Pētniecības metodes un pētījumu datu analīze skolēnu zinātniski pētnieciskā darba rakstīšanas procesā. Seminārs skolēniem
|
|
- Αλθαία Πολίτης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Pētniecības metodes un pētījumu datu analīze skolēnu zinātniski pētnieciskā darba rakstīšanas procesā. Seminārs skolēniem Dr. oec, docente, Silvija Kristapsone
2 I. Zinātniskās pētniecības būtība un pētījuma metodoloģijas pamati Pētījums Plašākā nozīmē pētījums ir loģiski secīgu metodoloģisko, metodisko un organizatoriski tehnisko procedūru sistēma, kas ļauj iegūt ticamus datus par pētāmo parādību vai procesu, un izmantot tos tālāk praksē procesa vadīšanai un prognozēšanai. Pētījums kā pētnieciskās darbības apraksts ir zinātnisks sacerējums, kurā apkopoti, izklāstīti pētnieciskā darba galarezultāti. 2
3 Skaidri zinātnes metodoloģiskie pamati ir pētnieka vissvarīgākais līdzeklis mērķa sasniegšanai. Jebkuras zinātnes metodoloģiskie pamati ir priekšmets un tās galvenās kategorijas (jēdzieni). Jebkuras zinātnes attīstība vispirms ir atkarīga no tās priekšmeta noteiktības, precīzas un zinātniskas priekšmeta satura interpretācijas, metodoloģisko pamatu pareizas izvēles un efektīvas pētījumu programmas izstrādes. 3
4 Zinātnes uzdevums nav tikai aprakstīt un klasificēt parādības, lai gan empīrisks pētījums sākas ar novērošanu un aprakstīšanu. Zinātnes funkcija ir izskaidrošana, tas ir, atklāt iekšējās un noturīgās parādību sakarības. Sociālajās zinātnes lielākā daļa empīrisko pētījumu notiek dabiskos apstākļos, ievācot empīriskos datus ar mērķi iegūt informāciju par parādībām un procesiem. Šādos pētījumos kā galvenā domāšanas metode ir indukcija izdarīt vispārinošus spriedumus. Induktīvā loģika nozīmē domai attīstīties no atsevišķā uz vispārīgo. 4
5 Metode Pētīšanas metodes ir zinātnē pārbaudīto un pieņemto darbības noteikumu un paņēmienu sistēma, ko izmanto parādību izziņā jaunu ticamu faktu, sakaru un likumu atklāšanai, vērtēšanai un vispārināšanai par realitāti. Vispārīgās pētīšanas metodes (vēsturiskā, kompleksā vai struktūrfunkcionālā pētīšanas metode.) Izziņas metodes (analīzes un sintēzes metode, loģiskā metode, indukcijas un dedukcijas metode, hipotēzes un priekšlikumi, modelēšana). Individuālās pētīšanas metodes (izlases metodes, informācijas vākšanas metodes, informācijas apstrādes metodes un prognozēšanas metodes). 5
6 Zinātniskajos pētījumos parasti pēc darbības veida tiek izmantotas šādas metožu grupas: teorētiskās pētīšanas metodes; empīriskās pētīšanas metodes; datu apstrādes metodes. Teorētiskās pētīšanas metodes teorētiskā analīze, dokumentu kontentanalīze, modelēšana atklāj pētāmā priekšmeta būtiskās sakarības. Šajā pētniecības posmā atklātie zinātniskie fakti un atziņas literatūrā, dokumentos prasa vispārināšanu, salīdzināšanu, vērtēšanu un interpretāciju. Ar empīriskām pētīšanas metodēm saprotam izlases veidošanas metodes un datu ieguves metodes. 6
7 Teorētiskā teksta analīze noved pie parādības tāda modeļa izveidošanu, kas aptver tās būtiskākās puses un attiecības. Tālāk notiek konkrēta pāreja no teorētiskās analīzes uz empīrisko analīzi. Šajā gadījumā ne tikai tiek spriests par abstraktām lietā, bet norādīts uz tām darbībām, ar kuru palīdzību var pierādīt izvirzītās hipotēzes un teorētiskos secinājumus, mērīt pētāmās parādības. Analīze domās veselā sadalīšana daļās. Vēršot uzmanību uz priekšmetu un parādību dažādiem aspektiem, vienlaikus notiek norobežošanās no nenozīmīgām pazīmēm. Analīze nozīmē arī priekšmetu vai parādību savstarpēju salīdzināšanu. Sintēze konstatēto elementu un priekšstatu kompleksas formēšanas process, atspoguļojot kopējās pazīmes. Kad šis komplekss iegūst vārdisku apzīmējumu, veidojas jēdziens. Zinātnisko jēdzienu sistēma veido teoriju kā reālās pasaules kādas jomas ideālu modeli. 7
8 Teorētiskās teksta analīzes metodes Dekonstrukcija Aksiomu metode Apercepcijas metode Deskriptīvā metode Diahroniskā metode Aspektu analīzes metode Kontentanalīze Kritiskās analīzes metode Kompleksās analīzes metode Konceptuālās analīzes metode Problēmu analīzes metode Sistēmanalīze Salīdzināšanas metode 8
9 Teorētisko tekstu analīzes metodes izvēle balstīta uz pētījuma precīza mērķa formulējumu un pašas analīzes mērķi, izprotot pētāmā teksta specifiku un pārzinot vienas vai otras augstāk minētās metodes tehniku. Zinātniskais pētījums paredz izskaidrošanu kā rūpīgi aprakstītu faktu apkopojumu, lai teorētiskais pamatojums veidotos tādā formā, kas atļauj to pārbaudīt praksē. Citiem vārdiem sakot zinātniskais pētījums izvirza prasību pētījuma empīriskā līmeņa (apraksta) atbilstību teorētiskajam līmenim (izskaidrojumam). 9
10 Pētījumu veidi Pētījuma veidu visprecīzāk atklāj mērķis, izvēlētās un lietotās pētījumu metodes, un otrādi, saprotot, kuram pētījuma veidam konkrētais pētījums piederīgs, var iepriekš plānot pētījuma metodes. Sociālajās zinātnēs ir plaši izplatīta pētījumu klasifikācija pēc: izmantojamības (lietišķie un fundamentālie); izmantotās metodes (eksperimentālie pētījumi un neeksperimentālie pētījumi; kvantitatīvie pētījumi un kvalitatīvie pētījumi); pētnieciskā jautājuma; datu ieguves procesa. 10
11 Pēc pētījuma jautājuma gadījuma pētījums (kvalitatīvās analīzes metodes) vēsturiskais pētījums (kvalitatīvās pētniecības metodes) aprakstošais pētījums (aprakstošās statistikas metodes) longitudinālais pētījums (secinošās statistikas metodes) korelācijas pētījums (korelācijas metodes) cēloņsakarības pētījums (dispersiju analīze, regresiju analīze) u.c. 11
12 II. Pētnieciskā procesa gaita un tā organizācija ASV filozofa Dž. Devejs (J. Devey) jau gadā piedāvāja šādus zinātniskā pētījuma posmus: 1) temata izvēle; 2) iepazīšanās ar pētāmo objektu (priekšmetu); 3) pētījuma mērķa, uzdevumu un hipotēžu izvirzīšana; 4) pētījuma pieteikuma sagatavošana, pētījuma akcepta saņemšana; 5) nepieciešamās informācijas vākšana; 6) pētījuma metodes ( žu) izvēle un pamatošana; 7) datu ieguve; 8) starprezultātu un galarezultātu apkopošana; 9) starprezultātu un galarezultātu analīze; 10) secinājumu un priekšlikumu izstrāde; 11) pētījuma ziņojuma (pārskata) sagatavošana un publiskošana. 12
