Komandu olimpiāde Atvērtā Kopa. 8. klases uzdevumu atrisinājumi
|
|
- Σεβαστιανός Καλογιάννης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Komandu olimpiāde Atvērtā Kopa 8. klases uzdevumu atrisinājumi 1. ΔBPC ir vienādmalu trijstūris, tādēļ visi tā leņķi ir 60. ABC = 90 (ABCDkvadrāts), tādēļ ABP = 90 - PBC = 30. Pēc dotā BP = BC un, tā kā AB = BC ( ) (ABCD-kvadrāts), tad AB = BP, no kurienes BPA = BAP = = 75. Analogi spriežot par trijstūri CPD, mēs iegūstam, ka arī CPD = 75. Tātad APD = = 150. A D P75 60 B C. Viegli pārliecināties, ka 44 < 009 <45, tātad starp skaitļiem no 1 līdz 009 ir tikai skaitļu no 1 līdz 44 kvadrāti. No šiem 44 skaitļu kvadrātiem, tikai pāra skaitļu kvadrāti būs meklētie skaitļi, jo nepāra skaitli, kāpinot kvadrātā mēs iegūstam nepāra 44 skaitli. Tātad kopā ir = skaitļi, kuri būtu kāda skaitļa kvadrāti. 3. Iespējamās n vērtības un piemērus skatīt zīmējumā (vertikālās taisnes ir paralēlas, līdzīgi arī horizontālās). Vairāk par 6 krustpunktiem nav iespējams iegūt, jo katru krustpunktu krusto vismaz divas taisnes, un taisnes no 4 var izvēlēties 4 3/=6 veidos.to, ka divi krustpunkti nav iespējami, var pierādīt, apskatot taišņu paralelitāti. Visas nevar būt paralēlas (0 krustp.). Ja trīs paralēlas, tad ceturtā rada 3 krustpunktus. Ja divas paralēlas, tad viena no pārējām rada krustpunktus ar tām un pēdējā nevar krustot tās tajos pašos punktos. Ja nav paralēlu taišņu, tad trīs no tām vai nu veido trīs krustpunktus (pretruna), vai arī vienu. Pēdējā gadījumā, velkot ceturto taisni, vai nu tā ies caur šo pašu punktu (kopā viens krustpunkts pretruna), vai arī krustos visas pārējās (četri krustpunkti). 1
2 4. Pieņemsim, ka Mārtiņš vienu cimdu pāri uzada x stundās, tad Mārtiņš un Marta uzadīja 5x+0 pārus, bet Pjērs un Mārtiņš 8x+14 pārus. Tā kā abi adītāju pāri uzadīja vienādu skaitu cimdu pāru, t.i., vienu cimdu bloku, tad 5 x + 0 = 8x + 14, no kurienes 3x = 6 un x =. Vienā cimdu blokā ir 5x+0 cimdu pāru jeb = 30 cimdu pāru. 5. Jā, mājiņu ir iespējams uzzīmēt ar vienu pildspalvas vilkumu skat. zīm. Mājiņu ar skursteni nav iespējams uzzīmēt. Pievēršam uzmanību krustpunktiem durvju un skursteņa pamatnē no tiem iziet 3 līnijas (nepāra skaits). Tātad nav iespējams iziet no neviena no šiem punktiem divas reizes, taču tajos ir jānonāk vismaz divreiz. Šādi punkti var būt tikai divi sākums un beigas. Tātad, lai būtu iespējams uzzīmēt zīmējumu ar vienu vilkumu, tieši divām (vai nevienai) virsotnei jābūt ar nepāra skaitu izejošu līniju. (Interesentiem: meklēt Eilera kontūrs / cikls (Eulerian path / cycle)) a + b = (a + b ) 4a b = (a + b ab )(a + b + ab ) 7. Jā, monetārā specvienībā var dienas laikā atrast brāķa monētas. Ar 3 svēršanas reizēm abas brāķa monētas var atrast pēc sekojoša algoritma: sveram 3 monētas vienā pusē un 3 monētas otrā sviru svaru pusē. 1. svēršana OOO=OOO OOO<OOO Ir iespējami divi gadījumi: 1) svari ir līdzsvarā katrā no 3 monētu grupām ir pa vienai brāķa monētai; ) viena puse ir vieglāka vieglākajā pusē ir abas brāķa monētas. Sākotnēji apskatīsim 1. gadījumu. Izvēlamies vienu no 3 monētu grupām un nosveram jebkuras divas šis grupas monētas.. svēršana (1.gad) O=O O<O Atkal ir iespējami divi iznākumi: 1) abas monētas sver vienādi, tad, tā kā tikai viena no sākotnējam trim monētām bija brāķa, šīs nosvērtās monētas nav brāķa, kas nozīmē, ka atlikusī nenosvērtā monēta ir brāķa; ) viena no monētām ir vieglāka, tad šī monēta arī ir viena no meklētajām brāķa monētām. Tagad sveram divas monētas no otras 3 monētu grupas. 3. svēršana (1.gad) O=O O<O Analoģiski kā ar pirmajām 3 monētām, šeit arī iespējami divi gadījumi un, tādā pašā veidā analizējot šos divus gadījumus, mēs varam secināt, kura no otrajām 3 monētām ir brāķa monētā. Tagad apskatīsim. gadījumu. Izvēlamies vieglāko no 3 monētu grupām, kā zināms, starp izvēlētajam 3 monētām būs brāķa monētas
3 . svēršana (.gad) O=O O<O Ja tās abas būs līdzsvarā, tad abas būs meklētās brāķa monētas. Savukārt, ja viena no tām būs vieglāka, tad būs viena no brāķa monētām, bet otra būs atlikusī nenosvērtā monēta. 8. p pasažieru skaits pārpildītos autobusos a pārpildīto autobusu skaits n kopējais autobusu skaits t pasažieru skaits nepārpildītos autobusos t 60( n a) n Pēc dotā < = 1, jo t ( n a) 60 (katrā nepārpildītā autobusā ir ne p 60 a a 1 1 vairāk par 60 pasažieriem) un p > 60a < p 60a (katrā pārpildīta autobusā ir vairāk A par 60 pasažieriem). Tāpēc B p 1 1 a = = > = p + t t n n = p a Tiem, kuri zina, kas ir vidējais aritmētiskais lielums, piedāvājam arī alternatīvu risinājumu. Ņemot vērā, ka ir vismaz viens nepārpildīts autobuss, vidējais pasažieru skaits pārpildītos autobusos būs lielākās nekā vidējais pasažieru skaits visos autobusos kopā, p p + t p a respektīvi, >. No šejienes iegūstam B = > = A. a n p + t n 9. Pieņemsim, ka visas trīs vienādības tiešām izpildās. Tad viens no saskaitāmajiem km un ln būs pāra skaitlis, bet otrs nepāra, citādi to summa nebūs nepāra skaitlis. Mēs varam pieņemt, ka km ir nepāra skaitlis, bet ln pāra skaitlis. Lai divu skaitļu reizinājums būtu nepāra skaitlis, abiem jābūt nepāra skaitļiem, bet lai reizinājums būtu pāra skaitlis vismaz vienam no tiem jābūt pāra skaitlim. Tātad vismaz viens no skaitļiem l un n ir pāra skaitlis, bet k un m abi ir nepāra, kas nozīmē, ka vismaz viena no summām k + l un m + n ir nepāra skaitlis, bet pēc dotā abām summām vajadzēja būt pāra skaitļiem. Tātad sākotnējais pieņēmums nav iespējams. 