Rīgas Tehniskā universitāte. Inženiermatemātikas katedra. Uzdevumu risinājumu paraugi. 4. nodarbība

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Rīgas Tehniskā universitāte. Inženiermatemātikas katedra. Uzdevumu risinājumu paraugi. 4. nodarbība"

Transcript

1 Rīgas Tehniskā univesitāte Inženiematemātikas kateda Uzdevumu isinājumu paaugi 4 nodabība piemēs pēķināt vektoa a gaumu un viziena kosinusus, ja a = 5 i 6 j + 5k Vektoa a koodinātas i dotas: a 5 ; a = 6; a = 5 = y z Vektoa modulis i vienāds a kvadātsakni no tā koodinātu kvadātu summas: a = 5 + ( 6) + ( 5) = = 8 = 9 Viziena kosinusus atodam pēc fomulām: a 5 a y 6 az 5 cos α = = ; cos β = = = ; cosγ = = a 9 a 9 a 9 Vaam secināt, ka vektos a a odinātu asi veido platu leņķi ( cos β < 0), bet a abscisu un aplikātu asīm šauus leņķus ( cos α > 0, cosγ > 0 ) cīmedzot, ja kāda vektoa koodināta i vienāda a 0 (tad aī atbilstošais viziena kosinuss i vienāds a 0), vektos a attiecīgo asi veido taisnu leņķi piemēs Noteikt vektoa moduli, viziena kosinusus un otu Uzzīmēt vektou koodinātu sistēmā, ja (, -, ) un ( 5,, ) Vektoa koodinātes nosaka no vektoa galapunkta koodinātēm atņemot sākumpunkta koodinātes: (, 4, ) = Vektoa modulis i vienāds a kvadātsakni no tā koodinātu kvadātu summas: = ( ) = 9 Vektoa ots i vienības vektos, kua viziens sakīt a dotā vektoa vizienu Tā koodinātes iegūst, dotā vektoa koodinātes izdalot a vektoa moduli: 0 =, 9 4, nodabība lpp ugstākā matemātika I Volodko

2 Rīgas Tehniskā univesitāte Inženiematemātikas kateda Uzdevumu isinājumu paaugi Vektoa attēlojums koodinātu sistēmā: z y piemēs Plaknē doti divi vektoi a = (,) un = (, ) b, a un a + b b Konstuēt vektous a, b, b y a b + a a - 0 b 4 Vektou b = (, );, a un a + b koodinātas i b a = (, ) = ( 4, ); a + b = ( 4, + ) = (, 4) 4 nodabība lpp ugstākā matemātika I Volodko

3 Rīgas Tehniskā univesitāte Inženiematemātikas kateda Uzdevumu isinājumu paaugi 4 piemēs ateiālam punktam pielikti spēki f = i + j + k, f = i + j k un f = i + k tast ezultējošo spēku un tā moduli Rezultējošais spēks F i vienāds a pielikto spēku summu F = f + f + f, tātad Tā modulis ( +, + + 0, + ) = (,4,4) F = F = = = 6 = 6 5 piemēs Vektoa = (,, 6) sākumpunktu a galapunkts i punkts (, 5, 6) tast vektoa a pzīmēsim vektoa a sākumpunktu a (, y, z) Tad vektoa a koodinātas i punktu un attiecīgo koodinātu stapība, ti no kuienes =, 5 y =, 6 z = 6, =, y =, z = 0 No šīm sakaībām edzams, ka vektoa sākumpunkta koodinātas va noteikt, no galapunkta koodinātām atņemot atbilstošās vektoa koodinātas 6 piemēs Doti punkti (, -, ), (,, 0 ), ( 4, -, 5 ), D( 5,, - ) a) pēķināt tijstūa mediānu no visotnes ; b) Noteikt punktu E tā, lai četstūis E būtu paalelogams a) Noteiksim vektou koodinātas =( -,, - ), =( -,, -5 ) Tijstūa mediānas vektou izteiksim a malu vektou summu ( + ) = (, 4, 8) m = ediānas gaums i vienāds a šī vektoa moduli 89 m = = 4 nodabība lpp ugstākā matemātika I Volodko

4 Rīgas Tehniskā univesitāte Inženiematemātikas kateda Uzdevumu isinājumu paaugi b) Paalelogama petējās malas i paalēlas un vienāda gauma, tātad petējo malu vektoi i vienādi E = = (,, 5 ) Vektoa galapunktu nosaka, pie vektoa sākumpunkta koodinātām pieskaitot vektoa koodinātes E = (, -4, 7 ) 7 piemēs tast vektoa a + b + c pojekciju uz ass l, ja vektoi a, b un c a asi l π π attiecīgi veido leņķus 0,, un a = b = 5, c = 4 Kā zināms, bet poj l ( a b + c) = poj a + poj b + poj c +, poj a l = a cos, l l ( a l) Tātad π pojl a = 5 cos0 = 5; pojl b = 5 cos =,5; un saskaitot iegūsim poj l a + b + c = 5 +,5 + = 9, ( ) 5 l π poj l c = 4 cos = 8 piemēs Tijstūī doti tīs punkti: visotnes (,, ), (5,, 6) un malas viduspunkts (, 4, 5) tast vektoa otu e ( ) = + e, tāpēc, ka i tijstūa mediāna ; no šīs sakaības = +, = Tā kā punkti,, i doti, vaam noteikt ( 4, 0, 5), = (,, 4) =, tātad ( 0, 6, ) = = 4 nodabība 4 lpp ugstākā matemātika I Volodko

5 Rīgas Tehniskā univesitāte Inženiematemātikas kateda Uzdevumu isinājumu paaugi Šī vektoa gaums = = 45 = 5 un ots e = = 0,, piemēs Tijstūa visotnes i (,, 5), (5,, 8) un (, 6, -) tast homogēna tijstūa smaguma centa koodinātes Tijstūa smaguma cents atodas mediānu kustpunktā No elementāās ģeometijas i zināms, ka mediānu kustpunkts katu mediānu dala attiecībā :, atskaitot no tijstūa visotnes K un ediāna = + = ((, 0, ) + ( 0,, 6) ) = (,, )= (,, ) K =, ku K i mediānu kustpunkts, tātad K = (,, ) Lai noteiktu K galapunktu, pie sākumpunkta koodinātām jāpieskaita atbilstošās vektoa koodinātas, iegūsim K(, 4, 4) tas i meklētais smaguma cents 0 piemēs Pābaudīt, vai četstūis a visotnēm punktos (0,, 4); (, 0, ); (, -, 0); D(-4, 4, 4) i paalelogams Noteiksim vektou,, D un D D koodinātas: 4 nodabība 5 lpp ugstākā matemātika I Volodko

6 Rīgas Tehniskā univesitāte Inženiematemātikas kateda Uzdevumu isinājumu paaugi = (,, ) ; = (,, ) ; = ( 6, 6, 4) D ; D = ( 4,, 0) Vektoi un D i kolineāi, jo to atbilstošās koodinātas i popocionālas: = =, bet un D nav kolineāi, jo, tātad D nav paalelogams, bet tapece piemēs Vektos a 0 a O asi veido leņķi α = 5, a Oy asi taisnu leņķi un a Oz asi šauu leņķi tast vektoa a otu Izmantosim sakaību stap viziena kosinusiem cos α + cos β + cos γ = Tā kā 0 cosα = cos5 = ; cos β = cos90 = 0, tad cos γ = = un cos γ = ± Ņemot vēā, ka γ i šaus leņķis, iegūst cos γ = un γ = 45 0 Ota a koodinātas i viziena kosinusi cos α, cosβ, cosγ, tātad a 0 = ; 0, v v piemēs Vektoi a = i + j + k un b = i + j 5k veido paalelogamu pēķināt paalelogama diagonāļu gaumus v Paalelogama diagonāles sakīt a vektoiem c = a + b un d = a b Noteiksim šo vektou koodinātas: =,4, 4 d = 0,,6 c ( ) un ( ) pēķināsim šo vektou moduļus: c = c = = 6 un d = d = = 40 = 0 v piemēs Noteikt, a kādām α un β vētībām vektos a + b a Oz asi veido taisnu leņķi, ja a = ( α,, α + β ); b = ( β, β, β ), vektoa b modulis i vienāds a un vektos a a O asi veido šauu leņķi 4 nodabība 6 lpp ugstākā matemātika I Volodko