13 Analizējot literatūras avotus, pētnieka galvenie uzdevumi ir šādi: 1) iepazīties ar zinātniski pētnieciskā darba temata pamatjēdzienu definīcijām, to skaidrojumu dažādu autoru darbos (ja skaidrojumi ir atšķirīgi); 2) noskaidrot situāciju attiecīgajā jomā; 3) konstatēt, kāda veida pētījumi ir veikti saistībā ar paša plānoto pētniecības darbu; 4) kritiski izvērtēt uzkrāto pieredzi un galarezultātus sava pētījuma aspektā. Teorētiskie teksti tiek konspektēti atbilstīgi šo tekstu struktūrai, akcentējot jēdzienus, kategorijas, likumus, principus, idejas, noteikumus, teorijas, hipotēzes, faktus, secinājumus utt. Empīrisko tekstu konspektēšana galvenokārt būs saistīta ar aktu, notikumu, statistisko datu un statistisko rādītāju, konkrētu parādības īpašību izvērtēšanu 13
14 Bibliogrāfiskās atsauces jāliek, ja: 1) tekstā minēts citāts; 2) tekstā dots citu autoru aprēķināts skaitlisks materiāls, viņu veidotās tabulas, attēli, formulas; 3) izklāstīts kaut kādas personas teiktais vai uzskati; 4) pieminēts konkrēts avots, zinātniskais pētījums, raksts; 5) ja tekstā pieminēts vai aprakstīts gadījums vai piemērs, kas nav vispārzināms. 14
15 III. Datu ieguves, apstrādes un analīzes metodes Pētījumā Zinātne sākas ar mērīšanu. Ja neko nemēra, neko jaunu nevar atklāt. Imants Ieviņš ( ) latviešu mežzinātnieks, Dr.habil.ing. 15
16 Datu empīriskās ieguves metodes pētījumā: dokumentu analīze aptauja (intervija, anketēšana) mērīšana testēšana novērošana 16
17 Datu apstrādes un analīzes metodes MATEMĀTISKĀS UN STATISTISKĀS METODES Statistikā analīze nevar notikt, neizmantojot tās konkrētās nozares metodes, pie kuras pētāmā parādība pieder, piemēram, psiholoģija, politika, socioloģija un tml. Līdzās šīm metodēm statistikā izmanto arī specifiskos paņēmienus, un tie ir: statistiskā novērošana (ziņu, datu vākšana), apkopošana jeb grupēšana un vispārināšana jeb statistiskā analīze. Statistiskās novērošanas praktiskā nozīme iegūt ticamu informāciju par parādības stāvokli vai procesa raksturu. 17
18 Statistikas dati ir parādību skaitliskais raksturojums, kas iegūti statistiskās novērošanas (dokumentu izpētes, novērošanas, aptaujas, testēšanas, mērīšanas) un apstrādes vai atbilstīgu aprēķinu ceļā. Statistiskais rādītājs (angl. statistic) ir pētāmās parādības īpašību skaitliskais novērtējums konkrētos vietas apstākļos un laikā. Tos iegūst aprēķinu ceļā, izmantojot speciālas formulas. Aprakstošā statistika empīriskās datu apkopošanas metodes, grafiskās attēlošanas metodes un statistiskie rādītāji. 18
19 Statistiskās metodes izvēli pētījumā nosaka: pētāmās pazīmes ( ju) mērījumu skala( as) (nosaukuma, kārtas/rangu, intervālu vai proporcionālā); pētāmās izlases kopas īpatnības (maza/liela grupa); statistisko rādītāju uzrādītās pētāmās pazīmes ( ju) īpatnības, t.i., intervāla vai attiecību skalā mērītas pazīmes atbilstība vai neatbilstība normālam sadalījumam; 19
20 pētījuma stratēģiskais mērķis un ar to saistītie uzdevumi (aprakstīt, noskaidrot atšķirības, sakarības, noteikt faktoriālo pazīmju ietekmi); pētījuma shēma (1 izlases salīdzināšana ar standartlielumu, 2 izlašu salīdzināšana, 3 un vairāk izlašu salīdzināšana, sakarību noteikšana starp 2 vai 3 un vairākām pazīmēm un tml.). Statistisko rādītāju aprēķināšana un to analīze ir pamats pētāmo pazīmju empīrisko sadalījumu raksturojumam un iespējām noteikt to īpatnības attiecībā pret tiem teorētiskiem sadalījumiem, kas raksturīgi šīm pazīmēm ģenerālajā kopā jeb statistiskajā kopā, pamato tālāko secinošās statistikas metožu izvēli. 20
21 Statistiskā tabula ir pētāmās parādības skaitliskās informācijas racionāla un uzskatāma attēlošanas forma. Tabulas ļauj statistisko materiālu uztvert kopumā. Grafiskais attēls palīdz uzskatāmi raksturot un vispārināt pētāmo kopu. Grafiskais attēls ir tabulu veidošanas kā metodes turpinājums un papildinājums, jo grafiskajā attēlā izteiktāks kļūst rādītāju salīdzinājums, parādās kopas struktūra, labāk novērojamas attīstības tendences un savstarpējās sakarības. 21
22 Pētījumos izplatītākie grafiskie attēli ir stabiņu diagramma līniju diagramma apļa diagramma 22
23 korelācijas (regresijas) diagramma 23
24 Secinošā statistika Secinošā statistika metodes, ko lieto dažādu hipotēžu pierādīšanai, kā arī populācijas parametru novērtēšanai. Parametriskā statistika metodes, ko lieto hipotēžu pierādīšanai, ja empīriskais sadalījums atbilst normālam sadalījumam (dati doti intervālu vai attiecību skalā), pieejamas MS Excel Data Analysis. Parametriskās metodes: salīdzināšanas gadījumā t Stjūdenta kritērijs divu neatkarīgu izlašu salīdzināšanai, t Stjūdenta kritērijs divu atkarīgu izlašu salīdzināšanai, dispersiju analīze (lieto 3 un vairāku grupu salīdzināšanai un neatkarīgā mainīgā ietekmes noteikšanai), sakarību gadījumā Pirsona korelācijas koeficients Neparametriskā statistika metodes, ko lieto hipotēžu pierādīšanai, ja empīriskais sadalījums neatbilst normālam sadalījumam (dati doti intervālu vai attiecību skalā) vai arī sākotnējie dati doti nosaukuma vai kārtas skalā. (Pieejamas, piem., SPSS programmā). 24
25 Pētījuma hipotēze par atšķirībām starp sadalījumiem, mērītiem nominālajā skalā Cik kategorijas jeb kvalitātes (c) ir pazīmei? Empīriskais sadalījums ar teorētisko sadalījumu Binominālais kritērijs (m) *m apr. m krit. * p = 0,05 vai p = 0,01 Kolmogorova Smirnova kritērijs *Z apr. Z krit. * p = 0,05 vai p = 0, χ 2 * p = 0,05 vai p = 0,01 Divas kategorrijas (c =2) Divi empīriskie sadalījumi Mac Nemara kritērijs Vairākas kategorijas (c 3) Kādi sadalījumi tiek salīdzināti? *χ2 apr. χ2 krit. * p = 0,05 vai p = 0,01 Neatkarīgi sadalījumi Kolmogorova Smirnova kritērijs *Z apr. Z krit. * p = 0,05 vai p = 0,01 Atkarīgi sadalījumi Zīmju tests * Ja izpildās šī nevienādība, tas nozīmē, ka pastāv statiski nozīmīga atšķirība starp salīdzināmajiem biežumu sadalījumiem, nulles hipotēze ir jānoraida. SPSS programmā statistiski nozīmīgas atšķirības ir tad, ja Sig 0,05. (Sig statistiskā nozīmība (angl. significant level, p nozīmības līmenis jeb pirmā veida kļūda (angl. p level). 25
