Σχεδίαση µε τη χρήση Η/Υ
|
|
- Ἄρτεμις Αγγελίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Σχδίαση µ τη χρήση Η/Υ Ε Φ Α Λ Α Ι Ο 1 0 Ο Σ Τ Ο Ι Χ Ε Ι Α Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ Τ Ο Υ Χ Ω Ρ Ο Υ Ρ Λ Ε Ω Ν Ι Α Σ Α Ν Θ Ο Π Ο Υ Λ Ο Σ, Ε Π Ι Ο Υ Ρ Ο Σ Α Θ Η Γ Η Τ Η Σ Τ Μ Η Μ Α Ι Ο Ι Η Σ Η Σ Α Ι Ι Α Χ Ε Ι Ρ Ι Σ Η Σ Ε Ρ Γ Ω Ν Τ Ε Ι Λ Α Ρ Ι Σ Α Σ
2 Στοιχία Γωµτρίας του Χώρου Σχτικές θέσις δύο πιπέδων ύο πίπδα µπορί: Να συµπίπτουν Να τέµνονται Να µην έχουν κοινό σηµίο Αν δύο πίπδα τέµνονται, τότ η τοµή τους ίναι µια υθία Αν µια υθία νός πιπέδου ίναι κάθτη σ ένα άλλο πίπδο Ρ, τότ και το πίπδο ίναι κάθτο στο πίπδο Ρ. Αν µια υθία ίναι κάθτη σ ένα πίπδο, τότ και κάθ πίπδο που πριέχι την υθία αυτή, ίναι κάθτο στο πίπδο. ' '
3 Στοιχία Γωµτρίας του Χώρου Σχτικές θέσις δύο πιπέδων (2) Έστω η υθία κάθτη στο πίπδο Ρ στο σηµίο. Αν θωρήσουµ ότι η ανήκι στο πίπδο τότ το ίναι κάθτο στο Ρ. Αν δυο πίπδα ίναι κάθτα µταξύ τους, τότ κάθ υθία που ανήκι στο ένα και ίναι κάθτη στην τοµή τους, ίναι κάθτη στο άλλο. Έστω δύο πίπδα Ρ και κάθτα µταξύ τους, που τέµνονται κατά την υθία. Αν θωρήσουµ την υθία κάθτη στην, τότ η ίναι κάθτη στο Ρ. '
4 Στοιχία Γωµτρίας του Χώρου Σχτικές θέσις δύο πιπέδων (3) Αν δύο πίπδα ίναι κάθτα σ ένα τρίτο πίπδο, τότ η τοµή τους ίναι υθία κάθτη στο πίπδο αυτό. Στο σχήµα τα Ρ και τέµνονται κατά την και ίναι κάθτα στο Q. Η ίναι η πίσης κάθτη στο Q. Αν τα πίπδα Ρ και δν έχουν κοινά σηµία τότ ίναι παράλληλα µταξύ τους. Λ Q Q
5 Στοιχία Γωµτρίας του Χώρου Σχτικές θέσις δύο πιπέδων (4) Αν µια υθία δν ίναι κάθτη σ ένα πίπδο, τότ υπάρχι ένα και µόνο πίπδο που την πριέχι και ίναι κάθτο στο πίπδο αυτό. Έστω ότι η υθία δν ίναι κάθτη στο Ρ. Αν από τυχαίο σηµίο της Α θωρήσουµ την υθία, κάθτη στο Ρ, τότ υπάρχι ένα και µόνο πίπδο, το οποίο πριέχι τις και και ίναι κάθτο στο Ρ. Αν δύο πίπδα Ρ και δν έχουν κοινό σηµίο τότ ίναι παράλληλα. ' Ρ Q
6 Στοιχία Γωµτρίας του Χώρου Σχτικές θέσις δύο πιπέδων (5) Από ένα σηµίο που δν ανήκι σ ένα πίπδο διέρχται ένα και µόνο πίπδο παράλληλο προς το πίπδο αυτό. Αν δύο τµνόµνς υθίς ίναι παράλληλς προς ένα πίπδο, τότ το πίπδο που ορίζουν ίναι παράλληλο προς το πίπδο αυτό. Οι τοµές παράλληλων πιπέδων προς τρίτο πίπδο ίναι υθίς παράλληλς. Απόσταση δύο παράλληλων πιπέδων, ονοµάζται η απόσταση κάθ σηµίου του νός πιπέδου από το άλλο. ' Ρ Q
7 Στοιχία Γωµτρίας του Χώρου Τοµή υθιών από παράλληλα πίπδα σ µέρη ανάλογα Έστω τα πίπδα Ρ1, Ρ2, Ρ3 τα οποία τέµνουν τις υθίς 1 και 2 στα σηµία Α1, Β1, Γ1 και Α2, Β2, Γ2 αντίστοιχα. Ισχύι Α1Β1 / Β1Γ1 = Α2Β2 / Β2Γ2 1 2 Ρ1 Α1 Α2 Ρ2 Β1 Β2 Γ1 Γ2 3
8 Στοιχία Γωµτρίας του Χώρου Προβολή σχήµατος σ πίπδο Έστω ένα πίπδο Ρ και ένα σηµίο έξω από αυτό. Αν θωρήσουµ την υθία που διέρχται από το και ίναι κάθτη στο Ρ στο σηµίο, τότ το ονοµάζται «ορθή προβολή του σηµίου στο πίπδο Ρ». Η ονοµάζται «προβάλλουσα» το σηµίο στο πίπδο Ρ. Ο γωµτρικός τόπος των προβολών των σηµίων νός σχήµατος σ ένα πίπδο ονοµάζται «προβολή του σχήµατος στο πίπδο». Το πίπδο ονοµάζται «πίπδο προβολής» ή «προβολικό πίπδο». Μ Ν Λ Λ Μ Ν
9 Στοιχία Γωµτρίας του Χώρου Πλάγια προβολή Πλάγια προβολή σηµίου στο πίπδο Ρ ονοµάζται το ίχνος µιας πλάγιας υθίας, η οποία διέρχται από το και τέµνι το Ρ στο σηµίο. Η πλάγια προβολή σχήµατος σ πίπδο ίναι το σύνολο των ιχνών των πλαγίων, οι οποίς διέρχονται από κάθ σηµίο του σχήµατος και ίναι παράλληλς προς ορισµένη διύθυνση. Λ Μ Ν χ Λ Μ Ν
