ιονύσης Μητρόπουλος νόµος του Νεύτωνα έχει για το σωµατίδιο τη µορφή F = (2), (3).
|
|
- Ευφρανωρ Σκλαβούνος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ιούσης Μηρόπουλος Σερεό ΣΥΣΤΗΜΑ ΣΩΜΑΤΙ ΙΩΝ, ΣΤΕΡΕΟ ΣΩΜΑ ΟΣ ΝΟΜΟΣ ΤΟΥ ΝΕΥΤΩΝΑ Έα σωµαίδιο, Ορµή, Σροφορµή Ο ος όµος ου Νεύωα σε αδραειακό και µη αδραειακό σύσηµα Γωρίζουµε όι η ορµή εός σωµαιδίου µάζας m σε κάποιο σύσηµα (Οxyz), που θα ο λέµε για ευκολία (Ο), ορίζεαι ως p v mυ (). Α ο σύσηµα είαι αδραειακό, ο ος dp όµος ου Νεύωα έχει για ο σωµαίδιο η µορφή (), όπου η συολική δύαµη που ασκείαι σ αυό ή και, δεδοµέου όι ο σωµαίδιο dυ έχει σαθερή µάζα, m ή mα (3). Επίσης, η σροφορµή ου σωµαιδίου ορίζεαι ως L mυ (4) (δηλαδή η ροπή ης ορµής ου), όπου ο διάυσµα θέσης ου σο (Ο). Α πάλι ο σύσηµα είαι αδραειακό, ο ος dl όµος ου Νεύωα µπορεί α πάρει και η µορφή (5), όπου η ροπή ης συολικής δύαµης που ασκείαι σο σωµαίδιο. εδοµέου dυ ώρα όι η ελευαία σχέση µπορεί α γραφεί m, φαίεαι όι οι δύο µορφές ου ου όµου (3) και (5) για έα σωµαίδιο είαι ισοδύαµες. Ας προσπαθήσουµε ώρα α γράψουµε ο ο όµο ου Νεύωα για ο σωµαίδιο, ως προς έα µη αδραειακό σύσηµα (O x y z ), ή για ευκολία (O ), που επιαχύεαι ως προς ο αδραειακό (Ο) µε επιάχυση α. Α είαι υ, υ οι αχύηες ου σωµαιδίου ως προς α (Ο), (O ) αίσοιχα και υ η αχύηα ου (O ) ως προς ο (Ο) όε ισχύει: dυ dυ dυ υ υ υ mα mα mα mα mα (6) όπου η συολική δύαµη που ασκείαι σο σωµαίδιο. Παραηρήσε όι ο όρος mα εκφράζει η αδραειακή δύαµη D Alembet που δέχεαι ο σωµαίδιο σο σύσηµα (O ), εποµέως ο ος όµος ου Νεύωα µπορεί α πάρει και η γωσή εαλλακική µορφή: αδρα. mα (7). Από η σχέση αυή µπορεί α προκύψει και η άλλη (ισοδύαµη για έα σωµαίδιο) µορφή ου ου όµου ου Νεύωα: ( αδρα. ) mα dυ αδρα. m Σελίδα από
2 ιούσης Μηρόπουλος Σερεό (O ) αδρα. dl όπου ο διάυσµα θέσης ου σωµαιδίου σο µη αδραειακό σύσηµα (O ), και αδρα. (O ) (8) οι ροπές σο (O ) ης συολικής πραγµαικής και ης αδραειακής δύαµης που ασκούαι σο σωµαίδιο και ο ο µέλος εκφράζει ο ρυθµό µεαβολής ης σροφορµής ου σωµαιδίου σο (O ). ΠΑΡΑΤΗΡΗΣΕΙΣ () Προσέξε όι ο µη αδραειακό σύσηµα (O ) γεικά δε είαι «προσαρηµέο» σο σωµαίδιο, ο οποίο έχει επιάχυση α ως προς ο (O ). Α όµως υποθέσουµε όι ο σωµαίδιο είαι ακίηο ως προς ο (O ), όε κααλήγουµε σε συθήκη ισορροπίας που περιλαµβάει φυσικά και η δύαµη D Alembet. () Η σχέση (8) βρίσκεαι σε πλήρη συµφωία µε σχέση που συαάµε, για η κίηση εός σωµαιδίου ως προς µη αδραειακό σύσηµα, ση βιβλιογραφία, καά η µελέη συσήµαος υλικώ σηµείω: dl (O ) α m (9) Σ Πράγµαι: Ο όρος α m ου ου µέλους ης σχέσης (9) µπορεί α γραφεί ( m α ) ή αλλιώς ( mα ) και α ο µεαφέρουµε σο ο µέλος παίρουµε η σχέση (8). Σελίδα από
3 ιούσης Μηρόπουλος Σερεό Σύσηµα σωµαιδίω, Ορµή συσήµαος, Σροφορµή συσήµαος Ο ος όµος ου Νεύωα σε αδραειακό και µη αδραειακό σύσηµα Ας υποθέσουµε ώρα όι έχουµε σωµαίδια m, m,, m που βρίσκοαι σις θέσεις,,..., σο αδραειακό σύσηµα (Oxyz). Από ο ο όµο ου Νεύωα για οποιοδήποε από αυά έχουµε: k k mα όπου είαι η εξωερική δύαµη που ασκείαι σο m και είαι οι αλληλεπιδράσεις πάω ου από όλα α σωµαίδια. Αθροίζοας για όλα α σωµαίδια, παίρουµε: k k mα Η σχέση αυή µεά η απλοποίηση ω ζευγαριώ δράσης αίδρασης γίεαι: mα Το δεύερο µέλος όµως σχείζεαι µε ο κέρο µάζας ου συσήµαος που ορίζεαι από η σχέση: m m όπου Μ η συολική µάζα ω σωµαιδίω. ή M () m Με η πρώη παραγώγιση ης () προκύπει όι ο κέρο µάζας ου συσήµαος ω σωµαιδίω κιείαι ως έα υλικό σηµείο µάζας M που η συολική ορµή ου συσήµαος εφαρµόζεαι σ αυό και είαι: M υ mυ () Με η δεύερη παραγώγιση έλος και µε αικαάσαση ση () προκύπει για η συισαµέη ω εξωερικώ δυάµεω που ασκούαι σο σύσηµα (αδιάφορο σε ποια α σωµαίδια ασκούαι) και για ο κέρο µάζας ου ο ος όµος ου Νεύωα: M α mα και ελικά η () γίεαι M α () ή M α (3) k Ας προσπαθήσουµε ώρα α γράψουµε ο ο όµο ου Νεύωα ση γεικόερη µορφή ου, µε ις ροπές ω δυάµεω. Ξεκιάµε πάλι από ο ο όµο ου Νεύωα για υχαίο σωµαίδιο: k k d ου συσήµαος : (mυ ) και παίρουµε ις ροπές και ω δύο µελώ ως προς η αρχή k k d(mυ ) ή αλλιώς: Σελίδα 3 από