26 Pētījuma hipotēze par atšķirībām starp sadalījumiem, mērītiem kārtas jeb rangu skalās Divas izlases (2) 2.Vai grupas ir atkarīgas (korelējošas) vai neatkarīgas grupas? Atkarīgas grupas Aprēķina Vilkoksona testa T vērtību *T apr. T krit. * p = 0,05 vai p = 0,01 Neatkarīgas grupas Aprēķina Manna Vitneja testa U vērtību *U apr. U krit. * p = 0,05 vai p = 0,01 Kāda ir pētījuma shēma? *Ja izpildās šī nevienādība, tas nozīmē, ka pastāv statiski nozīmīga atšķirība starp salīdzināmajiem biežumu sadalījumiem, nulles hipotēze ir jānoraida. SPSS programmā statistiski nozīmīgas atšķirības ir tad, ja Sig 0,05. (Sig statistiskā nozīmība (angl. significant level, p nozīmības līmenis jeb pirmā veida kļūda (angl. p level). Vairākas izlases (3 un vairāk) 2. Vai grupas ir atkarīgas (korelējošas) vai neatkarīgas grupas? Neatkarīgas grupas Kruskola- Valisa tests, aprēķina H *H χ 2 * p = 0,05 vai p = 0,01 Atkarīgas grupas Frīdmana tests χ 2 *χ2 apr. χ2 krit. * p = 0,05 vai p = 0,01 26
27 Pētījuma hipotēze par atšķirībām starp sadalījumiem, mērītiem intervālu vai attiecību skalā Viena izlase (1) 1. Kāda ir pētījuma shēma? Divas izlases (2) Vairākas izlases (3 un vairāk) Nē Aprēķina t vērtību vienai izlasei t apr. t krit.* α = 0,05 vai α = 0,01 Jā Aprēķina t neatkarīgām grupām Vai ir zināma s 2(sigma)? Nē Aprēķina z vērtību vienai izlasei z apr. z krit.* α = 0,05 vai α = 0,01 Jā 3.Vai mainīgajam lielumam ir normāls sadalījums? Aprēķina Vilkoksona testa T vērtību 2.Atkarīgas (korelējošas) vai neatkarīgas grupas Atkarīgās sgrupas Neatkarīgas grupas 3.Vai mainīgajam lielumam ir normāls sadalījums? Jā Aprēķina t neatkarīgām grupām Nē Aprēķina Manna Vitneja testa U vērtību 2.Atkarīgas (korelējošas) vai neatkarīgas grupas Neatkarīgas grupas Jā Vienfaktoru dispersiju analīze, aprēķina F vērtību Kāds ir neatkarīgo mainīgo skaits? Viens 3.Vai atkarīgajam mainīgajam ir normāls Nē Kruskola- Valisa tests, aprēķina H Atkarīgās grupas Divi un vairāk L Frīdmena kritērijs 3.Vai atkarīgajam mainīgajam ir normāls Nē Jā Daudzfaktoru dispersiju analīze, aprēķina F vērtības t apr. t krit.* α = 0,05 vai α = 0,01 T apr. T krit.* α = 0,05 vai α = 0,01 t apr. t krit.* α = 0,05 vai α = 0,01 U apr. U krit.* α = 0,05 vai α = 0,01 F apr. F krit.* α = 0,05 vai α = 0,01 H χ 2 * α = 0,05 vai α = 0,01 F apr. F krit.*α = 0,05 vai α = 0,01 27
28 Statistiskās analīzes paņēmiens, lai noteiktu, vai pastāv sakarības starp vienas grupas divām pazīmēm. Atkarībā no datu mērījumu skalas iespējami vairāki korelācijas koeficienti (kritēriji): Pirsona korelācijas koeficients Spirmena korelācijas koeficients Kendala tau korelācijas koeficients Hī kvadrāta koeficients u.c. 28
29 29
30 30
31 Korelācijas koeficients r atrodas robežās no 1 līdz +1. Pirsona un Spirmena korelācijas koeficientus novērtē līdzīgi, atbildot uz jautājumiem: Vai sakarības ir statistiski nozīmīgas? Vai sakarība ir tieša vai pretēja? Kāds ir sakarību ciešums? Citi korelācijas koeficienti ļauj novērtēt tikai sakarības statistisko nozīmību. 31
32 Determinācijas koreficients R 2 Determinācijas koeficients R 2 (angl. R Square) raksturo atkarīgā mainīgā dispersijas daļu kopējā dispersijā, ko nosaka neatkarīgā mainīgā ietekme; rāda, cik lielā mērā neatkarīgā mainīgā variācija izskaidro atkarīgā mainīgā variāciju. Parasti determinācijas koeficientu izsaka procentos. 32
33 Regresiju analīze y a b x Regresijas vienādojumā parametrs a raksturo neuztverto (vērā neņemto) faktoru vidējo ietekmi uz rezultatīvo pazīmi. Regresijas koeficients b izsaka rezultatīvās pazīmes vidējo pieaugumu, pieaugot faktoriālai pazīmei par vienu vienību. 33
34 30 25 Atkarīgais mainīgais y y = 0,4581x + 8,7073 R² = 0,1896 = 19,0% r = 0, Neatkarīgais manīgais x Dr. oec., doc. Silvija Kristapsone 34
35 Konfūcijs ( pr.kr.) Ķīniešu domātājs Uz zināšanām ved trīs ceļi: pārdomu ceļš, kas ir viscēlākais, atdarināšanas ceļš, kas ir visvieglākais, un pieredzes ceļš, kas ir visgrūtākais. 35
36 Literatūra: Kristapsone S. (2014). Zinātniskā pētniecība studiju procesā. Rīga : Biznesa augstskola Turība, lpp. Ievads pētniecībā: stratēģijas, dizaini, metodes (2011)./Sastādījusi K.Mārtinsone. Rīga : RAKA, lpp. Arhipova I. Bāliņa S. (2006) Statistika ekonomikā un biznesā. Risinājumi ar Excel un SPSS. 2. izdevums. Rīga: Datorzinību centrs, 2006, 337 lpp. Arhipova I. Bāliņa S. Statistika ar Excel ikvienam 1. Mācību līdzeklis. Rīga: Datorzinību centrs, 1999, 163 lpp. Arhipova I. Bāliņa S. Statistika ar Excel ikvienam 2. Mācību līdzeklis. Rīga: Datorzinību centrs, 2000, 133 lpp. 36
Pētniecības metodes un pētījumu datu analīze skolēnu zinātniski pētnieciskā darba rakstīšanas procesā. Seminārs skolotājiem
Pētniecības metodes un pētījumu datu analīze skolēnu zinātniski pētnieciskā darba rakstīšanas procesā. Seminārs skolotājiem Dr. oec, docente, Silvija Kristapsone 29.10.2015. 1 I. Zinātniskās pētniecības
ESF projekts Pedagogu konkurētspējas veicināšana izglītības sistēmas optimizācijas apstākļos Vienošanās Nr. 2009/0196/1DP/
ESF projekts Pedagogu konkurētspējas veicināšana izglītības sistēmas optimizācijas apstākļos Vienošanās Nr. 009/0196/1DP/1...1.5/09/IPIA/VIAA/001 ESF projekts Pedagogu konkurētspējas veicināšana izglītības
Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013
Ι 55 C 35 C A A B C D E F G 47 17 21 18 19 19 18 db kw kw db 2015 811/2013 Ι A A B C D E F G 2015 811/2013 Izstrādājuma datu lapa par energopatēriņu Turpmākie izstrādājuma dati atbilst ES regulu 811/2013,
Tēraudbetona konstrukcijas
Tēraudbetona konstrukcijas tēraudbetona kolonnu projektēšana pēc EN 1994-1-1 lektors: Gatis Vilks, SIA «BALTIC INTERNATIONAL CONSTRUCTION PARTNERSHIP» Saturs 1. Vispārīga informācija par kompozītām kolonnām
Rīgas Tehniskā universitāte. Inženiermatemātikas katedra. Uzdevumu risinājumu paraugi. 4. nodarbība