10 Στοιχία Γωµτρίας του Χώρου λίση υθίας ως προς πίπδο Έστω υθία που δν ίναι κάθτη σ πίπδο Ρ. Η προβολή της στο Ρ ίναι η υθία. Η γωνία που σχηµατίζι η µ την προβολή της ονοµάζται κλίση της υθίας ως προς το πίπδο Ρ ή γωνία της και του Ρ. Η κλίση της προς το Ρ ίναι γωνία µικρότρη από όλς αυτές, τις οποίς σχηµατίζι η µ τυχαία υθία του Ρ που διέρχται από το ίχνος της. Αν η υθία ίναι κάθτη στο πίπδο Ρ τότ η προβολή της ίναι ένα σηµίο το ίχνος της στο Ρ. Αν η υθία ίναι παράλληλη προς το πίπδο Ρ τότ η προβολή της ίναι υθία παράλληλη στην. Η προβολή µιας ορθής γωνίας σ πίπδο που ίναι παράλληλο σ µια πλυρά της γωνίας ίναι ορθή γωνία. Ισχύι και το αντίστροφο: αν µια ορθή γωνία προβάλλται στο πίπδο Ρ κατά ορθή γωνία, τότ µια από τις πλυρές της ίναι παράλληλη στο πίπδο Ρ. Η προβολή µιας οξίας (αλλά και µιας αµβλίας) γωνίας σ πίπδο ίναι γωνία οξία (ή αµβλία αντίστοιχα). Ισχύι και το αντίστροφο. φ Ρ
Στοιχεία από τη Γεωμετρία του χώρου (αναλυτικά στο βιβλίο: Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου)
Στοιχία από τη Γωμτρία του χώρου (αναλυτικά στο βιβλίο: Ευκλίδια Γωμτρία Α και Β Ενιαίου Λυκίου) Σχήματα των οποίων τα σημία δν βρίσκονται όλα στο ίδιο πίπδο ονομάζονται γωμτρικά στρά (π.χ. σφαίρα, κύλινδρος,
Διαβάστε περισσότερα4.1 ΕΥΘΕΙΕΣ ΚΑΙ ΕΠΙΠΕ Α ΣΤΟ ΧΩΡΟ
1 4.1 ΥΙΣ ΚΙ Ι ΣΤΟ ΧΩΡΟ ΩΡΙ 1. Το πίπδο: ίναι έννοια πρωταρχική για τα µαθηµατικά δηλαδή έννοια που δν πιδέχται ορισµό. H ικόνα του πιπέδου ίναι γνωστή από την µπιρία µας. Την έχουµ ταυτίσι µ τη µορφή
Διαβάστε περισσότεραΓωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα
ΕΥΘΕΙΑ Γωνία που σχηματίζι η μ τον άξονα. Έστω O ένα σύστημα συντταγμένων στο πίπδο και μια υθία που τέμνι τον άξονα στο σημίο Α. Α ω Α ω Τη γωνία ω που διαγράφι ο άξονας όταν στραφί γύρω από το Α κατά
Διαβάστε περισσότερα6.3 Η ΣΥΝΑΡΤΗΣΗ f(x) = αx + β
1 6.3 Η ΣΥΝΡΤΗΣΗ f() = α + β ΘΕΩΡΙ 1. Η πρίφηµη γωνία ω Έστω υθία που τέµνι τον άξονα σ σηµίο. Στρέφουµ την ηµιυθία κατά θτική φορά µέχρι να πέσι πάνω στην. Η γωνία ω που διαγράφται λέγται γωνία που σχηµατίζι
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ
ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΜΕΡΣ ο ΕΩΜΕΤΡΙ ΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙ : ΥΕΡΙΝΣ ΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΣΚΗΣΕΙΣ ΜΕΡΣ 1ο : ΕΩΜΕΤΡΙ ΚΕΦΛΙ 1ο ΣΙΚΕΣ ΕΩΜΕΤΡΙΚΕΣ ΕΝΝΙΕΣ νακφαλαίωση σημίο άπιρς υθίς από υθύγραμμο τμήμα Δ παράλληλα
Διαβάστε περισσότερα2 1 1+ ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ:2 ο - ΠΑΡΑΓΡΑΦΟΣ: 2.1 2.2. Γιάννης Ζαµπέλης Μαθηµατικός
ΚΕΦΑΛΑΙΟ: ο - ΠΑΡΑΓΡΑΦΟΣ:.. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 4 5 Γιάννης Ζαµπέλης Μαθηµατικός 8575 Β (Αναρτήθηκ 8 4 ) ίνονται τα σηµία Α(,) και Β(5,6). α) Να βρίτ την ξίσωση της υθίας που διέρχται από τα σηµία Α και B.
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2ο Διαφορικός Λογισμός (Νο 6) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΚΕΦΑΛΑΙΟ ο Διαφορικός Λογισμός (Νο 6) Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θτική Τχνολογική Κατύθυνση ασκήσις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ)
Διαβάστε περισσότερα# Κάθε σημείο που οι συντεταγμένες του. Μεθοδολογία στην ευθεία γραμμή ΜΕΘΟΔΟΛΟΓΙΑ ΓΡΑΜΜΗ
Μθοδολογία στην υθία γραμμή Κοινά σημία δύο γραμμών. Για να βρούμ τις συντταγμένς του σημίου δύο γραμμών, λύνουμ το σύστημα των ξισώσών τους. ΓΡΑΜΜΗ Μια ξίσωση της μορφής φ(χ,ψ)= λέγται ξίσωση μιας πίπδης
Διαβάστε περισσότεραΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3 Ευθεία - Επίπεδο ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ/2010-11
ΛΥΣΕΙΣ ΦΥΛΛΔΙΥ 3 Ευθία - Επίπδο ΣΧΛΗ ΠΛΙΤΙΚΩΝ ΜΗΧΝΙΚΩΝ/00-.(α) Τα διανύσματα Β = (,, ), Γ = (,, 3) ίναι μη συγγραμμικά και παράλληλα προς το πίπδο Π, νώ το σημίο (,,3) μ διάνυσμα θέσης r = (,,3) ίναι σημίο
Διαβάστε περισσότεραΘεώρηµα ( ) x x. f (x)
Η ΣΥΝΡΤΗΣΗ f() = α + ΓΩΝΙ ΕΥΘΕΙΣ ΜΕ ΤΝ ΞΝ Η ΣΥΝΡΤΗΣΗ f() = α + Έστ ( ) µία υθία στ καρτσιανό πίπδ η πία τέµνι τν άξνα στ σηµί A. Γνία της υθίας ( ) µ τν άξνα λέγται η γνία πυ διαγράφι η ηµιυθία, αν στραφί
Διαβάστε περισσότεραΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α.