4 ιούσης Μηρόπουλος Σερεό k k d ( mυ ) Αθροίζουµε για όλα α σωµαίδια: k k d L Και µεά η απλοποίηση ω ροπώ ω ζευγαριώ δράσης αίδρασης: (Ο) (Ο) (4) ΠΑΡΑΤΗΡΗΣΕΙΣ () Η επιλογή ης αρχής Ο ήα αυθαίρεη, έσι η σχέση (4) ισχύει για οποιοδήποε σηµείο ου αδραειακού συσήµαος ααφοράς (Ο): dl (5) () Σροφορµή συσήµαος και κέρο µάζας: Η σροφορµή L ου συσήµαος ω σωµαιδίω ως προς οποιοδήποε σηµείο ου αδραειακού συσήµαος, π.χ. ως προς η αρχή Ο, είαι όπως είδαµε: L L mυ m & m ( ) ( & & ), όπου είαι α διαύσµαα θέσης ω σωµαιδίω ως προς ο κέρο µάζας ου συσήµαος. Μεά ις πράξεις σο ελευαίο µέλος προκύπει: L Μ & m & ή αλλιώς L L L (6) Οι δύο όροι ου δεύερου µέλους αισοιχού ση σροφορµή ου κέρου µάζας ου συσήµαος ως προς ο αυθαίρεα επιλεγµέο σηµείο Ο ου αδραειακού συσήµαος και ση σροφορµή ου συσήµαος ως προς ο κέρο µάζας ου. Όπως ααφέρει ο Becke, η επιλογή ου σηµείου Ο είαι αυθαίρεη. Η σχέση (6) πάως έχει πρακικά αξία, α µπορεί α εφαρµοσεί ο γεικευµέος όµος (5) σο σηµείο αυό. Α ο κααλαβαίω καλά, αυό σηµαίει όι για οποιοδήποε σηµείο Ο ου αδραειακού συσήµαος ισχύει η ισοδυαµία: dl dl () (7) Σελίδα 4 από
5 ιούσης Μηρόπουλος Σερεό Τέλος, ας προσπαθήσουµε α γράψουµε κι εδώ ο ο όµο ου Νεύωα για ο σύσηµα ω σωµαιδίω, ως προς έα µη αδραειακό σύσηµα (O x y z ), ή για ευκολία (O ), που επιαχύεαι ως προς ο αδραειακό (Ο) µε επιάχυση α. Η συολική ροπή που δέχοαι α σωµαίδια ως προς (O ) είαι: (7) όπου είαι α διαύσµαα θέσης ω σωµαιδίω ως προς ο (O ). Χρησιµοποιούµε ο ο όµο ου Νεύωα για κάθε σωµαίδιο, ους µεασχηµαισµούς και & & & και η (7) γίεαι: d m ( & & ) m ( & & ) ( & m ) m & & m d (mυ) (8) Ισχύει & α και ο ελευαίος όρος σο δεξιό µέλος είαι ο ρυθµός µεαβολής ης σροφορµής ως προς ο (O ) οπόε η (8) γίεαι: α dl m (8) ΠΑΡΑΤΗΡΗΣΗ Αυή ακριβώς η ελευαία σχέση: dl Σ (O ) α N m (9) η συαάµε ση βιβλιογραφία ως επέκαση ου γεικευµέου ου όµου ου Νεύωα καά ο όρο α m για η χρήση ου σε µη αδραειακά συσήµαα. Ααφέροαι ρεις περιπώσεις όπου ο όρος αυός µηδείζεαι, οπόε ο όµος ου Νεύωα παίρει η καοική µορφή ου: ) Προφαώς όα α, οπόε ο (O ) εκφυλίζεαι σε αδραειακό σύσηµα. ) Όα ο σηµείο O συµπίπει µε ο κέρο µάζας ου συσήµαος, οπόε: m Σελίδα 5 από
6 ιούσης Μηρόπουλος Σερεό 3) εδοµέου όι για ο άθροισµα αυό ισχύει: m M, όπου είαι ο διάυσµα θέσης ου κέρου µάζας σο σύσηµα (O ) και Μ η µάζα ου συσήµαος, κααλαβαίουµε όι ο φορέας ου είαι η ευθεία που εώει ο O µε ο κέρο µάζας. Α λοιπό και η επιάχυση α ου σηµείου O έχει ο ίδιο φορέα, διέρχεαι δηλαδή κι αυή από ο κέρο µάζας, όε ο εξωερικό γιόµεο ω δύο διαυσµάω είαι µηδέ οπόε µηδείζεαι πάλι ο ε λόγω όρος. Σελίδα 6 από
7 ιούσης Μηρόπουλος Σερεό Σερεό σώµα και επίπεδη κίηση. Ορµή και Σροφορµή σερεού. Ο ος όµος ου Νεύωα για η επίπεδη κίηση ου σερεού σε αδραειακό και µη αδραειακό σύσηµα. Καά η επίπεδη κίηση εός σερεού θεωρούµε όι κιείαι µε έοιο ρόπο ώσε όλα ου α σηµεία α κιούαι σε παράλληλα επίπεδα. Έσι ο κέρο µάζας ου κιείαι πάω σε ορισµέο επίπεδο (κίηση δύο διασάσεω, µεαφορά), πάω σο οποίο βρίσκοαι και όλες οι δυάµεις που ασκούαι σο σερεό (οµοεπίπεδες). Ο άξοας γύρω από ο οποίο σρέφεαι ο σερεό (περισροφή) είαι κάθεος σο ε λόγω επίπεδο και διαηρεί σαθερό ο προσααολισµό ου αφού όλες οι δυάµεις µπορού α προκαλέσου µόο ροπές καά η διεύθυσή ου. Για η µεαφορά ου σερεού ισχύει p v Mυ µε σηµείο εφαρµογής ο κέρο µάζας ου και ο ος όµος ου Νεύωα έχει η γωσή µορφή: y Mα, y Mα M (ή y α η κίηση είαι ευθύγραµµη) x α, x () Ας πάµε ώρα α γράψουµε ο ο όµο ου Νεύωα ση γεικόερη µορφή ου µε ις ροπές ω δυάµεω και για ο σερεό σώµα. Καά η µελέη συσήµαος σωµαιδίω πιο πρι για αδραειακό σύσηµα ααφοράς, είχαµε κααλήξει ση σχέση (5), ως προς οποιοδήποε σηµείο ου αδραειακού συσήµαος: dl (5) Ση συέχεια χρησιµοποιήσαµε η σχέση (6α): ισοδυαµία (7): dl L L L για α γράψουµε η dl () (7α) Η (6) µας πληροφορεί όι: Η σροφορµή εός συσήµαος ως προς οποιοδήποε σηµείο Ο αδραειακού συσήµαος µπορεί α εκφρασεί σα άθροισµα ης σροφορµής ου κέρου µάζας ου ως προς ο Ο συ ης σροφορµής ου ως προς ο κέρο µάζας ου. Ας δούµε η πρόαση αυή λίγο πιο ααλυικά: () Α ο σηµείο Ο είαι κάποιο σαθερό σηµείο και συµπίπει µε ο CM, έχουµε δηλαδή σαθερό άξοα περισροφής που διέρχεαι από ο CM, όε η σροφορµή ου CM είαι µηδεική, οπόε η (7) εκφυλίζεαι ση γωσή µας σχέση: () () (7β) Σελίδα 7 από