10. Iedomāsimies, ka starp katriem diviem Orbitrekiem, kuri ir viens otram ir paspieduši roku, ir novilkta virve. Tie Orbitreki, kas būs spieduši roku nepāra skaitu reižu, turēs rokā nepāra skaitu virves galu, bet tie Orbitreki, kas būs spieduši roku pāra skaitu reižu, pāra skaitu. Skaidrs, ka tie Orbitreki, kas ir izdarījuši pāra skaitu rokas spiedienu, visi kopā turēs pāra skaitu virves galu. Tā kā kopējais virvju galu skaits, ko tur rokā Orbitreki ir pāra skaitlis (to ir divreiz vairāk nekā kopējais virvju skaits), tad arī atlikušajiem Orbitrekiem, kas izdarījuši nepāra skaitu rokas spiedienu, visiem kopā jātur ir pāra skaits virves galu. Tas savukārt iespējams, tikai tad, ja šādu Orbitreku ir pāra skaitlis (ja to būtu nepāra skaitlis, tad, nepāra skaitļus skaitot nepāra skaitu reižu summa, būs nepāra skaitlis). 3
4 11. Tā kā pieskaru pret riņķa līniju, kas iziet no viena punkta, garumi ir vienādi, varam apzīmēt BK = BL = a, AK = AE = c, CE = CL = b. Apzīmēsim arī AH = AF = x, CG = CF = y. Tā kā BH = BG, varam rakstīt: a + c + x = a + b + y jeb b x = y c, kā arī x + y = AC = c + b, no kā seko c y = b x un b x = y c = ( c y), kas nozīmē, ka c y = 0, un līdz ar to AE = c = y = FC. B K L A E F C G H 1. Tiešām var atrast tādas n vērtības, ka a + dn nav pirmskaitlis. Gadījumā, kad n = a, iegūstam a + dn = a(d+1), tātad šis skaitlis dalās ar a un d+1. Ja a>1, tad a(d+1) nav pirmskaitlis. Ja a = 1, tad n vērtībai n = d+ izpildās a + dn = 1 + d( d + ) = d + d + 1= ( d + 1), kas nav pirmskaitlis. 13. Pēc krāsošanas mēs iegūstam figūru, kas redzama zīmējumā. (m-4)(n-4) Nokrāsotas tiek kolonnas no abiem sāniem, kā arī rindas no augšas un apakšas, tādēļ balto rūtiņu skaits būs ( m 4)(, bet sarkano rūtiņu skaits būs mn ( m 4)( (kopējais rūtiņu skaits mīnus balto rūtiņu skaits). Lai sarkano un balto rūtiņu skaits sakristu, jāizpildās vienādībai: ( m 4)( = mn ( m 4)(, 4
5 kuru var pārveidot sekojoši ( m 4)( mn mn 8n 8m + 3 = 0 ( m 8)( n 8) = 3 = 0 mn 8n 8m + 64 = 3 No šejienes ir skaidrs, ka m 8 un n 8 ir skaitļa 3 dalītāji. Tātad der šādas m 8 vērtības 1,, 4, 8, 16, 3 un to atbilstošās n 8 vērtības ir 3, 16, 8, 4,, 1. Tālāk var iegūt arī, ka m der šādas vērtības 9, 10, 1, 16, 4, 40 un atbilstošās n vērtības 40, 4,16, 1, 10, 9. Būtībā ir 3 taisnstūri (vai arī to versijas pagrieztas par 90 ), kuriem izpildās uzdevuma nosacījumi 9 x 40, 10 x 4 un 1 x Pieņemam riņķa rādiusu par 1 vienību. Gadījumā, kad x = 3 Edgars var vienkārši peldēt taisni uz krastu, pretēji Vofkas atrašanās vietai (skat. zīm. 1). Vofkam jānoskrien π, kamēr Edgaram jānopeld 1, kas nozīmē vieglu aizbēgšanu. Gadījumā, kad x = 4, aizmukt joprojām ir iespējams, taču Edgaram krietni jāpasvīst. Lai to īstenotu, viņam jārīkojas sekojoši: 1) jānopeld 9/40 no centra jebkurā virzienā (kā varēs redzēt no tālākā sprieduma, der (4 π) 1 jebkurš attālums a, tāds, ka < a < ; 4 4 ) jāpeld pa riņķi, kamēr Vofka atrodas diametrāli pretējā ezera punktā (skat. zīm. ); 3) jāpeld taisni uz krastu. Šī pieeja strādā, jo, atrodoties attālumā a, tuvāk par ¼ no centra, Edgara leņķiskais ātrums ir lielāks par Vofkas, un līdz ar to viņš var kustēties pa savu riņķi ar rādiusu a ātrāk, nekā Vofka skrien pa lielo riņķi ar rādiusu 1. Tiklīdz viņš būs sasniedzis ) minēto punktu, viņam atliks nopeldēt 31/40, kamēr Vofkam jānoskrien π, tāpēc Edgars atkal spēs aizbēgt Jā, var. Aruna stratēģija ir sekojoša: pirmo plakātu viņš uzlīmē pašā sienas centrā. Kad Ašouks pieliek pie sienas savu plakātu, Arunam jāpielīmē viņa nākamais plakāts simetriski Ašouka plakātam attiecībā pret sienas centru. Tas ir vienmēr iespējams, jo ja kāda vieta, simetriski Ašouka plakātam, būtu aizņemta, tad pēc iepriekšējās konstrukcijas arī tai simestriskā vieta, proti, Ašouka plakāta aizņemtā vieta nebūtu brīva, kas neļautu Ašoukam uzlīmēt savu plakātu (jo gan siena, gan plakāti ir centrāli simetriski). Tā kā sienas laukums ir ierobežots, pienāks laiks, kad vietas aptrūksies. Arunam vietas aptrūkties nevar, līdz ar to Ašouks būs tas, kas vienu dienu vairs 5
6 nevarēs uzlīmēt savu plakātu uz sienas, tāpēc Aruna plakātu būs vairāk. Jāpiezīmē, ka ir svarīgi, ka Aruns pielīmē savu pirmo plakātu centrā, tādējādi neizjaucot simetriju. Šis uzdevums izmanto invarianta principu, proti, tiek atrasta kāda vērtība vai īpašība, kas nemainās, lai arī ko darītu pretinieks. Šajā gadījumā invariants ir pozīcijas centrālā simetrija pēc katra Aruna uzlīmētā plakāta. 6
Īsi atrisinājumi Jā, piemēram, 1, 1, 1, 1, 1, 3, 4. Piezīme. Uzdevumam ir arī vairāki citi atrisinājumi Skat., piemēram, 1. zīm.