Rīgas Tehniskā univesitāte Inženiematemātikas kateda Uzdevumu isinājumu paaugi 4 nodabība piemēs pēķināt vektoa a gaumu un viziena kosinusus, ja a = 5 i 6 j + 5k Vektoa a koodinātas i dotas: a 5 ; a =
Logatherm WPS 10K A ++ A + A B C D E F G A B C D E F G. kw kw /2013
51 d 11 11 10 kw kw kw d 2015 811/2013 2015 811/2013 Izstrādājuma datu lapa par energopatēriņu Turpmākie izstrādājuma dati atbilst S regulu 811/2013, 812/2013, 813/2013 un 814/2013 prasībām, ar ko papildina
FIZIKĀLO FAKTORU KOPUMS, KAS VEIDO ORGANISMA SILTUMAREAKCIJU AR APKĀRTĒJO VIDI UN NOSAKA ORGANISMA SILTUMSTĀVOKLI
Mikroklimats FIZIKĀLO FAKTORU KOPUMS, KAS VEIDO ORGANISMA SILTUMAREAKCIJU AR APKĀRTĒJO VIDI UN NOSAKA ORGANISMA SILTUMSTĀVOKLI P 1 GALVENIE MIKROKLIMATA RĀDĪTĀJI gaisa temperatūra gaisa g relatīvais mitrums
1. Testa nosaukums IMUnOGLOBULĪnS G (IgG) 2. Angļu val. Immunoglobulin G
1. Testa nosaukums IMUnOGLOBULĪnS G (IgG) 2. Angļu val. Immunoglobulin G 3. Īss raksturojums Imunoglobulīnu G veido 2 vieglās κ vai λ ķēdes un 2 smagās γ ķēdes. IgG iedalās 4 subklasēs: IgG1, IgG2, IgG3,
Rekurentās virknes. Aritmētiskā progresija. Pieņemsim, ka q ir fiksēts skaitlis, turklāt q 0. Virkni (b n ) n 1, kas visiem n 1 apmierina vienādību
Rekurentās virknes Rekursija ir metode, kā kaut ko definēt visbiežāk virkni), izmantojot jau definētas vērtības. Vienkāršākais šādu sakarību piemērs ir aritmētiskā un ǧeometriskā progresija, kuras mēdz
TIEŠĀ UN NETIEŠĀ GRADIENTA ANALĪZE
TIEŠĀ UN NETIEŠĀ GRADIENTA ANALĪZE Botānikas un ekoloăijas katedra Iluta Dauškane Vides gradients Tiešā un netiešā gradienta analīze Ordinācijas pamatideja Ordinācijas metodes Gradientu analīze Sugu skaits
Gaismas difrakcija šaurā spraugā B C
6..5. Gaismas difrakcija šaurā spraugā Ja plakans gaismas vilnis (paralēlu staru kūlis) krīt uz šauru bezgalīgi garu spraugu, un krītošās gaismas viļņa virsma paralēla spraugas plaknei, tad difrakciju
Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts
Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts www.videszinatne.lv Saules enerģijas izmantošanas iespējas Latvijā / Seminārs "Atjaunojamo
Monitoringa statistiskā puse - Ainārs Auniņš
Monitoringa statistiskā puse - ko un cik daudz jāmēra, lai izdarītu korektus secinājumus Ainārs Auniņš ES Biotopu Direktīva 92/43/EEC 11. Pants Dalībvalstis veic 2. pantāminēto dabisko dzīvotņu un sugu
PREDIKĀTU LOĢIKA. Izteikumu sauc par predikātu, ja tas ir izteikums, kas ir atkarīgs no mainīgiem lielumiem.
005, Pēteris Daugulis PREDIKĀTU LOĢIKA Izteikumu sauc par predikātu, ja tas ir izteikums, kas ir atkarīgs no mainīgiem lielumiem. Par predikātiem ir jādomā kā par funkcijām, kuru vērtības apgabals ir patiesumvērtību
Īsi atrisinājumi Jā, piemēram, 1, 1, 1, 1, 1, 3, 4. Piezīme. Uzdevumam ir arī vairāki citi atrisinājumi Skat., piemēram, 1. zīm.
Īsi atrisinājumi 5.. Jā, piemēram,,,,,, 3, 4. Piezīme. Uzdevumam ir arī vairāki citi atrisinājumi. 5.. Skat., piemēram,. zīm. 6 55 3 5 35. zīm. 4. zīm. 33 5.3. tbilde: piemēram, 4835. Ievērosim, ka 4 dalās
Lai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.
5.TEMATS FUNKCIJAS Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri M UP_5_P Figūras laukuma atkarība no figūras formas Skolēna darba lapa M UP_5_P Funkcijas kā reālu procesu modeļi
ATTIECĪBAS. Attiecības - īpašība, kas piemīt vai nepiemīt sakārtotai vienas vai vairāku kopu elementu virknei (var lietot arī terminu attieksme).
004, Pēteris Daugulis ATTIECĪBAS Attiecības - īpašība, kas piemīt vai nepiemīt sakārtotai vienas vai vairāku kopu elementu virknei (var lietot arī terminu attieksme). Bināra attiecība - īpašība, kas piemīt
KOMBINATORIKAS UN VARBŪTĪBU TEORIJAS ELEMENTI. matemātikas profīlkursam vidusskolā
Jānis Cīrulis KOMBINATORIKAS UN VARBŪTĪBU TEORIJAS ELEMENTI matemātikas profīlkursam vidusskolā ANOTĀCIJA Šī izstrādne ir mācību līdzeklis (tā pirmā puse) nosaukumā minēto tēmu apguvei, ko varētu gan vairāk
6. Pasaules valstu attīstības teorijas un modeļi
6. Pasaules valstu attīstības teorijas un modeļi Endogēnās augsmes teorija (1980.-jos gados) Klasiskās un neoklasiskās augsmes teorijās un modeļos ir paredzēts, ka ilgtermiņa posmā ekonomiskā izaugsme
ATTĒLOJUMI UN FUNKCIJAS. Kopas parasti tiek uzskatītas par fiksētiem, statiskiem objektiem.
2005, Pēteris Daugulis 1 TTĒLOJUMI UN FUNKCIJS Kopas parasti tiek uzskatītas par iksētiem, statiskiem objektiem Lai atļautu kopu un to elementu pārveidojumus, ievieš attēlojuma jēdzienu ttēlojums ir kāda
3. Eirokodekss Tērauda konstrukciju projektēšana
Seminārs 3. Eirokodekss Tērauda konstrukciju projektēšana Doc. Līga Gaile (LVS/TC 30 «BŪVNIECĪBA» EN AK vadītāja, SM&G PROJECTS Latvia, RTU) 2013. gada 15. novembris 1 Semināra programma 15:00 15:30 (+15
MS EXCEL pievienojumprogramma STATISTIKA 3.11
LATVIJAS SORTA EDAGOĢIJAS AKADĒMIJA Juris Dravieks MS EXCEL pievieojumprogramma STATISTIKA 3.11 Mācību līdzeklis - rokasgrāmata LSA studetiem, maģistratiem, doktoratiem apildiāts RĪGA - 013 Juris Dravieks,
Laboratorijas darbu apraksts (I semestris)
Laboratorijas darbu apraksts (I semestris) un mērījumu rezultātu matemātiskās apstrādes pamati 1. Fizikālo lielumu mērīšana Lai kvantitatīvi raksturotu kādu fizikālu lielumu X, to salīdzina ar tādas pašas
Komandu olimpiāde Atvērtā Kopa. 8. klases uzdevumu atrisinājumi
Komandu olimpiāde Atvērtā Kopa 8. klases uzdevumu atrisinājumi 1. ΔBPC ir vienādmalu trijstūris, tādēļ visi tā leņķi ir 60. ABC = 90 (ABCDkvadrāts), tādēļ ABP = 90 - PBC = 30. Pēc dotā BP = BC un, tā kā
MULTILINGUAL GLOSSARY OF VISUAL ARTS
MULTILINGUAL GLOSSARY OF VISUAL ARTS (GREEK-ENGLISH-LATVIAN) Χρώματα Colours Krāsas GREEK ENGLISH LATVIAN Αυθαίρετο χρώμα: Χρϊμα που δεν ζχει καμία ρεαλιςτικι ι φυςικι ςχζςθ με το αντικείμενο που απεικονίηεται,
J. Dravnieks Matemātiskās statistikas metodes sporta zinātnē
J. Dravieks Matemātiskās statistikas metodes sporta ziātē Mācību grāmata LSPA studetiem, maģistratiem, doktoratiem RĪGA - 004 Juris Dravieks, 004. Matemātiskās statistikas metodes sporta ziātē SATURS IEVADS...
