενισχυµένη µε Σρώση Οπλισµένου Σκυροέµαος Φ0 Φ0 η ΑΡΙΘΜΗΤΙΚΗΕΦΑΡΜΟΓΗ Yλικά : C5/30, Φ0 S Άνοιγµαοκού:
ΚΙΝΗΤΗΡΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ
ΚΙΝΗΤΗΡΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ Οι κινηήρες αυής ης καηγορίας ροφοδοούναι από κάποια πηγή συνεχούς άσης. Από καασκευασικής απόψεως, δεν παρουσιάζουν καμία διαφορά σε σχέση με ις γεννήριες ΣΡ. Βασικό πλεονέκημά
14SYMV Fax : e mail:
Η Η Η Ο Α Α Ο Ο Ω σό 06/11/2014 Η Ο Α Ο Η Α Α Α ιθ. ω : 17848 έφ α : 2321 3 52610 Fax : 2321 3 52618 e mail: dimarxosep@0670.syzefxis.gov.gr ΒΑ Η Α Ο Η Η Ω ο ή ο α ο ή α ά αι σ ο ο ι ό α άσ α σή α 18/09/2014,
6 Α σ Ε Ε Ε ΓΑ Α Ε Α: Η σ σ ς σ ς & σ ώ : A χ ς: : Σ Π σ
6 Α σ Ε Ε Ε ΓΑ Α Ε Α: Η σ σ ς σ ς & σ ώ : A χ ς: 2016-2017 : Σ Π σ ισα ω ή: Η ο σι ή ο ο ο ί αι ίσσ ι ισ ο ία ς ς α ά ' ί ς ώσσας, αι βασι ό α ς α ά α θ ώ ι έ ι. Καθώς ο έ α θ ος ό ος ς ι ό έσο ο ί α α
Σχήµα 1. . Μητρόπουλος Στερεό. Άξονας Β. Άξονας Α. ίσκος 2. ίσκος 1. Βάση στήριξης. Σύστηµα στήριξης του δίσκου 1. Κοχλίες σύσφιξης.
ύο δίσοι µε ιµάν ι πιχνίδι ης σροφορµής () Άξονς Άξονς ίσος ίσος Σχήµ άση σήριξης Η ειονιζόµενη διάξη σο σχήµ είνι έν σύσηµ δύο οριζόνιων δίσων µε µάζες Μ, Μ ι ίνες,, συνεζευγµένων µε ιµάν, που µπορούν
3.3 Η ΕΛΛΕΙΨΗ. 2. Άµεση συνέπεια (ΜΕ ) + (ΜΕ) = 2α Ο γ.τ του σηµείου Μ είναι έλλειψη µε εστίες Ε και Ε. Περιορισµός : Αν ( ΕΕ ) = 2γ, πρέπει γ < α
3.3 Η ΕΛΛΕΙΨΗ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµ έλλιψη µ στίς τ σηµί Ε ι Ε, το γωµτριό τόπο των σηµίων του πιπέδου των οποίων το άθροισµ των ποστάσων πό τ Ε ι Ε ίνι στθρό ι µγλύτρο του Ε Ε.. Άµση συνέπι (ΜΕ )
Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίς Δής Μί Μά Ιί Αύ Εέ Λό Τ Πώ Λό Τός 11ς (Π, (-ά) ) Εέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 11ς (Π, (-ά) ) ΣΥΓΓΡΑΦΕΙΣ Αή
Κεφάλαιο 3 ο. Κυκλώματα με στοιχεία αποθήκευσης ενέργειας
Κεφάλαιο 3 ο Κυκλώμαα με σοιχεία αποθήκευσης ενέργειας Η διαφορά μεαξύ ης ανάλυσης ων ωμικών κυκλωμάων, που μελεήσαμε ως ώρα, και ων κυκλωμάων που ακολουθούν είναι όι οι εξισώσεις που προκύπουν από ην