8 ιούσης Μηρόπουλος Σερεό () Α ο σηµείο Ο δε συµπίπει µε ο CM, αλλά είαι κάποιο σαθερό σηµείο γύρω από ο οποίο περισρέφεαι ο σερεό (από ο οποίο θα διέρχεαι και ο αίσοιχος άξοας) όε ικαοποιείαι έµµεσα η σχέση (6) αφού χρησιµοποιούµε ο θεώρηµα ου Stene! Ας δούµε έα παράδειγµα για α γίει πιο κααοηό: Η σροφορµή ης ράβδου ου σχήµαος ως προς ο σαθερό σηµείο Ο είαι: L L L L I ω I(CM) M ω M M ω 4 4 Εαλλακικά: MLω 3 L L L L L, L(CM) Mυ I(CM) ω Mω M ω Η γωιακή ης επιβράδυση η σιγµή αυή είαι: MLω 3 ΜL (Ο) Mgx I αγω Mgx αγω αγω... 3 Εαλλακικά: dl dl (Ο) Mgx Mgx Mα I(CM) αγω () ω Ο ωl/ CM L L ΜL ΜL Mgx Mαγω αγω Mgx αγω αγω... 3 () Γεικόερα έλος, ο Ο µπορεί α είαι οποιοδήποε σηµείο ου αδραειακού συσήµαος ααφοράς. Ας ο δούµε πάλι µε έα παράδειγµα: Ο κύλιδρος ου διπλαού σχήµαος κυλίεαι χωρίς / µε ω ολίσθηση µε η επίδραση οριζόιας δύαµης. Να βρείε η (m, R) CM γωιακή και η µεαφορική ου επιάχυση. Απάηση: ο κύλιδρος κάει επιαχυόµεη µεαφορική και Ο T σροφική κίηση. Z Α κυλίεαι χωρίς ολίσθηση, η ριβή Τ θα είαι σαική και: α α γω R Α αίθεα υπάρχει και ολίσθηση όε θα έχουµε ριβή ολίσθησης: Τ µν Από η µεαφορική κίηση θα έχουµε: Σ x m α T m α 3 Σ y Ν m g 4 Από η σροφική κίηση ώρα έχουµε: ( ος ρόπος, ως προς ο CM) TR I α TR mr (CM) (CM) γω γω γω (CM) ( ος ρόπος, ως προς υχαίο ακίηο σηµείο Ο ου δαπέδου) α T mrα 5 υ Σελίδα 8 από
9 ιούσης Μηρόπουλος (Ο) dl dl R R mα I(CM) αγω () Σερεό ΜR R Rmα αγω mα ΜRαγω 6 Παραηρείσε όι οι δύο ελευαίες 5 και 6 είαι ισοδύαµες, αφού από η µία µπορεί α προκύψει η άλλη (µε η βοήθεια και ης 3) Παραηρείσε ακόµα όι η 6 προκύπει µε η εφαρµογή ου ου όµου σε αδραειακό σύσηµα. Η 5 όµως µπορούµε α θεωρήσουµε όι προκύπει από η εφαρµογή ου ίδιου όµου είε σε αδραειακό είε σε µη αδραειακό σύσηµα! Α εφαρµόσουµε ο όµο ως προς ο (ακίηο) σηµείο ου χώρου από ο οποίο διέρχεαι η σιγµή αυή ο κέρο µάζας (αδραειακό σύσηµα), όε χρησιµοποιούµε η εξίσωση (7α)και µάλισα η υποπερίπωση (7β). Α όµως εφαρµόσουµε ο όµο ως προς ο (επιαχυόµεο) κέρο µάζας (µη αδραειακό σύσηµα) όε χρησιµοποιούµε η εξίσωση (9) µε η παραήρηση σε ισχύ. Το ελευαίο µε ο οποίο θα ασχοληθούµε θα είαι α σχολιάσουµε λίγο η εφαρµογή ου ου όµου ου Νεύωα ση επίπεδη κίηση ου σερεού, ως προς έα µη αδραειακό σύσηµα (O x y z ), ή για ευκολία (O ), που επιαχύεαι ως προς ο αδραειακό (Ο) µε επιάχυση α. Μεαφέρω η σχέση (9) που είχαµε βρει ση αίσοιχη περίπωση ου συσήµαος σωµαιδίω: α Γωρίζουµε κα αρχή όι ισχύει dl m m M ου CM σο σύσηµα (O ) και Μ η µάζα ου σερεού. Εποµέως, ο όρος α m µπορεί α γίει: (9α) α m α M ( Mα ) όπου είαι ο διάυσµα θέσης Α δηλαδή εισάγουµε πάλι η έοια ης αδραειακής δύαµης D Alembet, η οποία ασκείαι σο κέρο µάζας ου σώµαος, ο ε λόγω όρος εκφράζει η ροπή αυής ης δύαµης ως προς ο σηµείο O. Η σχέση (9α) µπορεί λοιπό α γραφεί: dl ( Mα ) ή αλλιώς (O ) αδρα.(o ) dl () Σελίδα 9 από
10 ιούσης Μηρόπουλος Σερεό Για α κλείσουµε, ας δούµε σα ελευαίο παράδειγµα, εαλλακικούς ρόπους λύσης για η πολύ καλή άσκηση ου Ξεοφώα (µε ο φορηγό που επιβραδύεαι και ο κιβώιο που είει α γλισρήσει προς α εµπρός, ή α ααραπεί. ( Λόγω ης επιβραδυόµεης µε α µεαφοράς ου κιβωίου έχουµε: Σ x m α T m α T m α ο Σ y Ν m g Σο µη αδραειακό σύσηµα ου φορηγού ο κιβώιο ισορροπεί, εποµέως ως προς ο σηµείο Ο όπου εφαρµόζεαι η Ν έχουµε: Σ Σ αδρα. mgx mα o γ/ γ x αo 3 x Εαλλακικά, εφαρµόζουµε ο γεικευµέο ο όµο ως προς (ακίηο) σηµείο ου χώρου, π.χ. ως προς ο Ζ (αδραειακό σύσηµα) που α βρίσκεαι σο ίδιο ύψος από ο έδαφος µε ο σηµείο Ο (ο ρυθµός µεαβολής ης σροφορµής ου σώµαος ως προς Ζ δε είαι µηδεικός, παρόλο που δε περισρέφεαι, διόι µεαβάλλεαι η αχύηα ου CM!!): dl [ ] dl Nmg Σ (Ζ) Ν(ΖΟ) mg (ZO) x (Ζ) γ Σ(Ζ) mgx mα gx α γ/ x αo 3 x (Ζ) (Z) Ζ mg Τ (CM) β CM x γ mα ο N Ο α ο κίηση Συθήκη µη ααροπής: x β/ 4 Συθήκη µη ολίσθησης: Τ µν 5 (Οι ισόηες οριακά) Και ούω καθεξής ιούσης Μηρόπουλος Σελίδα από
Η ΜΑΘΗΜΑΤΙΚΗ ΜΟΥΣΙΚΗ
Η ΜΑΘΗΜΑΤΙΚΗ ΜΟΥΣΙΚΗ ΕΙΣΑΓΩΓΗ Όπως είαι γωσό, η Μουσική είαι Μαθημαικά και (σο βάθος) υπάρχει, μία «αδιόραη αρμοία» μεαξύ αυώ ω δύο. Έα μουσικό έργο, διέπεαι από μαθημαικούς όμους, σε ό,ι αφορά ις σχέσεις
ΑΛΛΑΓΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΟΥ ΑΞΟΝΑ ΠΕΡΙΣΤΡΟΦΗΣ ΣΤΡΕΦΟΜΕΝΟΥ ΣΩΜΑΤΟΣ 90º. 180º ω. Οι απαντήσεις και τα σχετικά σχόλια
Φυσική καεύθυνσης Γ Σερεό σώµα ΑΛΛΑΓΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΟΥ ΑΞΟΝΑ ΠΕΡΙΣΤΡΟΦΗΣ ΣΤΡΕΦΟΜΕΝΟΥ ΣΩΜΑΤΟΣ άξονας 9º 18º Ο ροχός ου σχήµαος έχει ροπή αδράνειας Ι και σρέφεαι γύρ από ον άξονά ου µε γνιακή αχύηα µέρου.
Μεγαλύτερες περιπέτειες
Μεγαλύερες εριέειες Μεά ην ανάρηση «Ένα σύσημα σωμάων σε εριέειες» ας άμε ένα βήμα αρακάω, ση μελέη ου συσήμαος σωμάων και ης εφαρμογής ου γενικευμένου νόμου ου Νεύωνα. --------------------------------------
_Σχήµα 2_. Σελίδα 1 από 5. τον οποίο γίνεται η µεταπτωτική κίνηση. Άξονας περιστροφής τροχού. Άξονας γύρω από. τον οποίο γίνεται η µεταπτωτική κίνηση
ιονύσης Μηρόπουλος Κίνηση σερεού Παραηρήσεις ση µεαπωική κίνηση ενός σρεφόµενου ροχού Η ανάρηση αυή έγινε µε αφορµή: 1) Την πολύ καλή και ενδιαφέρουσα ανάρηση ου συναδέλφου Νίκου αµαόπουλου µε ίλο «Μεαπωική
ΦΥΣΙΚΗ Ι. ΣΤΑΤΙΚΗ ΙΣΟΡΡΟΠΙΑ ΣΩΜΑΤΟΣ Ισορροπία Σωματιδίου Στατική Ισορροπία Στερεού Σώματος
ΔΥΝΑΜΕΙΣ Διανυσμαική Φύση ης Δύναμης Σύνθεση Δυνάμεων ΡΟΠΗ Η Έννοια ης Ροπής Ροπή Πολλών Δυνάμεων Ζεύγος Δυνάμεων ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Α. Καραμπαρμπούνης, Ε. Συλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 4 5 ΣΤΑΤΙΚΗ ΙΣΟΡΡΟΠΙΑ
Κι όµως, τα Ρολόγια «κτυπούν» και Εξισώσεις: Η Άλγεβρα των εικτών του Ρολογιού
Κι όµως, τα Ρολόγια «κτυπού» και Εξισώσεις: Η Άλγεβρα τω εικτώ του Ρολογιού Εισαγωγικά ηµήτρης Ι. Μπουάκης Σχ. Σύµβουλος Μαθηµατικώ Σε ορισµέα βιβλία Αριθµητικής, αλλά κυρίως Άλγεβρας Β Γυµασίου και Α
Ροπή δύναμης. Τι προκαλεί την επιτάχυνση ενός υλικού σημείου; Η άσκηση δύναμης F πάνω του. Τι προκαλεί την γωνιακή επιτάχυνση ενός στερεού σώματος;
Τι προκαλεί ην επιάχυνση ενός υλικού σημείου; Η άσκηση δύναμης F πάνω ου Τι προκαλεί ην γωνιακή επιάχυνση ενός σερεού σώμαος; Η ροπή δύναμης F Για να αλλάξουμε ην περισροφική καάσαση ενός σώμαος παίζουν
Παρατηρήσεις 1 Για α ααζητήσουµε το όριο της f στο, πρέπει η f α ορίζεται όσο θέλουµε κοτά στο, δηλαδή η f α είαι ορισµέη σ έα σύολο της µορφής ( α, )
Η έοια του ορίου Όριο συάρτησης Ότα οι τιµές µιας συάρτησης f προσεγγίζου όσο θέλουµε έα πραγµατικό αριθµό l, καθώς το προσεγγίζει µε οποιοδήποτε τρόπο το αριθµό, τότε γράφουµε lim f() = l και διαβάζουµε
Γιάννη Σ. Μπούταλη Αναπληρωτή Καθηγητή Δ.Π.Θ. ΛΥΣΗ ΤΩΝ ΕΞΙΣΩΣΕΩΝ ΚΑΤΑΣΤΑΣΗΣ βοηθητικές σημειώσεις στο μάθημα ΣΑΕ ΙΙ
Γιάννη Σ Μπούαλη Αναπληρωή Καθηγηή ΔΠΘ ΛΥΣΗ ΤΩΝ ΕΞΙΣΩΣΕΩΝ ΚΑΤΑΣΤΑΣΗΣ βοηθηικές σημειώσεις σο μάθημα ΣΑΕ ΙΙ Ξάνθη, Μάιος 7 Ι Μπούαλη Λύση ων εξισώσεων καάσασης ΛΥΣΗ ΤΩΝ ΕΞΙΣΩΣΕΩΝ ΚΑΤΑΣΤΑΣΗΣ Σε αυό ο κεφάλαιο
Πως λύνεται ένα πρόβληµα.
Πως λύνεαι ένα πρόβληµα. Όπως έχουµε ήδη αναφέρει, α βήµαα για ην παραγωγή λογισµικού είναι: 1. Καανόηση προβλήµαος 2. Επίλυση ου προβλήµαος 3. Λογικός έλεγχος ης λύσης (αν υπάρχουν λάθη πήγαινε σο 1.)
Η Έννοια της τυχαίας ιαδικασίας
Η Έννοια ης υχαίας ιαδικασίας Η έννοια ης υχαίας διαδικασίας, βασίζεαι σην επέκαση ης έννοιας ης υχαίας µεαβληής, ώσε να συµπεριλάβει ο χρόνο. Σεκάθεαποέλεσµα s k ενόςπειράµαοςύχης ανισοιχούµε, σύµφωναµεκάποιοκανόνα,
ΙΙΙ. ΔΙΑΤΗΡΗΣΗ (ΙΣΟΖΥΓΙΟ) ΓΡΑΜΜΙΚΗΣ ΟΡΜΗΣ ΑΣΥΜΠΙΕΣΤΗ ΡΟΗ. LT και μονάδες στο SI, kgm/s 2 ή N. υνισταμένη. υνισταμένη. d dt. d dt.
ΙΙΙ. ΔΙΑΤΗΡΗΣΗ (ΙΣΟΖΥΓΙΟ) ΓΡΑΜΜΙΚΗΣ ΟΡΜΗΣ ΑΣΥΜΠΙΕΣΤΗ ΡΟΗ Έσω ένα υδραυλικό σύσημα ο οποίο περιέχεαι σε έναν όγκο ελέγχου C συνολικού όγκου και ο οποίο αναλλάσει μάζα με ο περιβάλλον με ρυθμούς (παροχές
Θέματα Περασμένων Εξετάσεων και Απαντήσεις
Θέμαα Περασμένων Εξεάσεων και Απανήσεις Εξεάσεις Ιουνίου. ΘΕΜΑ.,5 μονάδα Δίνεαι ο ΓΧΑ σύσημα με κρουσική απόκριση iπ h co8 π π Να βρεθεί η έξοδός ου αν η είσοδός είναι co π co 6π co 8π i W, < Εφαρμόζονας
Κεφάλαιο 3 ο. Κυκλώματα με στοιχεία αποθήκευσης ενέργειας
Κεφάλαιο 3 ο Κυκλώμαα με σοιχεία αποθήκευσης ενέργειας Η διαφορά μεαξύ ης ανάλυσης ων ωμικών κυκλωμάων, που μελεήσαμε ως ώρα, και ων κυκλωμάων που ακολουθούν είναι όι οι εξισώσεις που προκύπουν από ην
ΚΕΦΑΛΑΙΟ 4: ΤΥΠΟΠΟΙΗΣΗ ΠΡΟΪΟΝΤΩΝ ΚΑΙ ΤΕΧΝΙΚΗ ΠΡΟΟ ΟΣ
ΚΕΦΑΛΑΙΟ 4: ΤΥΠΟΠΟΙΗΣΗ ΠΡΟΪΟΝΤΩΝ ΚΑΙ ΤΕΧΝΙΚΗ ΠΡΟΟ ΟΣ 4.1 Η ΥΙΟΘΕΤΗΣΗ ΝΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ: ΣΤΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ Όαν η εχνολογία εξελίσσεαι η πρώη ερώηση µας είναι καά πόσο θα υιοθεηθεί δεδοµένου ης µεγάλης εγκαεσηµένης
13. Συνήθεις διαφορικές εξισώσεις
Κ Χρισοδολίδης: Μαθηµαικό Σµπλήρµα για α Εισαγγικά Μαθήµαα Φσικής 67 3 Σνήθεις διαφορικές εξισώσεις 3 Ορισµοί Μια εξίσση πο περιέχει παραγώγος κάποιας σνάρησης, ονοµάζεαι διαφορική εξίσση ( Ε) Αν η σνάρηση
ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ
ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ V. ΜΙΚΡΟΠΛΑΣΤΙΚΟΤΗΤΑ ΤΩΝ ΚΡΥΣΤΑΛΛΩΝ 1. Εισαγωγή Ση µέχρι ώρα συζήησή µας για ην µηχανική συµπεριφορά ων µεαλλικών υλικών, όπου εξεάσαµε ην ελασική και ην πλασική ους συµπεριφορά
Εργαστηριακή Άσκηση Το σύστημα αναμονής M/G/1
Εργασηριακή Άσκηση 4 5 Το σύσημα αναμονής M/G/ Γιάννης Γαροφαλάκης, Καθηγηής Αθανάσιος Ν.Νικολακόπουλος, Phd(c) Σκοπός ης παρούσας εργασίας είναι η εξερεύνηση ων βασικών ιδιοήων ενός από α κλασικόερα μονέλα
ΑΛΓΕΒΡΑ. Για να βρούµε την δύναµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωνα µε την ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ
ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο ΜΙΓΑΔΙΚΟΙ - ΜΕΘΟΔΟΛΟΓΙΑ κ Για α βρούµε τη δύαµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωα µε τη ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ και υ = 0,,, οπότε i κ 4ρ+
ΣΥΝΕΛΙΞΗ ΣΤΟ ΠΕ ΙΟ ΤΟΥ ΧΡΟΝΟΥ
ΣΥΝΕΛΙΞΗ ΣΤΟ ΠΕ ΙΟ ΤΟΥ ΧΡΟΝΟΥ Για κάθε γραµµικό και χρονικά αναλλοίωο σύσηµα συνεχούς χρόνου ισχύει όι η απόκριση y() ου όαν αυό διεγείρεαι από είσοδο x() δίνεαι από η σχέση: y () = x( ) h ( ) d = x ()
ΚΙΝΗΤΗΡΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ
ΚΙΝΗΤΗΡΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ Οι κινηήρες αυής ης καηγορίας ροφοδοούναι από κάποια πηγή συνεχούς άσης. Από καασκευασικής απόψεως, δεν παρουσιάζουν καμία διαφορά σε σχέση με ις γεννήριες ΣΡ. Βασικό πλεονέκημά
«Ταλάντωση» με σταθερή τριβή ολίσθησης, ολικός χρόνος και ολικό διάστημα κίνησης.
«Ταλάτωση» με σταθερή τριβή ολίσθησης, ολικός χρόος και ολικό διάστημα κίησης. Πάω σε οριζότιο δάπεδο υπάρχει έα σώμα Σ μάζας m = Kg που είαι δεμέο στο άκρο ιδαικού ελατηρίου σταθεράς K =N / m και ηρεμεί
Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Θεωρία - Μέθοδοι
Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχολογική Κατεύθυση Θεωρία - Μέθοδοι ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Μάθημα ο ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ Η εξίσωση x δε έχει λύση στο σύολο τω πραγματικώ αριθμώ, αφού
τους: =. Το αποτέλεσµα δηλαδή της αλληλεπίδρασής τους περιγράφεται από
Θεµελιώδης νόµος της Μηχανικής Εννοιολογικό πλαίσιο και παραδείγµατα για την καλύτερη κατανόηση της εφαρµογής του στην επίπεδη κίνηση υλικού σηµείου και στερεού σώµατος Εισαγωγή ΕΝΝΙΛΓΙΚ ΠΛΑΙΣΙ Η έννοια
www.fr-anodos.gr (, )
ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ. Το lim f ( ) έχει όηµα σε γειτοικά σηµεία µε το δηλαδή ότα ( a, ) (, β ) a. Δε µε εδιαφέρει α το ίδιο το αήκει η όχι στο πεδίο ορισµού της f αλλά µε εδιαφέρει α υπάρχου στο πεδίο ορισµού
ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ: ΣΧΕ ΙΑΣΜΟΣ ΣΥΓΚΟΙΝΩΝΙΑΚΩΝ ΕΡΓΩΝ - ΟΙΚΟΝΟΜΙΚΑ ΣΤΟΙΧΕΙΑ ΤΟΞΑ ΣΥΝΑΡΜΟΓΗΣ ΣΙ ΗΡΟ ΡΟΜΙΚΗΣ
Ε. Μ. ΠΟΛΥΤΕΧΝΕΙΟ Τµήµα Αγρονόµων-Τοπογράφων Μηχανικών Εργασήριο Συγκοινωνιακής Τεχνικής ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ: ΣΧΕ ΙΑΣΜΟΣ ΣΥΓΚΟΙΝΩΝΙΑΚΩΝ ΕΡΓΩΝ - ΟΙΚΟΝΟΜΙΚΑ ΣΤΟΙΧΕΙΑ ΤΟΞΑ ΣΥΝΑΡΜΟΓΗΣ ΣΙ ΗΡΟ ΡΟΜΙΚΗΣ 1. Τόξο
2.2 ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ R ΤΩΝ ΜΙΓΑΔΙΚΩΝ
ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ R ΤΩΝ ΜΙΓΑΔΙΚΩΝ Σύμφωα με το ορισμό του R, η πρόσθεση και ο πολλαπλασιασμός δύο μιγαδικώ αριθμώ γίοται όπως ακριβώς και οι ατίστοιχες πράξεις με διώυμα α + βx στο, όπου βέβαια ατί για
ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΜΕ ΟΛΟΚΛΗΡΩΜΑΤΑ
ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΜΕ ΟΛΟΚΛΗΡΩΜΑΤΑ ΣΧΟΛΙΑ : Είαι γωστό ότι για µια συεχή συάρτηση σε έα διάστηµα, το ολοκλήρωµα F ορίζει έα πραγµατικό αριθµό όπου o είαι έα οποιοδήποτε σηµείο του και α έα αυθαίρετο
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΑΠΑΝΤΗΣΕΙΣ. ΕΡΩΤΗΣΗ Α1 Α2 Α3 Α4 ΑΠΑΝΤΗΣΗ δ β β γ.
ΤΑΞΗ: ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 06 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΘΕΜΑ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 4 Απριλίου 06 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΗ Α Α Α3 Α4 ΑΠΑΝΤΗΣΗ δ β
Κεφάλαιο 8 ΑΝΑΛΥΣΗ ΒΙΟΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ ΣΤΟ ΠΕ ΙΟ ΤΗΣ ΣΥΧΝΟΤΗΤΑΣ
Κεφάλαιο 8 ΑΝΑΛΥΣΗ ΒΙΟΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ ΣΤΟ ΠΕ ΙΟ ΤΗΣ ΣΥΧΝΟΤΗΤΑΣ Θεωρούµε όι Έσω X µία διακριή χρονοσειρά 0 ± ±. µ x Ε{X } και γ { X X } E { [ X µ ][ X µ ] } ( 0 ± cov + + x x Το φάσµα ισχύος ης X ορίζεαι
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ-I
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ-I ΕΙΣΑΓΩΓΗ ΒΑΣΙΚΑ ΣΗΜΑΤΑ Μοναδιαία βηµαική συνάρηση (Ui Sep Fucio) U () =, U () =, .5 - -
Κεφάλαιο 5 Πολλαπλοί χημικοί αντιδραστήρες
Κεφάλαιο 5 Πολλαπλοί χημικοί ανιδρασήρες Σε ορισμένες περιπώσεις, σε μια χημική βιομηχανία, η χρήση ενός μόνο χημικού ανιδρασήρα δεν είναι όσο αποελεσμαική όσο θα ήαν επιθυμηό. Συνεπώς, είναι απαραίηο
5.3 ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ
5. ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ ΘΕΩΡΙΑ. Ορισµός Μια ακολουθία λέγεται γεωµετρική πρόοδος, α και µόο α κάθε όρος της προκύπτει από το προηγούµεό του µε πολλαπλασιασµό επί το ίδιο πάτοτε µη µηδεικό αριθµό.. Μαθηµατική
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΓΑ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηία: Κυριακή Απριλίου ΘΕΜΑ A ΑΠΑΝΤΗΣΕΙΣ Α.. Θεωρία Σχολικό Βιλίο (έκδοση ) σελίδα 9. Α.. Θεωρία Σχολικό Βιλίο
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηία: Κυριακή Απριλίου ΑΠΑΝΤΗΣΕΙΣ Α.. Θεωρία Σχολικό Βιβλίο (έκδοση ) σελίδα 9. Α.. Θεωρία Σχολικό Βιβλίο (έκδοση
11.1 11.3. Ορισµός ιδιότητες εγγραφή καν. πολυγώνων σε κύκλο
1 11.1 11. ρισµός ιδιότητες εγγραφή κα. πολυγώω σε κύκλο ΘΩΡΙ 1. Έα πολύγωο λέγεται καοικό, ότα έχει όλες τις πλευρές του ίσες και όλες τις γωίες του ίσες.. ύο καοικά πολύγωα µε το ίδιο αριθµό πλευρώ είαι
Ε 1. Διαφορικός λογισμός (Κανόνες παραγώγισης)
Ε Διαφορικός λογισμός Καόες παραγώγισης Σελίδα από Πότε μια συάρτηση λέγεται παραγωγίσιμη στο σημείο του πεδίου ορισμού της ; Μια συάρτηση λέμε ότι είαι παραγωγίσιμη σ έα σημείο του πεδίου ορισμού της,
Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος. Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός.
Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός http://perifysikhs.wordpress.com 1 Κίνηση Ράβδου σε κατακόρυφο επίπεδο Εστω µια οµογενής ϱάβδος ΟΑ µάζας Μ
ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗΣ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2003 ΕΚΦΩΝΗΣΕΙΣ
ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗΣ ΠΕΜΠΤΗ ΜΑΪΟΥ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α. Να αποδείξετε ότι ο ος όρος µιας αριθµητικής προόδου µε πρώτο όρο α 1 και διαφορά ω είαι α = α 1 + (-1)ω. Μοάδες 7 Β. Να γράψετε
1. Το σύνολο των μιγαδικών αριθμών
Το σύολο τω μιγαδικώ αριθμώ Γωρίζουμε ότι η εξίσωση δε έχει λύση στο σύολο τω πραγματικώ αριθμώ Για α ξεπεράσουμε αυτή τη αδυαμία «μεγαλώσαμε» το σύολο και δημιουργήσαμε το σύολο, έτσι, ώστε α έχει τις
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α Α.1. Ενα στερεό σώµα περιστρέφεται γύρω από ακλόνητο άξονα. Εάν διπλασιαστεί η στροφορµή
d k dt k a ky(t) = dt k b kx(t) (3.1)
Κεφάλαιο 3 Ανάλυση Σημάων και Συσημάων σο Πεδίο ου Χρόνου 3. Εισαγωγή Σε αυό ο κεφάλαιο, θα συζηήσουμε για ο πως μπορούμε να μελεάμε συσήμαα σο πεδίο ου χρόνου. Είδαμε σο προηγούμενο κεφάλαιο κάποια εισαγωγικά
Κεφάλαιο 6 Φορείς με λοξά στοιχεία
Κεφάλαιο 6 Φορείς με λοξά στοιχεία Σύοη Η άσκηση, που περιέχεται στο κεφάλαιο αυτό, αφορά στο υπολογισμό εός κιητού πλαισίου με κεκλιμέους (λοξούς) στύλους για τέσσερεις διαφορετικές φορτίσεις: εξωτερικά
Α. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ
ΜΑΘΗΜΑ Κεφάλαιο o : Αλγεβρικές Παραστάσεις Υποεότητα.: Πράξεις µε πραγµατικούς αριθµούς (Επααλήψεις- Συµπληρώσεις) Θεµατικές Εότητες:. Οι πραγµατικοί αριθµοί και οι πράξεις τους.. υάµεις πραγµατικώ αριθµώ..
+ + = + + α ( β γ) ( )
ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ Αριθµητική παράσταση Αριθµητική παράσταση λέγεται µια σειρά αριθµώ που συδέοται µεταξύ τους µε πράξεις. Η σειρά τω πράξεω σε µια αριθµητική παράσταση είαι η εξής: 1. Υπολογίζουµε
Στροφορµή στερεού στην επίπεδη κίνηση. u r G. r f ι. r i. ω r. r P G. r G/P r. r r r r α α β = α β ( )
Στροφορµή στερεού στην επίπεδη κίνηση u α u i/ u i/ / i/ i/ u i m i F ι α ι f ι α m i ι u u / ω i α I α Mα O Χρήσιµες σχέσεις α β β α α β ( ) ( ) ( ) m 0 i i/ i( i ) m 0 α α β α β ( ) α β α α β ( ) Το
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να γωρίζει τη έοια της ακολουθίας, τους τρόπους που ορίζεται, τις διαφορές της από μία συάρτηση. Να γωρίζει τους ορισμούς της αριθμητικής και γεωμετρικής
Εισαγωγή στη Θεωρία Σημάτων και Συστημάτων
Εισαγωγή ση Θεωρία Σημάων και Συσημάων Ιωάννης Χαρ. Κασαβουνίδης Τμήμα Μηχ. Η/Υ Τηλεπ. & Δικύων Πανεπισήμιο Θεσσαλίας ΦΘινοπωρινό Εξάμηνο 9/ Άσκηση Να υπολογίσεε ο παρακάω άθροισμα: Θυμίζουμε ην ανάπυξη
ΚΥΛΙΣΗ ΣΤΕΡΕΟΥ ΚΑΤΑ ΜΗΚΟΣ ΠΛΑΓΙΟΥ ΕΠΙΠΕΔΟΥ
ΚΥΛΙΣΗ ΣΤΕΡΕΟΥ ΚΑΤΑ ΜΗΚΟΣ ΠΛΑΙΟΥ ΕΠΙΠΕΔΟΥ Σε ένα πλάγιο επίπεδο γωνίας κλίσης κυλίεται χωρίς να ολισθαίνει προς τα κάτω, ένα στερεό σώµα µε κατανοµή µάζας συµµετρική ως προς το κέντρο του. ( Το στερεό
ΚΑΤΑΣΚΕΥΑΣΙΜΟΤΗΤΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΓΙΑΝΝΗΣ ΞΕΙ ΑΚΗΣ
ΚΑΤΑΣΚΕΥΑΣΙΜΟΤΗΤΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΓΙΑΝΝΗΣ ΞΕΙ ΑΚΗΣ ΘΕΩΡΗΜΑ : Ααγκαία συθήκη για α κατασκευάζεται µε καόα και διαβήτη έα καοικό πολύγωο είαι το πλήθος τω πλευρώ του α είαι της µορφής ( + )...( + ) όπου
στους μιγαδικούς αριθμούς
Πράξεις στους μιγαδικούς αριθμούς Πρόσθεση μιγαδικώ αριθμώ Βασικές ασκήσεις Βασική θεωρία α) ) Πώς γίεται η πρόσθεση δύο μιγαδικώ αριθμώ; ) Ποια είαι η γεωμετρική ερμηεία του αθροίσματος δύο μιγαδικώ;
ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης
(Με ιδέες και υλικό από ΔΙΑΝΥΣΜΑΤΑ ΣΤΟΝ ΤΡΙΣΔΙΑΣΤΑΤΟ ΧΩΡΟ Καρεσιανές Συνεαγμένες Εσωερικό Γινόμενο Διανυσμάων Εξωερικό Γινόμενο Διανυσμάων Βαθμωό Γινόμενο Τριών Διανυσμάων ΔΥΝΑΜΕΙΣ Διανυσμαική Φύση ης
4.3 ΔΙΑΙΡΕΤΟΤΗΤΑ. Εισαγωγή
49 43 ΔΙΑΙΡΕΤΟΤΗΤΑ Εισαγωγή Στα Στοιχεία του Ευκλείδη, βιβλία VII, VIII και IX (περίπου 300 πχ), οι θετικοί ακέραιοι παριστάοται ως ευθύγραμμα τμήματα και η έοια της διαιρετότητας συδέεται άμεσα με τη
Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο
Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 0 Κεφάλαιο Περιέχει: Αναλυτική Θεωρία Ερωτήσεις Θεωρίας Ερωτήσεις Πολλαπλής Επιλογής Ερωτήσεις Σωστού - λάθους Ασκήσεις ΘΕΩΡΙΑ 4- ΕΙΣΑΓΩΓΗ Στην μέχρι τώρα
ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ
ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Ρωτήσαμε 50 μαθητές μιας τάξης για το αριθμό τω αδελφώ τους Οι απατήσεις που πήραμε είαι: 0,,,,4,5 Α v, v, v, v4, v5, v 6 είαι οι ατίστοιχες συχότητες τους
ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ
ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ Στο κεφάλαιο αυτό θα ασχοληθούµε αρχικά µε ένα µεµονωµένο σύστηµα δύο σωµάτων στα οποία ασκούνται µόνο οι µεταξύ τους κεντρικές δυνάµεις, επιτρέποντας ωστόσο και την
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 03 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. c Α. d Α3. c Α4. c Α5. Σ, Λ, Σ, Σ, Λ ΘΕΜΑ Β Β. Σωστή απάντηση είναι η (γ). Γνωρίζουμε (σχολικό βιβλίο, σελ. 3) ότι ένα
1. [0,+ , >0, ) 2. , >0, x ( )
Σελίδα 1 από 5 ΝΙΟΣΤΕΣ ΡΙΖΕΣ ΤΑ ΣΥΜΒΟΛΑ α, α ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ του Ατώη Κυριακόπουλου 1 ΡΙΖΕΣ ΣΤΟ ΣΥΝΟΛΟ R = [, ) Θεώρηµα και ορισµός οθέτος, εός πραγµατικού αριθµού α και εός φυσικού αριθµού >, υπάρχει έας
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
ΚΕΦΑΛΑΙΟ ο. Τι οοµάζεται συάρτηση ; Είαι µια διαδικασία µε τη οποία κάθε στοιχείο εός συόλου Α ατιστοιχίζεται σε έα ακριβώς στοιχείο κάποιου άλλου συόλου Β.. Ποιες είαι οι κυριότερες γραφικές παραστάσεις
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Θεωρία Άλυτες Ασκήσεις Θέματα εξετάσεων
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Θεωρία Άλυτες Ασκήσεις Θέματα εξετάσεω 1 Α. ΜΕΡΟΣ :ΘΕΩΡΙΑ ΤΟ ΣΥΝΟΛΟ C ΤΩΝ ΜΙΓΑΔΙΚΩΝ Γωρίζουμε ότι η δευτεροβάθμια εξίσωση με αρητική διακρίουσα δε έχει λύση στο σύολο R τω πραγματικώ
, e + Σε ένα δείγμα ίδιων ραδιενεργών πυρήνων η πιθανότητα διάσπασης για κάποιο συγκεκριμένο πυρήνα είναι τυχαία.
ΚΕΦΑΛΑΙΟ 6 : ΠΥΡΗΝΙΚΕΣ ΔΙΑΣΠΑΣΕΙΣ Πυρηνικοί Μεασχημαισμοί Οι δυναοί πυρηνικοί μεσχημαισμοί είναι : Εκπομπή σωμαιδίων-α : 4 2 H Εκπομπή σωμαιδίων-β : - ν, + Εκπομπή ακίνων-γ : φωόνιο Σχάση : διάσπαση πυρήνα
ΚΕΦΑΛΑΙΟ 8. Ροπή και Στροφορµή Μέρος δεύτερο
ΚΕΦΑΛΑΙΟ 8 Ροπή και Στροφορµή Μέρος δεύτερο Στο προηγούµενο Κεφάλαιο εξετάσαµε την περιστροφή στερεού σώµατος περί σταθερό άξονα. Εδώ θα εξετάσοµε την εξίσωση κίνησης στερεού σώµατος γενικώς. Πριν το κάνοµε
ΛΥΚΕΙΟ ΜΕΤΑΜΟΡΦΩΣΗΣ 2014 ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ
1. Τι λέγεται δειγματικός χώρος εός πειράματος τύχης. Το σύολο τω δυατώ αποτελεσμάτω λέγεται δειγματικός χώρος (sample space) και συμολίζεται συήθως με το γράμμα Ω. Α δηλαδή ω 1,ω 2,...,ω κ είαι τα δυατά
ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ
ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ δ υ α σ τ ι κ ή Πειραιάς 7 Μάθημα 8ο ΣΥΝΔΥΑΣΤΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ Μ. Κούτρας Συδυαστική 7-8 8 Το διωυμικό θεώρημα μπορεί α αποτελέσει τη βάση για τη απόδειξη
ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρεθεί ο γεωμετρικός τόπος των εικόνων των μιγαδικών z για τους οποίους ισχύει:
ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i. ΙΔΙΟΤΗΤΕΣ
Α. Ροπή δύναµης ως προς άξονα περιστροφής
Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό
(Καταληκτική ημερομηνία αποστολής 15/11/2005)
η Εργασία 005-006 (Καταληκτική ημερομηία αποστολής 5//005) Άσκηση (0 μοάδες). (α) Δείξτε αλγεβρικά πώς βρίσκοται δύο διαύσματα A και B, εά είαι γωστά το άθροισμά τους S και η διαφορά τους D (β) Βρείτε
Το Θ.Μ.Κ.Ε. και η σύνθετη κίνηση
Το Θ.Μ.Κ.Ε. και η σύνθετη κίνηση Με αφορµή µια συζήτηση στο βαθµολογικό Ερώτηµα 1 ο : Όταν µιλάµε για έργο, τι διαφορά έχει το έργο µιας δύναµης και το έργο µιας ροπής; Στην πραγµατικότητα έργο παράγει
Νόμος Αmpere. i r. Β dl = Β(dl ακτ +dl τοξ ) = Β rdθ = 2π. Β dl = μ ο i
Νόος Αmpee = o Τυχαία κλεισή διαδροή προσεγγιζεαι από ακινικά ευθ. ήαα και κυκλικά όξα dθ dθ dl ακινικά = 0 dl όξα = dθ dl = (dl ακ +dl οξ ) = dθ = o dθ = o dθ Ρευαοφόρο ς αγωγός dl = ο Νόος Αmpee Το ολοκλήρωα
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ 1. Τι είναι το υλικό σηµείο και σε τι διαφέρει από το στερεό σώµα; Γνωρίζουµε ότι αν σε υλικό σηµείο ασκηθούν δυνάµεις, τότε θα µεταβληθεί η κινητική του
A! Κινηµατική άποψη. Σχήµα 1 Σχήµα 2
A Κινηµατική άποψη Θεωρούµε στερεό σώµα σε τυχαία κίνηση, η οποία εξέταζεται από ένα αδρα νειακό σύστηµα αναφοράς ΟXYZ. Εφοδιάζουµε το σώµα µε κινητό σύστηµα συντεταγµένων xyz ακλόνητα συνδεδεµένο µε αυτό,
5 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 41.
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 5 η ΕΚΑ Α 4. Έστω Ω { ω, ω, ω, ω 4 } ο δειγµατικός χώρος εός πειράµατος τύχης και τα εδεχόµεα Α {ω, ω }, Β {ω, ω 4 } + Α είαι P(A B) και Ρ( Β Α ), όπου θετικός ακέραιος τότε + 4 Να αποδείξετε
Που ασκείται η δύναμη στήριξης;
Που σκείι η δύνμη σήριξης; Θεωρούμε μι πρισμική ράβδο μήκους l η οποί θεωρείι ιδνικό σερεό σώμ. Υποθέουμε όι η ράβδος βρίσκει «υπό κθεσώς κπόνησης». Θεωρούμε μι νοηή ομή η οποί διιρεί ην ράβδο σε δύο μέρη
2.5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ R
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ 5 5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ R Εισαγωγή Η επίλυση τω εξισώσεω ου και 4ου βαθμού, η ααγκαστική επαφή με τους μιγαδικούς αριθμούς για τη έκφραση τω πραγματικώ ριζώ και η εξέλιξη του αλγεβρικού
mg ηµφ Σφαίρα, I = 52
Μελέτη της κίνησης ενός σώµατος που µπορεί να κυλάει σε κεκλιµένο επίπεδο (π.χ. σφόνδυλος, κύλινδρος, σφαίρα, κλπ.) Τ mg συνφ Κ Ν mg ηµφ Το σώµα του σχήµατος έχει µάζα m, ακτίνα και µπορεί να είναι: Σφόνδυλος
Ποια μπορεί να είναι η κίνηση μετά την κρούση;
Ποια μπορεί να είναι η κίνηση μετά την κρούση; ή Η επιτάχυνση και ο ρυθµός µεταβολής του µέτρου της ταχύτητας. Ένα σώµα Σ ηρεµεί, δεµένο στο άκρο ενός ελατηρίου. Σε µια στιγµή συγκρούεται µε ένα άλλο κινούµενο
Πανελλήνιες Εξετάσεις - 10 Ιούνη Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Πρόχειρες Λύσεις. Θέµα Β
Σχολική Χρονιά 03-04 Πανελλήνιες Εξετάσεις - 0 Ιούνη 04 Α. (γ) Α. (ϐ) Α.3 (γ) Α.4 (ϐ) Α.5 Σ,Σ, Λ, Λ, Σ Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Πρόχειρες Λύσεις Θέµα Α Θέµα Β Β.. (iii) Το σώµα ϑα έχει
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 23/9/2015 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 23/9/2015 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη οριζόντια και λεία τροχιά
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ 1ο Α. Aς υποθέσουµε ότι x 1,x,,x k είαι οι τιµές µιας µεταβλητής Χ, που αφορά τα άτοµα εός δείγµατος µεγέθους, όπου
φ = 2ω = = 2 2(ν 2) + 4 = 2 + 4
Γιατί οι μέλισσες κάου εξαγωικές τις κηρήθρες τους ; Χριστία Δασκαλάκη Α.Μ. 99 Ημερομηία παράδοσης 9-10-014 Θεωρούμε έα καοικό -γωο και σημειώουμε μια γωία του καθώς και τις γωίες του ισοσκελούς τριγώου
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α. Aς υποθέσουµε ότι 1,,, k είαι οι τιµές µιας µεταβλητής Χ, που αφορά Β.1. τα άτοµα εός δείγµατος µεγέθους,
ΚΕΦΑΛΑΙΟ 3 ΔΙΑΤΗΡΗΣΗ ΦΥΣΙΚΩΝ ΜΕΓΕΘΩΝ ΚΑΤΑ ΤΗΝ ΚΙΝΗΣΗ ΔΙΣΔΙΑΣΤΑΤΩΝ ΑΚΑΜΠΤΩΝ ΣΩΜΑΤΩΝ ΣΤΟ ΕΠΙΠΕΔΟ
ΚΕΦΑΛΑΙΟ 3 ΔΙΑΤΗΡΗΣΗ ΦΥΣΙΚΩΝ ΜΕΓΕΘΩΝ ΚΑΤΑ ΤΗΝ ΚΙΝΗΣΗ ΔΙΣΔΙΑΣΤΑΤΩΝ ΑΚΑΜΠΤΩΝ ΣΩΜΑΤΩΝ ΣΤΟ ΕΠΙΠΕΔΟ Βσικές έννοιες: Κινηική κάσση συσήμος - Έργο δυνάμεων - Έργο ροπής - Κινηική, Δυνμική, Μηχνική Ενέργει άκμπου
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α Α.1. Η γωνιακή επιτάχυνση ενός οµογενούς δίσκου που στρέφεται γύρω από σταθερό άξονα, που διέρχεται από το κέντρο
Σχήµα 1. . Μητρόπουλος Στερεό. Άξονας Β. Άξονας Α. ίσκος 2. ίσκος 1. Βάση στήριξης. Σύστηµα στήριξης του δίσκου 1. Κοχλίες σύσφιξης.
ύο δίσοι µε ιµάν ι πιχνίδι ης σροφορµής () Άξονς Άξονς ίσος ίσος Σχήµ άση σήριξης Η ειονιζόµενη διάξη σο σχήµ είνι έν σύσηµ δύο οριζόνιων δίσων µε µάζες Μ, Μ ι ίνες,, συνεζευγµένων µε ιµάν, που µπορούν
Μαθηματικά κατεύθυνσης Γ Λυκείου. Όλη η θεωρία και οι ασκήσεις των πανελλαδικών εξετάσεων. Στέλιος Μιχαήλογλου Δημήτρης Πατσιμάς
Μαθηματικά κατεύθυσης Γ Λυκείου Όλη η θεωρία και οι ασκήσεις τω παελλαδικώ εξετάσεω Στέλιος Μιχαήλογλου Δημήτρης Πατσιμάς wwwaskisopolisgr Η θεωρία τω παελλαδικώ εξετάσεω [] [] Ορισμοί ) Πότε μια συάρτηση
Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:
Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει α είαι σε θέση: 1 Να μπορεί α βρίσκει απο τη γραφική παράσταση μιας συάρτησης το πεδίο ορισμού της το σύολο τιμώ της τη τιμή της σε έα σημείο x 2
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΗΜΑΤΑ ΠΡΟΤΑΣΕΙΣ µε ΑΠΟ ΕΙΞΕΙΣ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ µε ΑΠΑΝΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΚΑΙ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Αιστάι 3 Αµφιάλη 4389-43
1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).
Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.
Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. (Πρόοδοι) ΠΡΟΟΔΟΙ
ΠΡΟΟΔΟΙ Οι πρόοδοι αποτελού µια ειδική κατηγορία τω ακολουθιώ και είαι τριώ ειδώ : αριθµητικές, αρµοικές και γεωµετρικές. ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΟΟΔΟΙ (ΘΕΩΡΙΑ) Ορισµός Μια ακολουθία αριθµώ α, α,, α, α +, θα λέµε
5.5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ C
5 55 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ C Εισαγωγή Η επίλυση τω εξισώσεω ου και 4ου βαθμού, η ααγκαστική επαφή με τους μιγαδικούς αριθμούς για τη έκφραση τω πραγματικώ ριζώ και η εξέλιξη του αλγεβρικού λογισμού
Ενδεικτικές απαντήσεις στα θέματα της φυσικής προσανατολισμού με το νέο σύστημα. Ημερομηνία εξέτασης 23 Μαΐου 2016
Ενδεικτικές απαντήσεις στα θέματα της φυσικής προσανατολισμού με το νέο σύστημα. Ημερομηνία εξέτασης 3 Μαΐου 06 ΘΕΜΑ Α Α β, Α γ, Α3 β, Α4 δ Α5 α Σ, β Λ, γ Σ, δ Λ, ε Λ ΘΕΜΑ Β Β Σωστή είναι η απάντηση (ιιι).
Ενέργεια στην περιστροφική κίνηση
ΦΥΣ 111 - Διαλ.31 1 Ενέργεια στην περιστροφική κίνηση q Ένα περιστρεφόµενο στερεό αποτελεί µια µάζα σε κίνηση. Εποµένως υπάρχει κινητική ενέργεια. v i θ i r i m i Θεωρείστε ένα στερεό σώµα περιστρεφόµενο
ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης
ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 218-219 ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης ΘΕΜΑ 1 Διάρκεια εξέτασης 2 ώρες Υλικό σημείο κινείται ευθύγραμμα πάνω στον άξονα x με ταχύτητα,
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηία: Κυριακή 7 Απριλίου 0 ιάρκεια Εξέτασης: ώρες Α.. Σχολικό βιβλίο Σελίδες
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Έργο και ισχύς στην περιστροφική κίνηση Εφαπτομενική δύναμη που περιστρέφει τον τροχό κατά dθ dw F ds = F R dθ
ΕΛΕΓΧΟΣ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΚΕΦΑΛΑΙΟ 2 ΚΕΦΑΛΑΙΟ 2. Πλεονεκτήματα ψηφιακού ελέγχου
ΚΕΦΑΛΑΙΟ Πλεονεκήμαα ψηφιακού ελέγχου Ικανόηα για επεξεργασία αλγορίθμων με λογισμικό ανί για harwar. Αλλαγή ου σχεδιασμού χωρίς αλλαγές σο harwar. Μείωση μεγέθους, βάρους, ισχύος καθώς και χαμηλό κόσος.
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Ενδεικτικές Λύσεις ευτέρα 3 Σεπτέµβρη 2018 Θέµα Α
Α.1. ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Ενδεικτικές Λύσεις ευτέρα 3 Σεπτέµβρη 2018 Θέµα Α Ακίνητο πυροβόλο όπλο εκπυρσοκροτεί (δ) Η ορµή του συστήµατος
Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2
ΦΥΣ 131 - Διαλ.22 1 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r 2r 2 2 I =! m i r i = 2mr 2 1 I = m(2r) 2 = 4mr 2 Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή
{[ 140,150 ),[ 160,170 ),...,[ 200, 210]
Σημειώσεις στη Πληροφορική ΙΙΙ 1. Πείραμα τύχης και πιθαότητα Έα φυσικό φαιόμεο με χαρακτηριστικά που δε μπορούμε α τα προβλέψουμε, οομάζεται στοχαστικό ή τυχαίο. Για παράδειγμα το ύψος τω κυμάτω στη θάλασσα,
ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση.
ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. Η δύναμη είναι ένα διανυσματικό μέγεθος. Όταν κατά την κίνηση ενός σώματος η δύναμη είναι μηδενική