Lai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.
1.TEMATS EKSPONENTVIENĀDOJUMI UN NEVIENĀDĪBAS Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri M_12_SP_01_P1 Eksponentvienādojumu atrisināšana Skolēna darba lapa M_12_SP_01_P2 Eksponentvienādojumu
FILIPSA LĪKNES NOVĒRTĒJUMS LATVIJAI. Aleksejs Meļihovs, Anna Zasova gada 23. aprīlī
FLPSA LĪKNES NOVĒRTĒJUMS LATVJA Aleksejs Meļihovs, Anna Zasova 2007. gada 23. aprīlī Saturs 1. Pētījuma pamatojums 2. Filipsa līknes 3. Pētījuma rezultāti 1. Pētījuma pamatojums Pamatinflācija atrodas
Dziļā mācīšanās - mācību stunda, stundas vērošana un vērtēšana. Jānis Bukins, Vaira Siliņa, Inguna Vuškāne Ratnieki
Dziļā mācīšanās - mācību stunda, stundas vērošana un vērtēšana Jānis Bukins, Vaira Siliņa, Inguna Vuškāne 17.08.2017. Ratnieki Domāsim, kādas problēmas un kādi ieguvumi ir skolā, ieviešot dziļās mācīšanās
Latvijas Universitāte Fizikas un matemātikas fakultāte. Inese Bula MIKROEKONOMIKA (MATEMĀTISKIE PAMATI)
Latvijas Universitāte Fizikas un matemātikas fakultāte Inese Bula MIKROEKONOMIKA (MATEMĀTISKIE PAMATI) LEKCIJU KONSPEKTS 2007 SATURS Priekšvārds 3 Lekcija nr. 1. Ievads mikroekonomikas teorijā 4 Lekcija
DARBA ALGAS UN TO IETEKMĒJOŠIE FAKTORI
EIROPAS SAVIENĪBAS STRUKTŪRFONDU NACIONĀLĀS PROGRAMMAS DARBA TIRGUS PĒTĪJUMI PROJEKTS LABKLĀJĪBAS MINISTRIJAS PĒTĪJUMI Nr. VPD1/ESF/NVA/04/NP/3.1.5.1./0001/0003 DARBA ALGAS UN TO IETEKMĒJOŠIE FAKTORI Rīga,
fizikā Mācību satura un valodas apguve Mācību līdzeklis skolēnam Ata Krūmiņa Raisa Stunžāne
7.-9. Mācību satura un valodas apguve Ata Krūmiņa Raisa Stunžāne fizikā Mācību līdzeklis skolēnam Projekts «Atbalsts valsts valodas apguvei un bilingvālajai izglītībai» Nr. 2008/0003/1DP/1.2.1.2.1/08/IPIA/VIAA/002
Meža statistiskā inventarizācija Latvijā: metode, provizoriskie rezultāti
Meža statistiskā inventarizācija Latvijā: metode, provizoriskie rezultāti JURĂIS JANSONS LVMI Silava direktors LVMI Silava mežkop kopības, meža a resursu virziena pētnieks Tālr. +3716190266 E-pasts: jurgis.jansons@silava.lv
FIZ 2.un 3.daļas standartizācija 2012.gads
FIZ.un 3.daļas standartizācija 0.gads Uzd. Uzdevums Punkti Kritēriji Uzraksta impulsu attiecību: m Lieto impulsa definīcijas formulu. Uzraksta attiecību. Pareizi izsaka meklējamo kr vkr lielumu. Iegūst
Ķīmisko vielu koncentrācijas mērījumi darba vides gaisā un to nozīme ķīmisko vielu riska pārvaldībā
Ķīmisko vielu koncentrācijas mērījumi darba vides gaisā un to nozīme ķīmisko vielu riska pārvaldībā Kristīna Širokova AS Grindeks Darba aizsardzības speciālists 2015. gads Par Grindeks AS Grindeks ir vadošais
Atrisinājumi Latvijas 64. matemātikas olimpiāde 3. posms x 1. risinājums. Pārveidojam doto izteiksmi, atdalot pilno kvadrātu:
trisiājumi Latvijas 6 matemātikas olimpiāde posms 9 Kādu mazāko vērtību var pieņemt izteiksme 0, ja > 0? risiājums Pārveidojam doto izteiksmi, atdalot pilo kvadrātu: 0 ( ) 0 0 0 0 0 Tā kā kvadrāts viemēr
MĀCĪBU PRIEKŠMETA MĒRĶIS
FIZIKA 10. 12. KLASEI MĀCĪBU PRIEKŠMETA PROGRAMMAS PARAUGS IEVADS Mācību priekšmeta programma ir vispārējās izglītības programmas sastāvdaļa, kuru veido mācību priekšmeta: 1) mērķis un uzdevumi; 2) mācību
Taisnzobu cilindrisko zobratu pārvada sintēze
LATVIJAS LAUKSAIMNIECĪBAS UNIVERSITĀTE Tehniskā fakultāte Mehānikas institūts J. SvētiĦš, Ē. Kronbergs Taisnzobu cilindrisko zobratu pārvada sintēze Jelgava 009 Ievads Vienkāršs zobratu pārvads ir trīslocekĝu
Rīgas Tehniskā universitāte Materiālu un Konstrukciju institūts. Uzdevums: 3D- sijas elements Beam 189. Programma: ANSYS 9
Rīgas Tehniskā universitāte Materiālu un Konstrukciju institūts Uzdevums: 3D- sijas elements Beam 189 Programma: ANSYS 9 Autori: E. Skuķis 1 ANSYS elements: Beam 189, 3-D Quadratic Finite Strain Beam Beam
2. PLAKANU STIEŅU SISTĒMU STRUKTŪRAS ANALĪZE
Ekspluatācijas gaitā jebkura reāla būve ārējo iedarbību rezultātā kaut nedaudz maina sākotnējo formu un izmērus. Sistēmas, kurās to elementu savstarpējā izvietojuma un izmēru maiņa iespējama tikai sistēmas
1. Ievads bioloģijā. Grāmatas lpp
1. Ievads bioloģijā Grāmatas 6. 37. lpp Zaļā krāsa norāda uz informāciju, kas jāapgūst Ar dzeltenu krāsu izcelti īpaši jēdzieni, kas jāapgūst Ar sarkanu krāsu norādīti papildus informācijas avoti vai papildus
Agnis Andžāns, Julita Kluša /95. m.g. matemātikas olimpiāžu uzdevumi ar atrisinājumiem
Agnis Andžāns, Julita Kluša 994./95. m.g. matemātikas olimpiāžu uzdevumi ar atrisinājumiem Rīga, 997 Anotācija Šajā izstrādnē apkopoti 994./95. mācību gadā notikušo Latvijas mēroga matemātikas sacensību
LATVIJAS RAJONU 33. OLIMPIĀDE. 4. klase
Materiāls ņemts no grāmatas:andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas matemātikas olimpiāžu (5.-5.).kārtas (rajonu) uzdevumi un atrisinājumi" LATVIJAS RAJONU 33. OLIMPIĀDE 4. klase 33.. Ievietot
LATVIJAS REPUBLIKAS 45. OLIMPIĀDE
Materiāls ņemts no grāmatas: Andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas Republikas 6.-. matemātikas olimpiādes" LATVIJAS REPUBLIKAS 4. OLIMPIĀDE ATRISINĀJUMI 4.. Dotās nevienādības > abas puses
Datu lapa: Wilo-Yonos PICO 25/1-6
Datu lapa: Wilo-Yonos PICO 25/1-6 Raksturlīknes Δp-c (konstants),4,8 1,2 1,6 Rp 1¼ H/m Wilo-Yonos PICO p/kpa 6 15/1-6, 25/1-6, 3/1-6 1~23 V - Rp ½, Rp 1, Rp 1¼ 6 5 v 1 2 3 4 5 6 7 Rp ½,5 1, p-c 1,5 2,
Datu lapa: Wilo-Yonos PICO 25/1-4
Datu lapa: Wilo-Yonos PICO 25/1-4 Raksturlīknes Δp-c (konstants) v 1 2 3 4,4,8 1,2 Rp ½ Rp 1,2,4,6,8 1, Rp 1¼ H/m Wilo-Yonos PICO p/kpa 15/1-4, 25/1-4, 3/1-4 4 1~23 V - Rp ½, Rp 1, Rp 1¼ 4 m/s Atļautie
Lielumus, kurus nosaka tikai tā skaitliskā vērtība, sauc par skalāriem lielumiem.