Īsi atrisinājumi 5.. Jā, piemēram,,,,,, 3, 4. Piezīme. Uzdevumam ir arī vairāki citi atrisinājumi. 5.. Skat., piemēram,. zīm. 6 55 3 5 35. zīm. 4. zīm. 33 5.3. tbilde: piemēram, 4835. Ievērosim, ka 4 dalās
Rīgas Tehniskā universitāte. Inženiermatemātikas katedra. Uzdevumu risinājumu paraugi. 4. nodarbība
Rīgas Tehniskā univesitāte Inženiematemātikas kateda Uzdevumu isinājumu paaugi 4 nodabība piemēs pēķināt vektoa a gaumu un viziena kosinusus, ja a = 5 i 6 j + 5k Vektoa a koodinātas i dotas: a 5 ; a =
LATVIJAS RAJONU 33. OLIMPIĀDE. 4. klase
Materiāls ņemts no grāmatas:andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas matemātikas olimpiāžu (5.-5.).kārtas (rajonu) uzdevumi un atrisinājumi" LATVIJAS RAJONU 33. OLIMPIĀDE 4. klase 33.. Ievietot
LATVIJAS RAJONU 43. OLIMPIĀDE
Materiāls ņemts no grāmatas:andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas matemātikas olimpiāžu (5-5) kārtas (rajonu) uzdevumi un atrisinājumi" LATVIJAS RAJONU 43 OLIMPIĀDE ATRISINĀJUMI 43 Pārlokot
ATRISINĀJUMI LATVIJAS REPUBLIKAS 32. OLIMPIĀDE
Materiāls ņemts no grāmatas: Andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas Republikas 6.-5. matemātikas olimpiādes" LATVIJAS REPUBLIKAS. OLIMPIĀDE ATRISINĀJUMI.. Pirmā apskatāmā skaitļa ciparu
Rekurentās virknes. Aritmētiskā progresija. Pieņemsim, ka q ir fiksēts skaitlis, turklāt q 0. Virkni (b n ) n 1, kas visiem n 1 apmierina vienādību
Rekurentās virknes Rekursija ir metode, kā kaut ko definēt visbiežāk virkni), izmantojot jau definētas vērtības. Vienkāršākais šādu sakarību piemērs ir aritmētiskā un ǧeometriskā progresija, kuras mēdz
LATVIJAS REPUBLIKAS 45. OLIMPIĀDE
Materiāls ņemts no grāmatas: Andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas Republikas 6.-. matemātikas olimpiādes" LATVIJAS REPUBLIKAS 4. OLIMPIĀDE ATRISINĀJUMI 4.. Dotās nevienādības > abas puses
Komandu olimpiāde Atvērtā Kopa Atrisinājumi 7. klasei
01 Komandu olimpiāde Atvērtā Kopa Atrisinājumi 7. klasei 1. Varam pieņemt, ka visos darbos Kristiāna strāda piecu darba dienu nedēļu, tātad 40 stundas nedēļā (drīkst arī pieņemt, ka Kristiāna strādā nedēļas
Agnis Andžāns, Julita Kluša /95. m.g. matemātikas olimpiāžu uzdevumi ar atrisinājumiem
Agnis Andžāns, Julita Kluša 994./95. m.g. matemātikas olimpiāžu uzdevumi ar atrisinājumiem Rīga, 997 Anotācija Šajā izstrādnē apkopoti 994./95. mācību gadā notikušo Latvijas mēroga matemātikas sacensību
Atrisinājumi Latvijas 64. matemātikas olimpiāde 3. posms x 1. risinājums. Pārveidojam doto izteiksmi, atdalot pilno kvadrātu:
trisiājumi Latvijas 6 matemātikas olimpiāde posms 9 Kādu mazāko vērtību var pieņemt izteiksme 0, ja > 0? risiājums Pārveidojam doto izteiksmi, atdalot pilo kvadrātu: 0 ( ) 0 0 0 0 0 Tā kā kvadrāts viemēr
"Profesora Cipariņa klubs" 2005./06. m.g. 1. nodarbības uzdevumu atrisinājumi. A grupa
"Profesora Cipariņa klubs" 005./06. m.g.. nodarbības udevumu atrisinājumi A grupa. Viegli pārbaudīt, ka 3 4=44. Tātad meklējamie skaitļi var būt ; 3; 4. Pierādīsim, ka tie nevar būt citādi. Tiešām, ivēloties
LATVIJAS RAJONU 39. OLIMPIĀDE
Materiāls ņemts o grāmatas:adžās Agis, Bērziņa Aa, Bērziņš Aivars "Latvijas matemātikas olimpiāžu (-) kārtas (rajou) uzdevumi u atrisiājumi" LATVIJAS RAJONU 9 OLIMPIĀDE ATRISINĀJUMI 9 Ir jāaprēķia 00-ais
LU A.Liepas Neklātienes matemātikas skola /2011.m.g. sagatavošanās olimpiāde matemātikā
2010.26.11. LU A.Liepas Neklātienes matemātikas skola 2010./2011.m.g. sagatavošanās olimpiāde matemātikā Katra metodiskā apvienība pati nolemj, vai un kad tā rīkos vai nerīkos šādu olimpiādi un, ja rīkos,
AGNIS ANDŽĀNS, DACE BONKA, ZANE KAIBE, LAILA ZINBERGA. Matemātikas sacensības klasēm uzdevumi un atrisinājumi 2009./2010.