( ) ( + 30 ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Ζωδόχυ Πηγς 8 Σαλαμίνα Τηλ 07-7 /000 8. Να υλγιστύν ι τριγωνμετριί αριμί των γωνιών: α) 8 β) 90 γ) Σε τέτιυ είδυς ασσεις ετελύμε διαίρεση όταν έχυμε γωνία : σε μίρες διαίρεση με τ 0 αι μας ενδιαφέρει μόν
Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίας Δής Μαία Μά Ιία Αύα Εαέ Λό Τ Πώ Λό Τός 10ς (Ξ, Ο,) Εαέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 10ς
Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό
ΤΠΟΤΡΓΔΗΟ ΠΑΗΓΔΗΑ ΚΑΗ ΘΡΖΚΔΤΜΑΣΧΝ, ΠΟΛΗΣΗΜΟΤ ΚΑΗ ΑΘΛΖΣΗΜΟΤ Η.Σ.Τ.Δ. «ΓΗΟΦΑΝΣΟ» Αή Δί Ζίο Γήο Μί Μά Ηί Αύ Δέ Λό Σ Πώ Λό Α, Β, Γ Γύ Σόο 3ο (Ζ, Θ, Η, Κ,) Δέ Λό Α, Β, Γ Γύ Σ Πώ Λό Σόο 3ο (Ζ, Θ, Η, Κ,) ΤΓΓΡΑΦΔΙ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΠΕΡΙΛΗΨΗ ΣΥΜΒΟΛΙΣΜΩΝ NOTATION ΓΙΑ ΙΑΝΥΣΜΑΤΑ ΚΑΙ ΤΑΝΥΣΤΕΣ -Bd, Steat and Lghtfoot "Tanpot Phenomena" -Bd, Amtong and Haage
Πτερυγιοφόροι σωλήνες
ΛΕΒΗΤΕΣ ΑΤΜΟΥ Πτερυγιοφόροι σωλήνε ΑΤΜΟΛΕΒΗΤΕΣ Εύκολη λειτουργία και συντήρηση Για όλου του τύπου καυήρων και καυσίµων Ο οπίσθιο θάλαµο αναροφή καυσαερίων είναι λυόµενο, γεγονό που επιτρέπει τον πλήρη
Μι ο α ι ές ια ά ις ό α 3: ί ς αι ια ά ις φ ι ώ αύ ος Κο ο ί ς Πο ι ή Η ο ό Μ α ι ώ αι ο ο ιάς ο ο ισ ώ ο οί ό ας ιό ς φ ι ώ αι ά σ ο ς σ α ασ ή ήσι ι ο α ι ώ ι ύ 2 Π ι ό α ό ας Μα ι ά ι ά ιό ς φ ι ώ ια
Προσοµοίωση Π ρ ο µ ο ί ω Μ η χ α ν ο ί Ε λ έ γ χ ο υ τ ο υ Χ ρ ό ν ο υ Φάσεις σο ση ς ισµ ιδάσκων: Ν ικό λ α ο ς Α µ π α ζ ή ς Φάσεις τ η ς π ρ ο σο µ ο ί ω ση ς i. Κατασκευή το υ µ ο ν τέ λ ο υ π ρ ο
- Ομοιότητα με βάση τις εξισώσεις Νavier-Stokes - 2- διάστατη ασυμπίεστη Ροή
ΚΕΦΑΛΑΙΟ 8 ΡΟΗ ΠΡΑΓΜΑΤΙΚΟΥ ΡΕΥΣΤΟΥ-ΣΥΝΕΚΤΙΚΗ ΡΟΗ - Ιξώδες - Ομοιόηα με βάση ις εξισώσεις Νaier-Stkes - - διάσαη ασυμπίεση Ροή ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ 0 ΕΞΙΣΩΣΕΙΣ ΟΡΜΗΣ t 1 μ 1 g μ t - Οιακές Συνθήκες B σο -
JEAN-CHARLES BLATZ 02XD34455 01RE52755
ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ ΤΩΝ ΕΝ Ι ΑΜ ΕΣ ΩΝ ΟΙ Κ ΟΝΟΜ Ι Κ ΩΝ Κ ΑΤΑΣ ΤΑΣ ΕΩΝ ΤΗΣ ΕΤΑΙ ΡΙ ΑΣ Κ ΑΙ ΤΟΥ ΟΜ Ι ΛΟΥ Α Τρίµηνο 2005 ΑΝΩΝΥΜΟΣ Γ ΕΝΙ Κ Η ΕΤ ΑΙ Ρ Ι Α Τ ΣΙ ΜΕΝΤ ΩΝ Η Ρ ΑΚ Λ Η Σ ΑΡ. ΜΗ Τ Ρ. Α.Ε. : 13576/06/Β/86/096
ΣειράΨυκτώνUltima Screw kW
ΣράΨυώUltima Screw 200-750kW > ΣράψυώUltima Screw ΠρλαμβάαυςUltima FreeCool Τυπέςφαρμγές Close Control Κλμασμόςάσης Βμηχαήψύξη www.airedale.com Ultima Screw Chiller Range Designed for a better environment
! #! % # % + ( (.! / 0 + ( (. & (&(&)) +,
! #! %! # % & (&(&)) +, + ( (.! / 0 + ( (. ! # % & % ( % ) +,% +. & / 0 1% 2 % 3 3 %4 5 6 0 # 71 % 0 1% 8% 9 : ;% 5 < =./,;/;% % 8% 9 /,%%1 % 5 % 8% 9 > >. & 3.,% + % + % % 8% 9!?!. & 3 2 6.,% + % % 6>
Παραγωγή Κυµατοµορφών FM:
Παραγωγή Κυµαοµορφών ύο βασικές µέθοδοι για ην αραγωγή κυµαοµορφών : - Έµµεση (inir ) - όου ο σήµα διαµόρφωσης χρησιµοοιείαι αρχικά για ην αραγωγή κυµαοµορφής σενής και ση συνέχεια χρησιµοοιείαι ολλαλασιασµός
Παραγωγή Κυµατοµορφών FM:
Παραγωγή Κυµαοµορφών ύο βασικές µέθοδοι για ην αραγωγή κυµαοµορφών : - Έµµεση (inir ) - όου ο σήµα διαµόρφωσης χρησιµοοιείαι αρχικά για ην αραγωγή κυµαοµορφής σενής ζώνης και ση συνέχεια χρησιµοοιείαι
Σχεδίαση µε τη χρήση Η/Υ
Σχδίαση µ τη χρήση Η/Υ Ε Φ Α Λ Α Ι Ο 1 0 Ο Σ Τ Ο Ι Χ Ε Ι Α Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ Τ Ο Υ Χ Ω Ρ Ο Υ Ρ Λ Ε Ω Ν Ι Α Σ Α Ν Θ Ο Π Ο Υ Λ Ο Σ, Ε Π Ι Ο Υ Ρ Ο Σ Α Θ Η Γ Η Τ Η Σ Τ Μ Η Μ Α Ι Ο Ι Η Σ Η Σ Α Ι Ι Α Χ Ε Ι
ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ
ΦΥΛΛΟ ΓΕΩΜΕΤΡΙΑ ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ Α ΕΠΑΛ ΚΕΦΑΛΑΙΟ 4 4.1, 4., 4.3, 4.4, 4.5 Παράλληλς υθίς ΤΕΜΝΟΥΣΑ ΔΥΟ ΕΥΘΕΙΩΝ Ο γίς α, δ, ζ, η λέγοα ός Ο γίς β, γ,, θ λέγοα κός Δύο γίς που βρίσκοα προς ο ίδο μέρος
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων (3B) 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Αν.
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων (3B) 1. Υπολογισμός Διαμηικής Ανοχής Εδάφους Συνοχή (c) Γωνία ριβής (φ ο ) Διδάσκονες: Β. Χρησάρας Καθηγηής Β. Μαρίνος, Αν. Καθηγηής Εργασήριο Τεχνικής Γεωλογίας και
Δυναμική συμπεριφορά των λογικών κυκλωμάτων MOS. Διάλεξη 10
Δυναμική συμπεριφορά ων λογικών κυκλωμάων MOS Διάλεξη 10 Δομή ης διάλεξης Εισαγωγή Ανισροφέας NMOS με φορίο ύπου αραίωσης Ανισροφέας CMOS Διάφορα ζηήμαα Ασκήσεις Δυναμική συμπεριφορά ων λογικών κυκλωμάων
Ἔκτασις. οι τα α α Δ. α α α α Δ. ου ου ου ου ου ου ου ου ου ου ου ου ου. υ υ υ υ υ υ υ υ υ υ µυ υ στι ι ι Μ. ι ι ει ει κο ο νι ι ι ι ι ι ι
ΗΧΟΣ ΕΥΤΕΡΟΣ ΘΕΟΩΡΟΥ ΦΩΚΑΕΩΣ Ἦχος Ἔκτσις. ι Οι οι οι οι τ Β Χ ρο ο ο ο ο ο ο ο ο ο ο ο ο ο ο Β ο ο χ ρο ο βι ιµ µ µ στι ι ι κω ω ω ω ω ω ω ω ω ω ως ι κο νι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι κο ο νι ι
Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίας Δής Μαία Μά Ιία Αύα Εαέ Λό Τ Πώ Λό Τός 3ς (Β, - Γ, ) Εαέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 3ς (Β, - Γ, ) ΣΥΓΓΡΑΦΕΙΣ
---------------------------------------------------------------------------------------- 1.1. --------------
ΕΚΘΕΣΗ Τ Ο Υ Ι Ο Ι ΚΗΤ Ι ΚΟ Υ ΣΥ Μ Β Ο Υ Λ Ι Ο Υ Π Ρ Ο Σ Τ ΗΝ Τ Α ΚΤ Ι ΚΗ Γ ΕΝ Ι ΚΗ ΣΥ Ν ΕΛ ΕΥ ΣΗ Τ Ω Ν Μ ΕΤ Ο Χ Ω Ν Kύριοι Μ έ τ οχοι, Σ ύµ φ ω ν α µ ε τ ο Ν όµ ο κ α ι τ ο Κα τ α σ τ α τ ικ ό τ ης ε
Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ
Ασκήσεις για τις εξετάσεις Μάη Ιούνη 014 στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ Άσκηση 1 η Δίνεται παραλληλόγραμμο ΑΒΓΔ και. Με διάμετρο τη διαγώνιο ΑΓ γράφουμε κύκλο με κέντρο Ο που τέμνει τη ΓΔ στο
ΚΑΝΟΝΙΣ ΜΟ Ι ΙΕΞΑΓΩΓΗΣ ΑΓΩΝΩΝ 1 / 8 SCALE IC TRA CK ΕΛ. Μ. Ε
ΚΑΝΟΝΙΣ ΜΟ Ι ΙΕΞΑΓΩΓΗΣ ΑΓΩΝΩΝ 1 / 8 SCALE IC TRA CK ΕΛ. Μ. Ε. 2 0 1 9 Κλ ά δο ς θερ µ ι κώ ν τη λ εκα τ ευθυ νό µ εν ω ν α υ το κι νή τω ν. Υπ εύ θυνο ς Κ λ ά δ ο υ Ζωτιαδης Κωστας bo d @ e l - m e. gr
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΦΙΛΟΣΟΦΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ ΚΑΙ ΠΑΙΔΑΓΩΓΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΦΙΛΟΣΟΦΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ ΚΑΙ ΠΑΙΔΑΓΩΓΙΚΗΣ Πανελή Α. Δείρογλου Πυχιούχου Παιδαγωγικού Τήαος Δηοικής Εκπαίδευσης Το Ολοήερο Δηοικό Σχολείο από η σκοπιά ων
Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίς Δής Μί Μά Ιί Αύ Εέ Λό Τ Πώ Λό Α, Β, Γ Δύ Τός 16ς (Φ, Χ, (ό)) Εέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 16ς (Φ, Χ, (ό))
Νόμος Αmpere. i r. Β dl = Β(dl ακτ +dl τοξ ) = Β rdθ = 2π. Β dl = μ ο i
Νόος Αmpee = o Τυχαία κλεισή διαδροή προσεγγιζεαι από ακινικά ευθ. ήαα και κυκλικά όξα dθ dθ dl ακινικά = 0 dl όξα = dθ dl = (dl ακ +dl οξ ) = dθ = o dθ = o dθ Ρευαοφόρο ς αγωγός dl = ο Νόος Αmpee Το ολοκλήρωα
r i-γυχ I Λ Κ Η ΕΡ>ι-Λ ;ε ΐ Λ
Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Ο Ε Κ Π Α Ι Ο Ε Υ Τ Ι Κ Ο Ι Ο Ρ Υ Μ Α Κ Α Β Α Λ Α Σ Σ Χ Ο Λ Η Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Ο Ν Ε Φ Α Ρ Μ Ο Γ Ώ Ν Τ Μ Η Μ Α Η Λ Ε Κ Τ Ρ Ο Λ Ο Γ Ι Α Σ i l t r i-γυχ I Λ Κ Η ΕΡ>ι-Λ ;ε ΐ Λ ΑΥΤΟΜΑΤ
1κΝΓΕΝΙΚΟΝΛΤΚΕΙΟΝΚΙΛΚΙ
1κΝΓΕΝΙΚΟΝΛΤΚΕΙΟΝΚΙΛΚΙ ά η: Α - Α Ε Ε Ό ο α έσος α/α Ε ώ ο Ό ο α Πα έ α Ό ος 1 Α Α Α 20 2 Α Α Α Α Ω Α 19,8 3 Α Α Α Α 19,3 4 Α Ω Α Ω Α Α Α Α Α 19,2 5 Α Α Ω Α Α 19,2 6 Α Α ΩΑ 19,2 7 Α Α Α Ω Α 19,2 8 ΩΑ Α
Εισαγωγή στη Θεωρία Σημάτων και Συστημάτων
Εισαγωγή ση Θεωρία Σημάων και Συσημάων Ιωάννης Χαρ. Κασαβουνίδης Τμήμα Μηχ. Η/Υ Τηλεπ. & Δικύων Πανεπισήμιο Θεσσαλίας ΦΘινοπωρινό Εξάμηνο 9/ Άσκηση Να υπολογίσεε ο παρακάω άθροισμα: Θυμίζουμε ην ανάπυξη
Κεφάλαιο 5 Πολλαπλοί χημικοί αντιδραστήρες
Κεφάλαιο 5 Πολλαπλοί χημικοί ανιδρασήρες Σε ορισμένες περιπώσεις, σε μια χημική βιομηχανία, η χρήση ενός μόνο χημικού ανιδρασήρα δεν είναι όσο αποελεσμαική όσο θα ήαν επιθυμηό. Συνεπώς, είναι απαραίηο
Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό
ΤΠΟΤΡΓΔΗΟ ΠΑΗΓΔΗΑ ΚΑΗ ΘΡΖΚΔΤΜΑΣΧΝ, ΠΟΛΗΣΗΜΟΤ ΚΑΗ ΑΘΛΖΣΗΜΟΤ Η.Σ.Τ.Δ. «ΓΗΟΦΑΝΣΟ» Αή Δί Ζίαο Γήο Μαία Μά Ηία Αύα Δαέ Λό Σ Πώ Λό Α, Β, Γ Γύ Σόο 2ο (Γ, Γ, Δ, Ε, Ζ,) Δαέ Λό Α, Β, Γ Γύ Σ Πώ Λό Σόο 2ο (Γ, Γ,
ΕΛΕΓΧΟΣ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΚΕΦΑΛΑΙΟ 2 ΚΕΦΑΛΑΙΟ 2. Πλεονεκτήματα ψηφιακού ελέγχου
ΚΕΦΑΛΑΙΟ Πλεονεκήμαα ψηφιακού ελέγχου Ικανόηα για επεξεργασία αλγορίθμων με λογισμικό ανί για harwar. Αλλαγή ου σχεδιασμού χωρίς αλλαγές σο harwar. Μείωση μεγέθους, βάρους, ισχύος καθώς και χαμηλό κόσος.
υφ υ., Β ί,. υ, Βί φ υ α π ί αμ υ Γ α - α ί υ. α. πί. V ( α μ μ μ α, α α π ία μ ί α πα μ υπ ) π αμ α 8 α, α φ μα α υ α ί υ α Βαφ π. α ί α, π ( α ί), φ
Φ Γ Θ ΓΓ Γ ON Β Γ Θ Γ Ω Γ φ α α (..) Θ α ία ί α α ί α (φ μα α Ο αμ υ π φα α ) π υ α α α μ αφ απ υ υ υ υ υ (φ μα υ α α α αμ υ α υ Ο υ φυ υ). Β α ί α ί α υ α ί α α α Θ α ία, α α ία μ μ α ί π GR 16 α GR 17.
ΕΘΝΙΚΟ ΘΕΜΑΤΙΚΟ ΔΙΚΤΥΟ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ «Βιώσιμη Πόλη: Η πόλη ως πεδίο εκπαίδευσης για την αειφορία»
Εθό Δίτυο «Βώσμη Πόλη: Η πόλη ως πδίο παίδυσης α τη αφορία» Κέτρο Πρβαλλοτής Επαίδυσης Ελυθρίου Κορδλού & Βρτίσου ΕΘΝΙΚΟ ΘΕΜΑΤΙΚΟ ΔΙΚΤΥΟ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ «Βώσμη Πόλη: Η πόλη ως πδίο παίδυσης
ΠΡΟΓΡΑΜΜΑ ΣΥΝΤΗΡΗΣΕΩΝ ΣΕ ΓΡΑΜΜΕΣ ΜΕΤΑΦΟΡΑΣ Π.Τ. ΥΤΙΚΗΣ ΕΛΛΑ ΟΣ ΕΤΟΥΣ 2018
ΠΡΟΓΡΑΜΜΑ ΣΥΝΤΗΡΗΣΕΩΝ ΣΕ ΓΡΑΜΜΕΣ ΜΕΤΑΦΟΡΑΣ Π.Τ. ΥΤΙΚΗΣ ΕΛΛΑ ΟΣ ΕΤΟΥΣ 2018 ΠΡΟΣΟΧΗ: Οι ημερομηνίες απομόνωσης των στοιχείων του συστήματος για την συντήρησή τους απεικονίζονται όπως δηλώθηκαν από τους αρμόδιους
Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίας Δής Μαία Μά Ιία Αύα Εαέ Λό Τ Πώ Λό Α, Β, Γ Δύ Τός 6ς (Κ,, (- ία)) Εαέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 6ς (Κ,, (-ία))
Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό
ΤΠΟΤΡΓΔΗΟ ΠΑΗΓΔΗΑ ΚΑΗ ΘΡΖΚΔΤΜΑΣΩΝ, ΠΟΛΗΣΗΜΟΤ ΚΑΗ ΑΘΛΖΣΗΜΟΤ Η.Σ.Τ.Δ. «ΓΗΟΦΑΝΣΟ» Αή Δί Ζίαο Γήο Μαία Μά Ηία Αύα Δαέ Λό Σ Πώ Λό Α, Β, Γ Γύ Σόο 5ο (Ο, Π,) Δαέ Λό Α, Β, Γ Γύ Σ Πώ Λό Σόο 5ο (Ο, Π,) ΤΓΓΡΑΦΔΙ
ΠΙΝΑΚΑΣ Ι: ΟΦΕΙΛΕΣ ΕΡΓΩΝ ΕΘΝΙΚΟΥ ΣΚΕΛΟΥΣ. Ληξιπρόθεσµες οφειλές (τιµολόγιο>90 ηµερών) Εγκεκριµένη πίστωση. Χωρις κατανοµή πίστωσης
ΦΟΡΕΑΣ: Υπουργείο / Αποκεντρωµένη ιοίκηση..... ΕΙ ΙΚΟΣ ΦΟΡΕΑΣ: Γενική γραµµατεία... / Περιφέρεια..... Αναφορά για το µήνα: Ετος: 2012 ΣΑ έργου (Π Ε) Υποχρεώσεις πιστοποιηµένων εργασιών χωρίς τιµολόγιο
ιονύσης Μητρόπουλος νόµος του Νεύτωνα έχει για το σωµατίδιο τη µορφή F = (2), (3).
ιούσης Μηρόπουλος Σερεό ΣΥΣΤΗΜΑ ΣΩΜΑΤΙ ΙΩΝ, ΣΤΕΡΕΟ ΣΩΜΑ ΟΣ ΝΟΜΟΣ ΤΟΥ ΝΕΥΤΩΝΑ Έα σωµαίδιο, Ορµή, Σροφορµή Ο ος όµος ου Νεύωα σε αδραειακό και µη αδραειακό σύσηµα Γωρίζουµε όι η ορµή εός σωµαιδίου µάζας
Κ Α Ν Ο Ν Ι Σ Μ Ο Σ Λ Ε Ι Τ Ο Υ Ρ Γ Ι Α Σ Ε Π Ι Τ Ρ Ο Π Ω Ν
Κ Α Ν Ο Ν Ι Σ Μ Ο Σ Λ Ε Ι Τ Ο Υ Ρ Γ Ι Α Σ Ε Π Ι Τ Ρ Ο Π Ω Ν Ψ η φ ί σ τ η κ ε α π ό τ η Γ ε ν ι κ ή Σ υ ν έ λ ε υ σ η τ ω ν Μ ε λ ώ ν τ ο υ Σ Ε Π Ε τ η ν 24 η Μ α ΐ ο υ 2003 Δ ι ά τ α ξ η Ύ λ η ς 1. Π
Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίας Δής Μαία Μά Ιία Αύα Εαέ Λό Τ Πώ Λό Τός 1ς (Α,α (-αάα)) Εαέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 1ς (Α,α (-αάα)) ΣΥΓΓΡΑΦΕΙΣ
Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίς Δής Μί Μά Ιί Αύ Εέ Λό Τ Πώ Λό Τός 12ς (Π, (ίς- )) Εέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 12ς (Π, (ίς- )) ΣΥΓΓΡΑΦΕΙΣ
ο Θε ος η η µων κα τα φυ γη η και δυ υ υ να α α α µις βο η θο ος ε εν θλι ψε ε ε σι ταις ευ ρου ου ου ου ου σαις η η µα α α ας σφο ο ο ο
Ἐκλογή ἀργοσύντοµος εἰς τὴν Ἁγίν Κυρικήν, κὶ εἰς ἑτέρς Γυνίκς Μάρτυρς. Μέλος Ἰωάννου Ἀ. Νέγρη. Ἦχος Νη ε Κ ι δυ υ υ υ ν µι ις Α λ λη λου ου ου ι ι ι ι ο Θε ος η η µων κ τ φυ γη η κι δυ υ υ ν µις βο η θο
1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ
.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε εσωτερικό γινόµενο των διανυσµάτων α, και συµολίζουµε µε α τον πραγµατικό αριθµό : α = ( α συν α ) αν α και α = αν α = ή =. Ιδιότητες α = α Αν α τότε Αν
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ-I
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ-I ΕΙΣΑΓΩΓΗ ΒΑΣΙΚΑ ΣΗΜΑΤΑ Μοναδιαία βηµαική συνάρηση (Ui Sep Fucio) U () =, U () =, .5 - -
Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίας Δής Μαία Μά Ιία Αύα Εαέ Λό Τ Πώ Λό Α, Β, Γ Δύ Τός 5ς (Ε, (ά) Ι,) Εαέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 5ς (Ε, (ά)
Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό
ΤΠΟΤΡΓΔΗΟ ΠΑΗΓΔΗΑ ΚΑΗ ΘΡΖΚΔΤΜΑΣΩΝ, ΠΟΛΗΣΗΜΟΤ ΚΑΗ ΑΘΛΖΣΗΜΟΤ Η.Σ.Τ.Δ. «ΓΗΟΦΑΝΣΟ» Αή Δί Ζίο Γήο Μί Μά Ηί Αύ Δέ Λό Σ Πώ Λό Α, Β, Γ Γύ Σόο 4ο (Λ, - Μ, - Ν, - Ξ,) Δέ Λό Α, Β, Γ Γύ Σ Πώ Λό Σόο 4ο (Λ, - Μ, -
ΠΡΟΣΩΡΙΝΟΣ ΠΙΝΑΚΑΣ ΠΡΟΣΛΗΠΤΕΩΝ ΚΩΔ.ΘΕΣΗΣ: 238 ΚΑΤΗ ΓΟΡΙΑ-ΚΛΑΔΟΣ-ΕΙΔΙΚΟΤΗΤΑ: ΠΕ ΙΑΤΡΩΝ ΓΕΝΙΚΗΣ ΙΑΤΡΙΚΗΣ ΑΜΠΕΛΟΚΗΠΩΝ - ΜΕΝΕΜΕΝΗΣ ΥΠΕ:
ΠΡΟΣΩΡΙΝΟΣ ΠΙΝΑΚΑΣ ΠΡΟΣΛΗΠΤΕΩΝ ΚΩΔ.ΘΕΣΗΣ: 238 ΚΑΤΗ ΓΟΡΙΑ-ΚΛΑΔΟΣ-ΕΙΔΙΚΟΤΗΤΑ: ΠΕ ΙΑΤΡΩΝ ΓΕΝΙΚΗΣ ΙΑΤΡΙΚΗΣ ΔΗΜΟΣ: ΑΜΠΕΛΟΚΗΠΩΝ - ΜΕΝΕΜΕΝΗΣ ΥΠΕ: 3η Α/Α Α.Π. Αίτησης Επώνυμο Όνομα Πατρώνυμο Μόρια Εντοπιότητα
(1A) Ε ΟΜΕΝΑ 2Φ10 Σ. Η. ΔΡΙΤΣΟΣ. Yλικά : Άνοιγµα δοκού: l 0-2 = l 2-3 = 4,40 m ΖΗΤΟΥΜΕΝΑ: Σ..Η ΔΡΙΤΣΟΣ
(A) κός Οπλισένυ Σκυρδέας Ενισχυένη ε Σρώση Οπλισένυ Σκυρδέας- Έλεγχς άρκειας ιφάνειας Ε ΟΜΕΝΑ Άνιγα δκύ: l 0- l -3 4,40 m Φ0 Η. Πλάς δκύ: b 0 mm Πλάς σήριξης: b. ΚΑΜΠΤΙΚΗ ΕΝΙΣΧΥΣΗ ΜΕ ΠΡΟΣΘΕΤΕΣ σ 0mm 0
ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική. Τελική εξέταση 5 Μάη 2007 Ομάδα 2 η
ΦΥΣ 145 Υπολογισικές Μέθοδοι ση Φυσική Τελική εξέαση 5 Μάη 2007 Ομάδα 2 η Γράψε ο ονομαεπώνυμο, αριθμό αυόηας και ο password σας σο πάνω μέρος ης αυής ης σελίδας. Πρέπει να απανήσεε και σα 5 προβλήμαα
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 18 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 18 ΙΟΥΝΙΟΥ 1 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ 1. Σωστό το γ. Σωστό το γ. Σωστό το γ 4. Σωστό το δ
1η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΘΕΡΜΟΚΡΑΣΙΑ ΑΕΡΑ ΚΑΙ ΜΕΤΑΦΟΡΑ ΑΙΣΘΗΤΗΣ ΘΕΡΜΟΤΗΤΑΣ
1η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΘΕΡΜΟΚΡΑΣΙΑ ΑΕΡΑ ΚΑΙ ΜΕΤΑΦΟΡΑ ΑΙΣΘΗΤΗΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕΘΟΔΟΙ ΜΕΤΡΗΣΗΣ ΘΕΡΜΟΚΡΑΣΙΑΣ Δισολή (θερμική δισολή σερεών-υγρών-ερίων) Ηλεκρική νίσση (εξάρησή ης πό θερμοκρσί) Θερμοηλεκρικό
4 η δεκάδα θεµάτων επανάληψης
1 4 η δεκάδα θεµάτων επανάληψης 1. Έστω τα διανύσµατα u = ( 6, 8) και v = (9, 1) είξτε ότι είναι αντίρροπα Να βρείτε την εξίσωση της έλλειψης που έχει ηµιάξονες τα µέτρα των διανυσµάτων, κέντρο την αρχή
α και γ και να 3. Δίνεται τραπέζιο ΟΑΒΓ με ΟΑ = α, ΟΓ =γ και ΓΒ= 2ΟΑ αποδείξετε ότι ΓΑ = 2ΕΔ ΛΥΣΗ Έχουμε: ΓΑ = ΓΟ + ΟΑ = γ + α
3 Δίνεται τραπέζιο ΟΑΒΓ με ΟΑ = α, ΟΓ =γ και ΓΒ= ΟΑ Αν Δ και Ε είναι τα μέσα των ΑΒ και ΒΓ αντίστοιχα, να βρείτε τα διανύσματα ΓΑ, ΑΒ και ΕΔ συναρτήσει των α και γ και να αποδείξετε ότι ΓΑ = ΕΔ ΛΥΣΗ Έχουμε:
Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό
ΤΠΟΤΡΓΔΙΟ ΠΑΙΓΔΙΑ ΚΑΙ ΘΡΗΚΔΤΜΑΣΧΝ, ΠΟΛΙΣΙΜΟΤ ΚΑΙ ΑΘΛΗΣΙΜΟΤ Ι.Σ.Τ.Δ. «ΓΙΟΦΑΝΣΟ» Αή Δί Ηίο Γήο Μί Μά Ιί Αύ Δέ Λό Σ Πώ Λό Α, Β, Γ Γύ Σόο 1ο (Α, Β,) Δέ Λό Α, Β, Γ Γύ Σ Πώ Λό Σόο 1ο (Α, Β,) ΤΓΓΡΑΦΔΙ Αή Δί,
ΤΜΗΜΑ ΦΩΚΑ/ΤΕΤΑΡΤΗ
ΤΜΗΜΑ ΦΩΚΑ/ΤΕΤΑΡΤΗ 09.00 -.00 5 ZE MI WA 0 0 0 9 0,95 9 ΑΓ ΓΕ ΠΑ 0 0 0 0 0 0 95 ΑΔ ΡΟ ΙΩ 0 0 0 0 0 0 97 ΑΙ ΚΩ ΠΑ 0 0 0 0 0 0 5 507 ΑΛ ΕΥ ΤΖ 0 0 0 0 0 0 6 99 ΑΝ ΟΡ ΚΩ 7 5 0 0 0,65 7 95 ΑΝ ΙΩ ΟΡ 9 9 9 6
11:30-12:00 ιά ι α 12:00-14:00 ία: Α αιο ο ία αι α ς Α έ ος. ο ισ ς: ά ο ιο. οβο ή βί α ι έ ο ή ο Αθ αίω, Α φιθέα ο «Α ώ ς ί σ ς» Α α ίας
Α ΧΑ Α 9- α ο α ίο ι «Α αιο ο ι οί ιά ο οι» ί αι έ ας έος θ σ ός, έ ας ια ής ι ι ός αι α ασ ο ασ ι ός ιά ο ος ια ις α αιό ς αι α αιο ο ία σ σ ι ή οι ία. βασι ή ο ο φή ί αι έ α ήσιο, α οι ό σ έ ιο / ή σ
14SYMV
Α ΑΗ Α Αθή α, 27-03-2014 14SYMV002047477 2014-05-14 Α...: 680/27-03-2014 Α.. Α : 476/27-03-2014 ΑΑΑ Α ΗΗ Η (53Η Α Η Η Η ΑΑ Η ΩΑ «ΑΑ Α ΑΗ Α Η Η Α Η Ω Α Α Α Η Α Ω ΑΑ Α Η ΑΗ Η» ης 27 ης Α 4 έ α 1ο: Έ ιση