1. Vektori Skalāri un vektoriāli lielumi Lai raksturotu kādu objektu vai procesu, tā īpašības parasti apraksta, izmantojot dažādus skaitliskus raksturlielumus. Piemēram, laiks, kas nepieciešams, lai izlasītu
4. APGAISMOJUMS UN ATTĒLI
4. APGAISMJUMS UN ATTĒLI ptisko mikroskopu vēsture un nākotne Gaismas avota stiprums. Gaismas plūsma Apgaismojums Elektriskie gaismas avoti. Apgaismojums darba vietā Ēnas. Aptumsumi Attēla veidošanās.
Andrejs Rauhvargers VISPĀRĪGĀ ĶĪMIJA. Eksperimentāla mācību grāmata. Atļāvusi lietot Latvijas Republikas Izglītības un zinātnes ministrija
Andrejs Rauhvargers VISPĀRĪGĀ ĶĪMIJA Eksperimentāla mācību grāmata Atļāvusi lietot Latvijas Republikas Izglītības un zinātnes ministrija Rīga Zinātne 1996 UDK p 54(07) Ra 827 Recenzenti: Dr. chem. J. SKRĪVELIS
Temperatūras izmaiħas atkarībā no augstuma, atmosfēras stabilitātes un piesārħojuma
Temperatūras izmaiħas atkarībā no augstuma, atmosfēras stabilitātes un piesārħojuma Gaisa vertikāla pārvietošanās Zemes atmosfērā nosaka daudzus procesus, kā piemēram, mākoħu veidošanos, nokrišħus un atmosfēras
UDK ( ) Ko743
1 UDK 178+614.2(474.3-25) Ko743 Teksta redaktore: Datormaketētājs: Vāka dizains: Ināra Stašulāne Artūrs Kalniņš Matīss Kūlis Publicēšanas un citēšanas gadījumā lūdzam uzrādīt informācijas avotu "Rīgas
TROKSNIS UN VIBRĀCIJA
TROKSNIS UN VIBRĀCIJA Kas ir skaņa? a? Vienkārša skaņas definīcija: skaņa ir ar dzirdes orgāniem uztveramās gaisa vides svārstības Fizikā: skaņa ir elastiskas vides (šķidras, cietas, gāzveida) svārstības,
Donāts Erts LU Ķīmiskās fizikas institūts
Donāts Erts LU Ķīmiskās fizikas institūts Nanovadu struktūras ir parādījušas sevi kā efektīvi (Nat. Mater, 2005, 4, 455) fotošūnu elektrodu materiāli 1.katrs nanovads nodrošina tiešu elektronu ceļu uz
Lai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.
6. VIRKNES Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri Stundas piemērs M_10_UP_06_P1 Iracionāla skaitļa π aptuvenās vērtības noteikšana Skolēna darba lapa M_10_LD_06 Virknes
7. Eirokodekss, lietojamība un attīstība Pāreja no LBN uz Eirokodekss projektēšanas normatīviem. 01/11/2013
7. Eirokodekss, lietojamība un attīstība Pāreja no LBN uz Eirokodekss projektēšanas normatīviem. 01/11/2013 RTU BF Civilo ēku būvniecības katedras Asoc. prof., Dr.sc.ing. Kaspars Bondars LZP, LBS, LBPA,
Tas ir paredzēts lietošanai pieaugušajiem un pusaudžiem, bērniem un zīdaiņiem no 1 mēneša vecuma.
Šīm zālēm tiek piemērota papildu uzraudzība. Tādējādi būs iespējams ātri identificēt jaunāko informāciju par šo zāļu drošumu. Veselības aprūpes speciālisti tiek lūgti ziņot par jebkādām iespējamām nevēlamām
Mežzinātnes attīstības perspektīvas Latvijā Latvijas Valsts mežzinātnes institūts Silava
Mežzinātnes attīstības perspektīvas Latvijā Latvijas Valsts mežzinātnes institūts Silava LZA Lauksaimniecības un meža zinātņu nodaļas un LLMZA prezidija sēde Rīgā, 2015. gada 20. aprīlī Jurģis Jansons
GRAFOANALITISKO DARBU UZDEVUMI ELEKTROTEHNIKĀ UN ELEKTRONIKĀ VISPĀRĪGI NORĀDĪJUMI
GRAFOANALITISKO DARBU UZDEVUMI ELEKTROTEHNIKĀ UN ELEKTRONIKĀ VISPĀRĪGI NORĀDĪJUMI Kursa Elektrotehnika un elektronika programmā paredzēta patstāvīga grafoanalītisko uzdevumu izpilde. Šajā krājumā ievietoti
Ăeoloăijas atmoda Latvijas Universitātē kopš gada
Ăeoloăijas atmoda Latvijas Universitātē kopš 1989. gada Ăeoloăijas studiju atmoda Ăirts Stinkulis LU Ăeogrāfijas un Zemes zinātħu fakultātes Ăeoloăijas nodaĝa Girts.Stinkulis@lu.lv Ăeoloăijas studiju programmu
Eiropas Savienības Oficiālais Vēstnesis L 94/75
8.4.2009. Eiropas Savienības Oficiālais Vēstnesis L 94/75 EIROPAS CENTRĀLĀS BANKAS REGULA (EK) Nr. 290/2009 (2009. gada 31. marts), ar ko groza Regulu (EK) Nr. 63/2002 (ECB/2001/18) par statistiku attiecībā
Cerabar S. Īsā lietošanas instrukcija PMC71, PMP71, PMP72, PMP75. Procesa spiediena mērīšanai
Līmenis Spiediens Plūsma Temperatūra Šķidruma analīze Reģistrācija Sistēmas komponenti Serviss Risinājumi Īsā lietošanas instrukcija Cerabar S PMC71, PMP71, PMP72, PMP75 Procesa spiediena mērīšanai Šī
KOKA UN PLASTMASU KONSTRUKCIJAS (vispārējs kurss)
RĪGAS TEHNISKĀ UNIVERSITĀTE Būvkonstrukciju profesora grupa KOKA UN PLASTMASU KONSTRUKCIJAS (vispārējs kurss) LABORATORIJAS DARBI RTU Rīga, 004 Laboratorijas darbi paredzēti RTU būvniecības specialitāšu
Lielais dānis Nilss Bors