AGNIS ANDŽĀNS, DACE BONKA, ZANE KAIBE, LAILA ZINBERGA Matemātikas sacensības 4.-9. klasēm uzdevumi un atrisinājumi 009./00. mācību gadā Rīga 0 A. Andžāns, D. Bonka, Z. Kaibe, L. Zinberga. Matemātikas sacensības
Tēraudbetona konstrukcijas
Tēraudbetona konstrukcijas tēraudbetona kolonnu projektēšana pēc EN 1994-1-1 lektors: Gatis Vilks, SIA «BALTIC INTERNATIONAL CONSTRUCTION PARTNERSHIP» Saturs 1. Vispārīga informācija par kompozītām kolonnām
LATVIJAS REPUBLIKAS 35. OLIMPIĀDE
Materiāls ņemts o grāmatas: Adžās Agis, Bērziņa Aa, Bērziņš Aivars "Latvijas Republikas 26.-5. matemātikas olimpiādes" LATVIJAS REPUBLIKAS 35. OLIMPIĀDE UZDEVUMI 8. klase 35. Atrisiāt vieādojumu x + 2x
LATVIJAS REPUBLIKAS 38. OLIMPIĀDE
Materiāls ņemts o grāmatas: Adžās Agis, Bērziņa Aa, Bērziņš Aivars "Latvijas Republikas 6.-5. matemātikas olimpiādes" LATVIJAS REPUBLIKAS 8. OLIMPIĀDE UZDEVUMI 8. klase 8.. Vai eksistē tāda kvadrātfukcija
ATTĒLOJUMI UN FUNKCIJAS. Kopas parasti tiek uzskatītas par fiksētiem, statiskiem objektiem.
2005, Pēteris Daugulis 1 TTĒLOJUMI UN FUNKCIJS Kopas parasti tiek uzskatītas par iksētiem, statiskiem objektiem Lai atļautu kopu un to elementu pārveidojumus, ievieš attēlojuma jēdzienu ttēlojums ir kāda
1. uzdevums. 2. uzdevums
1. uzdevums Reaktīvā pasažieru lidmašīna 650 km lielu attālumu bez nosēšanās veica 55 minūtēs. Aprēķini lidmašīnas kustības vidējo ātrumu, izteiktu kilometros stundā (km/h)! 1. solis Vispirms pieraksta
ESF projekts Pedagogu konkurētspējas veicināšana izglītības sistēmas optimizācijas apstākļos Vienošanās Nr. 2009/0196/1DP/
ESF projekts Pedagogu konkurētspējas veicināšana izglītības sistēmas optimizācijas apstākļos Vienošanās Nr. 009/0196/1DP/1...1.5/09/IPIA/VIAA/001 ESF projekts Pedagogu konkurētspējas veicināšana izglītības
Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013
Ι 55 C 35 C A A B C D E F G 47 17 21 18 19 19 18 db kw kw db 2015 811/2013 Ι A A B C D E F G 2015 811/2013 Izstrādājuma datu lapa par energopatēriņu Turpmākie izstrādājuma dati atbilst ES regulu 811/2013,
Mehānikas fizikālie pamati
1.5. Viļņi 1.5.1. Viļņu veidošanās Cietā vielā, šķidrumā, gāzē vai plazmā, tātad ikvienā vielā starp daļiņām pastāv mijiedarbība. Ja svārstošo ķermeni (svārstību avotu) ievieto vidē (pieņemsim, ka vide
ATTIECĪBAS. Attiecības - īpašība, kas piemīt vai nepiemīt sakārtotai vienas vai vairāku kopu elementu virknei (var lietot arī terminu attieksme).
004, Pēteris Daugulis ATTIECĪBAS Attiecības - īpašība, kas piemīt vai nepiemīt sakārtotai vienas vai vairāku kopu elementu virknei (var lietot arī terminu attieksme). Bināra attiecība - īpašība, kas piemīt
Logatherm WPS 10K A ++ A + A B C D E F G A B C D E F G. kw kw /2013
51 d 11 11 10 kw kw kw d 2015 811/2013 2015 811/2013 Izstrādājuma datu lapa par energopatēriņu Turpmākie izstrādājuma dati atbilst S regulu 811/2013, 812/2013, 813/2013 un 814/2013 prasībām, ar ko papildina
FIZIKĀLO FAKTORU KOPUMS, KAS VEIDO ORGANISMA SILTUMAREAKCIJU AR APKĀRTĒJO VIDI UN NOSAKA ORGANISMA SILTUMSTĀVOKLI
Mikroklimats FIZIKĀLO FAKTORU KOPUMS, KAS VEIDO ORGANISMA SILTUMAREAKCIJU AR APKĀRTĒJO VIDI UN NOSAKA ORGANISMA SILTUMSTĀVOKLI P 1 GALVENIE MIKROKLIMATA RĀDĪTĀJI gaisa temperatūra gaisa g relatīvais mitrums
5. un 6.lekcija. diferenciālvienādojumiem Emdena - Faulera tipa vienādojumi. ir atkarīgas tikai no to attāluma r līdz lodes centram.
Parasto diferenciālvienādojumu nelineāras robežproblēmas 5. un 6.lekcija 1. Robežproblēmas diferenciālvienādojumiem ar neintegrējamām singularitātēm 1.1. Emdena - Faulera tipa vienādojumi Piemērs 5.1.
PREDIKĀTU LOĢIKA. Izteikumu sauc par predikātu, ja tas ir izteikums, kas ir atkarīgs no mainīgiem lielumiem.