7 Rīgas Tehniskā univesitāte Inženiematemātikas kateda Uzdevumu isinājumu paaugi v a + b = ( α + β, + β, α β ) Vektos a + b a Oz asi veido taisnu leņķi, tātad cos γ = 0, ku γ i leņķis, ko šis vektos veido a Oz asi Tā kā cosγ = α β a + b, iegūst α β = 0 ; α = β Vektoa b modulis + + ( ) = = b = β β β β β Tā kā pēc dotā b =, tad β =, tātad β = ± Ņemot vēā, ka a > 0 (vektos a O asi veido šauu leņķi), iegūst α > 0 un attiecīgi α = β = 4 piemēs Dots paalelogams O, ku O = a un O = b Izteikt vektous O,, un a a un b, ja i diagonāļu kustpunkts b O a No skolas kusa i zināms, ka paalelogama diagonāles kustpunktā dalās uz pusēm Tātad O = O et vektos O = a + b un = a b (pēc vektou summas un stapības definīcijas) Tad O = O = O = = = ( a b ), = = ( b a), v = O = ( a + b ) ( a + b ), 4 nodabība 7 lpp ugstākā matemātika I Volodko

8 Rīgas Tehniskā univesitāte Inženiematemātikas kateda Uzdevumu isinājumu paaugi 5 piemēs Dots vektos a = 4 i j + k tast vektou b, ja a = b, b y = a, y b = 0 pzīmēsim vektoa b koodinātes a, y un z Tad pēc dotā: = 0, y = - Lai noteiktu z, izmantosim nosacījumu a = b pēķināsim abu vektou gaumus: a = 4 + ( ) + = 9, b = 0 + ( ) + z = z + 4 Tātad z + 4 = 9 un z = ± 5 Tādējādi z = j + 5k, z = j 5k 6 piemēs Dots tetaeds D, ku D = a; D = b, D = c tast vektou D, ku i tijstūa smaguma cents D Tijstūa smaguma cents atodas mediānu kustpunktā, ja tijstūis i homogēns K 4 nodabība 8 lpp ugstākā matemātika I Volodko

9 Rīgas Tehniskā univesitāte Inženiematemātikas kateda Uzdevumu isinājumu paaugi K, = bet K = ( + ) Izteiksim Tātad Tā kā iegūst un :, tātad ( ) = + v = D D = b a, = D D = c a = D = a + ( b a + c a) = ( b + c a) D = D+, ( b + c a) = ( a + b + c) 7 piemēs Uz Oz ass atast punktu, kas i vienādā attālumā no punktiem (, 4, ) un (-,, 5) Punktam, kas atodas Oz ass, pimās divas koodinātes i vienādas a 0: (0, 0, z) Lai atastu z, izmantosim vektoa moduļa fomulu: ( 0 ) + ( 0 4) + ( z ), = (0 ( )) + ( 0 ) + ( 5) = z Tā kā =, iegūsim ( ) ( z z ) = Kāpināsim abas vienādības puses kvadātā un vienkāšosim: 0 + z z + = + z 0z + 5 z = 8 0z, 8z = 7, z = Tātad meklētā punkta koodinātas (0; 0;,5) nodabība 9 lpp ugstākā matemātika I Volodko

10 Rīgas Tehniskā univesitāte Inženiematemātikas kateda Uzdevumu isinājumu paaugi 8 piemēs Tijstūa mala a punktiem un N i sadalīta tijās vienādās daļās: = N = N Noteikt, ja = a un = b N Pēc vektou saskaitīšanas kātulas: = +, = un = b a, = tātad, = ( b a), = a + ( b a) = ( a + b ) 4 nodabība 0 lpp ugstākā matemātika I Volodko

Lielumus, kurus nosaka tikai tā skaitliskā vērtība, sauc par skalāriem lielumiem.

Lielumus, kurus nosaka tikai tā skaitliskā vērtība, sauc par skalāriem lielumiem. 1. Vektori Skalāri un vektoriāli lielumi Lai raksturotu kādu objektu vai procesu, tā īpašības parasti apraksta, izmantojot dažādus skaitliskus raksturlielumus. Piemēram, laiks, kas nepieciešams, lai izlasītu

Διαβάστε περισσότερα

ESF projekts Pedagogu konkurētspējas veicināšana izglītības sistēmas optimizācijas apstākļos Vienošanās Nr. 2009/0196/1DP/

ESF projekts Pedagogu konkurētspējas veicināšana izglītības sistēmas optimizācijas apstākļos Vienošanās Nr. 2009/0196/1DP/ ESF projekts Pedagogu konkurētspējas veicināšana izglītības sistēmas optimizācijas apstākļos Vienošanās Nr. 009/0196/1DP/1...1.5/09/IPIA/VIAA/001 ESF projekts Pedagogu konkurētspējas veicināšana izglītības

Διαβάστε περισσότερα

Latvijas Universitāte Fizikas un matemātikas fakultāte datorzinātņu nodaļa

Latvijas Universitāte Fizikas un matemātikas fakultāte datorzinātņu nodaļa Latvijas Univesitāte Fizikas un matemātikas fakultāte datozinātņu nodaļa Eksāmena biļešu atbildes Fizikā (Teoētiskā mehānika, elektomagnētisms, optika) NEPABEIGTS Rīga,. Šis dabs i nācis no http://datzb.intelctuals.net/

Διαβάστε περισσότερα

Agnis Andžāns, Julita Kluša /95. m.g. matemātikas olimpiāžu uzdevumi ar atrisinājumiem

Agnis Andžāns, Julita Kluša /95. m.g. matemātikas olimpiāžu uzdevumi ar atrisinājumiem Agnis Andžāns, Julita Kluša 994./95. m.g. matemātikas olimpiāžu uzdevumi ar atrisinājumiem Rīga, 997 Anotācija Šajā izstrādnē apkopoti 994./95. mācību gadā notikušo Latvijas mēroga matemātikas sacensību

Διαβάστε περισσότερα

ATRISINĀJUMI LATVIJAS REPUBLIKAS 32. OLIMPIĀDE

ATRISINĀJUMI LATVIJAS REPUBLIKAS 32. OLIMPIĀDE Materiāls ņemts no grāmatas: Andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas Republikas 6.-5. matemātikas olimpiādes" LATVIJAS REPUBLIKAS. OLIMPIĀDE ATRISINĀJUMI.. Pirmā apskatāmā skaitļa ciparu

Διαβάστε περισσότερα

LATVIJAS RAJONU 33. OLIMPIĀDE. 4. klase

LATVIJAS RAJONU 33. OLIMPIĀDE. 4. klase Materiāls ņemts no grāmatas:andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas matemātikas olimpiāžu (5.-5.).kārtas (rajonu) uzdevumi un atrisinājumi" LATVIJAS RAJONU 33. OLIMPIĀDE 4. klase 33.. Ievietot

Διαβάστε περισσότερα

1. uzdevums. 2. uzdevums

1. uzdevums. 2. uzdevums 1. uzdevums Reaktīvā pasažieru lidmašīna 650 km lielu attālumu bez nosēšanās veica 55 minūtēs. Aprēķini lidmašīnas kustības vidējo ātrumu, izteiktu kilometros stundā (km/h)! 1. solis Vispirms pieraksta