Suies & Publishing ΣΟΛΩΜΟΥ 9 ΠΟΛΥΤΕΧΝΕΙΟ ΤΗΛ.:.38..57 www.arnοs.gr 3 Ο γωµτρικός τόπος των σηµίων που έχουν σταθρή απόσταση από το σηµίο,, του 3 ονοµάζται σφαίρα. Η σφαίρα µ κέντρο το,, και ακτίνα έχι
Διαβάστε περισσότεραΕΝΟΤΗΤΑ Β.2.1. Συμμετρία ως προς άξονα
ΕΝΟΤΗΤΑ Β.2.1. Συμμτρία ως προς άξονα ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Δραστηριότητα 1 Βρίτ το συμμτρικό του Α ως προς την υθία Βρίτ το συμμτρικό του Β ως προς την υθία 1 Α Β Βρίτ το συμμτρικό του Α ως προς
Διαβάστε περισσότεραΗ θεωρία στην ευθεία σε ερωτήσεις - απαντήσεις
Η θρία στην υθία σ ρτήσις - απαντήσις Τι ονομάζουμ ξίσση γραμμής Μια ξίσση μ δύο αγνώστους λέγται ξίσση μιας γραμμής C, όταν οι συντταγμένς τν σημίν της C, και μόνο αυτές, την παληθύουν Ποιό ίναι το βασικό
Διαβάστε περισσότεραΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΑΞΟΝΑ
1 1-2 ΣΥΜΜΕΤΡΙ ΩΣ ΠΡΣ ΞΝ ΞΝΣ ΣΥΜΜΕΤΡΙΣ ΘΕΩΡΙ Συµµτρικό σηµίου ως προς υθία Όταν το ν βρίσκται πάνω στην νοµάζουµ συµµτρικό του ως προς την υθία το σηµίο µ το οποίο συµπίπτι το όταν ιπλώσουµ το σχήµα κατά
Διαβάστε περισσότεραφ = ω Β=Γ Α= Β=Ε Γ=Ζ φ Ο
1 Η Π ΕΙΞΗ ΣΤΗΝ ΕΥΚΛΕΙ ΕΙ ΕΩΜΕΤΡΙ. ΩΝΙΕΣ ΙΣΕΣ ια να αποδίξουμ ότι δύο γωνίς ίναι ίσς πρέπι να αποδίξουμ: 1. Ότι ίναι άθροισμα ή διαφορά γωνιών αντίστοια ίσων. α = β α+ γ = β + δ ν τότ γ = δ α γ = β δ.
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 12 Ο ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΑΣ ΤΟΥ ΧΩΡΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ
Σχδίαση μ τη χρήση Η/Υ ΕΦΑΑΙΟ 12 Ο ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΑΣ ΤΟΥ ΧΩΡΟΥ ΔΡ ΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΟΣ, ΕΠΙΟΥΡΟΣ ΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΗΣΗΣ ΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΑΡΙΣΑΣ Γωνίς πιπέδων: Η γωνία δυο τμνόμνων πιπέδων ορίζται
Διαβάστε περισσότερα( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ΘΕΜΑ 2 ο. Α. 1. Θεωρία σχολικό βιβλίο σελ Θεωρία σχολικό βιβλίο σελ. 61
ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 5 / / 0 ΘΕΜΑ ο Α Θωρία σχολικό βιβλίο σλ 7 Θωρία σχολικό βιβλίο σλ 6 Β Λ, Σ, Λ, 4 Λ, 5 Λ, 6 Λ, 7 Λ, 8 Σ, 9 Λ, 0 Σ Γ Β,, Α, 4 Α, 5 Α ΘΕΜΑ ο A λ, µ Β µ, λ 6 α xa
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ ΘΕΩΡΙΑ. ΚΕΦΑΛΑΙΟ 1ο: ΒΑΣΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ
ΕΩΜΕΤΡΙ ΘΕΩΡΙ ΚΕΦΛΙ ο: ΣΙΚΕΣ ΕΩΜΕΤΡΙΚΕΣ ΕΝΝΙΕΣ. Ποια η έννοια του σημίου,του υθυγράμμου τμήματος, τι ονομάζουμ άκρα του τμήματος,τι ορίζουν αυτά και πως κατασκυάζουμ ένα τμήμα; πάντηση Η άκρη του μολυβιού
Διαβάστε περισσότερα2018 Φάση 1 ιαγωνίσµατα Προετοιµασίας ΜΑΘΗΜΑΤΙΚΑ. Β' Γενικού Λυκείου. Θετικών Σπουδών. Παρασκευή 5 Ιανουαρίου 2018 ιάρκεια Εξέτασης: 2 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ Α 018 Φάση 1 ιαγωνίσµατα Προτοιµασίας ΜΑΘΗΜΑΤΙΚΑ Β' νικού Λυκίου Θτικών Σπουδών Παρασκυή 5 Ιανουαρίου 018 ιάρκια Εξέτασης: ώρς Α1. Δίνονται τα διανύσματα α, β, γ ΘΕΜΑΤΑ. Να δίξτ ότι ισχύι α β + γ
Διαβάστε περισσότεραΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ( 2.1)
ΚΕΦ 2 ο : H υθία στο πίπδο ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ( 2.1) Εξίσση γραµµής C του πιπέδου: Είναι µια ξίσση µ δύο αγνώστους x, που έχι τις ιδιότητς i) Oι συντταγµένς κάθ σηµίου της γραµµής C παληθύουν την ξίσση και
Διαβάστε περισσότερα4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ
Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ Έστω A ένα υποσύνολο του Ονομάζουμ πραγματική συνάρτηση μ πδίο ορισμού το A, μια διαδικασία f, μ την οποία, κάθ στοιχίο A αντιστοιχίζται σ ένα μόνο πραγματικό αριθμό Το
Διαβάστε περισσότεραΝόμος του Gauss 1. Ηλεκτρική Ροή ( πλήθος δυναμικών γραμμών). είναι διάνυσμα μέτρου Α και κατεύθυνσης κάθετης στην επιφάνεια. Στην γενική περίπτωση:
Νόμος του Gauss 1. Ηλκτρική Ροή ( πλήθος δυναμικών γραμμών). ( a) cosφ ( b) ίναι διάνυσμα μέτρου Α και κατύθυνσης κάθτης στην πιφάνια. Στην γνική πρίπτωση: d d d ( ) (πιφανιακό ολοκλήρωμα) Νόμος του Gauss
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ
ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΜΕΡΣ ο ΕΩΜΕΤΡΙ ΕΠΙΜΕΛΕΙ : ΥΕΡΙΝΣ ΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΘΕΩΡΙ ΜΕΡΣ ο : ΕΩΜΕΤΡΙ ΚΕΦΛΙ ο ΣΙΚΕΣ ΕΩΜΕΤΡΙΚΕΣ ΕΝΝΙΕΣ. Ποια η έννοια του σημίου,του υθυγράμμου τμήματος, τι ονομάζουμ άκρα του τμήματος,τι
Διαβάστε περισσότερα2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή
Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης νός συστήματος συντταγμένων για τον προσδιορισμό της θέσης νός σημίου πάνω σ μια πιφάνια προέρχται από την Γωγραφία και ήταν γνωστή στους αρχαίους
Διαβάστε περισσότεραÏÌÉÊÑÏÍ ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÄÅËÉÏ
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (ΟΕΦΕ) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 01 ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΚΑΤΕΥΘΥΝΣΗΣ Ηµροµηνία: Κυριακή Μαΐου 01 ιάρκια Εξέτασης: ώρς ΑΠΑΝΤΗΣΕΙΣ
Διαβάστε περισσότεραΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ
Πριοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ A. ΓΡΑΜΜΙΚΗ ΕΞΙΣΩΣΗ ΜΕ ΔΥΟ ΑΓΝΩΣΤΟΥΣ Γραμμική ξίσωση μ δύο αγνώστους ονομάζται κάθ ξίσωση της μορφής: α + βψ = γ (), μ α,β,γ π.χ. ψ =, =, ψ =, κλπ.
Διαβάστε περισσότεραΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ
ΦΥΛΛΟ ΓΕΩΜΕΤΡΙΑ ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ Α ΕΠΑΛ ΚΕΦΑΛΑΙΟ 4 4.1, 4., 4.3, 4.4, 4.5 Παράλληλς υθίς ΤΕΜΝΟΥΣΑ ΔΥΟ ΕΥΘΕΙΩΝ Ο γίς α, δ, ζ, η λέγοα ός Ο γίς β, γ,, θ λέγοα κός Δύο γίς που βρίσκοα προς ο ίδο μέρος
Διαβάστε περισσότεραΠ Α Ν Ο Ρ Α Μ Α Κ Ω Ν Ι Κ Ω Ν Τ Ο Μ Ω Ν - (ΘΕΤΙΚΗ - ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ) Β ΛΥ Κ Ε Ι Ο Υ σελίδα 1 ΕΙΔΙΚΕΣ ΠΕΡΙΠΤΩΣΕΙΣ C 1
Π Ν Ο Ρ Μ Κ Ω Ν Ι Κ Ω Ν Τ Ο Μ Ω Ν - (ΘΕΤΙΚΗ - ΤΕΧΝΟΛΟΓΙΚΗ ΚΤΕΥΘΥΝΗ) Β ΛΥ Κ Ε Ι Ο Υ σλίδ 1 ΚΥΚΛΟ ΟΡΙΜΟ : Ονομάζτι ο ωμτικός τόπος (.τ.) των σημίων του πιπέδου που πέχουν στθή πόστση, ( > ), πό έν συκκιμένο
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 Ο ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ
Σχδίαση μ τη χρήση Η/Υ ΚΕΦΛΙ 2 ΓΕΩΜΕΤΡΙΚΕΣ ΚΤΣΚΕΥΕΣ ΔΡ ΛΕΩΝΙΔΣ ΝΘΠΥΛΣ, ΕΠΙΚΥΡΣ ΚΘΗΓΗΤΗΣ ΤΜΗΜ ΔΙΙΚΗΣΗΣ ΚΙ ΔΙΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΡΙΣΣ Θέμα 16 ο : αρμονική σωτρική ρική διαίρση υθύγραμμου τμήματος σ λόγο
Διαβάστε περισσότεραΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστα Βακαλόπουλου, Βασίλη Καρκάνη, Άννας Βακαλοπούλου
ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστ Βκλόπουλου, Βσίλη Κρκάνη, Άννς Βκλοπούλου Άσκηση η Δίνοντι τ δινύσμτ, β διάφορ του μηδνικού γι τ οποί ισχύι: β, β κι β i) Ν βρθούν τ μέτρ των δινυσμάτων,
Διαβάστε περισσότεραΒ ΒΕ=ΒΑ Β ( Β + Ε ) =ΒΑ. Β + α Β = = = x 2. x α x. α α + x
ξισώσις ου θµού ωµτρική ϖίλυση ξισώσων ου θµού Οι ρχίοι Έλληνς µθηµτικοί κθιέρωσν την κτσκυή γωµτρικών σχηµάτων µ κνόν κι ιήτη. Τρις τέτοις κτσκυές θ µλτήσουµ στη συνέχι. Κάθ µι ϖό υτές τις κτσκυές ίνι
Διαβάστε περισσότεραΠ Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Διαβάστε περισσότεραΕφαρµογές στη δυναµική του κέντρου µάζας στερεού σώµατος
Εφαρµογές στη δυναµική του κέντρου µάζας στρού σώµατος Εφαρµογή 1η Οµογνής δίσκος ακτίνας R ηρµί στην άκρη οριζόντιου τραπζιού µ το κέντρο του Κ να βρίσκται στην κατακόρυφη που διέρχται από την ία Ο του
Διαβάστε περισσότεραΤΥΠΟΛΟΓΙΟ ΚΩΝΙΚΩΝ ΤΟΜΩΝ
Μθημτικά Β Λυκίου Θτική & Τν/κή Κτύθυνση ΤΥΠΟΛΟΓΙΟ ΤΩΝ ΚΩΝΙΚΩΝ ΤΟΜΩΝ Κύκλος Πολή Έλλιψη Υπολή Επιμέλι: Γηγόης Μπξνίδης Μθημτικός.1. Κ Υ Κ Λ Ο Σ Οισμός: Ο γωμτικός τόπος των σημίων Μ του πιπέδου, γι τ
Διαβάστε περισσότεραΚλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο.
ΓΕΩΛΟΓΙΚΗ ΤΟΜΗ ΚΕΚΛΙΜΕΝΑ ΣΤΡΩΜΜΑΤΑ 6.1 ΚΛΙΣΗ ΣΤΡΩΜΑΤΟΣ Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο. Πραγματική κλίση στρώματος Η διεύθυνση μέγιστης κλίσης,
Διαβάστε περισσότεραΕρωτήσεις αντιστοίχισης
Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1. Οι ϐασικές έννοιες. 1.1 Αόριστες έννοιες, αξιώµατα
ΚΕΦΛΙΟ 1 Οι ϐασικές έννοις 1.1 όριστς έννοις, αξιώµατα υτό ισχύι ακόµη και για το ίδιο µας το γώ : το αντιλαµβανόµαστ µόνον ως κδήλωση, όχι ως κάτι που µπορίνα υπάρχι καθ αυτό. Thomas Mann, Schopenhauer
Διαβάστε περισσότεραΣτο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1
ΠΡΟΟΠΤΙΚΟ ΑΝΑΓΛΥΦΟ Το προοπτικό ανάγλυφο, όπως το επίπεδο προοπτικό, η στερεοσκοπική εικόνα κ.λπ. είναι τρόποι παρουσίασης και απεικόνισης των αρχιτεκτονικών συνθέσεων. Το προοπτικό ανάγλυφο είναι ένα
Διαβάστε περισσότεραΕρωτήσεις ανάπτυξης 1. ** 2. ** 3. ** 4. ** 5. ** 6. **
Ερωτήσεις ανάπτυξης 1. ** ίνονται επίπεδο p και τρία µη συνευθειακά σηµεία του Α, Β και Γ καθώς και ένα σηµείο Μ, που δεν συµπίπτει µε το Α. Αν η ευθεία ΑΜ τέµνει την ευθεία ΒΓ, να δείξετε ότι το Μ είναι
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ. Ιωάννης Βανδουλάκης Χαράλαμπος Καλλιγάς Νικηφόρος Μαρκάκης Σπύρος Φερεντίνος
ΥΠΥΡΕΙ ΕΘΝΙΚΗΣ ΠΙ ΕΙΣ ΚΙ ΘΡΗΣΚΕΥΜΤΩΝ ΠΙ ΩΙΚ ΙΝΣΤΙΤΥΤ Ιωάννης ανδουλάκης Χαράλαμπος Καλλιγάς Νικηφόρος Μαρκάκης Σπύρος Φρντίνος ΜΘΗΜΤΙΚ υμνασίου ΜΕΡΣ ωμτρία Τόμος 2ος Μαθηματικά ΥΜΝΣΙΥ ΜΕΡΣ ωμτρία Τόμος
Διαβάστε περισσότερα[Ολοκληρωτική μορφή του νόμου του Gauss στο κενό ή τον αέρα]
Παν/μιο Πατρών Τμήμα Φυσικής. Μάθημα : Ηλκτρομαγνητισμός Ι (Υποχρωτικό 3 ου Εξαμήνου) ΠΝΕΠΙΣΤΗΜΙΟ ΠΤΡΩΝ - ΤΜΗΜ ΦΥΣΙΚΗΣ ΜΘΗΜ : HΛΕΚΤΡΟΜΓΝΗΤΙΣΜΟΣ Ι (Υποχρωτικό 3 ου Εξαμήνου) Διδάσκων :Δ.Σκαρλάτος, Επίκουρος
Διαβάστε περισσότερα( ) Ασκήσεις σχολικού βιβλίου σελίδας A Oµάδας
3.3 Ασκήσις σχολικού ιλίου σλίδς 3 A Oµάδς. Ν ρίτ τη ξίσωση της έλλιψης σ κθµιά πό τις πρκάτω πριπτώσις : (i Ότ έχι στίς τ σηµί Ε (, 0 κι Ε(, 0 κι µγάλο άξο 0 (ii Ότ έχι στίς τ σηµί Ε (0, 5 κι Ε(0, 5 κι
Διαβάστε περισσότεραΑ Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
Διαβάστε περισσότερα3.3 Η ΕΛΛΕΙΨΗ. 2. Άµεση συνέπεια (ΜΕ ) + (ΜΕ) = 2α Ο γ.τ του σηµείου Μ είναι έλλειψη µε εστίες Ε και Ε. Περιορισµός : Αν ( ΕΕ ) = 2γ, πρέπει γ < α
3.3 Η ΕΛΛΕΙΨΗ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµ έλλιψη µ στίς τ σηµί Ε ι Ε, το γωµτριό τόπο των σηµίων του πιπέδου των οποίων το άθροισµ των ποστάσων πό τ Ε ι Ε ίνι στθρό ι µγλύτρο του Ε Ε.. Άµση συνέπι (ΜΕ )
Διαβάστε περισσότεραΑνοικτά και κλειστά σύνολα
5 Ανοικτά και κλιστά σύνολα Στην παράγραφο αυτή αναπτύσσται ο µηχανισµός που θα µας πιτρέψι να µλτήσουµ τις αναλυτικές ιδιότητς των συναρτήσων πολλών µταβλητών. Θα χριαστούµ τις έννοις της ανοικτής σφαίρας
Διαβάστε περισσότεραΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 18 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 18 ΙΟΥΝΙΟΥ 1 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ 1. Σωστό το γ. Σωστό το γ. Σωστό το γ 4. Σωστό το δ
Διαβάστε περισσότερα4 η εκάδα θεµάτων επανάληψης
4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και το µέσο του. Η τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i Ο = 4 Τα ορθογώνια τρίγωνα και έχουν = και = άρα είναι
Διαβάστε περισσότεραΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ. i) Μία ευθεία με συντελεστή διεύθυνσης ίσο με το μηδέν, θα είναι παράλληλη στον άξονα των y.
ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ Θέμα Α. Να αποδείξετε ότι ο συντελεστής διεύθυνσης ευθείας στο επίπεδο της μορφής x y 0, με 0, 0 θα δίνεται από τον τύπο. ( μονάδες) Β. Να γράψετε τους τύπους του εμβαδού
Διαβάστε περισσότεραΠΟΤΕ ΔΥΟ ΤΡΙΓΩΝΑ ΕΙΝΑΙ IΣΑ
ΠΟΤ ΥΟ ΤΡΙΩΝ ΙΝΙ IΣ Πότ δύο Τρίων ίνι ίσ; ύο τρίων ίνι ίσ ότν τυτίζοντι! (μ μτφορά, στροφή, νάκλση ή κάποιο συνδυσμό π υτά) Στροφή νάκλση Μτφορά Τ τρίων που έχουν το ίδιο σχήμ κι μέθος ίνι ΙΣ Τρίων. ντίστοιχ
Διαβάστε περισσότερα2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
Διαβάστε περισσότεραΟρισµοί. Ένα τετράπλευρο λέγεται εγγεγραµµένο σε κύκλο, αν οι κορυφές του είναι σηµεία του κύκλου.
6.5 6.6 ΘΩΡΙ. Ορισµοί Ένα τετράπλευρο λέγεται εγγεγραµµένο σε κύκλο, αν οι κορυφές του είναι σηµεία του κύκλου. Ένα τετράπλευρο λέγεται εγγράψιµο σε κύκλο, όταν µπορεί να γραφεί κύκλος που να διέρχεται
Διαβάστε περισσότεραΕΛΑΣΤΙΚΟΤΗΤΑ. ε = = Η ελαστικότητα ζήτησης
1 ΕΛΑΣΤΙΚΟΤΗΤΑ Οι οικονοµολόγοι νδιαφέρονται να µτρσουν ορισµένς µταβλητές για να µπορέσουν να κάνουν προβλέψις και για να κτιµσουν µ σχτικ ακρίβια τι αποτέλσµα θα έχι η µταβολ µιας µταβλητς πί µιας άλλης.
Διαβάστε περισσότεραΕΦΑΠΤΟΜΕΝΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ
ΕΝΟΤΗΤΑ 1.4. 5 ο ΜΑΘΗΜΑ ΕΦΑΠΤΟΜΕΝΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ Σκοπός της ενότητας Σκοπός της ενότητας είναι ο ορισμός εφαπτομένης της γραφικής παράστασης μιας συνάρτησης σε κάποιο σημείο της,
Διαβάστε περισσότερα4 η εκάδα θεµάτων επανάληψης
4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και Μ το µέσο του. Η Μ τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i ΟΜ = 4 Τα ορθογώνια τρίγωνα Μ και Μ έχουν Μ =
Διαβάστε περισσότεραΕΥΘΕΙΕΣ ΠΟΥ ΤΕΜΝΟΝΤΑΙ ΑΠΟ ΜΙΑ ΑΛΛΗ ΕΥΘΕΙΑ
ΕΥΘΕΙΕΣ ΠΟΥ ΤΕΜΝΟΝΤΑΙ ΑΠΟ ΜΙΑ ΑΛΛΗ ΕΥΘΕΙΑ Έχουµε 2 ευθείες ε 1,ε 2 και τουλάχιστον µία ευθεία που τέµνει αυτές τις 2 ευθείες, εδώ τη (δ). Ονοµάζουµε τις γωνίες µε βάση το: 1. Πού βρίσκονται σε σχέση µε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ - ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1. Δίνεται παραλληλόγραμμο ΑΒΓΔ με τρεις κορυφές τα σημεία Α (1,1), Γ (4,3) και Δ (,3). α) Να υπολογίσετε τα μήκη
Διαβάστε περισσότεραΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ύο τρίγωνα είναι ίσα όταν µε κατάλληλη µετατόπιση, το ένα συµπίπτει µε το άλλο. Β. Κριτήρια ισότητας τριγώνων Πρώτο κριτήριο Αν όλες οι πλευρές του ενός τριγώνου
Διαβάστε περισσότεραΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ ΣΤΗΝ ΥΛΗ ΘΕΩΡΙΑ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ ΣΤΗΝ ΥΛΗ ΘΕΩΡΙΑ Συγγραφή Επιμέλια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 29 - ΑΘΗΝΑ 6932 946778 www.pmoias.weebly.com ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ
Διαβάστε περισσότεραΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ
ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ
Διαβάστε περισσότεραΑ Γυμνασίου, Μέρο Β, Γεωμετρία, Κεφάλαιο 2, Συμμετρία
Α Γυμνασίου, Μέρο Β, Γεωμετρία, Κεφάλαιο 2, Συμμετρία Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρο Β - Κεφάλαιο 2, Β. 2.2. Άξονα συμμετρία σχήματο ονομάζεται η ευθεία που χωρίζει
Διαβάστε περισσότερα3.3 Το συναρτησοειδές του Minkowski και μετρικοποιησιμότητα σε τοπικά κυρτούς χώρους. x y E (υποπροσθετικότητα ) ) και p( x) p( x)
4 3.3 Το συναρτησοιδές του Mikowski και μτρικοποιησιμότητα σ τοπικά κυρτούς χώρους. Υπνθυμίζουμ ότι αν E διανυσματικός χώρος, μια συνάρτηση : E R λέγται υπογραμμικό συναρτησοιδές αν (ι) ( λ) λ ( ) =, λ
Διαβάστε περισσότεραΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ( Κανονικά πολύγωνα ) Δραστηριότητα 1 : Θεωρούμε ένα κύκλο κέντρου Ο και ακτίνας ρ ( τυχαίο μήκος ) και πάνω σε σ αυτόν παίρνουμε 5 διαδοχικά ίσα τόξα τα: AB, B Γ, ΓΔ, ΔΕ, ΕΑ. Στην συνέχεια
Διαβάστε περισσότεραΑσκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ
Ασκήσεις για τις εξετάσεις Μάη Ιούνη 014 στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ Άσκηση 1 η Δίνεται παραλληλόγραμμο ΑΒΓΔ και. Με διάμετρο τη διαγώνιο ΑΓ γράφουμε κύκλο με κέντρο Ο που τέμνει τη ΓΔ στο
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και
Διαβάστε περισσότεραΟι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη
Διαβάστε περισσότεραΣε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ
ΚΥΠΡΙΑΝΟΣ ΕΥΑΓΓΕΛΟΣ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Το τετράγωνο μιας κάθετης πλευράς είναι ίσο με την υποτείνουσα επί την προβολή της πλευράς στην υποτείνουσα. ΑΒ 2 = ΒΓ ΑΔ ή ΑΓ 2 = ΒΓ ΓΔ Σε κάθε
Διαβάστε περισσότερα2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ
1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας
Διαβάστε περισσότεραΑΝΑΜΟΡΦΩΣΕΙΣ ΜΕΣΩ ΑΝΑΚΛΑΣΕΩΝ ΣΕ ΚΑΜΠΥΛΕΣ ΕΠΙΦΑΝΕΙΕΣ.
ΑΝΑΜΟΡΦΩΣΕΙΣ ΜΕΣΩ ΑΝΑΚΛΑΣΕΩΝ ΣΕ ΚΑΜΠΥΛΕΣ ΕΠΙΦΑΝΕΙΕΣ. Πρόκειται για εικόνες τις οποίες μπορούμε να παρατηρήσουμε χρησιμοποιώντας κατάλληλες ανακλαστικές επιφάνειες, οι οποίες συνήθως είναι κωνικές ή κυλινδρικές
Διαβάστε περισσότερα117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού
117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά Μαθηματικού Περιεχόμενα 1. Διανύσματα (47) ελ. - 9. Ευθεία (18) ελ. 10-1 3. Κύκλος (13).ελ. 13-15 4. Παραβολή (14) ελ. 16-18 5. Έλλειψη (18)..
Διαβάστε περισσότεραΒ.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες
Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία
Διαβάστε περισσότεραΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑ: ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΕΔΙΟ ΚΑΙ ΕΙΣΑΓΩΓΗ ΣΤΟ MCAD
ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑ: ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΕΔΙΟ ΚΑΙ ΕΙΣΑΓΩΓΗ ΣΤΟ MCAD ΜΕΘΟΔΟΙ ΠΡΟΒΟΛΗΣ Προοπτική Προβολή Στο προοπτικό σχέδιο η εικόνα του αντικειμένου παρουσιάζεται, όπως προβάλλεται στο χαρτί σχεδιάσεως
Διαβάστε περισσότεραΜε τη συμπλήρωση της ενότητας αυτής ο/η μαθητής/τρια πρέπει:
ΟΡΘΟΓΡΑΦΙΚΗ ΠΡΟΒΟΛΗ ΟΡΘΟΓΡΑΦΙΚΗ ΠΡΟΒΟΛΗ ΣΤΟΧΟΙ: Με τη συμπλήρωση της ενότητας αυτής ο/η μαθητής/τρια πρέπει: 1. Να αναγνωρίζει και να κατονομάζει τα διάφορα είδη προβολών. 2. Να αναγνωρίζει και να κατονομάζει
Διαβάστε περισσότεραΣυμπλήρωμα 2 εδαφίου 3.3: Το γενικό μεταβολικό πρόβλημα για συναρτησιακό ολοκληρωτικού τύπου με ολοκληρωτέα συνάρτηση F κατά 2
ΚΕΦ. 3 Η Αρχή των Ήρωνος-Fermat 3.3-8 Συμπλήρωμα 2 δαφίου 3.3: Το νικό μταβολικό πρόβλημα ια συναρτησιακό ολοκληρωτικού τύπου μ ολοκληρωτέα συνάρτηση F κατά 2 τμήματα C, ορισμένο πί καμπυλών που τέμνουν
Διαβάστε περισσότεραΣΕΤ ΑΣΚΗΣΕΩΝ
ΣΕΤ ΑΣΚΗΣΕΩΝ 4.4.07. α) Ποια ίναι η σχέση μταξύ των οικονομιών κλίμακας και αποδόσων κλίμακας; β) Πως μτράμ την έκταση των οικονομιών κλίμακας; ΛΥΣΗ α) Οι οικονομίς κλίμακας και οι αποδόσις κλίμακας ίναι
Διαβάστε περισσότεραΕρωτήσεις ανάπτυξης. 1. Τα σηµεία Β και Γ είναι σηµεία του επιπέδου p, η ΒΓ είναι ευθεία του p. Η ΒΓ τέµνει την ΑΜ στον
Ερωτήσεις ανάπτυξης 1. Τα σηµεία και είναι σηµεία του επιπέδου, η είναι ευθεία του. Η τέµνει την Μ στον Μ Ν Ν. Το Ν σαν σηµείο της ανήκει στο, άρα και το Μ σαν σηµείο της Ν ανήκει στο. B. Έστω ε µια ευθεία
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ
ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε
Διαβάστε περισσότεραs(t) = + 1 γ 2 (2 µονάδες)
. ύο αυτοκίνητα Α και Β κινούνται σε ευθύ δρόµο µε την ίδια σταθερή ταχύτητα προς την ίδια κατεύθυνση. Την στιγµή t = (ο χρόνος µετρείται σε δευτερόλεπτα) το αυτοκίνητο Β προπορεύεται κατά s =3 (η απόσταση
Διαβάστε περισσότεραΜαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία Εξίσωση ευθείας
Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία - 1-1. 2-18575 Εξίσωση ευθείας Δίνονται τα σημεία Α(1,2) και Β (5,6 ). α) Να βρείτε την εξίσωση της ευθείας που διέρχεται από
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ - ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1. Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε = 5 + 2 α) Να γράψετε το διάνυσμα β) Να δείξετε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΕΠΝΛΗΠΤΙΚ ΦΥΛΛΙ ΕΠΙΜΕΛΕΙ ΣΙΛΗΣ ΥΕΡΙΝΣ ΕΠΙΜΕΛΕΙ: ΥΕΡΙΝΣ ΣΙΛΗΣ ΘΕΩΡΙ ΜΕΡΣ ο : ΛΕΡ ΚΕΦΛΙ ο ΦΥΣΙΚΙ ΡΙΘΜΙ. Ποιοι αριθμοί ονομάζονται φυσικοί, ποια ιδιότητα έχουν και πως χωρίζονται; πάντηση ι
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και
Διαβάστε περισσότεραΚατοίκον Εργασία 2. (γ) το ολικό φορτίο που βρίσκεται στον κύβο. (sd p.e 4.9 p146)
Κατοίκον Εργασία. Ένα σημιακό φορτίο (point charge) 5 mc και ένα - mc βρίσκονται στα σημία (,0,4) και (-3,0,5) αντίστοιχα. (α) Υπολογίστ την δύναμη πάνω σ ένα φορτίο (point charge) nc που βρίσκται στο
Διαβάστε περισσότεραδίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α.
3.1 Η έννοια της συνάρτησης Ορισμοί Συνάρτηση f από ένα συνόλου Α σε ένα σύνολο Β είναι μια αντιστοιχία των στοιχείων του Α στα στοιχεία του Β, κατά την οποία κάθε στοιχείο του Α αντιστοιχεί σε ένα μόνο
Διαβάστε περισσότεραΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα
1 ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / 010-11 ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές αικονίσις, Ααγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα 1 Έστω η γραμμική αικόνιση T : μ T ( 1,1) = (, 0) και ( 0,1) ( 1,1) T = (α) Βρίτ τον ίνακα της
Διαβάστε περισσότερα2.4-2.5 ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΣΗΜΕΙΟ
1 4-5 ΣΥΜΜΤΡΙ ΩΣ ΠΡΣ ΣΗΜΙ ΚΝΤΡ ΣΥΜΜΤΡΙΣ ΘΩΡΙ Το συµµετρικό σηµείου ως προς κέντρο σηµείο νοµάζουµε συµµετρικό του ως προς κέντρο το σηµείο µε το οποίο συµπίπτει το περιστρεφόµενο περί το κατά γωνία 180
Διαβάστε περισσότερα1. ΠΑΡΑΣΤΑΣΗ ΚΩΝΟΥ ΠΑΡΑΣΤΑΣΗ - ΕΠΙΠΕ ΕΣ ΤΟΜΕΣ - ΑΝΑΠΤΥΓΜΑ- ΣΚΙΕΣ - ΕΦΑΡΜΟΓΕΣ
ΚΩΝΟΣ ΠΑΡΑΣΤΑΣΗ - ΕΠΙΠΕ ΕΣ ΤΟΜΕΣ - ΑΝΑΠΤΥΓΜΑ- ΣΚΙΕΣ - ΕΦΑΡΜΟΓΕΣ 1. ΠΑΡΑΣΤΑΣΗ ΚΩΝΟΥ Σχήµα 1 Η κωνική επιφάνεια ή κώνος, προκύπτει από τις διαδοχικές θέσεις µιας ευθείας (γενέτειρες) η οποία διέρχεται από
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος
ΔΙΑΝΥΣΜΑΤΑ 8556 ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =.. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ
ΠΝΠΤΙΣ ΣΣΙΣ > 90. 1. ίνεται ισοσκελές τρίγωνο µε = και 0 πό την κορυφή φέρνουµε τις ηµιευθείες x κάθετη στην πλευρά και y κάθετη στην πλευρά που τέµνουν την στα σηµεία και αντίστοιχα. Να αποδείξετε α)
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ
ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών
Διαβάστε περισσότεραΑπέναντι πλευρές παράλληλες
5. 5.5 ΘΩΡΙ. Παραλληλόγραµµο πέναντι πλευρές παράλληλες. Ιδιότητες παραλληλογράµµου πέναντι πλευρές ίσες πέναντι γωνίες ίσες Οι διαγώνιοι διχοτοµούνται Το σηµείο τοµής των διαγωνίων είναι κέντρο συµµετρίας
Διαβάστε περισσότερα2.2. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. e = 2. e, x ο. e f ( ln 2 ) = όταν : 4
. Ασκήσεις σχολικού βιβλίου σελίδας 7 9 A Οµάδας. Να βρείτε την παράγωγο της συνάρτησης στο σηµείο ο όταν : i) ( ), ο ii) ( ), ο 9 iii) ( ) συν, v) ( ) ο 6 π e, ο ln iv) ( ) ln, ο e i) Για κάθε R είναι
Διαβάστε περισσότεραΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x
ΘΕΜΑ A ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. Δίνεται η συνάρτηση f με τύπο: f ( ) ln,,. Να δείξετε ότι η f είναι αντιστρέψιμη και να βρείτε το πεδίο ορισμού της αντίστροφής της.. Να δικαιολογήσετε ότι η εξίσωση f ( ) a, a,
Διαβάστε περισσότερα1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός.
1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός. ( Καρτεσιανή ) επιλέχθηκε για το σχήµα. Ο αριθµός a δεν επιρρεάζει
Διαβάστε περισσότεραΤρίγωνα. Αθανασίου Δημήτρης (Μαθηματικός)
Τρίγωνα Αθανασίου Δημήτρης (Μαθηματικός) www.peira.gr asepfreedom@yahoo.gr 1 3.1 Στοιχεία και είδη τριγώνων 2 Ένα τρίγωνο ΑΒΓ έχει τρεις κορυφές Α, Β, Γ, τρεις πλευρές ΒΓ, ΓΑ, ΑΒ και τρεις γωνίες Β ΑΓ,
Διαβάστε περισσότεραΓενικές ασκήσεις 7 ου Κεφαλαίου σελίδας 164
1 ενικές ασκήσεις 7 ου Κεφαλαίου σελίδας 164 1. ίνονται δύο κύκλοι (Κ, R) και (Λ, ρ) που εφάπτονται εξωτερικά στο. φέρουμε το κοινό εφαπτόμενο τμήμα τους και την κάθετη στη. Να αποδείξετε ότι = R R. Φέρουμε
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 6 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο
Διαβάστε περισσότερα1 ο ΓΕΛ ΠΕΤΡΟΥΠΟΛΗΣ ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ Ευθεία (10 θέµατα δυναµικής αντιµετώπισης) Θέµα 1 Από σηµείο Α του άξονα x x φέρνουµε ευθεία (ε 1
ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ Ευθεία (10 θέµατα δυναµικής αντιµετώπισης) Θέµα 1 Από σηµείο Α του άξονα x x φέρνουµε ευθεία (ε 1 ) παράλληλη στην ευθεία (ε): 1 y= x και την (ε 2 ) παράλληλη στον άξονα
Διαβάστε περισσότερα( ) y ) άγνωστη συνάρτηση, f (, )
6. Ι ΙΑΣΑΑ ΠΡΟΒΛΗΜΑΑ ΣΥΝΟΡΙΑΚΝ ΙΜΝ 6. Πρόβληµατα πδίου σ διαστάσις Η νότητα αυτή αναφέρται σ προβλήµατα πδίου, όπου άγνωστη συνάρτηση ίναι µία βαθµωτή συνάρτηση. α προβλήµατα αυτά έχουν σηµαντικές φαρµογές
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. β γ α β. α γ β δ. Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1. Προηγούµενες και απαραίτητες γνώσεις
Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1 ΓΕΩΜΕΤΡΙ ΤΗΣ Β Προηγούµενες και απαραίτητες γνώσεις 1. σε ορθογώνιο τρίγωνο µε 30 ο, η απέναντι 30 ο κάθετη είναι το µισό της υποτείνουσας και αντίστροφα.
Διαβάστε περισσότεραΑ. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ. Ηµιεπίπεδο Κάθε ευθεία ε επιπέδου Π χωρίζει τα σηµεία του επιπέδου που δεν ανήκουν στην ε σε δύο σηµειοσύνολα Π 1
2 Η γωνία - Ο κύκλος Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ηµιεπίπεδο Κάθε ευθεία ε επιπέδου Π χωρίζει τα σηµεία του επιπέδου που δεν ανήκουν στην ε σε δύο σηµειοσύνολα Π 1, Π 2 τα οποία ονοµάζονται ηµιεπίπεδα
Διαβάστε περισσότερα