005, Pēteris Daugulis PREDIKĀTU LOĢIKA Izteikumu sauc par predikātu, ja tas ir izteikums, kas ir atkarīgs no mainīgiem lielumiem. Par predikātiem ir jādomā kā par funkcijām, kuru vērtības apgabals ir patiesumvērtību
KOMBINATORIKAS UN VARBŪTĪBU TEORIJAS ELEMENTI. matemātikas profīlkursam vidusskolā
Jānis Cīrulis KOMBINATORIKAS UN VARBŪTĪBU TEORIJAS ELEMENTI matemātikas profīlkursam vidusskolā ANOTĀCIJA Šī izstrādne ir mācību līdzeklis (tā pirmā puse) nosaukumā minēto tēmu apguvei, ko varētu gan vairāk
1. Testa nosaukums IMUnOGLOBULĪnS G (IgG) 2. Angļu val. Immunoglobulin G
1. Testa nosaukums IMUnOGLOBULĪnS G (IgG) 2. Angļu val. Immunoglobulin G 3. Īss raksturojums Imunoglobulīnu G veido 2 vieglās κ vai λ ķēdes un 2 smagās γ ķēdes. IgG iedalās 4 subklasēs: IgG1, IgG2, IgG3,
GRAFOANALITISKO DARBU UZDEVUMI ELEKTROTEHNIKĀ UN ELEKTRONIKĀ VISPĀRĪGI NORĀDĪJUMI
GRAFOANALITISKO DARBU UZDEVUMI ELEKTROTEHNIKĀ UN ELEKTRONIKĀ VISPĀRĪGI NORĀDĪJUMI Kursa Elektrotehnika un elektronika programmā paredzēta patstāvīga grafoanalītisko uzdevumu izpilde. Šajā krājumā ievietoti
Lielumus, kurus nosaka tikai tā skaitliskā vērtība, sauc par skalāriem lielumiem.
1. Vektori Skalāri un vektoriāli lielumi Lai raksturotu kādu objektu vai procesu, tā īpašības parasti apraksta, izmantojot dažādus skaitliskus raksturlielumus. Piemēram, laiks, kas nepieciešams, lai izlasītu
Latvijas Skolēnu 62. fizikas olimpiādes III posms
Latvijas Skolēnu 62 fizikas olimpiādes III posms Vērtēšanas kritēriji Teorētiskā kārta 212 gada 12 aprīlī 9 klase Uzdevums Caurplūdums, jeb ūdens tilpums, kas laika vienībā iztek caur šķērsgriezumu S ir
10. klase 1. uzdevuma risinājums A. Dēļa garums l 4,5 m. sin = h/l = 2,25/4,5 = 0,5 = (2 punkti) W k. s = 2,25 m.
0. klase. uzdevuma risinājums A. Dēļa garums l 4,5 m. sin = h/l =,5/4,5 = 0,5 = 0 0. ( punkti) B. v o = 0 m/s. Tādēļ s = at / un a = s/t Ja izvēlas t = s, veiktais ceļš s = 4m. a = 4/ = m/s. ( punkti)
2. PLAKANU STIEŅU SISTĒMU STRUKTŪRAS ANALĪZE
Ekspluatācijas gaitā jebkura reāla būve ārējo iedarbību rezultātā kaut nedaudz maina sākotnējo formu un izmērus. Sistēmas, kurās to elementu savstarpējā izvietojuma un izmēru maiņa iespējama tikai sistēmas
Gaismas difrakcija šaurā spraugā B C
6..5. Gaismas difrakcija šaurā spraugā Ja plakans gaismas vilnis (paralēlu staru kūlis) krīt uz šauru bezgalīgi garu spraugu, un krītošās gaismas viļņa virsma paralēla spraugas plaknei, tad difrakciju
Andrejs Rauhvargers VISPĀRĪGĀ ĶĪMIJA. Eksperimentāla mācību grāmata. Atļāvusi lietot Latvijas Republikas Izglītības un zinātnes ministrija
Andrejs Rauhvargers VISPĀRĪGĀ ĶĪMIJA Eksperimentāla mācību grāmata Atļāvusi lietot Latvijas Republikas Izglītības un zinātnes ministrija Rīga Zinātne 1996 UDK p 54(07) Ra 827 Recenzenti: Dr. chem. J. SKRĪVELIS
MAZĀ UNIVERSITĀTE. 5. nodarbība, gada 31. marts. Mazā matemātikas universitāte
MAZĀ MATEMĀTIKAS UNIVERSITĀTE Mazā matemātikas universitāte 5. nodarbība, 2012. gada 31. marts Statistiskais eksperiments varbūtību teorijā. Kā vēl var aprēėināt notikumu varbūtības? Mazā matemātikas universitāte
GATAVOSIMIES CENTRALIZĒTAJAM EKSĀMENAM MATEMĀTIKĀ
Profesionālās vidējās izglītības programmu Lauksaimniecība un Lauksaimniecības tehnika īstenošanas kvalitātes uzlabošana 1.2.1.1.3. Atbalsts sākotnējās profesionālās izglītības programmu īstenošanas kvalitātes
Lielais dānis Nilss Bors
Lielais dānis Nilss Bors No kā sastāv atoms? Atoma kodola atklāšana Atoma planetārais modelis. Bora teorija Orbitālais kvantu skaitlis Magnētiskais kvantu skaitlis. Magnētiskā mijiedarbība atomā Elektrona
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
TIEŠĀ UN NETIEŠĀ GRADIENTA ANALĪZE
TIEŠĀ UN NETIEŠĀ GRADIENTA ANALĪZE Botānikas un ekoloăijas katedra Iluta Dauškane Vides gradients Tiešā un netiešā gradienta analīze Ordinācijas pamatideja Ordinācijas metodes Gradientu analīze Sugu skaits
12. klase. Fizikas 64. valsts olimpiādes III posms gada 10. aprīlī
Fizikas 64. valsts olimpiādes III posms 2014. gada 10. aprīlī 12. klase Jums tiek piedāvāti trīs uzdevumi. Par katru uzdevumu maksimāli iespējams iegūt 10 punktus. Katra uzdevuma risinājumu vēlams veikt
MARUTA AVOTIĥA, LAURA FREIJA. Matemātikas sacensības klasēm 2010./2011. mācību gadā
MARUTA AVOTIĥA, LAURA FREIJA Matemātikas sacesības 9 klasēm 00/0 mācību gadā RĪGA 0 M AvotiĦa, L Freija Matemātikas sacesības 9 klasēm 00/0 mācību gadā Rīga: Latvijas Uiversitāte, 0 56 lpp Grāmatā apkopoti
Latvijas Universitāte Fizikas un matemātikas fakultāte Matemātiskās analīzes katedra. Inese Bula
Latvijas Universitāte Fizikas un matemātikas fakultāte Matemātiskās analīzes katedra Inese Bula STRATĒǦISKO SPĒĻU TEORIJA LEKCIJU KONSPEKTS 2007 SATURS Lekcija nr. 1. Kas ir spēļu teorija? 3 Lekcija nr.