Διαβάστε περισσότερα

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση. (, ) =,, = : = = ( ) = = = ( ) = = = ( ) ( ) = = ( ) = = = = (, ) =, = = =,,...,, N, (... ) ( + ) =,, ( + ) (... ) =,. ( ) = ( ) = (, ) = = { } = { } = ( ) = \ = { = } = { = }. \ = \ \ \ \ \ = = = = R

Διαβάστε περισσότερα

LATVIJAS REPUBLIKAS 45. OLIMPIĀDE

LATVIJAS REPUBLIKAS 45. OLIMPIĀDE Materiāls ņemts no grāmatas: Andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas Republikas 6.-. matemātikas olimpiādes" LATVIJAS REPUBLIKAS 4. OLIMPIĀDE ATRISINĀJUMI 4.. Dotās nevienādības > abas puses

Διαβάστε περισσότερα

Komandu olimpiāde Atvērtā Kopa. 8. klases uzdevumu atrisinājumi

Komandu olimpiāde Atvērtā Kopa. 8. klases uzdevumu atrisinājumi Komandu olimpiāde Atvērtā Kopa 8. klases uzdevumu atrisinājumi 1. ΔBPC ir vienādmalu trijstūris, tādēļ visi tā leņķi ir 60. ABC = 90 (ABCDkvadrāts), tādēļ ABP = 90 - PBC = 30. Pēc dotā BP = BC un, tā kā

Διαβάστε περισσότερα

Īsi atrisinājumi Jā, piemēram, 1, 1, 1, 1, 1, 3, 4. Piezīme. Uzdevumam ir arī vairāki citi atrisinājumi Skat., piemēram, 1. zīm.

Īsi atrisinājumi Jā, piemēram, 1, 1, 1, 1, 1, 3, 4. Piezīme. Uzdevumam ir arī vairāki citi atrisinājumi Skat., piemēram, 1. zīm. Īsi atrisinājumi 5.. Jā, piemēram,,,,,, 3, 4. Piezīme. Uzdevumam ir arī vairāki citi atrisinājumi. 5.. Skat., piemēram,. zīm. 6 55 3 5 35. zīm. 4. zīm. 33 5.3. tbilde: piemēram, 4835. Ievērosim, ka 4 dalās

Διαβάστε περισσότερα

Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013

Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013 Ι 55 C 35 C A A B C D E F G 47 17 21 18 19 19 18 db kw kw db 2015 811/2013 Ι A A B C D E F G 2015 811/2013 Izstrādājuma datu lapa par energopatēriņu Turpmākie izstrādājuma dati atbilst ES regulu 811/2013,

Διαβάστε περισσότερα

GATAVOSIMIES CENTRALIZĒTAJAM EKSĀMENAM MATEMĀTIKĀ

GATAVOSIMIES CENTRALIZĒTAJAM EKSĀMENAM MATEMĀTIKĀ Profesionālās vidējās izglītības programmu Lauksaimniecība un Lauksaimniecības tehnika īstenošanas kvalitātes uzlabošana 1.2.1.1.3. Atbalsts sākotnējās profesionālās izglītības programmu īstenošanas kvalitātes

Διαβάστε περισσότερα

Logatherm WPS 10K A ++ A + A B C D E F G A B C D E F G. kw kw /2013

Logatherm WPS 10K A ++ A + A B C D E F G A B C D E F G. kw kw /2013 51 d 11 11 10 kw kw kw d 2015 811/2013 2015 811/2013 Izstrādājuma datu lapa par energopatēriņu Turpmākie izstrādājuma dati atbilst S regulu 811/2013, 812/2013, 813/2013 un 814/2013 prasībām, ar ko papildina

Διαβάστε περισσότερα

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%

Διαβάστε περισσότερα

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a: Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave

Διαβάστε περισσότερα

M.Jansone, J.Blūms Uzdevumi fizikā sagatavošanas kursiem

M.Jansone, J.Blūms Uzdevumi fizikā sagatavošanas kursiem DINAMIKA. Dinmik prkst pātrinājum ršnās cēloħus un plūko tā lielum un virzien noteikšns pħēmienus. Spēks (N) ir vektoriāls lielums; ts ir ėermeħu vi to dĝiħu mijiedrbībs mērs. Inerce ir ėermeħu īpšīb sglbāt

Διαβάστε περισσότερα

10. klase 1. uzdevuma risinājums A. Dēļa garums l 4,5 m. sin = h/l = 2,25/4,5 = 0,5 = (2 punkti) W k. s = 2,25 m.

10. klase 1. uzdevuma risinājums A. Dēļa garums l 4,5 m. sin = h/l = 2,25/4,5 = 0,5 = (2 punkti) W k. s = 2,25 m. 0. klase. uzdevuma risinājums A. Dēļa garums l 4,5 m. sin = h/l =,5/4,5 = 0,5 = 0 0. ( punkti) B. v o = 0 m/s. Tādēļ s = at / un a = s/t Ja izvēlas t = s, veiktais ceļš s = 4m. a = 4/ = m/s. ( punkti)

Διαβάστε περισσότερα

LATVIJAS RAJONU 43. OLIMPIĀDE

LATVIJAS RAJONU 43. OLIMPIĀDE Materiāls ņemts no grāmatas:andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas matemātikas olimpiāžu (5-5) kārtas (rajonu) uzdevumi un atrisinājumi" LATVIJAS RAJONU 43 OLIMPIĀDE ATRISINĀJUMI 43 Pārlokot

Διαβάστε περισσότερα

Mehānikas fizikālie pamati

Mehānikas fizikālie pamati 1.5. Viļņi 1.5.1. Viļņu veidošanās Cietā vielā, šķidrumā, gāzē vai plazmā, tātad ikvienā vielā starp daļiņām pastāv mijiedarbība. Ja svārstošo ķermeni (svārstību avotu) ievieto vidē (pieņemsim, ka vide

Διαβάστε περισσότερα

Tēraudbetona konstrukcijas

Tēraudbetona konstrukcijas Tēraudbetona konstrukcijas tēraudbetona kolonnu projektēšana pēc EN 1994-1-1 lektors: Gatis Vilks, SIA «BALTIC INTERNATIONAL CONSTRUCTION PARTNERSHIP» Saturs 1. Vispārīga informācija par kompozītām kolonnām

Διαβάστε περισσότερα

ATTĒLOJUMI UN FUNKCIJAS. Kopas parasti tiek uzskatītas par fiksētiem, statiskiem objektiem.

ATTĒLOJUMI UN FUNKCIJAS. Kopas parasti tiek uzskatītas par fiksētiem, statiskiem objektiem. 2005, Pēteris Daugulis 1 TTĒLOJUMI UN FUNKCIJS Kopas parasti tiek uzskatītas par iksētiem, statiskiem objektiem Lai atļautu kopu un to elementu pārveidojumus, ievieš attēlojuma jēdzienu ttēlojums ir kāda

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim

Διαβάστε περισσότερα

Rīgas Tehniskā universitāte Materiālu un Konstrukciju institūts. Uzdevums: 3D- sijas elements Beam 189. Programma: ANSYS 9

Rīgas Tehniskā universitāte Materiālu un Konstrukciju institūts. Uzdevums: 3D- sijas elements Beam 189. Programma: ANSYS 9 Rīgas Tehniskā universitāte Materiālu un Konstrukciju institūts Uzdevums: 3D- sijas elements Beam 189 Programma: ANSYS 9 Autori: E. Skuķis 1 ANSYS elements: Beam 189, 3-D Quadratic Finite Strain Beam Beam

Διαβάστε περισσότερα

GRAFOANALITISKO DARBU UZDEVUMI ELEKTROTEHNIKĀ UN ELEKTRONIKĀ VISPĀRĪGI NORĀDĪJUMI

GRAFOANALITISKO DARBU UZDEVUMI ELEKTROTEHNIKĀ UN ELEKTRONIKĀ VISPĀRĪGI NORĀDĪJUMI GRAFOANALITISKO DARBU UZDEVUMI ELEKTROTEHNIKĀ UN ELEKTRONIKĀ VISPĀRĪGI NORĀDĪJUMI Kursa Elektrotehnika un elektronika programmā paredzēta patstāvīga grafoanalītisko uzdevumu izpilde. Šajā krājumā ievietoti

Διαβάστε περισσότερα

Gaismas difrakcija šaurā spraugā B C

Gaismas difrakcija šaurā spraugā B C 6..5. Gaismas difrakcija šaurā spraugā Ja plakans gaismas vilnis (paralēlu staru kūlis) krīt uz šauru bezgalīgi garu spraugu, un krītošās gaismas viļņa virsma paralēla spraugas plaknei, tad difrakciju

Διαβάστε περισσότερα

Ķermeņa inerce un masa. a = 0, ja F rez = 0, kur F visu uz ķermeni darbojošos spēku vektoriālā summa

Ķermeņa inerce un masa. a = 0, ja F rez = 0, kur F visu uz ķermeni darbojošos spēku vektoriālā summa 2.1. Ķereņa inerce un asa Jebkurš ķerenis saglabā iera stāvokli vai turpina vienērīgu taisnlīnijas kustību ar neainīgu ātruu (v = const) tikēr, kaēr uz to neiedarbojas citi ķereņi vai ta pieliktie ārējie

Διαβάστε περισσότερα

Taisnzobu cilindrisko zobratu pārvada sintēze

Taisnzobu cilindrisko zobratu pārvada sintēze LATVIJAS LAUKSAIMNIECĪBAS UNIVERSITĀTE Tehniskā fakultāte Mehānikas institūts J. SvētiĦš, Ē. Kronbergs Taisnzobu cilindrisko zobratu pārvada sintēze Jelgava 009 Ievads Vienkāršs zobratu pārvads ir trīslocekĝu

Διαβάστε περισσότερα

6.2. Gaismas difrakcija Gaismas difrakcijas veidi

6.2. Gaismas difrakcija Gaismas difrakcijas veidi 6.. Gaismas difrakcija Ļoti pierasts un katram pilnīgi saprotams liekas priekšstats par gaismas taisnvirziena izplatīšanos homogēnā vidē. Tomēr, daudzos gadījumos gaismas intensitātes sadalījums uz robežas,

Διαβάστε περισσότερα

Lai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.

Lai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home. 7.TEMATS Trigonometriskie vienādojumi un nevienādības Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri Stundas piemērs M SP_07_0_P Trigonometrisko izteiksmju pārveidojumi Skolēna

Διαβάστε περισσότερα

LU A.Liepas Neklātienes matemātikas skola /2011.m.g. sagatavošanās olimpiāde matemātikā

LU A.Liepas Neklātienes matemātikas skola /2011.m.g. sagatavošanās olimpiāde matemātikā 2010.26.11. LU A.Liepas Neklātienes matemātikas skola 2010./2011.m.g. sagatavošanās olimpiāde matemātikā Katra metodiskā apvienība pati nolemj, vai un kad tā rīkos vai nerīkos šādu olimpiādi un, ja rīkos,

Διαβάστε περισσότερα

Rekurentās virknes. Aritmētiskā progresija. Pieņemsim, ka q ir fiksēts skaitlis, turklāt q 0. Virkni (b n ) n 1, kas visiem n 1 apmierina vienādību

Rekurentās virknes. Aritmētiskā progresija. Pieņemsim, ka q ir fiksēts skaitlis, turklāt q 0. Virkni (b n ) n 1, kas visiem n 1 apmierina vienādību Rekurentās virknes Rekursija ir metode, kā kaut ko definēt visbiežāk virkni), izmantojot jau definētas vērtības. Vienkāršākais šādu sakarību piemērs ir aritmētiskā un ǧeometriskā progresija, kuras mēdz

Διαβάστε περισσότερα

,

, ... 7 1.,... 8 1.1... 8 1.2... 10 1.3-4... 12 1.4,... 13 1.5,... 14 1.6... 14 2... 16 2.1... 16 2.2... 18 2.3... 23 2.4... 24 2.5... 24 2.6... 27 2.7... 29 2.8... 32 2.9... 34 2.10... 40 2.11... 40 2.12...

Διαβάστε περισσότερα

1. Testa nosaukums IMUnOGLOBULĪnS G (IgG) 2. Angļu val. Immunoglobulin G

1. Testa nosaukums IMUnOGLOBULĪnS G (IgG) 2. Angļu val. Immunoglobulin G 1. Testa nosaukums IMUnOGLOBULĪnS G (IgG) 2. Angļu val. Immunoglobulin G 3. Īss raksturojums Imunoglobulīnu G veido 2 vieglās κ vai λ ķēdes un 2 smagās γ ķēdes. IgG iedalās 4 subklasēs: IgG1, IgG2, IgG3,

Διαβάστε περισσότερα

ATTIECĪBAS. Attiecības - īpašība, kas piemīt vai nepiemīt sakārtotai vienas vai vairāku kopu elementu virknei (var lietot arī terminu attieksme).

ATTIECĪBAS. Attiecības - īpašība, kas piemīt vai nepiemīt sakārtotai vienas vai vairāku kopu elementu virknei (var lietot arī terminu attieksme). 004, Pēteris Daugulis ATTIECĪBAS Attiecības - īpašība, kas piemīt vai nepiemīt sakārtotai vienas vai vairāku kopu elementu virknei (var lietot arī terminu attieksme). Bināra attiecība - īpašība, kas piemīt

Διαβάστε περισσότερα

Komandu olimpiāde Atvērtā Kopa Atrisinājumi 7. klasei

Komandu olimpiāde Atvērtā Kopa Atrisinājumi 7. klasei 01 Komandu olimpiāde Atvērtā Kopa Atrisinājumi 7. klasei 1. Varam pieņemt, ka visos darbos Kristiāna strāda piecu darba dienu nedēļu, tātad 40 stundas nedēļā (drīkst arī pieņemt, ka Kristiāna strādā nedēļas

Διαβάστε περισσότερα

FIZ 2.un 3.daļas standartizācija 2012.gads

FIZ 2.un 3.daļas standartizācija 2012.gads FIZ.un 3.daļas standartizācija 0.gads Uzd. Uzdevums Punkti Kritēriji Uzraksta impulsu attiecību: m Lieto impulsa definīcijas formulu. Uzraksta attiecību. Pareizi izsaka meklējamo kr vkr lielumu. Iegūst

Διαβάστε περισσότερα

Latvijas Skolēnu 62. fizikas olimpiādes III posms

Latvijas Skolēnu 62. fizikas olimpiādes III posms Latvijas Skolēnu 62 fizikas olimpiādes III posms Vērtēšanas kritēriji Teorētiskā kārta 212 gada 12 aprīlī 9 klase Uzdevums Caurplūdums, jeb ūdens tilpums, kas laika vienībā iztek caur šķērsgriezumu S ir

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

Šis dokuments ir izveidots vienīgi dokumentācijas nolūkos, un iestādes neuzņemas nekādu atbildību par tā saturu

Šis dokuments ir izveidots vienīgi dokumentācijas nolūkos, un iestādes neuzņemas nekādu atbildību par tā saturu 2011R0109 LV 24.02.2015 002.001 1 Šis dokuments ir izveidots vienīgi dokumentācijas nolūkos, un iestādes neuzņemas nekādu atbildību par tā saturu B KOMISIJAS REGULA (ES) Nr. 109/2011 (2011. gada 27. janvāris),

Διαβάστε περισσότερα

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads.

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Η μυκηναϊκή Γραμμική Β γραφή ονομάστηκε έτσι από τον

Διαβάστε περισσότερα

LATVIJAS REPUBLIKAS 38. OLIMPIĀDE

LATVIJAS REPUBLIKAS 38. OLIMPIĀDE Materiāls ņemts o grāmatas: Adžās Agis, Bērziņa Aa, Bērziņš Aivars "Latvijas Republikas 6.-5. matemātikas olimpiādes" LATVIJAS REPUBLIKAS 8. OLIMPIĀDE UZDEVUMI 8. klase 8.. Vai eksistē tāda kvadrātfukcija

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

FIZIKĀLO FAKTORU KOPUMS, KAS VEIDO ORGANISMA SILTUMAREAKCIJU AR APKĀRTĒJO VIDI UN NOSAKA ORGANISMA SILTUMSTĀVOKLI

FIZIKĀLO FAKTORU KOPUMS, KAS VEIDO ORGANISMA SILTUMAREAKCIJU AR APKĀRTĒJO VIDI UN NOSAKA ORGANISMA SILTUMSTĀVOKLI Mikroklimats FIZIKĀLO FAKTORU KOPUMS, KAS VEIDO ORGANISMA SILTUMAREAKCIJU AR APKĀRTĒJO VIDI UN NOSAKA ORGANISMA SILTUMSTĀVOKLI P 1 GALVENIE MIKROKLIMATA RĀDĪTĀJI gaisa temperatūra gaisa g relatīvais mitrums

Διαβάστε περισσότερα

BŪVJU TEORIJAS PAMATI

BŪVJU TEORIJAS PAMATI BŪVJU TEORIJAS PAMATI Pamatjēdzieni: (atkārtojumam, turpmākam plānam)) nedeformējami ķermeņi, to mehānika (teorētiskā mehānika), cieti deformējami ķermeņi, to mehānika: pieņēmumi (hipotētiski) - materiāla

Διαβάστε περισσότερα

Kontroldarba varianti. (II semestris)

Kontroldarba varianti. (II semestris) Kontroldarba varianti (II semestris) Variants Nr.... attēlā redzami divu bezgalīgi garu taisnu vadu šķērsgriezumi, pa kuriem plūst strāva. Attālums AB starp vadiem ir 0 cm, I = 0 A, I = 0 A. Aprēķināt

Διαβάστε περισσότερα

5. un 6.lekcija. diferenciālvienādojumiem Emdena - Faulera tipa vienādojumi. ir atkarīgas tikai no to attāluma r līdz lodes centram.

5. un 6.lekcija. diferenciālvienādojumiem Emdena - Faulera tipa vienādojumi. ir atkarīgas tikai no to attāluma r līdz lodes centram. Parasto diferenciālvienādojumu nelineāras robežproblēmas 5. un 6.lekcija 1. Robežproblēmas diferenciālvienādojumiem ar neintegrējamām singularitātēm 1.1. Emdena - Faulera tipa vienādojumi Piemērs 5.1.

Διαβάστε περισσότερα

Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts

Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts www.videszinatne.lv Saules enerģijas izmantošanas iespējas Latvijā / Seminārs "Atjaunojamo

Διαβάστε περισσότερα

Atrisinājumi Latvijas 64. matemātikas olimpiāde 3. posms x 1. risinājums. Pārveidojam doto izteiksmi, atdalot pilno kvadrātu:

Atrisinājumi Latvijas 64. matemātikas olimpiāde 3. posms x 1. risinājums. Pārveidojam doto izteiksmi, atdalot pilno kvadrātu: trisiājumi Latvijas 6 matemātikas olimpiāde posms 9 Kādu mazāko vērtību var pieņemt izteiksme 0, ja > 0? risiājums Pārveidojam doto izteiksmi, atdalot pilo kvadrātu: 0 ( ) 0 0 0 0 0 Tā kā kvadrāts viemēr

Διαβάστε περισσότερα

"Profesora Cipariņa klubs" 2005./06. m.g. 1. nodarbības uzdevumu atrisinājumi. A grupa

Profesora Cipariņa klubs 2005./06. m.g. 1. nodarbības uzdevumu atrisinājumi. A grupa "Profesora Cipariņa klubs" 005./06. m.g.. nodarbības udevumu atrisinājumi A grupa. Viegli pārbaudīt, ka 3 4=44. Tātad meklējamie skaitļi var būt ; 3; 4. Pierādīsim, ka tie nevar būt citādi. Tiešām, ivēloties

Διαβάστε περισσότερα

Lai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.

Lai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home. 3.TEMTS PIRMĪD Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri M_12_SP_03_P1 Dažādas piramīdas Skolēna darba lapa M_12_SP_03_P2 Dažādas piramīdas Skolēna darba lapa M_12_SP_03_P2

Διαβάστε περισσότερα

Atlases kontroldarbs uz Baltijas valstu ķīmijas olimpiādi 2013.gada 07.aprīlī

Atlases kontroldarbs uz Baltijas valstu ķīmijas olimpiādi 2013.gada 07.aprīlī Atlases kontroldarbs uz Baltijas valstu ķīmijas olimpiādi 2013.gada 07.aprīlī Atrisināt dotos sešus uzdevumus, laiks 3 stundas. Uzdevumu tēmas: 1) tests vispārīgajā ķīmijā; 2) ķīmisko reakciju kinētika;

Διαβάστε περισσότερα

3.2. Līdzstrāva Strāvas stiprums un blīvums

3.2. Līdzstrāva Strāvas stiprums un blīvums 3.. Līdzstrāva Šajā nodaļā aplūkosim elektrisko strāvu raksturojošos pamatlielumus un pamatlikumus. Nodaļas sākumā formulēsim šos likumus, balstoties uz elektriskās strāvas parādības novērojumiem. Nodaļas

Διαβάστε περισσότερα

Latvijas Universitāte Fizikas un matemātikas fakultāte. Inese Bula MIKROEKONOMIKA (MATEMĀTISKIE PAMATI)

Latvijas Universitāte Fizikas un matemātikas fakultāte. Inese Bula MIKROEKONOMIKA (MATEMĀTISKIE PAMATI) Latvijas Universitāte Fizikas un matemātikas fakultāte Inese Bula MIKROEKONOMIKA (MATEMĀTISKIE PAMATI) LEKCIJU KONSPEKTS 2007 SATURS Priekšvārds 3 Lekcija nr. 1. Ievads mikroekonomikas teorijā 4 Lekcija

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

LATVIJAS RAJONU 39. OLIMPIĀDE

LATVIJAS RAJONU 39. OLIMPIĀDE Materiāls ņemts o grāmatas:adžās Agis, Bērziņa Aa, Bērziņš Aivars "Latvijas matemātikas olimpiāžu (-) kārtas (rajou) uzdevumi u atrisiājumi" LATVIJAS RAJONU 9 OLIMPIĀDE ATRISINĀJUMI 9 Ir jāaprēķia 00-ais

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

Labojums MOVITRAC LTE-B * _1114*

Labojums MOVITRAC LTE-B * _1114* Dzinēju tehnika \ Dzinēju automatizācija \ Sistēmas integrācija \ Pakalpojumi *135347_1114* Labojums SEW-EURODRIVE GmbH & Co KG P.O. Box 303 7664 Bruchsal/Germany Phone +49 751 75-0 Fax +49 751-1970 sew@sew-eurodrive.com

Διαβάστε περισσότερα

Fax no +302106505936 To. 2310263139 Page: 1/12

Fax no +302106505936 To. 2310263139 Page: 1/12 rom Ktimatoiogio SA ax no +302106505936 To. 2310263139 Page: 1/12 Date 11/19/2015940.39 Mv1 EeNtKo KTHMATOAOnO a XAPTOrPAeHlH A.I. A911va, 18/11/2015 A.n.: 15317781L\.AK 926 nuos: YnoOT]KoAaKdo Nto)v

Διαβάστε περισσότερα

I.4. Laisvasis kūnų kritimas

I.4. Laisvasis kūnų kritimas I4 Laisvasis kūnų kitimas Laisvuoju kitimu vadinamas judėjimas, kuiuo judėtų kūnas veikiamas tik sunkio jėos, nepaisant oo pasipiešinimo Kūnui laisvai kintant iš nedidelio aukščio h (dau mažesnio už Žemės

Διαβάστε περισσότερα

Dinamika krutog tijela. 14. dio

Dinamika krutog tijela. 14. dio Dnaka kutog tjela 14. do 1 Pojov: 1. Vekto sle F (tanslacja). Moent sle (otacja) 3. Moent toost asa 4. Rad kutog tjela A 5. Knetka enegja E k 6. Moent kolna gbanja 7. u oenta kolne gbanja oenta sle M (

Διαβάστε περισσότερα

Klasificēšanas kritēriji, ņemot vērā fizikāli ķīmiskās īpašības

Klasificēšanas kritēriji, ņemot vērā fizikāli ķīmiskās īpašības , ņemot vērā fizikāli ķīmiskās īpašības Mg.sc.ing. Līga Rubene VSIA "Latvijas Vides, ģeoloģijas un meteoroloģijas centrs" Informācijas analīzes daļa Ķīmisko vielu un bīstamo atkritumu nodaļa 20.04.2017.

Διαβάστε περισσότερα

AGNIS ANDŽĀNS, DACE BONKA, ZANE KAIBE, LAILA ZINBERGA. Matemātikas sacensības klasēm uzdevumi un atrisinājumi 2009./2010.

AGNIS ANDŽĀNS, DACE BONKA, ZANE KAIBE, LAILA ZINBERGA. Matemātikas sacensības klasēm uzdevumi un atrisinājumi 2009./2010. AGNIS ANDŽĀNS, DACE BONKA, ZANE KAIBE, LAILA ZINBERGA Matemātikas sacensības 4.-9. klasēm uzdevumi un atrisinājumi 009./00. mācību gadā Rīga 0 A. Andžāns, D. Bonka, Z. Kaibe, L. Zinberga. Matemātikas sacensības

Διαβάστε περισσότερα

4. APGAISMOJUMS UN ATTĒLI

4. APGAISMOJUMS UN ATTĒLI 4. APGAISMJUMS UN ATTĒLI ptisko mikroskopu vēsture un nākotne Gaismas avota stiprums. Gaismas plūsma Apgaismojums Elektriskie gaismas avoti. Apgaismojums darba vietā Ēnas. Aptumsumi Attēla veidošanās.

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

P A atgrūšanās spēks. P A = P P r P S. P P pievilkšanās spēks

P A atgrūšanās spēks. P A = P P r P S. P P pievilkšanās spēks 3.2.2. SAITES STARP ATOMIEM SAIŠU VISPĀRĪGS RAKSTUROJUMS Lai izprastu materiālu fizikālo īpašību būtību jābūt priekšstatam par spēkiem, kas darbojas starp atomiem. Aplūkosim mijiedarbību starp diviem izolētiem

Διαβάστε περισσότερα

Andrejs Rauhvargers VISPĀRĪGĀ ĶĪMIJA. Eksperimentāla mācību grāmata. Atļāvusi lietot Latvijas Republikas Izglītības un zinātnes ministrija

Andrejs Rauhvargers VISPĀRĪGĀ ĶĪMIJA. Eksperimentāla mācību grāmata. Atļāvusi lietot Latvijas Republikas Izglītības un zinātnes ministrija Andrejs Rauhvargers VISPĀRĪGĀ ĶĪMIJA Eksperimentāla mācību grāmata Atļāvusi lietot Latvijas Republikas Izglītības un zinātnes ministrija Rīga Zinātne 1996 UDK p 54(07) Ra 827 Recenzenti: Dr. chem. J. SKRĪVELIS

Διαβάστε περισσότερα

KOMISIJAS ĪSTENOŠANAS REGULA (ES)

KOMISIJAS ĪSTENOŠANAS REGULA (ES) 31.7.2014. Eiropas Savienības Oficiālais Vēstnesis L 227/69 KOMISIJAS ĪSTENOŠANAS REGULA (ES) Nr. 809/2014 (2014. gada 17. jūlijs), ar ko paredz noteikumus par to, kā Eiropas Parlamenta un Padomes Regulu

Διαβάστε περισσότερα

Ο ΠΕΡΙ ΤΕΛΩΝΕΙΑΚΟΥ ΚΩΔΙΚΑ ΝΟΜΟΣ ΤΟΥ 2004

Ο ΠΕΡΙ ΤΕΛΩΝΕΙΑΚΟΥ ΚΩΔΙΚΑ ΝΟΜΟΣ ΤΟΥ 2004 Αριθμός 2204 Ο ΠΕΡΙ ΤΕΛΩΝΕΙΑΚΟΥ ΚΩΔΙΚΑ ΝΟΜΟΣ ΤΟΥ 2004 (Παράρτημα Παράγραφοι 1 και 2) Δηλοποιηση Κατασχέσεως Αναφορικά με τους ZBIGNIEW και MAKGORZATA EWERTWSKIGNIEWEK, με αριθμούς διαβατηρίων Πολωνίας

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

KOMBINATORIKAS UN VARBŪTĪBU TEORIJAS ELEMENTI. matemātikas profīlkursam vidusskolā

KOMBINATORIKAS UN VARBŪTĪBU TEORIJAS ELEMENTI. matemātikas profīlkursam vidusskolā Jānis Cīrulis KOMBINATORIKAS UN VARBŪTĪBU TEORIJAS ELEMENTI matemātikas profīlkursam vidusskolā ANOTĀCIJA Šī izstrādne ir mācību līdzeklis (tā pirmā puse) nosaukumā minēto tēmu apguvei, ko varētu gan vairāk

Διαβάστε περισσότερα

PHÉP TÍNH VI PHÂN HÀM MỘT BIẾN

PHÉP TÍNH VI PHÂN HÀM MỘT BIẾN 9//6 CHƯƠNG Đạo hàm ại mộ điểm PHÉP TÍNH VI PHÂN HÀM MỘT BIẾN Địh ghĩa: Đạo hàm của hàm f ại điểm a, ký hiệ f (a) là: f ' a lim a f f a (ế giới hạ à ồ ại hữ hạ). Chú ý: đặ h=-a, a có: f ' a a f a h f a

Διαβάστε περισσότερα

d 2 y dt 2 xdy dt + d2 x

d 2 y dt 2 xdy dt + d2 x y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf

Διαβάστε περισσότερα

TIEŠĀ UN NETIEŠĀ GRADIENTA ANALĪZE

TIEŠĀ UN NETIEŠĀ GRADIENTA ANALĪZE TIEŠĀ UN NETIEŠĀ GRADIENTA ANALĪZE Botānikas un ekoloăijas katedra Iluta Dauškane Vides gradients Tiešā un netiešā gradienta analīze Ordinācijas pamatideja Ordinācijas metodes Gradientu analīze Sugu skaits

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 η : Εισαγωγικές Ένvοιες ΙI Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Japanese Fuzzy String Matching in Cooking Recipes

Japanese Fuzzy String Matching in Cooking Recipes 1 Japanese Fuzzy String Matching in Cooking Recipes Michiko Yasukawa 1 In this paper, we propose Japanese fuzzy string matching in cooking recipes. Cooking recipes contain spelling variants for recipe

Διαβάστε περισσότερα

ΑΡΜΟΝΙΚΗ ΔΙΕΓΕΡΣΗ ΧΟΡΔΗΣ ΠΟΥ ΕΙΝΑΙ ΠΑΚΤΩΜΕΝΗ ΣΤΟ ΕΝΑ ΑΚΡΟ ΤΗΣ Κ. ΕΥΤΑΞΙΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΕΥΤΑΞΙΑΣ

ΑΡΜΟΝΙΚΗ ΔΙΕΓΕΡΣΗ ΧΟΡΔΗΣ ΠΟΥ ΕΙΝΑΙ ΠΑΚΤΩΜΕΝΗ ΣΤΟ ΕΝΑ ΑΚΡΟ ΤΗΣ Κ. ΕΥΤΑΞΙΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΕΥΤΑΞΙΑΣ ΑΡΜΟΝΙΚΗ ΔΙΕΓΕΡΣΗ ΧΟΡΔΗΣ ΠΟΥ ΕΙΝΑΙ ΠΑΚΤΩΜΕΝΗ ΣΤΟ ΕΝΑ ΑΚΡΟ ΤΗΣ Κ. ΕΥΤΑΞΙΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΕΥΤΑΞΙΑΣ = μ, T = =L ΣΥΝΟΡΙΑΚΕΣ AΡΧΙΚΕΣ ΣΥΝΘΗΚΕΣ (, ( L, si (1 ( ANAZHTOYME ΤΗ ΛΥΣΗ (, ΣΤΗ ΜΟΝΙΜΗ ΚΑΤΑΣΤΑΣΗ ΜΕΤΑΒΑΤΙΚΑ

Διαβάστε περισσότερα

Council of the European Union Brussels, 25 June 2015

Council of the European Union Brussels, 25 June 2015 Council of the European Union Brussels, 25 June 2015 Interinstitutional File: 2011/0361 (COD) 8725/15 JUR 309 EF 87 ECOFIN 312 CODEC 684 LEGISLATIVE ACTS AND OTHER INSTRUMENTS: CORRIGENDUM/RECTIFICATIF

Διαβάστε περισσότερα

Κώστας Φελουκατζής Σημειώσεις εξετάσεων ΠΛΗ-20 / 2004-2005 ΣΥΝΔΥΑΣΤΙΚΗ

Κώστας Φελουκατζής Σημειώσεις εξετάσεων ΠΛΗ-20 / 2004-2005 ΣΥΝΔΥΑΣΤΙΚΗ Κώστας Φελουκατζής Σημειώσεις εξετάσεων Η-2 / 24-25 ΣΥΝΔΥΑΣΤΙΚΗ Κανόνας Γινομένου: Αν ένα ενδεχόμενο μπορεί να πραγματοποιηθεί με m διαφορετικούς τρόπους ενώ ένα άλλο, ανεξάρτητο ενδεχόμενο μπορεί να πραγματοποιηθεί

Διαβάστε περισσότερα

2. PLAKANU STIEŅU SISTĒMU STRUKTŪRAS ANALĪZE

2. PLAKANU STIEŅU SISTĒMU STRUKTŪRAS ANALĪZE Ekspluatācijas gaitā jebkura reāla būve ārējo iedarbību rezultātā kaut nedaudz maina sākotnējo formu un izmērus. Sistēmas, kurās to elementu savstarpējā izvietojuma un izmēru maiņa iespējama tikai sistēmas

Διαβάστε περισσότερα

JAUNO ĶĪMIĶU KONKURSA 2.KĀRTAS UZDEVUMI

JAUNO ĶĪMIĶU KONKURSA 2.KĀRTAS UZDEVUMI C4. LATVIJAS UNIVERSITĀTES ĶĪMIJAS FAKULTĀTES JAUNO ĶĪMIĶU KONKURSA 2.KĀRTAS UZDEVUMI Atrisināt tālāk dotos sešus uzdevumus un atbildes ierakstīt MS Word atbilžu datnē, ko kā pievienoto dokumentu līdz

Διαβάστε περισσότερα

LATVIJAS 48. NACIONĀLĀ ĶĪMIJAS OLIMPIĀDE (2007)

LATVIJAS 48. NACIONĀLĀ ĶĪMIJAS OLIMPIĀDE (2007) LATVIJAS 48. NACIONĀLĀ ĶĪMIJAS OLIMPIĀDE (007) Rajona (pilsētas) posma olimpiādes uzdevumi 9. klasei Atrisināt tālāk dotos 6 uzdevumus! Darba izpildes laiks 4 astronomiskās stundas. Risinājumā parādīt

Διαβάστε περισσότερα

Lai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.

Lai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home. 5.TEMATS FUNKCIJAS Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri M UP_5_P Figūras laukuma atkarība no figūras formas Skolēna darba lapa M UP_5_P Funkcijas kā reālu procesu modeļi

Διαβάστε περισσότερα

THỂ TÍCH KHỐI CHÓP (Phần 04) Giáo viên: LÊ BÁ TRẦN PHƯƠNG

THỂ TÍCH KHỐI CHÓP (Phần 04) Giáo viên: LÊ BÁ TRẦN PHƯƠNG Khó học LTðH KT-: ôn Tán (Thầy Lê á Trần Phương) THỂ TÍH KHỐ HÓP (Phần 4) ðáp Á À TẬP TỰ LUYỆ Giá viên: LÊ Á TRẦ PHƯƠG ác ài tập trng tài liệu này ñược iên sạn kèm the ài giảng Thể tich khối chóp (Phần

Διαβάστε περισσότερα

O ITIKH 4-17. Ô ÎÔÈÓˆÓÈÎfi apple Î ÙÔ apple ÚÔ ÒÓ appleô ı ÂÍ ÁÁÂ ÏÂÈ Ô. apple Ó- Ú Ô ÛÙË.

O ITIKH 4-17. Ô ÎÔÈÓˆÓÈÎfi apple Î ÙÔ apple ÚÔ ÒÓ appleô ı ÂÍ ÁÁ ÏÂÈ Ô. apple Ó- Ú Ô ÛÙË. B EK O H www.enet.gr 22 AY OY TOY 2010 ñ ºY O 1.698 ñ ÂÚ Ô Ô B 6. YNENTEY H. KAT E H «K ÎfiÁÔ ÛÙÔ È Ó È Û ÚÔ ÌÔ» H Ô ÚÁfi OÈÎÔÓÔÌ Î Ù ÁÁ ÏÏÂÈ Û ÌÊ ÚÔÓÙ Î È Û ÓÙÚÔÊÈÎ Ì ÈÚÒÌ Ù Ûˆ fi ÙÈ Ê Ì ÁÈ Â ÈΠÌÂÓÔ

Διαβάστε περισσότερα

Năm Chứng minh. Cách 1. Y H b. H c. BH c BM = P M. CM = Y H b

Năm Chứng minh. Cách 1. Y H b. H c. BH c BM = P M. CM = Y H b huỗi bài toán về họ đường tròn đi qua điểm cố định Nguyễn Văn inh Năm 2015 húng ta bắt đầu từ bài toán sau. ài 1. (US TST 2012) ho tam giác. là một điểm chuyển động trên. Gọi, lần lượt là các điểm trên,

Διαβάστε περισσότερα

Elektriskais lauks dielektriķos Brīvie un saistītie lādiņi

Elektriskais lauks dielektriķos Brīvie un saistītie lādiņi 3... Elktrskas lauks dlktrķos 3... Brīv un sastīt lādņ 79. gadā angļu znātnks S. Grjs (666 736) kurš konstatēja, ka lktrskas lādņš var pārt no vna ķrmņa uz otru, pmēram, pa mtāla stpl. Līdz ar to, var

Διαβάστε περισσότερα

ÙËÓ ÂappleÔ ÙÔ ÈÒÚÁÔ OÈ ÌÂÙÔ Í Û Ó ÙËÓ ÎÚ ÛË. PÔ ÛÊ ÙÈ ÛÙÔ apple Ú 5 M ÚÈ Î È ÙËÓ ÙÂÏÂ Ù ÒÚ. «EÏÏËÓ Ú» applefi ÙËÓ AÏ Ó

ÙËÓ ÂappleÔ ÙÔ ÈÒÚÁÔ OÈ ÌÂÙÔ Í Û Ó ÙËÓ ÎÚ ÛË. PÔ ÛÊ ÙÈ ÛÙÔ apple Ú 5 M ÚÈ Î È ÙËÓ ÙÂÏÂ Ù ÒÚ. «EÏÏËÓ Ú» applefi ÙËÓ AÏ Ó B EK O H AÏÏ Á... ÌÂ ÙËÓ ÂappleÈÛÙÚÔÊ 4 OKTøBPIOY 2009 ñ ºY O 1.652 ñ appleâú Ô Ô B www.enet.gr TIMH: E ÚÒ 2 (EÎ ÔÛË ÌÂ appleúôûêôú Â ÚÒ 4) E. 46 A A H KHNIKOY. KA APH NIKH A OK EIXNOYN OI POB EæEI. H

Διαβάστε περισσότερα

Elektrozinību teorētiskie pamati

Elektrozinību teorētiskie pamati LTVJS LKSMNEĪS NVESTĀTE TEHNSKĀ FKLTĀTE Lauksainiecības enerăētikas institūts.galiħš Elektrozinību teorētiskie paati Elektrisko ėēžu aprēėini Jelgava 8 LTVJS LKSMNEĪS NVESTĀTE TEHNSKĀ FKLTĀTE Lauksainiecības

Διαβάστε περισσότερα

Latvijas. 9 punkti. Četri vienā. 15 punkti. 12 punkti. Kristāli no gaisa. Gāzu ķīmijaa 1. A = H 2 S B = SO 2 C = S D = SO 3 E = H 2 SO 3 F = H 2 SO 4

Latvijas. 9 punkti. Četri vienā. 15 punkti. 12 punkti. Kristāli no gaisa. Gāzu ķīmijaa 1. A = H 2 S B = SO 2 C = S D = SO 3 E = H 2 SO 3 F = H 2 SO 4 9. klases uzdevumuu atrisinājumii Latvijas 5. Nacionālās ķīmijas olimpiādes 9. klases teorētiskoo uzdevumu atrisinājumi. uzdevums 9 punkti Četri vienā S + S Fe + HCl FeCl + H C + KH KHC 3 NaH + HCl NaCl

Διαβάστε περισσότερα

DEKLARĀCIJA PAR VEIKSTSPĒJU

DEKLARĀCIJA PAR VEIKSTSPĒJU LV DEKLARĀCIJA PAR VEIKSTSPĒJU DoP No. Hilti HIT-HY 270 33-CPR-M 00-/07.. Unikāls izstrādājuma tipa identifikācijas numurs: Injicēšanas sistēma Hilti HIT-HY 270 2. Tipa, partijas vai sērijas numurs, kā

Διαβάστε περισσότερα

Κεφάλαιο 3 ο : Αναπαράσταση θέσης

Κεφάλαιο 3 ο : Αναπαράσταση θέσης ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ Μάθηµα 3 ο Αναπαράσταση θέσης στο επίπεδο (2 ) και στο χώρο (3 ) Οµογενής Μετασχηµατισµός Κεφάλαιο 3 ο : Αναπαράσταση θέσης Μεταφορά αξόνων σε 2 X Ι Ο Ι Y Ι

Διαβάστε περισσότερα

TIESĪBU AKTI, KO PIEŅEM STRUKTŪRAS, KURAS IZVEIDOTAS AR STARPTAUTISKIEM NOLĪGUMIEM

TIESĪBU AKTI, KO PIEŅEM STRUKTŪRAS, KURAS IZVEIDOTAS AR STARPTAUTISKIEM NOLĪGUMIEM 22.8.2014. Eiropas Savienības Oficiālais Vēstnesis L 250/1 II (Neleģislatīvi akti) TIESĪBU AKTI, KO PIEŅEM STRUKTŪRAS, KURAS IZVEIDOTAS AR STARPTAUTISKIEM NOLĪGUMIEM Saskaņā ar starptautisko publisko tiesību

Διαβάστε περισσότερα

I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI ATSAKYMAI

I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI ATSAKYMAI 008 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO VERTINIMO INSTRUKCIJA Pagrindinė sesija Kiekvieno I dalies klausimo teisingas atsakymas vertinamas tašku. I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI

Διαβάστε περισσότερα

SKICE. VĪTNE SATURS. Ievads Tēmas mērķi Skice Skices izpildīšanas secība Mērinstrumenti un detaļu mērīšana...

SKICE. VĪTNE SATURS. Ievads Tēmas mērķi Skice Skices izpildīšanas secība Mērinstrumenti un detaļu mērīšana... 1 SKICE. VĪTNE SATURS Ievads... 2 Tēmas mērķi... 2 1. Skice...2 1.1. Skices izpildīšanas secība...2 1.2. Mērinstrumenti un detaļu mērīšana...5 2. Vītne...7 2.1. Vītņu veidi un to apzīmējumi...10 2.1.1.

Διαβάστε περισσότερα

ΛΟΞΗ ΚΟΠΗ 1. ΓΕΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΗΜΕΙΩΣΗ

ΛΟΞΗ ΚΟΠΗ 1. ΓΕΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΗΜΕΙΩΣΗ ΛΟΞΗ ΚΟΠΗ 1. ΓΕΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΗΜΕΙΩΣΗ Άξονας x: Κατά τη διεύθνση της ταχύτητας κοπής Άξονας y: Κάθετος στη διεύθνση της ταχύτητας κοπής Άξονας z: Κάθετος στο επίπεδο των x και y Άξονας x': Κάθετος

Διαβάστε περισσότερα

Laboratorijas darbu apraksts (I semestris)

Laboratorijas darbu apraksts (I semestris) Laboratorijas darbu apraksts (I semestris) un mērījumu rezultātu matemātiskās apstrādes pamati 1. Fizikālo lielumu mērīšana Lai kvantitatīvi raksturotu kādu fizikālu lielumu X, to salīdzina ar tādas pašas

Διαβάστε περισσότερα

AÎ ÓËÙ : X Ú ÙÛÈ ÛÂ ÌÂÛ Î È ÌÂÁ Ï TI Y O XE HKE KAI TI PA MATO OIH E H KYBEPNH H TOY A OK. NÙÔÎÔ Ì ÓÙÔ ÁÈ ÙËÓ fiïë

AÎ ÓËÙ : X Ú ÙÛÈ ÛÂ ÌÂÛ Î È ÌÂÁ Ï TI Y O XE HKE KAI TI PA MATO OIH E H KYBEPNH H TOY A OK. NÙÔÎÔ Ì ÓÙÔ ÁÈ ÙËÓ fiïë B EK O H Ù Î ÓÔÓÈÎ Ô Ú ÚÁ ÚÔ ÌÂÛÔ fiì 10 IANOYAPIOY 2010 ñ ºY O 1.666 ñ appleâú Ô Ô B www.enet.gr TIMH: E ÚÒ 2 (EÎ ÔÛË ÌÂ appleúôûêôú Â ÚÒ 4) E. 46 POB E ETAI AP H A OPPHTOY EKPHKTIKO KOKTE IA ONIKE APOXE

Διαβάστε περισσότερα

Kā radās Saules sistēma?

Kā radās Saules sistēma? 9. VISUMS UN DAĻIŅAS Kā radās Saules sistēma? Planētas un zvaigznes Galaktikas un Visums Visuma evolūcija. Habla likums Zvaigžņu evolūcija Visuma apgūšanas perspektīvas Lielu ātrumu un enerģiju fizika

Διαβάστε περισσότερα