Lielais dānis Nilss Bors No kā sastāv atoms? Atoma kodola atklāšana Atoma planetārais modelis. Bora teorija Orbitālais kvantu skaitlis Magnētiskais kvantu skaitlis. Magnētiskā mijiedarbība atomā Elektrona
Oriģinālu signālu apstrādes paņēmienu izveide un izpēte konkurētspējīgu IT tehnoloģiju radīšanai
Valsts pētījumu programma Informācijas tehnoloģiju zinātniskā bāze Projekta Nr.3 Oriģinālu signālu apstrādes paņēmienu izveide un izpēte konkurētspējīgu IT tehnoloģiju radīšanai INFORMATĪVĀ ATSKAITE PAR
Kodolenerģijas izmantošana ūdeņraža iegūšanai
Kodolenerģijas izmantošana ūdeņraža iegūšanai Akadēmiķis Juris Ekmanis Fizikālās enerģētikas institūta direktors Rīga, 20/03/2013 Ūdeņraža daudzums dažādās vielās Viela Formula Ūdeņraža sastāvs vielā (masas
Ģeologa profesionālās iespējas Latvijā
Kuldīgas 2.vidusskola Ģeologa profesionālās iespējas Latvijā Pētnieciskais darbs sociālajās zinībās Darba autors: Mikus Prenclavs 7.a klases skolnieks Darba vadītāja: Mag.paed. Agita Grāvere-Prenclava
DEKLARĀCIJA PAR VEIKSTSPĒJU
LV DEKLARĀCIJA PAR VEIKSTSPĒJU DoP No. Hilti HIT-HY 270 33-CPR-M 00-/07.. Unikāls izstrādājuma tipa identifikācijas numurs: Injicēšanas sistēma Hilti HIT-HY 270 2. Tipa, partijas vai sērijas numurs, kā
PĒTNIECĪBAS PLATFORMAS
PĒTNIECĪBAS PLATFORMAS RTU zinātņu prorektors prof. Dr. sc. ing. TĀLIS JUHNA Info Kaļķu iela 1 214, Rīga, LV-1050 +371 67089400 talis.juhna@rtu.lv www.rtu.lv/lv/zinatne/petniecibas-platformas Straujā tehnoloģiju
Ceļu un ielu apgaismes sistēmu ierīkošanas pamatjautājumi un standartizācija. RTU EEF EI EK Dr.sc.ing. Kristīna Bērziņa
Ceļu un ielu apgaismes sistēmu ierīkošanas pamatjautājumi un standartizācija RTU EEF EI EK Dr.sc.ing. Kristīna Bērziņa Kristina.Berzina@rtu.lv 2016 LVS EN 13201 IELU APGAISMOJUMS ir: stacionāro apgaismes
Laboratorijas darbs disciplīnā Elektriskās sistēmas. 3-FAŽU ĪSSLĒGUMU APRĒĶINAŠANA IZMANTOJOT DATORPROGRAMMU PowerWorld version 14
RĪGAS TEHNISKĀ UNIVERSITĀTE Enerģētikas un elektrotehnikas fakultāte Enerģētikas institūts Laboratorijas darbs disciplīnā Elektriskās sistēmas 3-FAŽU ĪSSLĒGUMU APRĒĶINAŠANA IZMANTOJOT DATORPROGRAMMU PowerWorld
Ievads Optometrija ir neatkarīga redzes aprūpes profesija primārās veselības aprūpes sfērā. Šī profesija vairumā attīstīto valstu tiek regulēta ar
Ievads Optometrija ir neatkarīga redzes aprūpes profesija primārās veselības aprūpes sfērā. Šī profesija vairumā attīstīto valstu tiek regulēta ar likumu (tās piekopšanai nepieciešama licence un reģistrēšanās).
Beta-kazeīna ietekme uz piena kvalitātes rādītājiem slaucamām govīm
Beta-kazeīna ietekme uz piena kvalitātes rādītājiem slaucamām govīm Mg. biol, Mg.med.vet. Dace Smiltiņa LLU LF Molekulārās ģenētikas pētījumu laboratorija, dace.smiltina@llu.lv 25.10.2013., MPS Vecaucē
6.4. Gaismas dispersija un absorbcija Normālā un anomālā gaismas dispersija. v = f(λ). (6.4.1) n = f(λ). (6.4.2)
6.4. Gaismas dispersija un absorbcija 6.4.1. Normālā un anomālā gaismas dispersija Gaismas izplatīšanās ātrums vakuumā (c = 299 792,5 ±,3 km/s) ir nemainīgs lielums, kas nav atkarīgs no viļņa garuma. Vakuumā
P. Leščevics, A. GaliĦš ELEKTRONIKA UN SAKARU TEHNIKA
P. Leščevics, A. GaliĦš ELEKTRONIKA UN SAKARU TEHNIKA Jelgava 008 P. Leščevics, A. GaliĦš ELEKTRONIKA UN SAKARU TEHNIKA Mācību līdzeklis lietišėajā elektronikā Jelgava 008 Mācību līdzeklis sagatavots un
Deltabar S. Īsā lietošanas instrukcija PMD70, PMD75, FMD76, FMD77, FMD78. Diferenciālspiediena mērīšanai
Līmenis Spiediens Plūsma Temperatūra Šķidruma analīze Reģistrācija Sistēmas komponenti Serviss Risinājumi Īsā lietošanas instrukcija Deltabar S PMD70, PMD75, FMD76, FMD77, FMD78 Diferenciālspiediena mērīšanai
GATAVOSIMIES CENTRALIZĒTAJAM EKSĀMENAM MATEMĀTIKĀ
Profesionālās vidējās izglītības programmu Lauksaimniecība un Lauksaimniecības tehnika īstenošanas kvalitātes uzlabošana 1.2.1.1.3. Atbalsts sākotnējās profesionālās izglītības programmu īstenošanas kvalitātes
Skolēna darba lapa. Skolēna darba lapa
1. ELEKTROMAGNĒTISKĀS SVĀRSTĪBAS UN V IĻŅI Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri F_12_SP_01_P1 Radioviļņu izmantošana Skolēna darba lapa F_12_UP_01_P2 Elektromagnētisko
Satura rādītājs Apmācīšanās piemērs... 44
Satura rādītās. Neironu tīkli skaitļošanas paradigma... 3.. Neironu tīkls kā skaitļošanas sistēma... 3.. Bioloģiskie neironu tīkli... 4. Mākslīgais neirons... 7.. Neirona uzbūves un darbības pamatprincipi...
Mērīšana ar osciloskopu.
Mērīšana ar osciloskopu. Elektronisku shēmu testēšanas gaitā bieži ne vien jāizmēra elektrisko signālu amplitūda, bet arī jākonstatē šo signālu forma. Gadījumos, kad svarīgi noskaidrot elektriskā signāla
Labojums MOVITRAC LTE-B * _1114*
Dzinēju tehnika \ Dzinēju automatizācija \ Sistēmas integrācija \ Pakalpojumi *135347_1114* Labojums SEW-EURODRIVE GmbH & Co KG P.O. Box 303 7664 Bruchsal/Germany Phone +49 751 75-0 Fax +49 751-1970 sew@sew-eurodrive.com
Ķermeņa inerce un masa. a = 0, ja F rez = 0, kur F visu uz ķermeni darbojošos spēku vektoriālā summa
2.1. Ķereņa inerce un asa Jebkurš ķerenis saglabā iera stāvokli vai turpina vienērīgu taisnlīnijas kustību ar neainīgu ātruu (v = const) tikēr, kaēr uz to neiedarbojas citi ķereņi vai ta pieliktie ārējie
EKSPLUATĀCIJAS ĪPAŠĪBU DEKLARĀCIJA
LV EKSPLUATĀCIJAS ĪPAŠĪBU DEKLARĀCIJA DoP No. Hilti HIT-HY 170 1343-CPR-M500-8/07.14 1. Unikāls izstrādājuma veida identifikācijas numurs: Injicēšanas sistēma Hilti HIT-HY 170 2. Tipa, partijas vai sērijas
Jauna tehnoloģija magnētiskā lauka un tā gradienta mērīšanai izmantojot nanostrukturētu atomārās gāzes vidi
Projekts (vienošanās ) Jauna tehnoloģija magnētiskā lauka un tā gradienta mērīšanai izmantojot nanostrukturētu atomārās gāzes vidi Izveidotā jaunā magnētiskā lauka gradienta mērīšanas moduļa apraksts Aktivitāte
fx-82es PLUS fx-85es PLUS fx-95es PLUS fx-350es PLUS
LV fx-82es PLUS fx-85es PLUS fx-95es PLUS fx-350es PLUS Lietotāja pamācība CASIO Worldwide Education vietne: http://edu.casio.com CASIO IZGLĪTĪBAS FORUMS http://edu.casio.com/forum/ Išversta vertimų biure
Fizikas 63. valsts olimpiādes. III posms
Fizikas 63. valsts olimpiādes III posms 2013. gada 14. martā Fizikas 63. valsts olimpiādes III posms Uzdevumi Eksperimentālā kārta 2013. gada 14. martā 9. klase Jums tiek piedāvāti divi uzdevumi: eksperiments
Projekts Tālākizglītības programmas Bioloăijas skolotāja profesionālā pilnveide izstrāde un aprobācija (Nr. VPD1/ESF/PIAA/05/APK/
C Praktisko darbu modulis 1. laboratorijas darbs Nodarbība. Mikroskopēšanas pamatprincipi augu uzbūves pētīšanā Priekšstatu veidošanās par mikroskopiju Mikroskopēšana ir viena svarīgākajām bioloăijā pielietojamām
Mehānikas fizikālie pamati
1.5. Viļņi 1.5.1. Viļņu veidošanās Cietā vielā, šķidrumā, gāzē vai plazmā, tātad ikvienā vielā starp daļiņām pastāv mijiedarbība. Ja svārstošo ķermeni (svārstību avotu) ievieto vidē (pieņemsim, ka vide
AGNIS ANDŽĀNS, DACE BONKA, ZANE KAIBE, LAILA ZINBERGA. Matemātikas sacensības klasēm uzdevumi un atrisinājumi 2009./2010.
AGNIS ANDŽĀNS, DACE BONKA, ZANE KAIBE, LAILA ZINBERGA Matemātikas sacensības 4.-9. klasēm uzdevumi un atrisinājumi 009./00. mācību gadā Rīga 0 A. Andžāns, D. Bonka, Z. Kaibe, L. Zinberga. Matemātikas sacensības
Būvfizikas speckurss. LBN Ēku norobežojošo konstrukciju siltumtehnika izpēte. Ūdens tvaika difūzijas pretestība
Latvijas Lauksaimniecības universitāte Lauku inženieru fakultāte Būvfizikas speckurss LBN 002-01 Ēku norobežojošo konstrukciju siltumtehnika izpēte. difūzijas pretestība Izstrādāja Sandris Liepiņš... Jelgava
6. LATVIJAS UNIVERSITĀTES ĶĪMIJAS FAKULTĀTES JAUNO ĶĪMIĶU KONKURSA 2.KĀRTAS UZDEVUMU ATBILDES 8.-9.klases uzdevumi
6. LATVIJAS UNIVERSITĀTES ĶĪMIJAS FAKULTĀTES JAUNO ĶĪMIĶU KONKURSA 2.KĀRTAS UZDEVUMU ATBILDES 8.-9.klases uzdevumi 1. uzdevums Vai tu to vari? Gāzes Ķīmisko reakciju vienādojumi Ūdeņradis, oglekļa dioksīds,
Elektroiekārtu atbilstība un sertifikācija
Latvijas Lauksaimniecības universitāte Tehniskā fakultāte Lauksaimniecības enerģētikas institūts Andris Šnīders Elektroiekārtu atbilstība un sertifikācija Mācību līdzeklis lauksaimniecības enerģētikas
2. APGAISMOJUMS UN ATTĒLI. Temata apraksts. Skolēnam sasniedzamo rezultātu ceļvedis. Uzdevumu piemēri
2. APGAISMOJUMS UN ATTĒLI Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri F_12_SP_02_01_P1 Apgaismojuma pētīšana Skolēna darba lapa F_12_SP_02_01_P2 Prasības nacionālā krājuma
Fizikas valsts 66. olimpiāde Otrā posma uzdevumi 12. klasei
Fizikas valsts 66. olimpiāde Otrā posma uzdevumi 12. klasei 12-1 Pseido hologramma Ievēro mērvienības, kādās jāizsaka atbildes. Dažus uzdevuma apakšpunktus var risināt neatkarīgi no pārējiem. Mūsdienās
Vispārīgā bioloģija ; Dzīvības ķīmija Biologi-2017 Laboratorijas darbs 2
Vispārīgā bioloģija ; Dzīvības ķīmija Biologi-2017 Laboratorijas darbs 2 Spektrofotometrija. Gaisma, gaismas spektrs, spektrofotometrijas pielietojums bioloģijā, spektrometrijā lietotās iekārtas (FEK,
Pārsprieguma aizsardzība
www.klinkmann.lv Pārsprieguma aizsardzība 1 Pārsprieguma aizsardzība Pēdējo gadu laikā zibensaizsardzības vajadzības ir ievērojami palielinājušās. Tas ir izskaidrojams ar jutīgu elektrisko un elektronisko
Bioloģisko materiālu un audu mehāniskās īpašības. PhD J. Lanka
Bioloģisko materiālu un audu mehāniskās īpašības PhD J. Lanka Mehāniskās slodzes veidi: a stiepe, b spiede, c liece, d - bīde Traumatisms skriešanā 1 gada laikā iegūto traumu skaits (dažādu autoru dati):
LEK 043 Pirmais izdevums 2002 LATVIJAS ENERGOSTANDARTS SPĒKA KABEĻLĪNIJU PĀRBAUDES METODIKA Tikai lasīšanai 043 LEK 2002
LATVIJAS ENERGOSTANDARTS LEK 043 Pirmais izdevums 2002 SPĒKA KABEĻLĪNIJU PĀRBAUDES METODIKA Latvijas Elektrotehniskā komisija LEK 043 LATVIJAS ENERGOSTANDARTS LEK 043 Pirmais izdevums 2002 SPĒKA KABEĻLĪNIJU
1. MAIŅSTRĀVA. Fiz12_01.indd 5 07/08/ :13:03
1. MAIŅSRĀVA Ķeguma spēkstacija Maiņstrāvas iegūšana Maiņstrāvas raksturlielumumomentānās vērtības Maiņstrāvas raksturlielumu efektīvās vērtības Enerģijas pārvērtības maiņstrāvas ķēdē Aktīvā pretestība
Direktīva ErP 125 un Systemair ventilatori
Ventilatori Gaisa apstrādes iekārtas Gaisa sadales produkti Ugusndrošība Gaisa aizari un apsildes produkti Tuneļu ventilatori Direktīva un Systemair ventilatori 2 Direktīva Directive 3 Systemair ventilatori
MATEMĀTIKA klase MĀCĪBU PRIEKŠMETA PROGRAMMA
MATEMĀTIKA 7. 9. klase MĀCĪBU PRIEKŠMETA PROGRAMMA Mācību priekšmeta programmu matemātikā veidoja Programmu izstrādāja Aira Kumerdanka, Indra Muceniece, Inga Riemere, Jānis Vilciņš, Aivars Ančupāns, Jeļena