Kontroldarba varianti. (II semestris)
Kontroldarba varianti (II semestris) Variants Nr.... attēlā redzami divu bezgalīgi garu taisnu vadu šķērsgriezumi, pa kuriem plūst strāva. Attālums AB starp vadiem ir 0 cm, I = 0 A, I = 0 A. Aprēķināt
Taisnzobu cilindrisko zobratu pārvada sintēze
LATVIJAS LAUKSAIMNIECĪBAS UNIVERSITĀTE Tehniskā fakultāte Mehānikas institūts J. SvētiĦš, Ē. Kronbergs Taisnzobu cilindrisko zobratu pārvada sintēze Jelgava 009 Ievads Vienkāršs zobratu pārvads ir trīslocekĝu
LATVIJAS 48. NACIONĀLĀ ĶĪMIJAS OLIMPIĀDE (2007)
LATVIJAS 48. NACIONĀLĀ ĶĪMIJAS OLIMPIĀDE (007) Rajona (pilsētas) posma olimpiādes uzdevumi 9. klasei Atrisināt tālāk dotos 6 uzdevumus! Darba izpildes laiks 4 astronomiskās stundas. Risinājumā parādīt
4. APGAISMOJUMS UN ATTĒLI
4. APGAISMJUMS UN ATTĒLI ptisko mikroskopu vēsture un nākotne Gaismas avota stiprums. Gaismas plūsma Apgaismojums Elektriskie gaismas avoti. Apgaismojums darba vietā Ēnas. Aptumsumi Attēla veidošanās.
Modificējami balansēšanas vārsti USV
Modificējami balansēšanas vārsti USV Izmantošana/apraksts USV-I USV vārsti ir paredzēti manuālai plūsmas balansēšanai apkures un dzesēšanas sistēmās. Vārsts USV-I (ar sarkano pogu) kopā ar vārstu USV-M
Fizikas valsts 66. olimpiāde Otrā posma uzdevumi 12. klasei
Fizikas valsts 66. olimpiāde Otrā posma uzdevumi 12. klasei 12-1 Pseido hologramma Ievēro mērvienības, kādās jāizsaka atbildes. Dažus uzdevuma apakšpunktus var risināt neatkarīgi no pārējiem. Mūsdienās
6. LATVIJAS UNIVERSITĀTES ĶĪMIJAS FAKULTĀTES JAUNO ĶĪMIĶU KONKURSA 2.KĀRTAS UZDEVUMU ATBILDES 8.-9.klases uzdevumi
6. LATVIJAS UNIVERSITĀTES ĶĪMIJAS FAKULTĀTES JAUNO ĶĪMIĶU KONKURSA 2.KĀRTAS UZDEVUMU ATBILDES 8.-9.klases uzdevumi 1. uzdevums Vai tu to vari? Gāzes Ķīmisko reakciju vienādojumi Ūdeņradis, oglekļa dioksīds,
Ķermeņa inerce un masa. a = 0, ja F rez = 0, kur F visu uz ķermeni darbojošos spēku vektoriālā summa
2.1. Ķereņa inerce un asa Jebkurš ķerenis saglabā iera stāvokli vai turpina vienērīgu taisnlīnijas kustību ar neainīgu ātruu (v = const) tikēr, kaēr uz to neiedarbojas citi ķereņi vai ta pieliktie ārējie
Pašmācības materiāli izklājlapu lietotnes OpenOffice.org Calc apguvei
Pašmācības materiāli izklājlapu lietotnes OpenOffice.org Calc apguvei Guntars Lācis guntars_l@inbox.lv Saturs Izklājlapu lietotnes OpenOffice.org Calc darba vide... 4 Aprēķinu veikšana, izmantojot lietotni
!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.
..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$
Atlases kontroldarbs uz Baltijas valstu ķīmijas olimpiādi 2013.gada 07.aprīlī
Atlases kontroldarbs uz Baltijas valstu ķīmijas olimpiādi 2013.gada 07.aprīlī Atrisināt dotos sešus uzdevumus, laiks 3 stundas. Uzdevumu tēmas: 1) tests vispārīgajā ķīmijā; 2) ķīmisko reakciju kinētika;
Elektromagnētisms (elektromagnētiskās indukcijas parādības)
atvijas Uiversitāte Fizikas u matemātikas fakutāte Fizikas oaļa Papiiājums ekciju kospektam kursam vispārīgajā fizikā ektromagētisms (eektromagētiskās iukcijas parāības) Asoc prof Aris Muižieks Noformējums
ALFA ROMEO. Έτος κατασκευής
145 1.4 i.e. AR33501 66 90 10/94-01/01 0802-1626M 237,40 1.4 i.e. 16V AR33503 76 103 12/96-01/01 0802-1627M 237,40 1.6 i.e. AR33201 76 103 10/94-01/01 0802-1628M 237,40 1.6 i.e. 16V AR67601 88 120 12/96-01/01
Latvijas. 9 punkti. Četri vienā. 15 punkti. 12 punkti. Kristāli no gaisa. Gāzu ķīmijaa 1. A = H 2 S B = SO 2 C = S D = SO 3 E = H 2 SO 3 F = H 2 SO 4
9. klases uzdevumuu atrisinājumii Latvijas 5. Nacionālās ķīmijas olimpiādes 9. klases teorētiskoo uzdevumu atrisinājumi. uzdevums 9 punkti Četri vienā S + S Fe + HCl FeCl + H C + KH KHC 3 NaH + HCl NaCl
Laboratorijas darbu apraksts (I semestris)
Laboratorijas darbu apraksts (I semestris) un mērījumu rezultātu matemātiskās apstrādes pamati 1. Fizikālo lielumu mērīšana Lai kvantitatīvi raksturotu kādu fizikālu lielumu X, to salīdzina ar tādas pašas
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=
! " #$% & '( )*+, -. /012 3045/67 8 96 57626./ 4. 4:;74= 69676.36 D426C
Būvfizikas speckurss. LBN Ēku norobežojošo konstrukciju siltumtehnika izpēte. Ūdens tvaika difūzijas pretestība
Latvijas Lauksaimniecības universitāte Lauku inženieru fakultāte Būvfizikas speckurss LBN 002-01 Ēku norobežojošo konstrukciju siltumtehnika izpēte. difūzijas pretestība Izstrādāja Sandris Liepiņš... Jelgava
MULTILINGUAL GLOSSARY OF VISUAL ARTS
MULTILINGUAL GLOSSARY OF VISUAL ARTS (GREEK-ENGLISH-LATVIAN) Χρώματα Colours Krāsas GREEK ENGLISH LATVIAN Αυθαίρετο χρώμα: Χρϊμα που δεν ζχει καμία ρεαλιςτικι ι φυςικι ςχζςθ με το αντικείμενο που απεικονίηεται,
Ο ΠΕΡΙ ΤΕΛΩΝΕΙΑΚΟΥ ΚΩΔΙΚΑ ΝΟΜΟΣ ΤΟΥ 2004
Αριθμός 2204 Ο ΠΕΡΙ ΤΕΛΩΝΕΙΑΚΟΥ ΚΩΔΙΚΑ ΝΟΜΟΣ ΤΟΥ 2004 (Παράρτημα Παράγραφοι 1 και 2) Δηλοποιηση Κατασχέσεως Αναφορικά με τους ZBIGNIEW και MAKGORZATA EWERTWSKIGNIEWEK, με αριθμούς διαβατηρίων Πολωνίας
LATVIJAS NACIONĀLĀ ĶĪMIJAS OLIMPIĀDE RAJONA OLIMPIĀDES UZDEVUMI 9. KLASE
9 LATVIJAS NACIONĀLĀ ĶĪMIJAS OLIMPIĀDE 50 2009 RAJONA OLIMPIĀDES UZDEVUMI 9. KLASE Rajona olimpiādes uzdevumi 2009 9. KLASE 9. KLASE Rajona olimpiādes uzdevumi 2009 Salasāmā rokrakstā atrisināt tālāk dotos
Salaspils kodolreaktora gada vides monitoringa rezultātu pārskats
Lapa 1 (15) Apstiprinu VISA Latvijas Vides, ģeoloģijas un meteoroloģijas centrs Valdes priekšsēdētājs K. Treimanis Rīgā, 2016. gada. Salaspils kodolreaktora 2015. gada vides monitoringa Pārskatu sagatavoja
Latvijas Universitāte Fizikas un matemātikas fakultāte. Inese Bula MIKROEKONOMIKA (MATEMĀTISKIE PAMATI)
Latvijas Universitāte Fizikas un matemātikas fakultāte Inese Bula MIKROEKONOMIKA (MATEMĀTISKIE PAMATI) LEKCIJU KONSPEKTS 2007 SATURS Priekšvārds 3 Lekcija nr. 1. Ievads mikroekonomikas teorijā 4 Lekcija
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Brīvie elektroni metālos. 1. Drudes metālu teorija
Brīvie eletroni metālos 1. Drudes metālu teorija Metālus vieno virne opīgu īpašību. Visi metāli ir labi siltuma un eletrisās strāvas vadītāji, tiem rasturīga aļamība, plastisums, gaismas spoguļreflesija.
2. Kā tu uztver apkārtējo pasauli? Kas tev ir svarīgāk: redzēt, dzirdēt, sajust?
Romāns. Marks Hedons ROMĀNS MARKS HEDONS (1962) UZZIŅAI Britu rakstnieks M. Hedons ir Anglijā pazīstams bērnu grāmatu rakstnieks un ilustrators, piecpadsmit grāmatu autors. Viņš rakstījis scenārijus BBC
Fizikas 63. valsts olimpiādes. III posms
Fizikas 63. valsts olimpiādes III posms 2013. gada 14. martā Fizikas 63. valsts olimpiādes III posms Uzdevumi Eksperimentālā kārta 2013. gada 14. martā 9. klase Jums tiek piedāvāti divi uzdevumi: eksperiments
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
INSTRUKCIJA ERNEST BLUETOOTH IMMOBILIZER
APRAKSTS: INSTRUKCIJA ERNEST BLUETOOTH IMMOBILIZER BLUETOOTH IMOBILAIZERS ir transporta līdzekļa papildus drošibas sistēma. IERĪCES DARBĪBA 1. Ja iekārta netiek aktivizēta 1 minūtes laikā, dzinējs izslēdzas.
Lai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.
6. VIRKNES Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri Stundas piemērs M_10_UP_06_P1 Iracionāla skaitļa π aptuvenās vērtības noteikšana Skolēna darba lapa M_10_LD_06 Virknes
DEKLARĀCIJA PAR VEIKSTSPĒJU
LV DEKLARĀCIJA PAR VEIKSTSPĒJU DoP No. Hilti HIT-HY 270 33-CPR-M 00-/07.. Unikāls izstrādājuma tipa identifikācijas numurs: Injicēšanas sistēma Hilti HIT-HY 270 2. Tipa, partijas vai sērijas numurs, kā
Jauni veidi, kā balansēt divu cauruļu sistēmu
Jauni veidi, kā balansēt divu cauruļu sistēmu Izcila hidrauliskā balansēšana apkures sistēmās, izmantojot Danfoss RA-DV tipa Dynamic Valve vārstu un Grundfos MAGNA3 mainīga ātruma sūkni Ievads Zema enerģijas
Temperatūras izmaiħas atkarībā no augstuma, atmosfēras stabilitātes un piesārħojuma
Temperatūras izmaiħas atkarībā no augstuma, atmosfēras stabilitātes un piesārħojuma Gaisa vertikāla pārvietošanās Zemes atmosfērā nosaka daudzus procesus, kā piemēram, mākoħu veidošanos, nokrišħus un atmosfēras
Batigoal_mathscope.org ñược tính theo công thức
SỐ PHỨC TRONG CHỨNG MINH HÌNH HỌC PHẲNG Batigoal_mathscope.org Hoangquan9@gmail.com I.MỘT SỐ KHÁI NIỆM CƠ BẢN. Khoảng cách giữa hai ñiểm Giả sử có số phức và biểu diễn hai ñiểm M và M trên mặt phẳng tọa
P A atgrūšanās spēks. P A = P P r P S. P P pievilkšanās spēks
3.2.2. SAITES STARP ATOMIEM SAIŠU VISPĀRĪGS RAKSTUROJUMS Lai izprastu materiālu fizikālo īpašību būtību jābūt priekšstatam par spēkiem, kas darbojas starp atomiem. Aplūkosim mijiedarbību starp diviem izolētiem
!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8
Διευθύνοντα Μέλη του mathematica.gr
Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mthemtic.gr. Η επιλογή και η φροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mthemtic.gr. Μετατροπές
EKSPLUATĀCIJAS ĪPAŠĪBU DEKLARĀCIJA
LV EKSPLUATĀCIJAS ĪPAŠĪBU DEKLARĀCIJA saskaņā ar Regulas (ES) 305/2011 (par būvizstrādājumiem) III pielikumu Hilti ugunsdrošās putas CFS-F FX Nr. Hilti CFS 0843-CPD-0100 1. Unikālais izstrādājuma tipa
Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής
ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.
Uponor PE-Xa. Ātrs, elastīgs, uzticams
Uponor PE-Xa Ātrs, elastīgs, uzticams Pasaulē pirmās, vislabākās un visbiežāk izmantotās PEX sistēmas Plastmasas risinājumu pionieru kompetence, vairāk nekā četru dekāžu pieredzes rezultāts Sistēma izstrādāta
Rīgas Tehniskā universitāte Materiālu un Konstrukciju institūts. Uzdevums: 3D- sijas elements Beam 189. Programma: ANSYS 9
Rīgas Tehniskā universitāte Materiālu un Konstrukciju institūts Uzdevums: 3D- sijas elements Beam 189 Programma: ANSYS 9 Autori: E. Skuķis 1 ANSYS elements: Beam 189, 3-D Quadratic Finite Strain Beam Beam
Latvijas 53. Nacionālā ķīmijas olimpiāde
9. klases teorētiskie uzdevumi Latvijas 53. Nacionālā ķīmijas olimpiāde 2012. gada 28. martā 9. klases Teorētisko uzdevumu atrisinājumi 1. uzdevums 7 punkti Molekulu skaitīšana Cik molekulu skābekļa rodas,
Spektrālaparā un spektrālie mērījumi Lekciju konspekts. Linards Kalvāns LU FMF gada 7. janvārī
Spektrālaparā un spektrālie mērījumi Lekciju konspekts Linards Kalvāns LU FMF 014. gada 7. janvārī Saturs I. Vispārīga informācija 4 I.1. Literatūras saraksts..........................................
!"#$ %"&'$!&!"(!)%*+, -$!!.!$"("-#$&"%-
!"#$ %"&$!&!"(!)%*+, -$!!.!$"("-#$&"%-.#/."0, .1%"("/+.!2$"/ 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 4.)!$"!$-(#&!- 33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333
UGUNSAIZSARDZĪBAS ROKASGRĀMATA 3/KOKS
UGUNSAIZSARDZĪBAS ROKASGRĀMATA 3/KOKS Vieglas un noslogotas koka konstrukcijas TERMINU SKAIDROJUMI UN SAĪSINĀJUMI Ugunsaizsardzība Ugunsizturība Ugunsdroša būvkonstrukcija Nestspējas R kritērijs Viengabalainība,
JAUNO ĶĪMIĶU KONKURSA 2.KĀRTAS UZDEVUMI
C4. LATVIJAS UNIVERSITĀTES ĶĪMIJAS FAKULTĀTES JAUNO ĶĪMIĶU KONKURSA 2.KĀRTAS UZDEVUMI Atrisināt tālāk dotos sešus uzdevumus un atbildes ierakstīt MS Word atbilžu datnē, ko kā pievienoto dokumentu līdz
Lai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.
3.TEMTS PIRMĪD Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri M_12_SP_03_P1 Dažādas piramīdas Skolēna darba lapa M_12_SP_03_P2 Dažādas piramīdas Skolēna darba lapa M_12_SP_03_P2
1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26
2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30
ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα
Interferometri
6..6. Interferometri Interferometri ir optiskie aparāti, ar kuriem mēra dažādus fizikālus lielumus, izmantojot gaismas interferences parādības. Plānās kārtiņās koherentie interferējošie stari atrodas relatīvi
ΠΡΟΓΡΑΜΜΑ ΕΚΠΟΝΗΣΗΣ ΜΕΛΕΤΩΝ ΚΑΙ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ
ΕΛΛΗΝΙΚΗ ΔΗΜOΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΕΝΕΡΓΕΙΑΣ Γ.Γ. Χωρικού Σχεδιασμού & Αστικού Περιβάλλοντος Γεν. Δ/νση Χωρικού Σχεδιασμού Δ/νση Χωροταξικού Σχεδιασμού ΜΕΛΕΤΗ: ΧΡΗΜ/ΤΗΣΗ: Αξιολόγηση και αναθεώρηση
Erkki Mäkinen ja Timo Poranen Algoritmit
rkki Mäkinen ja Timo Poranen Algoritmit TITOJNKÄSITTLYTITIDN LAITOS TAMPRN YLIOPISTO D 2008 6 TAMPR 2009 TAMPRN YLIOPISTO TITOJNKÄSITTLYTITIDN LAITOS JULKAISUSARJA D VRKKOJULKAISUT D 2008 6, TOUKOKUU 2009
Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.
(, ) =,, = : = = ( ) = = = ( ) = = = ( ) ( ) = = ( ) = = = = (, ) =, = = =,,...,, N, (... ) ( + ) =,, ( + ) (... ) =,. ( ) = ( ) = (, ) = = { } = { } = ( ) = \ = { = } = { = }. \ = \ \ \ \ \ = = = = R
5 ml iekšķīgi lietojamas suspensijas (1 mērkarote) satur 125 mg vai 250 mg amoksicilīna, amoksicilīna trihidrāta veidā (Amoxicillinum).
1. ZĀĻU NOSAUKUMS HICONCIL 125 mg/5 ml pulveris iekšķīgi lietojamas suspensijas pagatavošanai HICONCIL 250 mg/5 ml pulveris iekšķīgi lietojamas suspensijas pagatavošanai 2. KVALITATĪVAIS UN KVANTITATĪVAIS
Salaspils kodolreaktora gada vides monitoringa rezultātu pārskats
Lapa : 1 (16) Apstiprinu: VISA Latvijas Vides, ģeoloģijas un meteoroloģijas centrs Valdes priekšsēdētājs K. Treimanis Rīgā, 2017. gada. Salaspils kodolreaktora 2016. gada vides monitoringa Pārskatu sagatavoja: