AGNIS ANDŽĀNS, DACE BONKA, ZANE KAIBE, LAILA ZINBERGA. Matemātikas sacensības klasēm uzdevumi un atrisinājumi 2009./2010.
|
|
- Λυσίμαχος Αμύντας Στεφανόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 AGNIS ANDŽĀNS, DACE BONKA, ZANE KAIBE, LAILA ZINBERGA Matemātikas sacensības klasēm uzdevumi un atrisinājumi 009./00. mācību gadā Rīga 0
2 A. Andžāns, D. Bonka, Z. Kaibe, L. Zinberga. Matemātikas sacensības klasēm. Uzdevumi un atrisinājumi 009./00. mācību gadā. Rīga: Latvijas Universitāte, 0. 7 lpp. Šajā darbā apkopoti to 009./00. mācību gadā notikušo matemātikas sacensību uzdevumi un atrisinājumi klašu skolēniem, kuru rīkošanā piedalījusies Latvijas Universitātes A. Liepas Neklātienes matemātikas skola. Dota uzdevumu tematiska klasifikācija. Darbs iekļauts Latvijas Islandes kopprojekta LAIMA ietvaros izdotajā grāmatu sērijā. Agnis Andžāns, Dace Bonka, Zane Kaibe, Laila Zinberga, 0 ISBN
3 Saturs Ievads... 4 Uzdevumi Konkurss 4.klasēm Tik vai... Cik?...6. Jauno matemātiķu konkurss Profesora Cipariņa klubs Latvijas. sagatavošanās olimpiāde matemātikā Latvijas 60. matemātikas olimpiādes. (Rajona) kārta Latvijas 60. matemātikas olimpiādes 3. (Republikas) kārta Latvijas 37. atklātā matemātikas olimpiāde Ieteikumi Atrisinājumi Konkurss 4.klasēm Tik vai... Cik? Jauno matemātiķu konkurss Profesora Cipariņa klubs Latvijas. sagatavošanās olimpiāde matemātikā Latvijas 60. matemātikas olimpiādes. (Rajona) kārta Latvijas 60. matemātikas olimpiādes 3. (Republikas) kārta Latvijas 37. atklātā matemātikas olimpiāde Uzdevumu sadalījums pa tēmām... 3 Sērija LAIMA matemātikā... 5 Sērijas LAIMA grāmatas
4 Ievads Vispārējā izglītībā matemātikas funkcijas ir ļoti daudzveidīgas. Tas ir priekšmets, kura ietvaros skolēni apgūst formālas spriešanas metodes. Mācoties matemātiku, izveidojas priekšstats par pierādījumu un attīstās iekšējā vajadzība pēc tā. Matemātika ir neaizstājams instruments citu priekšmetu (fizika, astronomija, informātika) apguvē. Neapšaubāma ir matemātisko uzdevumu loma bērna intelekta attīstībā. Vingrinoties matemātisko uzdevumu risināšanā, skolēna domāšana pakāpeniski pakļaujas loģiski saistošiem secināšanas likumiem. Loģiskajai domāšanai ir būtiska loma tālākajā personības intelektuālajā attīstībā. Matemātikas specifiskā loģika audzina skolēnos domāšanas kultūru, tā spēj ievērojami paplašināt skolēnu redzesloku. Nepārvērtējama ir dažāda līmeņa matemātikas olimpiāžu nozīme uzdevumu risināšanas popularizēšanā. Olimpiāžu kustība Latvijā ilgst vairākus desmitus gadu un ievērojami ietekmē matemātiskās kultūras attīstību. Latvijā regulāri tiek organizēti reģionāli un valsts mēroga ārpusskolas pasākumi matemātikā: Valsts matemātikas olimpiāde 3 kārtās (sagatavošanās, rajona un Valsts olimpiādes), Atklātā matemātikas olimpiāde, 4. klašu konkurss Tik vai... Cik?, Jauno matemātiķu konkurss klašu skolēniem, Profesora Cipariņa klubs visiem pamatskolēniem, Neklātienes Nodarbības vidusskolēniem, Mazā Matemātikas un Informātikas universitāte, matemātikas kursi skolēniem un skolotājiem vairākos Latvijas reģionos, kā arī citas aktivitātes. Matemātikas olimpiādes un konkursi izvirza skolēniem konkrētus mērķus un faktiski nosaka matemātikas padziļinātās apmācības standartus. Tie rada iespēju uz šo standartu fona salīdzināt savu un citu skolēnu, kā arī skolotāju (pasniedzēju) veikumu. Matemātikas olimpiādes un konkursi ar savu vērienīgumu un ar tajās esošo sacensību elementu piesaista plašu skolēnu un skolotāju sabiedrību. Kā piemēru varam minēt Atklāto matemātikas olimpiādi, kurā 009./00. m. g. piedalījās 500 skolēnu. Piedaloties matemātikas olimpiādēs un konkursos, skolēnam tiek dota iespēja izdarīt sev jaunus atklājumus. Taču jāievēro, ka šo atklājumu pamatā ir ilgstošs, neatlaidīgs, bieži vien visai grūts skolēna mācību darbs. Vienlaikus ar matemātisko zināšanu apgūšanu un padziļināšanu šajā procesā rūdās skolēnu raksturi, viņi veidojas kā personības. Risinot nestandarta uzdevumus, skolēns gūst matemātiskās domāšanas pieredzi un mācās izmantot pasaules matemātiskās izpratnes principus. Nestandarta uzdevumu atrisināšanai bieži nepieciešami nevis sarežģīti matemātiski pārveidojumi, bet prasme saskatīt uzdevumiem raksturīgu īpatnību, no kuras ar loģiskiem vai kombinatoriskiem spriedumiem var iegūt pilnīgu atrisinājumu. Daudzus nestandarta uzdevumus var atrisināt, izmantojot tikai vispārīgus spriešanas paņēmienus. Tā kā lielā daļā skolu ar matemātikas mācīšanu nodarbojas tikai pamatskolas matemātikas līmenī, skolēniem ir ierobežotas iespējas apgūt paaugstinātas grūtības uzdevumu risināšanu. Tāpēc liela nozīme ir šai un citām LU A.Liepas Neklātienes matemātikas skolas izdotajām grāmatām ar izstrādātiem olimpiāžu un konkursu uzdevumu atrisinājumiem. Ikviens no LU A. Liepas NMS izdotajiem materiāliem tiek sagatavots tā, lai ar to varētu strādāt ne tikai skolotāji vai paši apdāvinātākie skolēni, bet gan katrs interesents, kurš ir gatavs ieguldīt savā attīstībā laiku un pūles. Tieši interese un pašatdeve ir noteicošie faktori skolēnu izaugsmei un iespējai gūt panākumus. 4
5 Strādājot ar grāmatu, iesakām ar katru uzdevumu vispirms darboties patstāvīgi un, neielūkojoties mūsu piedāvātajos atrisinājumos, pēc iespējas pilnīgi un detalizēti pašam to atrisināt, kā arī rūpīgi pierakstīt atrisinājumu. Tādējādi Jūs attīstīsiet iemaņas un praktizēsieties patstāvīgi atrast un pielietot metodes uzdevumu risināšanā. Ja Jūs nezināt, kā var atrisināt attiecīgo uzdevumu, varat meklēt palīdzību otrajā grāmatas sadaļā Ieteikumi, kurā sniegtas norādes, kā nonākt pie mums zināmā atrisinājuma. Pēc uzdevuma patstāvīgas atrisināšanas iesakām tomēr ieskatīties arī grāmatā piedāvātos risinājumos un tos rūpīgi izpētīt, jo, pat ja Jūs uzdevumu esat atrisinājis pareizi, bet atšķiras pielietotā metode, mūsu metodes var noderēt tālākai attīstībai un citu uzdevumu risināšanai. Matemātikas sacensības, kuru uzdevumi ir apkopoti šajā grāmatā, tiek rīkotas ar LU A. Liepas Neklātienes matemātikas skolas iniciatīvu vai līdzdalību. Visu matemātikas sacensību visi uzdevumi, īsi atrisinājumi, rezultāti un arhīvi ir atrodami arī LU A. Liepas NMS mājas lapā Autori 5
6 UZDEVUMI. Konkurss 4.klasēm Tik vai... Cik?.. Pirmā kārta... Aprēķini izteiksmes : 9 vērtību! a) 7 b) 89 c) 6 d) 9 e) 0... Runcis Bazilio iekrāsotajā saulītē ierakstīja savu mīļāko skaitli un izpildīja darbību virkni, kas attēlota U.. zīmējumā. Kādu skaitli bija uzrakstījis Bazilio iekrāsotajā saulītē? : a) 6 b) 0 c) 8 d) 4 e) U..zīm...3. Automašīnas odometra (veikto kilometru skaitītāja) rādījums ir 99 skaitlis, kas vienādi izlasāms no abiem galiem. Cik vismaz kilometru automašīnai vēl jānobrauc, lai odometra rādījumus atkal būtu skaitlis, kas vienādi izlasāms no abiem galiem? a) b) 99 c) 990 d) 00 e)..4. Kāda daļa no trijstūra ir iekrāsota U.. zīmējum (gan dotajam trijstūrim visas trīs malas ir vienādas, gan arī mazajiem trijstūrīšiem visas malas ir savā starpā vienādas)? a) 6 b) 4 U..zīm. 6
7 c) 3 d) e)..5. Zīmējumā attēlotie trijstūri ABC, CDE, EFG un GHI ir vienādmalu trijstūri (t.i., katram no tiem visas malas ir vienāda garuma). Kāds ir lauztās līnijas ABCDEFGHI garums, ja nogriežņa AI garums ir 5 cm (skat. U.3. zīm.)? a) 5 cm b) 30 cm c) 45 cm d) cm e) nevar noteikt..6. Naturālie skaitļi a un b ir tādi, ka ir patiesa vienādība a + 3b = 5. Kurš no dotajiem apgalvojumiem ir patiess? a) a = 5 un b = b) a = un b = 4 c) b > 5 d) a < 7 e) a + b< Elektroniskais pulkstenis šobrīd rāda 0:07. Ātrākais pēc cik ilga laika pulksteņa rādījumā būs redzami tie paši četri cipari, tikai varbūt citā secībā? (Piezīme: pusnaktī pulkstenis rāda 00:00, plkst. vienos naktī 0:00 utt.) a) h 0 min. b) 4 h 0 min. c) 6 h 00 min. d) 0 h 55 min. e) 4 h 00 min...8. Baiba ir par gadu un mēnesi jaunāka nekā Elizabete. Baiba ir dzimusi 000.gada 9.janvārī. Kad ir dzimusi Elizabete? a) 00.gada 9.februārī b) 000.gada 9.decembrī c) 999.gada 9.februārī d) 999.gada 9.decembrī e) 998.gada 9.decembrī A B C D..9. Gliemezis rāpjas augšup pa metru augstu stabu. stundas laikā viņš uzrāpjas 0 cm uz augšu, tad viņam 0 min. jāatpūšas, kuru laikā gliemezis noslīd 5 cm uz leju, tad atkal stundu rāpjas uz augšu, pakāpjoties 0 cm, un pēc tam atkal 0 min. atpūtas laikā noslīd pa E F G H I U.3.zīm. 7
8 5 cm, utt. līdz sasniedz staba galu. Cik ilgā laikā šis gliemezis no zemes uzrāpsies staba galā? a) 0 stundās b) 3 stundās 0 min. c) diennaktī d) 5 stundās e) 6 stundās 40 min...0. Gvido ir sācis aizpildīt mini-sudoku kvadrātiņu (skat. U.4. zīm.), katrā rūtiņā ierakstot vienu ciparu, vai 3 tā, lai katrā rindā un katrā kolonnā visi trīs ierakstītie cipari būtu dažādi. Kādu ciparu var ierakstīt? vietā? a) tikai b) tikai c) tikai 3 d) vai 3 e) jebkuru ciparu, vai 3?... Diagrammā attēlots (skat. U.5. zīm.) kāda pasākuma apmeklētāju sadalījums pa vecuma grupām. No diagrammas nosaki, vai vairāk apmeklētāju bija pieaugušie (vismaz 8 gadus veci) vai nepilngadīgie (līdz 8 gadu vecumam)? pieaugušie (8 g. un vecāki) U.4.zīm. bērni (līdz 7 g. iesk.) pusaudži (8 g. -7 g.) U.5.zīm. a) pieaugušie vairāk b) nepilngadīgie vairāk c) pieaugušie un nepilngadīgie bija vienādā skaitā d) nevar noteikt.. Otrā kārta... Aprēķini izteiksmes ((( + ) + ) + ) : vērtību a) 9 b) 0 c) d) e) 3... Mārim pavisam ir 5 mīļi dzīvnieciņi kaķi un kanārijputniņi. Cik tieši no tiem ir kaķi, ja zināms, ka visiem pieciem dzīvnieciņiem kopā ir 6 kājas? 8
9 a) b) c) 3 d) 4 e) nevar noteikt..3. Plauktā ir z grāmatas zilos vākos, b grāmatas baltos vākos un s grāmatas sarkanos vākos. Zināms, ka sarkano grāmatu ir divreiz vairāk nekā balto, savukārt balto grāmatu ir par vairāk nekā zilo. Kura no dotajām izteiksmēm izsaka zilo, sarkano un balto grāmatu kopskaitu? a) z+ b s b) b + z+ c) 4 z + 6 d) 7 z e) 3 z Bērni no kartona gatavo rūķīšu mājiņas. Uz sagatavēm jau ir uzkrāsotas durvis un logi. No kuras sagataves viņi var izveidot tieši tādu mājiņu, kāda parādīta ierāmētajā zīmējumā (skat. U.6.zīm.)? a) b) c) Rūķīša mājiņa: d) e) U.6.zīm...5. Salīdzini! (Aplīšos ieraksti <, = vai >.) ) 009 santīmi ( lati 9 santīmi) 0 ) 4 s : min. s..6. Cik veidos pa U.7. zīmējumā attēlotajiem ceļiem var aiziet no punkta A uz punktu Z? Drīkst iet tikai virzienā pa labi vai uz augšu. Uzraksti visus iespējamos dažādos maršrutus! C D E B A R P K T S L Z N M U.7.zīm. 9
10 ..7. Bariņš bērnu iegāja kafejnīcā. Viņi ievēroja, ka brīvo vietu ir par mazāk nekā bērnu. Savukārt, ja apsēstos tikai visas meitenes, tad paliktu vēl brīvas vietas, bet ja apsēstos tikai visi zēni, tad paliktu brīvas vēl 3 vietas. Cik meitenes un cik zēni iegāja kafejnīcā?..8. Aplī stāv 6 rūķīši. Daži no viņiem vienmēr runā taisnību, bet citi vienmēr melo. Katrs rūķītis apgalvo: Abi mani kaimiņi ir meļi. Cik no šiem rūķīšiem ir tādi, kas vienmēr runā taisnību? Apskati visas iespējas un parādi piemērus!.3. Trešā kārta.3.. Aprēķini un atbildi izsaki decimetros! km 400 m : dm =.3.. Dotajā piramīdā (skat. U.8. zīm.) jāieraksta skaitļi pēc šāda likuma: katrā ķieģelītī jāieraksta skaitlis, ko iegūst sareizinot tos divus skaitļus, kas ierakstīti ķieģelīšos, uz kuriem balstās šis ķieģelītis. Aizpildi visu piramīdu! 3 U.8.zīm Tabulā attēloti kādas klases kontroldarba rezultāti (skat. U.9. zīm.). Pārējiem skolēniem kontroldarba vērtējums bija nesekmīgs. Cik skolēniem bija nesekmīgs vērtējums, ja klasē mācās 0 skolēni? Kura daļa no klases skolēniem kontroldarbā ieguva vismaz 7 balles? Attēlo šos rezultātus riņķa diagrammā (skat. U.0. zīm.)! Vērtējums (ballēs) Skolēnu skaits nesekmīgs Kopā 0 U.9.zīm. U.0.zīm.3.4. Dotajā vienādībā viens cipars aizstāts ar zvaigznīti * (aiz visām zvaigznītēm paslēpies viens un tas pats cipars). * * = * 0
11 Noskaidro, kāds cipars paslēpies aiz * un uzraksti pareizo vienādību! Pārbaudi, vai uzdevumam nevar būt vairākas atbildes!.3.5. Robots Bobs pārvietojas pa U.. zīmējumā attēloto labirintu (tumšās rūtiņas ir šķēršļi). Viņš sāk kustību vidējā rūtiņā bultiņas norādītajā virzienā. Bobs iet taisni, līdz atduras pret šķērsli vai labirinta malu, tad pagriežas pa labi un atkal iet taisni utt. Ja, pagriežoties pa labi, kustību taisni turpināt nav iespējams, Bobs apstājas. Uzzīmē Boba kustības maršrutu! Vai Bobs kaut kad apstāsies, vai arī turpinās kustību bezgalīgi ilgi? U..zīm Dots vienādmalu trijstūris (t.i., trijstūris, kuram visas malas ir vienāda garuma), kas U..zīm. attēlotajā veidā ir sadalīts 36 vienādos vienādmalu trijstūros. Sadali visu doto trijstūri divu veidu figūriņās: un tā, lai figūriņu būtu divas reizes vairāk nekā figūriņu veidu, kā to izdarīt.). Cik katra veida figūriņu ieguvi? (Pietiek parādīt vienu U..zīm..4. Ceturtā kārta.4.. Katrā kvadrātiņā ieraksti + vai zīmi tā, lai iegūtu pareizu vienādību! = Salīdzini! (Aplīšos ieraksti zīmi >, < vai =.) a) 3 dm + 7 mm 3 cm b) h 30 min. 3 min Uzraksti četrus skaitļus, kas var būt x vietā, lai iegūtā nevienādība būtu patiesa: x + 7> 3x Skaitļu piramīdā katrā ķieģelītī (sākot ar otro rindu) jāieraksta skaitlis, kas vienāds ar abu zem tā esošo skaitļu reizinājumu (skat. U.3. zīm.). Aizpildi tukšos ķieģelīšus!
12 4 3 U.3.zīm Uzzīmē 4 taisnes tā, lai tām būtu tieši 5 krustpunkti!.4.6. Zināms, ka 5 vienādas burkas, pilnas ar zemeņu ievārījumu, kopā sver 3 kg 500 g. Viena tāda tukša burka sver 00 g. Cik kg zemeņu ievārījuma nepieciešams, lai piepildītu pilnas 0 šādas burkas?.4.7. Dots U.4. zīmējumā redzamais kvadrāts, kas ar taisnām līnijām sadalīts 8 vienādos kvadrātos un 4 vienādos taisnstūros. a) Iekrāso no dotā kvadrāta! 6 U.4.zīm. b) Cik mazie kvadrāti palika neiekrāsoti?.4.8. Par labu sauksim tādu skaitli, kura pierakstā visi cipari ir dažādi, pie tam ir izmantoti tikai cipari, 3, 5, 7, 9. Uzraksti vislielāko labo skaitli!.4.9. Visi septiņi zīmējumā attēlotie riņķi ir vienādi (skat. U.5. zīm.). Kāds ir sešstūra ABCDEF perimetrs, ja viena riņķa rādiuss ir 3 cm? A F B E C D U.5.zīm Aplī stāv 0 rūķīši (skat. U.6. zīm.). Daži no tiem vienmēr melo (tos apzīmēsim ar m), bet pārējie vienmēr saka patiesību (tos apzīmēsim ar p). Katram rūķītim uzdeva vienu un to pašu jautājumu: Cik no abiem taviem kaimiņiem ir meļi? Visi rūķīši atbildēja: Divi.
13 U.6.zīm. Parādi vienu piemēru (aplīšos ieraksti p vai m), kā šie rūķīši var būt izvietojušies pa apli! 3
14 . Jauno matemātiķu konkurss.. Pirmā kārta... Atrodi kaut vienu naturālu trīsciparu skaitli, kura ciparu summa ir 9 un kuru sareizinot pašu ar sevi, iegūtā reizinājuma ciparu summa arī ir 9!... Uzzīmē tādu -stūri, kas, novelkot vienu taisni, var tikt sadalīts četros trijstūros! (Sadalījumā bez minētajiem 4 trijstūriem nekādas citas daļas nerodas; -stūris var būt arī ieliekts.)..3. Rindā bez atstarpēm pēc kārtas uzrakstīti visi naturālie pāra skaitļi, tādējādi iegūstot bezgalīgu ciparu virkni Kāds cipars šajā virknē atrodas 009.vietā?..4. Vai no visām piecām tetramino figūriņām (skat. U.. zīm.), izmantojot katru no tām tieši vienu reizi, var salikt taisnstūri? (Figūriņas drīkst pagriezt un apgriezt otrādi, taču taisnstūrī tās nedrīkst pārklāties un nedrīkst palikt tukšumi.) U..zīm...5. Vasaras brīvlaikā kādas klases skolēniem bija jālasa trīs grāmatas: Vinnijs Pūks un viņa draugi, Alise Brīnumzemē un Karlsons, kas dzīvo uz jumta. Vasaras beigās atklājās, ka grāmatu par Alisi ir izlasījuši 6 skolēni, grāmatu par Karlsonu 7 skolēni, bet grāmatu par Vinniju Pūku 8 skolēni. Cik skolēni var būt šajā klasē? (Katrs skolēns ir izlasījis vismaz vienu grāmatu, bet var būt (un var nebūt) arī tādi skolēni, kas izlasījuši divas vai trīs grāmatas.).. Otrā kārta... Atrisini skaitļu rēbusu! Dotajā saskaitīšanas piemērā katrs burts apzīmē vienu ciparu, dažādi burti apzīmē dažādus ciparus. Atrodi, kāds cipars atbilst katram burtam! P A S A K A A S A K A S A K A A K A + K A A Izmantojot katru no U.. zīmējumā redzamajām tetramino figūriņām tieši divas reizes, saliec taisnstūri 5 8 rūtiņas! 4
15 U..zīm...3. a) Vai U.3. zīm. attēlotajos aplīšos var ierakstīt visus skaitļus no līdz 9, katrā aplītī citu skaitli, tā, lai katrā pelēkajā aplītī ierakstītais skaitlis būtu vienāds ar blakus esošajos baltajos aplīšos ierakstīto skaitļu vidējo aritmētisko! Pietiek parādīt vienu veidu, kā to var izdarīt. b) Vai U.4. zīm. attēlotajos aplīšos var ierakstīt visus skaitļus no līdz 0, katrā aplītī citu skaitli, tā, lai izpildītos tas pats nosacījums, kas a) gadījumā? U.3. zīm. U.4. zīm...4. Cik dažādus U.5. zīm. attēlotā veida karogus var iegūt, ja katru trijstūri jānokrāso vienā no četrām krāsām: baltu, sarkanu, zilu vai zaļu, turklāt trijstūri, kam ir kopīga mala, jānokrāso dažādās krāsās? U.5. zīm...5. Andris, Jānis un Milda skolas kafejnīcā nopirka 5 vienādas bulciņas un 3 tases tējas, par pirkumu kopā samaksājot vairāk nekā latu. Savukārt Zane un Pēteris nopirka 3 tādas pašas bulciņas un tases tējas, par pirkumu kopā samaksājot mazāk nekā 6 santīmus. Noskaidro, cik maksāja bulciņa un cik tase tējas!.3. Trešā kārta.3.. Sagriez taisnstūri ar izmēriem 4 4 rūtiņas četrās vienādās daļās, kas nav taisnstūri! Griezuma līnijām jāiet pa rūtiņu malām..3.. Cik trijstūrus vienlaicīgi var izveidot no 6 stienīšiem, kuru garumi ir 0 cm, 0 cm, 30 cm, 40 cm, 50 cm un 60 cm? (Katrs stienītis ir vesela trijstūra mala; trijstūra virsotnes ir tikai punktos, kur satiekas divu stienīšu malu galapunkti.).3.3. Atrodi tādu piecciparu skaitli, kuram vienu cipars norāda, cik šajā skaitlī ir ciparu 4, desmitu cipars norāda, cik tajā ir ciparu 3, simtu cipars cik ciparu, tūkstošu cipars cik ciparu un desmittūkstošu cipars cik šajā skaitlī ir ciparu 0! Pietiek parādīt vienu piemēru! (Piemēram, skaitlī 003 ir divi cipari 0, un pa vienam ciparam,, 3 ; tātad skaitlis 003 neapmierina uzdevuma nosacījumus.) 5
16 .3.4. Veikalā pārdod trīsriteņus, divriteņus un kvadriciklus. Pavisam pārdošanā ir 0 braucamrīki un tiem visiem kopā ir 60 riteņi. Cik katra veida braucamrīki tiek pārdoti, ja zināms, ka trīsriteņu ir vismazāk? (Vai uzdevumam ir tikai viena atbilde? Apskati visas iespējas!).3.5. Pa apli ir ievietotas septiņu draugu Vinnija Pūka, Sivēntiņa, Trusīša, Pūces, Ēzelīša I-Ā, Tīģerīša un Mazulīša Rū mājiņas (skat.. zīm.). Vinnijs Pūks Mazulītis Rū Sivēntiņš Tīģerītis Ēzelītis I-Ā Pūce Trusītis U.6. zīm. Kādu rītu, kamēr visi vēl bija savās mājiņās, Vinnijs Pūks nolēma doties šādā pastaigā. Vispirms viņš aizgāja ciemos pie Sivēntiņa. Tad viņi abi devās mājiņas tālāk (tātad nonāca pie Pūces), un kopā ar Pūci devās trīs mājiņas tālāk u.t.t. ja šobrīd pastaigājas n draugi, tad viņi dodas n mājiņas tālāk no pēdējās apstāšanās vietas, un, apstājoties pie kādas mājiņas, tās iemītnieks pievienojas pastaigai, ja viņš ir mājiņā, vai arī atgriežas mājiņā, ja viņš tikko staigāja. (Var gadīties, ka vienam un tam pašam zvēriņam nākas vairākas reizes iet pastaigāties un sēdēt mājās.) Ja visi ir nonākuši savās mājiņās, pastaiga beidzas. Vai šī pastaiga kādreiz beigsies? Bet kā būtu gadījumā, ja pēc katras apstāšanās viņi mainītu iešanas virzienu?.4. Ceturtā kārta.4.. Reizināšanas piemērā (skat. U.7. zīm.) vairāki cipari aizstāti ar zvaigznītēm (ar vienu zvaigznīti viens cipars). Atjauno šo piemēru! 8 * * * * * * * * * * * * * 9 * 7 * 9 U.7.zīm..4.. Kad Zita paskatījās pulkstenī, viņa secināja, ka kopš diennakts sākuma pagājis piecreiz ilgāks laiks nekā vēl atlicis līdz pusnaktij. Cik tobrīd rādīja pulkstenis?.4.3. Kvadrāts sadalīts 4 4 rūtiņās (skat. U.8. zīm.). Izkrāso to vairākās krāsās, katru rūtiņu vienā krāsā, tā, lai nekādas divas rūtiņas, kam ir kopīga mala vai stūris, nebūtu nokrāsotas vienā krāsā! Cik dažādas krāsas vismaz ir jāizmanto? U.8.zīm Uz planētas Zvaigzne cilvēka laimi nodrošina tam piederoša burvju stīga. Katrs cilvēks, kuram pieder burvju stīga, var to sadalīt vai nu 7 vai 0 tik pat lielās burvju stīgās (šīs stīgas tad var sadalīt atkal 7 vai 0 citās stīgās). Planētas iedzīvotājiem ir zināms burvju likums, ka katra jaunizveidota burvju stīga ir uzreiz jānodod kādam planētas iedzīvotājam. Vairāku stīgu paturēšana sev, vai kādas aizlaišana postā nozīmētu visu burvju stīgu zudumu uz 6
17 mūžīgiem laikiem. Kādā brīdī uz planētas ir 00 iedzīvotāji. Vai iespējams, ka katram pieder burvju stīga, ja zināms, ka sākumā bija tieši viena burvju stīga?.4.5. Šaha galdiņam ar izmēriem 8 8 rūtiņas ir apmalīte, lai figūriņas nevarētu noripot no tā. Uz šāda galdiņa izvietojiet visus 8 domino komplekta kauliņus tā, lai nevienu kauliņu nevarētu pārbīdīt pa šaha galdiņu, to nepaceļot. Katrs domino kauliņš aizņem tieši divas šaha galdiņa rūtiņas..5. Piektā kārta.5.. Noskaidro, pēc kāda likuma tiek veidota sekojošā skaitļu virkne: 9, 8, 36, 63, 99, *, 98,... Kāds skaitlis ir aizstāts ar *? Uzraksti vēl divus nākamos šīs virknes locekļus un pamēģini aprakstīt vārdiem (vai ar formulām), kā šī virkne tiek veidota!.5.. Uzzīmē plaknē a) piecas taisnes tā, lai tām būtu tieši pieci krustpunkti; b) sešas taisnes tā, lai tām būtu tieši seši krustpunkti!.5.3. Mārim eksāmenā uzdoti 6 jautājumi, uz kuriem var atbildēt ar jā vai nē. Par katru pareizu atbildi Māris saņem 7 punktus; par katru nepareizu atbildi no viņa iegūtās punktu summas atņem 4 punktus. Ja Māris uz kādu jautājumu atsakās atbildēt, viņa punktu summu tas neietekmē. Sākumā Mārim bija 0 punktu, bet, beidzot eksāmenu, viņam bija punkts. Uz cik jautājumiem Māris atbildēja pareizi?.5.4. Vai ir iespējams izveidot tādu četru atsvaru komplektu, ka izmantojot tikai šos četrus atsvarus uz ar sviras svariem var nosvērt jebkuru veselu gramu skaitu no g līdz 5 g? Bet no g līdz 6 g? (Atsvarus drīkst likt tikai uz viena svaru kausa.).5.5. Futbola komandā ir spēlētāju. Trijiem no tiem ir uzvārds Bērziņš, četriem Kalniņš, diviem Krūmiņš, diviem Ezeriņš. Četriem vārds ir Andris, trim Kārlis, trim Roberts un vienam Jānis. Vārtsargu sauc Roberts Ezeriņš. Kā sauc pārējos spēlētājus, ja zināms, ka nav divu spēlētāju ar vienādu vārdu un uzvārdu? 7
18 3. Profesora Cipariņa klubs 3.. Pirmā kārta 3... Vai izteiksmē : : 3: 4 : 5: 6 var ievietot iekavas tā, lai izteiksmes vērtība būtu a) 5; b)? 3... Kādā veikalā visiem bērniem dod vienu un to pašu atlaidi, kas nav atkarīga no pirkuma kopējās summas. Andris nopirka somu un samaksāja 8 latus. Maija nopirka grāmatu un samaksāja 5 latus. Katrīna nopirka tādu pašu grāmatu tādā pašā somā un samaksāja 4 latus. Cik lielu atlaidi dod šajā veikalā? Vai var katrā rūtiņā ierakstīt pa vienam ciparam no līdz 5 tā, lai katrā rindā, katrā kolonnā un katrā ar biezajām līnijām norobežotajā apgabalā (skat. U3.. zīm.) visi cipari būtu dažādi? U3..zīm Iedomāsimies, ka sareizināti visi naturālie skaitļi no līdz 009 ieskaitot; katrs skaitlis ņemts kā reizinātājs vienu reizi. Rezultātam aprēķināta ciparu summa. Šai summai savukārt aprēķināta ciparu summa. Šai summai savukārt aprēķināta ciparu summa utt., kamēr iegūts viencipara skaitlis. Kāds tas ir? No vienādiem kvadrātiem izveidots rūtiņu režģis (skat. U3.. zīm.); kvadrāta malas garums ir. Aprēķināt attālumu no punkta A līdz nogrieznim BC. B A U3..zīm Katrs no 4 rūķīšiem A, B, C, D vai nu vienmēr melo, vai vienmēr runā patiesību. Kādu rītu A paziņoja, ka B ir teicis, ka C apgalvo, ka D ir stāstījis, ka A ir melis. Cik meļu var būt starp šiem 4 rūķīšiem? Kvadrāts sastāv no a) 6 6, b) 7 7 vienādām kvadrātiskām rūtiņām. Kādu lielāko skaitu rūtiņu var nokrāsot, lai nekādām divām nokrāsotām rūtiņām nebūtu ne kopēja mala, ne kopējs stūris? Vai skaitļu rindā C 8
19 starp katriem diviem blakus esošiem skaitļiem var ierakstīt + zīmi vai zīmi tā, lai iegūtās izteiksmes vērtība būtu a) 009, b), c)? Taisnstūris sastāv no 4 5 vienādām kvadrātiskām rūtiņām. Vai to var sagriezt 5 tādos gabalos, kādi redzami U3.3.zīm.? (Visiem griežot iegūtajiem gabaliem jābūt dažādiem.) U3.3.zīm Sastādīt matemātikas uzdevumu, kas atspoguļo kādu pagājušās vasaras notikumu, un atrisināt to. Sniedzam dažus veiksmīgākos uzdevumus (atrisinājumus skatiet grāmatas Atbilžu un atrisinājumu daļā): ) Autori: 9.klases skolēnu komanda LIA, Daugavpils 7.vidusskola. Pieciem skolēniem A, B, C, D, E katram rokā ir pa vienam čiekuram vai nu priedes, vai egles. Kāds čiekurs ir rokā katram skolēnam, ja zināms, ka divi no čiekuriem ir egles; tieši vienam no skolēniem A, B, C rokās ir egles čiekurs; no skolēniem B, C, D diviem ir priedes čiekuri; skolēniem A un C ir vienāda veida čiekuri. ) Autors: Andris Locāns, 9.klase, Gulbenes novada Valsts ģimnāzija. Andrim un Elīnai bija uzdots sakrāmēt malku. Zināms, ka Andris minūtē sakrauj grēdā par tik pagalēm vairāk nekā Elīna, cik minūtēs Elīna sakrauj 4 pagales. Gan Andris, gan Elīna minūtē sakrauj veselu skaitu pagaļu. Andris katru piekto minūti atpūšas. Elīna patvaļīgi var izvēlēties, kad ieturēt pauzi, kas ilgst vienu minūti, turklāt pēc katras pauzes nākamajā minūtē viņa sakrauj par 4 pagalēm vairāk nekā parasti minūtē. Kurš būs sakrāvis vairāk pagaļu pēc 30 minūtēm kopš darba sākšanas? 3.. Otrā kārta 3... Labo Rūķīšu karaļvalstī ir 6 pilsētas. Tās savieno ceļi, kā parādīts U3.4. zīm. U3.4.zīm. Vai var uz katra ceļa ieviest vienvirziena satiksmi tā, lai no katras pilsētas varētu aizbraukt uz katru citu, braucot pa vienu vai, augstākais, diviem ceļiem? 3... Dots, ka a, b, c, d pozitīvi skaitļi. Pierādīt, ka 9
20 a+ b b+ c+ d b+ c c+ d d + a >. c+ d + a d + a+ b a+ b+ c Dots 00-ciparu naturāls skaitlis, kurā neviens cipars nav 0. Katri divi blakus esoši šī skaitļa cipari virzienā no skaitļa sākuma uz beigām veido divciparu skaitli, kas dalās ar vismaz 3 dažādiem pirmskaitļiem. Atrast šī skaitļa 50-to ciparu Doti 9 dažādi pozitīvi skaitļi. Neviens no tiem nav mazāks par un nav lielāks par 60. Vai taisnība, ka katru divu skaitļu attiecība var būt lielāka par 3, ja zināms, ka visi skaitļi ir a) naturāli, b) racionāli? Uz riņķa līnijas atzīmēti 7 punkti, kas to sadala 7 vienādos lokos. Izmantojot tikai lineālu un zīmuli, konstruēt riņķa centru Tabula sastāv no 3 3 rūtiņām; katrā rūtiņā ierakstīts naturāls skaitlis. Vai var būt, ka vienā rindiņā ierakstīto skaitļu summa ir 009, vienā kolonnā ierakstīto skaitļu summa ir 00, bet pārējās rindās un kolonnās visas ierakstīto skaitļu summas dalās ar 3? Trijstūrī ABC visas malas ir vienādas; punkts M atrodas tā iekšpusē. Pierādīt, ka eksistē trijstūris, kura malu garumi ir MA, MB un MC! Vai līdzīgs apgalvojums ir pareizs arī, ja M atrodas ārpus ABC? Kvadrāts sastāv no 4 4 vienādām kvadrātiskām rūtiņām, kas izkrāsotas šaha galdiņa kārtībā (skat. U3.5. zīm.) Rūtiņā A atrodas skudra. Ar vienu gājienu viņa var aizrāpot no rūtiņas, kurā atrodas pirms gājiena, uz citu rūtiņu, kurai ar iepriekšējo ir kopēja mala. Skudrai jāveic 5 gājieni un gala rezultātā jābūt apmeklējušai visas rūtiņas (rūtiņa A skaitās jau apmeklēta sākumā). Kurās rūtiņās skudra var beigt savu kustību? A U3.5.zīm Kvadrāts sastāv no 5 5 vienādām kvadrātiskām rūtiņām. Kāds mazākais rūtiņu daudzums no tā jāizgriež, lai no atlikušās daļas nevarētu izgriezt nevienu no U3.6. zīm. attēlotajām figūrām? U3.6.zīm Dots, ka n naturāls skaitlis, kura pierakstā izmantoti tikai cipari 0, un. Skaitļa 5n ciparu summa ir 009. Kāda ir skaitļa n ciparu summa? 0
21 3.3. Trešā kārta Atrodiet divus naturālus skaitļus, no kuriem viens ir divas reizes lielāks par otru un kas abi kopā satur visus 0 ciparus, katru tieši vienu reizi. Pietiek uzrādīt vienu piemēru Kas lielāks: 5 5 vai 0 9? Plaknē uzzīmēta viena riņķa līnija un 3 taisnes. Kādā lielākajā skaitā daļu tās var sadalīt plakni? Taisnstūris sadalīts 9 mazākos taisnstūros (skat. U3.7. zīm.). Četru taisnstūru perimetri zināmi; tie uzrādīti zīmējumā. Kādās robežās var mainīties vidējā taisnstūra perimetrs?? 3 4 U3.7.zīm Vai var pa apli izrakstīt naturālos skaitļus no līdz 4 ieskaitot, katru tieši vienu reizi tā, lai katru divu blakus uzrakstīto skaitļu starpība būtu vai nu 3, vai 4? Vai naturālos skaitļus no 00 līdz 009 ieskaitot var sadalīt divās grupās tā, lai būtu vienādas gan grupās ietilpstošo skaitļu summas, gan to kvadrātu summas? Kāda ir minimālā ciparu summa naturālam desmitciparu skaitlim, kas dalās ar 33? Vai jūs varat izdomāt trīs trijstūrus tā, lai no tiem varētu salikt gan trijstūri, gan izliektu četrstūri, gan izliektu piecstūri? Saliekot daļas nedrīkst pārklāties, bet vajadzības gadījumā atļauts tās apgriezt ar apakšu uz augšu Rindā novietotas 0 pēc ārējā izskata vienādas monētas. Zināms, ka dažas (vismaz viena) no kreisā gala pēc kārtas novietotas monētas sver katra 7 gramus, bet pārējās monētas (vismaz viena) sver katra 8 gramus. Doti sviras svari bez atsvariem. Kā ar divām svēršanām noskaidrot, cik sver katra monēta? Sastādiet paši jaunu, āķīgu matemātikas uzdevumu, kas satur skaitli 00; atrisiniet to! Sniedzam dažus veiksmīgākos uzdevumus (atrisinājumus skatiet grāmatas Atbilžu un atrisinājumu daļā): ) Autors: Ieva Šķestere, 8.klase, Draudzīgā Aicinājuma Cēsu Valsts ģimnāzija. Starp cipariem ievietojiet aritmētisko darbību zīmes un iekavas tā, lai iegūtās izteiksmes vērtība būtu 00! ) Autors: Luka Ivanovskis, 8.klase, Rīgas Zolitūdes ģimnāzija. Profesoram Cipariņam bija apnikuši viņa daudzie ciemiņi. Lai varētu atpūsties, viņš pie durvīm pielika kodu atslēgu, kuru varēja atslēgt, ja, izmantojot visus ciparus no līdz 9 (tieši tādā secībā), aritmētiskās darbību zīmes (ne obligāti visas) un iekavas, tika sastādīta izteiksme, kuras vērtība ir 00. Turklāt katru dienu durvju atslēgšanai bija nepieciešams sastādīt citu izteiksmi. Vai profesora Cipariņa ciemiņi tomēr varēs viņu apciemot katru dienu veselu nedēļu?
22 3.4. Ceturtā kārta Dots, ka n naturāls skaitlis. Pierādiet, ka n n dalās ar un n 3 n dalās ar Naturālu skaitļu A un B pierakstā kopā ir 9 cipari. Tie visi ir dažādi, un neviens no tiem nav 0. Vai var gadīties, ka reizinājums A B beidzas ar 4 nullēm? Jānītis raksta rindā augošā secībā visus naturālos skaitļus sākot ar, nevienu neizlaižot un katru skaitli rakstot tieši vienu reizi. Vai var gadīties, ka pēc kāda skaitļa uzrakstīšanas ciparu rindā būs vairāk nekā ciparu? Dots, ka a > b> c> 0 un x > y> z> 0. Pierādīt, ka ax + by+ cz> ay+ bz+ cx Rūtiņu lapā uzzīmēts kvadrāts, kas sastāv no 64 rūtiņām. Parādiet, ka šo kvadrātu var sagriezt 4 daļās tā, lai no tām varētu izveidot vienu 6 rūtiņu kvadrātu un vienu 49 rūtiņu kvadrātu, kuram centrā ir vienu rūtiņu liels caurums. Griezumiem jāiet pa rūtiņu līnijām. Pietiek parādīt vienu veidu, kā to izdarīt Aprēķināt U3.8. zīm. parādītās slēgtās lauztās līnijas veidoto atzīmēto leņķu lielumu summu. (Šie leņķi ne noteikti ir vienādi savā starpā.) U3.8.zīm Kādā klasē ir 3 skolēni. Bioloģijas skolotājs vēlas noorganizēt pulciņu ar dalībniekiem. Matemātikas skolotājs vēlas noorganizēt pulciņu ar 0 dalībniekiem. Kuram pulciņam iespējamo dalībnieku sastāvu ir vairāk? (Skolēni, kas to vēlas, var piedalīties arī abos pulciņos.) Skaitļu virkni ; ; ; 3; 5; 8; 3; ;... (katrs loceklis, sākot ar trešo, vienāds ar abu iepriekšējo summu) sauc par Fibonači skaitļiem. Kāda ar Fibonači skaitļiem saistīto fakta pamatojuma Jūs spējat saskatīt U3.9. zīm.? U3.9.zīm Skaitļa visi naturālie dalītāji ir ; ; 3; 4; 6;. Nav grūti pārbaudīt, ka = Formulējiet un pamatojiet līdzīgu īpašību patvaļīgam naturālam skaitlim Uz rūtiņu papīra (rūtiņas malas garums ir ) uzzīmēts daudzstūris, kura malas iet pa rūtiņu līnijām; daudzstūra iekšpusē nav nevienas rūtiņu virsotnes. Piemēru skat. U3.0. zīm. a) vai šī daudzstūra perimetrs var būt 0?
23 b) kāds var būt šī daudzstūra laukums, ja tā perimetrs ir 50? U3.0.zīm Piektā kārta Ar kādu lielāko naturālu skaitli dalās gan 57, gan 47? Rūtiņu papīra lapā 57 rūtiņas nokrāsotas melnas. Pierādiet: var atrast 5 melnas rūtiņas tā, lai nekādām divām no tām nebūtu ne kopīgas malas, ne kopīga stūra Turnīrā piedalās 8 komandas. Katrai ar katru citu jāspēlē tieši vienu reizi. Neviena komanda vienā dienā nevar piedalīties vairāk kā vienā spēlē. Ar kādu mazāko dienu skaitu pietiek, lai nospēlētu visas spēles? Šaurleņķu trijstūrī malu garumi ir 0, un. Riņķa līnija atrodas trijstūra iekšpusē. Pierādiet, ka tās rādiuss ir īsāks par Burtu virkni sauc par stabilu, ja kāds tās sākuma fragments sakrīt ar kādu beigu fragmentu. Piemēram, stabilas ir virknes a b c a, a d a d u.tml. Uzrakstiet burtu virkni, kas kļūst stabila, ja tai galā pieraksta ) jebkuru no burtiem a; b; c, ) jebkuru no burtiem a; b; c; d; e Izliekta četrstūra diagonāles sadala to četros trijstūros. Katra trijstūra laukums kvadrātcentimetros izsakās ar pirmskaitli. Vai visi šie pirmskaitļi var būt dažādi? Šaurleņķu trijstūrī atzīmēts vienas malas viduspunkts. Kā, izmantojot lineālu un cirkuli, konstruēt visus šī trijstūra augstumus, ja cirkuli atļauts izmantot tikai vienreiz? Atverot iekavas, nav grūti pārbaudīt vienādību ( a + b )( x + y ) = ( ax+ by) + ( ay bx ) Izdomājiet līdzīgu vienādību, kuras kreisajā pusē ir ( a b + c + d )( x + y + z + t ) labajā pusē četru iekavu kvadrātu summa Aprēķinot tabulas 3... (n ) n 3... (n ) n (n ) 3 n n n n 3... n (n ) n n skaitļu summu divos dažādos veidos, pierādiet vienādību ( n ) 3 + n 3 = ( ) , n ja n patvaļīgs naturāls skaitlis. +, bet 3
24 Maija iedomājusies vienu no burtiem a; c; e. Andris drīkst uzdot jautājumus, uz kuriem iespējamas atbildes jā ; nē ; nezinu un nevaru zināt (varbūt tikai divas vai pat viena no tām). Ar kādu mazāko jautājumu skaitu Andris var noskaidrot Maijas iedomāto burtu? Uzskatām, ka Maija vienmēr atbild pareizi Sestā kārta Atrodi kaut vienu tādu septiņciparu skaitli, kam visi cipari ir dažādi un kas dalās ar katru savu ciparu! Vai eksistē arī kāds astoņciparu skaitlis ar tādu pašu īpašību? Pircējs veikalā nopirka torti par 5 latiem, konfektes par Ls,80, kā arī sešas vienādas šokolādes un 3 vienādas cepumu kārbas, kuru cenu viņš nezināja. Kasieris pieprasīja no viņa 9 latus un 8 santīmus. Pircējs aizrādīja, ka kasieris kļūdījies. Kāpēc pircējs par to ir pārliecināts? Šokolādes tāfelīte sastāv no 0 0 maziem kvadrātiņiem. Kāds ir mazākais lauzumu skaits, ar kuriem tāfelīti var sadalīt 00 gabaliņos? Uz šaha galdiņa 8 8 novietotas 44 dāmas. Pierādi, ka katra no tām apdraud vismaz vienu citu dāmu! Piezīme. Uz viena lauciņa ir novietota ne vairāk kā viena dāma. Dāma apdraud visus tos lauciņus, kas atrodas vienā rindā, vienā kolonnā vai uz vienas diagonāles ar to Doti 3 trauki, kuru tilpumi ir 8, 5 un 3 litri. Trauks, kura tilpums ir 8 l, piepildīts ar ūdeni, abi pārējie ir tukši. Kā jārīkojas, lai 5 l traukā būtu ielieti tieši 4 l ūdens? Uz traukiem nav nekādu iedaļu; izmantot citus traukus bez dotajiem aizliegts Zane izcepa torti trijstūra veidā, turklāt visas trijstūra malas ir dažāda garuma. Brālis pagatavoja kasti, bet tortes spoguļattēla formā (U3.. zīm.). Kā torti ievietot kastē, ja to drīkst sagriezt gabalos, taču nedrīkst likt ar krēmu uz leju? U3..zīm Viens četrstūris atrodas otra četrstūra iekšpusē. Vai var gadīties, ka iekšējā četrstūra diagonāļu summa ir lielāka nekā ārējā četrstūra diagonāļu summa? Ja ir iespējams, uzrādi piemēru, ja nē, pamato, kāpēc nav iespējams! Klasē ir 30 skolēni. Viņi nolēma cits citu apciemot. Viens skolēns vienā dienā var izdarīt vairākus apciemojumus. Katrs skolēns katru dienu var vai nu apciemot citus skolēnus (tad šajā dienā pie viņa neviens nenāk), vai arī sēdēt mājās (tad citi var apciemot viņu). a) Pierādi, ka 0 dienās visi skolēni var apciemot cits citu! b) Pierādi, ka ar 4 dienām nepietiek, lai katrs skolēns apciemotu ikvienu citu! Plaknē ir uzzīmēts 7º leņķis. Izmantojot cirkuli un lineālu, konstruē º lielu leņķi! Kāda valsts izvietota uz vairākām salām. Starp dažām salām izveidota kuģīšu satiksme, katrs reiss ilgst vienu dienu. Turklāt no katras salas var nokļūt uz jebkuru citu (iespējams, ka jābrauc ar dažādiem kuģīšiem vairākas dienas). 4
25 Valstī dzīvo laupītājs un detektīvs. Detektīvs brauc katru dienu, bet laupītājs ir māņticīgs un piektdienās nebrauc. Gan laupītājs, gan detektīvs vienmēr zina, kur atrodas otrs. Kā detektīvs var noķert laupītāju, ja a) pavisam ir 3 salas, b) pavisam ir 00 salas? 5
26 4. LATVIJAS. SAGATAVOŠANĀS OLIMPIĀDE MATEMĀTIKĀ 4.5. Piektā klase Sagriezt katru no U4..zīmējumā attēlotajām figūrām divās daļās, kas ir vienādas gan pēc formas, gan pēc izmēriem. Griezumiem nav noteikti jāiet pa rūtiņu līnijām. Pietiek parādīt vienu veidu katrai figūrai. U4..zīm Kvadrāts sastāv no 3 3 rūtiņām. Vai var katrā rūtiņā ierakstīt veselu skaitli no līdz 9 (tiem visiem jābūt dažādiem) tā, lai katrās divās rūtiņās ar kopīgu malu ierakstīto skaitļu starpība būtu vismaz 3? Pa apli izrakstīti naturāli skaitļi no līdz 0, katrs tieši vienu reizi. Katriem diviem blakus uzrakstītiem skaitļiem aprēķināja to reizinājumu. Cik no šiem reizinājumiem var dalīties ar 3? Kvadrāts sastāv no 7 7 rūtiņām. No tām rūtiņas nokrāsotas. Pierādīt: kvadrātā var atrast tādu taisnstūri, kas sastāv no 3 4 rūtiņām un kurā nokrāsotas ne vairāk kā rūtiņas. Vai uzdevuma apgalvojums paliek spēkā, ja kvadrātā nokrāsotas rūtiņas? Tabulā ierakstīti skaitļi, kā parādīts U4..zīmējumā ar vienu gājienu var mainīt vietām vai nu divas rindiņas vai divas kolonnas. Vai, vairākkārt izpildot šādus gājienus, var iegūt tādu tabulu, kāda redzama U4.3.zīmējumā? U4..zīm U4.3.zīm Sestā klase Vai U4.4.zīmējumā parādīto figūru var sagriezt divās daļās, no kurām var salikt kvadrātu? Griezumiem nav noteikti jāiet pa rūtiņu līnijām. Daļas saliekot nedrīkst pārklāties. U4.6.zīm. 6
27 4.6.. Cik ir tādu desmitciparu naturālu skaitļu, kas dalās ar 9 un kuru pierakstā nav citu ciparu kā vien varbūt 0 un 7? Vai kvadrātā, kas sastāv no 3 3 rūtiņām, katrā rūtiņā var ierakstīt veselu skaitli no līdz 9 (tiem visiem jābūt dažādiem) tā, lai katrās divās rūtiņās ar kopīgu malu ierakstīto skaitļu starpība būtu vismaz 4? Vai kāds naturāls skaitlis, kuram katrs nākošais cipars (izņemot pirmo) ir mazāks par iepriekšējo, dalās ar? Kvadrāts sastāv no 8 8 rūtiņām. Sprīdītis sāk ceļu vienā no tām. Viņam atļauti divu veidu gājieni: taisni (no rūtiņas uz citu rūtiņu, kurai ar pašreizējo ir kopīga mala) un slīpi (no rūtiņas uz citu rūtiņu, kurai ar pašreizējo ir kopīgs stūris, bet ne kopīga mala). Taisnos un slīpos gājienus jāizdara pamīšus; ar 64-to gājienu Sprīdītim jāatgriežas sākotnējā rūtiņā un jābūt apmeklējušam visas rūtiņas. Vai Sprīdītis to var izdarīt? 4.7. Septītā klase Kāds lielākais daudzums pirmskaitļu var būt starp pēc kārtas ņemtiem naturāliem skaitļiem? Doti 4 punkti A, B, C, D. No taisnēm AB, AC, AD, BC, BD, CD vismaz piecas ir dažādas. Pierādīt, ka visas sešas taisnes ir dažādas Pa riņķa līniju izrakstīti 5 dažādi veseli skaitļi. Katri divi blakus uzrakstīti skaitļi sareizināti; apzīmēsim iegūtos reizinājumus ar a; b; c; d; e. Vai reizinājums abcde var būt a) 4, b) 44, c) 009? Pierādīt: starp jebkuriem 6 naturāliem skaitļiem, kas nedalās ar 0, var atrast divus tādus, kuru summa vai starpība dalās ar Uz tāfeles uzrakstīti divi naturāli skaitļi a un b. Ar vienu gājienu var aprēķināt skaitļus a b un b a un, ja tie abi ir naturāli, nodzēst abus sākotnējos skaitļus un to vietā uzrakstīt iegūtos. Ja kāds no iegūtajiem skaitļiem ir 0 vai negatīvs, process beidzas. Kādām a un b vērtībām process var turpināties bezgalīgi? 4.8. Astotā klase Ar max ( s; t) saprotam lielāko no skaitļiem s un t. Piemēram, max ( 3; 5) = 5; ( 4; 4) 4 Dots, ka a, b, c, d konstantes un funkcija y = ( ax+ b; cx+ d) argumentu x). Pierādīt, ka a= c. max =. max ir lineāra funkcija (ar Ir zināms, ka no apgalvojumiem x 3 dalās ar ; x 3 dalās ar 4, x 3 dalās ar 8, x 3 dalās ar 6 vismaz viens ir patiess un vismaz viens ir aplams (x ir naturāls skaitlis). Kuri apgalvojumi ir patiesi, kuri aplami? Trijstūra ABC iekšpusē atrodas tāds punkts O, ka AO = BO= CO. Pierādīt, ka AOB= ACB. 7
28 Dotas 00 pēc ārējā izskata vienādas monētas; to masas visas ir atšķirīgas. Doti arī sviras svari bez atsvariem. Uz katra kausa uzliekot pa vienai monētai, smagākā no tām nosveras uz leju. a) Pierādīt, ka gan smagāko monētu vienu pašu, gan vieglāko monētu vienu pašu var atrast, izdarot 009 svēršanas. b) Vai abas šīs monētas gan smagāko, gan vieglāko var atrast, izdarot mazāk nekā 4000 svēršanas? Dots, ka 0 < x <, 0 < y <, 0 < z <, 0 < t <. Pierādīt, ka vismaz viens no skaitļiem x( y), y( z), z( t), t( x) nepārsniedz Devītā klase Dots, ka x un y reāli skaitļi. Pierādīt, ka ( xy x y) x + y Dots, ka x < y< z< t< v. Andris aprēķināja šo piecu skaitļu summas pa diviem. Trīs mazākās summas iznāca 3; 36; 37, bet divas lielākās iznāca 48 un 5. Kādas ir iespējamās x; y; z; t; v vērtības? Kvadrāta ABCD centrs ir O. Ārpus kvadrāta konstruēti divi vienādi vienādsānu trijstūri BCJ un CDK ( BJ = CJ un CK = DK ). Ar M apzīmējam CJ viduspunktu. Pierādīt, ka OM BK Uz galda atrodas 7 kartītes; uz tām uzrakstīti cipari 0; ; ; 3; 4; 5; 6 (uz katras kartītes cits cipars). Divi spēlētāji pēc kārtas ņem pa vienai kartītei. Tas, kurš pirmais var no savām kartītēm izveidot veselu pozitīvu skaitli, kas dalās ar 7, uzvar. Kurš uzvar pareizi spēlējot tas, kas izdara pirmo, vai tas, kas izdara otro gājienu, vai arī spēle beidzas neizšķirti? Kuri naturālie skaitļi x apmierina vienlaicīgi visas sekojošās prasības: x 009, x dalās ar 5, x + dalās ar 7, x + dalās ar 9, x + 3 dalās ar? 8
29 5. Latvijas 60. matemātikas olimpiāde. (Rajona) kārta 5.5. Piektā klase Vai var pa apli izrakstīt naturālos skaitļus no līdz katru tieši vienu reizi tā, lai katru divu blakus uzrakstītu skaitļu starpība būtu vai nu, vai? Andris pieraksta datumu kā naturālu skaitli, bez atstarpes rakstot vienu aiz otra dienas numuru mēnesī un mēneša numuru gadā. Piemēram,.jūliju viņš pieraksta kā 7, bet 8.septembri kā 89. Cik ir tādu naturālu skaitļu, kas ir vairāk nekā viena datuma pieraksti Andra sistēmā? Kādu lielāko daudzumu trijstūrīšu var iekrāsot U5..zīm. redzamajā figūrā, lai nekādiem diviem iekrāsotiem trijstūrīšiem nebūtu ne kopīga mala, ne kopīgs stūris? U5..zīm Kvadrāts sastāv no 5 5 rūtiņām. Vai to var sagriezt 5 gabalos, lai viens būtu tāds, kāds redzams U5..zīmējumā, bet pārējie četri būtu savā starpā vienādi? U5..zīm Astoņi rūķīši katrs uzzinājuši vienu jaunu ziņu (katrs citu). Katram mājās ir telefons, un viena saruna ilgst vienu stundu. Tās laikā abi runātāji pagūst viens otram izstāstīt visus jaunumus. Kāds ir mazākais stundu skaits, kuru laikā visi rūķīši var uzzināt visus jaunumus? 5.6. Sestā klase Pieci rūķīši sanesa savā namiņā kastes ar dārgakmeņiem. Katru kasti nesa tieši divi rūķīši. Vai var gadīties, ka katrs rūķītis piedalījās tieši triju kastu nešanā? Vai tas varētu notikt, ja kastu nešanā piedalītos tieši četri rūķīši? Vai var atrast tādus veselus skaitļus a un b, ka ) a 7 b 3=, ) a 39 b 9=? 9
30 Tabula sastāv no 5 5 kvadrātiskām rūtiņām. Vai var katrā rūtiņā ierakstīt pa naturālam skaitlim tā, lai vienlaicīgi ) visu ierakstīto skaitļu summa būtu nepāra skaitlis, ) katrā tādā figūrā (L-figūra), kāda attēlota U5.3.zīmējumā (tā var būt novietota arī citādi), ierakstīto skaitļu summa arī būtu nepāra skaitlis? U5.3.zīm Klases šaha turnīrā piedalās 0 dalībnieki; katrs spēlē ar katru vienu reizi. Par uzvaru piešķir punktu, par neizšķirtu punkta, par zaudējumu 0 punktus. Nolemts, ka klases lielmeistara nosaukumu piešķirs tiem, kas izcīnīs vismaz 7 punktus. Kāds lielākais skolēnu skaits šajā turnīrā var iegūt lielmeistara nosaukumu? Deviņi rūķīši katrs uzzinājuši vienu jaunu ziņu (katrs citu). Katram mājās ir telefons, un viena saruna ilgst vienu stundu. Tās laikā abi runātāji pagūst viens otram izstāstīt visus jaunumus. Kāds ir mazākais stundu skaits, kuru laikā visi rūķīši var uzzināt visus jaunumus? 5.7. Septītā klase Rindā no sākuma bija uzrakstīti 009 vieninieki. Ar vienu gājienu nodzēš divus pirmos rindā esošos skaitļus un tās otrā galā pieraksta abu nodzēsto skaitļu summu. Šādus gājienus atkārto, līdz rindā paliek tikai viens skaitlis Dots, ka cik gājienu tiks izdarīti? atrast vienīgo palikušo skaitli. 3 4 x = y un x 5 = y. Atrast x un y, ja tie ir pozitīvi skaitļi Cik ir tādu naturālu skaitļu x robežās no līdz 00 ieskaitot, ka ( x + )( x+ )( x+ 3) dalās ar 343? Kvadrātisks režģis sastāv no 4 4 vienādām kvadrātiskām rūtiņām. Kādu lielāko daudzumu nogriežņu, kas kalpo par rūtiņu malām, var nokrāsot tā, lai nevienai no 6 rūtiņām nebūtu nokrāsotas visas malas? Seši rūķīši katrs uzzinājuši vienu jaunu ziņu (katrs citu). Katram mājās ir telefons, un viena saruna ilgst vienu stundu. Tās laikā abi runātāji pagūst viens otram izstāstīt visus jaunumus. Kāds ir mazākais stundu skaits, kuru laikā visi rūķīši var uzzināt visus jaunumus? 5.8. Astotā klase Kuru no skaitļiem un (0 )(03 )...(99 ) sadalot pirmskaitļu reizinājumā, iegūst vairāk dažādu pirmskaitļu? Par cik vairāk? (Paskaidrojums: 4= 3 satur divus dažādus pirmskaitļus un 3.) 30
31 5.8.. Trijstūrī ABC divas malas ir vienādas savā starpā, un ABC = 0. Pierādiet, ka 3 AC > AB Četrciparu skaitlim pārlika ciparus citā kārtībā. Pierādīt: sākotnējā un iegūtā skaitļa starpība dalās ar Vai eksistē tādi skaitļi a, b, c, a, b, c, ka vienādība x + y + = a x+ b y+ c a x+ b y+ c ir identitāte? ( ) ( )( ) Katras divas no 6 lampām savienotas ar baltu vai sarkanu vītni. Pierādīt: var atrast tādas 3 lampas, kuras visas savā starpā savienotas ar vienas krāsas vītnēm Devītā klase Atrodiet kaut vienu kvadrātvienādojumu ar veseliem koeficientiem, kam viena no saknēm ir a) +, b) Piezīme. Katrā uzdevuma daļā runā par citu kvadrātvienādojumu Divas riņķa līnijas krustojas. To rādiusu garumi ir R un r, bet attālums starp to centriem ir d. Vienā no abu riņķa līniju krustpunktiem tām abām novilktas pieskares. Pierādīt: šīs pieskares ir perpendikulāras viena otrai tad un tikai tad, ja R + r = d Šaurleņķu trijstūra ABC iekšpusē dots punkts P. Pierādīt: attālumu summa no P līdz ABC malām nav garāka par ABC garāko augstumu Ap apaļu galdu sēž zēni un meitenes, zēnu ir trīs reizes vairāk nekā meiteņu. Tādu vietu, kur blakus sēž zēns un meitene, ir divreiz mazāk nekā pārējo vietu (t.i., tādu, kur blakus sēž vai nu zēns un zēns, vai meitene un meitene). Kāds ir mazākais iespējamais bērnu skaits? x Atrisiniet naturālos skaitļos vienādojumu sistēmu y + y= z. + x= t 3
32 6. Latvijas 60. matemātikas olimpiādes 3. (Republikas) ( kārta 6.9. Devītā klase Vai iespējams, ka kvadrātvienādojuma x a x+ b = 0, a un b naturāli skaitļi, saknes ir divu dažādu naturālu skaitļu kvadrāti? Trijstūrī ABC nogriežņi AM un CN ir bisektrises, un punkts O ir CN viduspunkts. Zināms, ka ABC = 90 un caur punktiem B, M, O un N var novilkt riņķa līniju. Atrast BAC vērtību Par skaistu sauksim tādu naturālu skaitli, kas nedalās ne ar vienu no cipariem savā decimālajā pierakstā (neviens skaitlis nedalās ar 0). Kāds lielākais daudzums pēc kārtas sekojošu naturālu skaitļu visi var būt skaisti? Rūtiņu lapā novietoti divi taisnstūri (var būt sakrītoši) tā, ka to malas iet pa rūtiņu malām. Teiksim, ka punkts pieder taisnstūrim, ja tas atrodas taisnstūra iekšpusē vai uz tā kontūra. Cik no visām astoņām šo divu taisnstūru virsotnēm var vienlaicīgi piederēt arī otram taisnstūrim? Taisnstūris ar izmēriem 5 n rūtiņas izkrāsots šaha galdiņa kārtībā. Vienā gājienā drīkst mainīt trīs blakus rūtiņu, kas atrodas vienā rindā vai kolonnā, krāsojumu uz pretējo. Vai, veicot šādus gājienus vairākkārt, var panākt, ka visas rūtiņas ir vienā krāsā, ja n = 5, n = 3? 3
33 7. Latvijas 37. atklātā matemātikas olimpiāde 7.5. Piektā klase Rindā pēc kārtas uzrakstīti visi naturālie skaitļi no līdz 0, neievērojot atstarpes starp tiem. Pēc tam šajā rindā izsvītroja 6 ciparus un apskatīja atlikušo ciparu veidoto naturālo skaitli (ciparu secību mainīt nedrīkst!). Kāds varēja būt a) mazākais iegūtais skaitlis; b) lielākais iegūtais skaitlis? (Piezīme: naturāla skaitļa pieraksts nedrīkst sākties ar 0.) Sagriez U7..zīmējumā attēloto figūru trīs vienādās daļās! Griezuma līnijām jāiet pa rūtiņu malām. U7..zīm Dotās 3 3 rūtiņu tabulas katrā rūtiņā jāieraksta pa vienam naturālam skaitlim tā, lai katrā rindā, katrā kolonnā un katrā diagonālē ierakstīto trīs skaitļu summas būtu vienādas. Ir zināmi trīs rūtiņās ierakstītie skaitļi (skat. U7..zīmējumu). Aizpildi pārējās tabulas rūtiņas! U7..zīm Vairāki domino kauliņi ir salikti rindā viens aiz otra tā, ka katri divi viens otram sekojoši kauliņi saskaras ar pusēm, uz kurām attēlots vienāds punktu skaits. U7.3.zīmējumā parādītā rūtiņu virkne attēlo iegūtās domino kauliņu rindas fragmentu: katra rūtiņa atbilst domino kauliņa vienai pusei, bet nav iezīmētas kauliņu robežas.... A B C... U7.3.zīm. Nosaki, vai punktu skaits rūtiņā A var būt vienāds ar punktu skaitu a) rūtiņā B, b) rūtiņā C! (Domino kauliņu komplekts sastāv no 8 kauliņiem. Katrs kauliņš sastāv no divām kvadrātveida pusēm, uz kurām attēloti punkti uz katras puses attēloto punktu skaits ir no 0 līdz 6. Katram iespējamam punktu daudzumu pārim komplektā ir tieši viens kauliņš.) 33
34 Taisnstūris sastāv no 3 5 rūtiņām. Divas rūtiņas sauc par kaimiņiem, ja tām ir kopēja mala vai kopējs stūris. Tieši 6 rūtiņas nokrāsotas melnas; pārējās ir baltas. Vai var gadīties, ka vienai melnai rūtiņai ir tieši balts kaimiņš, vienai melnai rūtiņai tieši balti kaimiņi,..., vienai melnai rūtiņai tieši 6 balti kaimiņi? 7.6. Sestā klase Doti vairāki pēc kārtas sekojoši naturāli skaitļi. Zināms, ka pāra skaitļu starp tiem ir par 5% vairāk nekā nepāra skaitļu, un lielākais skaitlis ir reizes lielāks par mazāko. Atrodi šos skaitļus! Atrodi tādu naturālu sešciparu skaitli, kas sastāv no trīs dažādiem pāra cipariem un trīs dažādiem nepāra cipariem un kas dalās ar katru no saviem cipariem! a) Dots, ka taisnstūri ar izmēriem m n rūtiņas var sagriezt tādās figūrās, kāda redzama U7.4.zīmējumā. Pierādīt: šo taisnstūri var sagriezt arī tādās figūrās, kāda redzama U7.5.zīmējumā. b) Vai taisnība, ka jebkuru taisnstūri, kam gan garums, gan platums ir vismaz 4 rūtiņas un kuru var sagriezt U7.6.zīmējumā redzamās figūrās, var sagriezt arī U7.7.zīmējumā redzamās figūrās? U7.4.zīm. U7.5.zīm. U7.6.zīm. U7.7.zīm. Figūras var būt arī pagrieztas vai apgrieztas uz mutes Dota U7.8.zīmējumā redzamā 3 3 rūtiņu tabula, kurā ierakstīti veseli skaitļi. Vienā gājienā atļauts izvēlēties divas dažādas tabulas rūtiņas apzīmēsim tajās ierakstītos skaitļus attiecīgi ar x un y, nodzēst šos divus skaitļus un to vietā ierakstīt: x vietā skaitli 3 x y, bet y vietā skaitli 3 y x. Vai, vairākkārt veicot šādus gājienus, var iegūt tabulu, kāda attēlota U7.9.zīmējumā? U7.8.zīm U7.9.zīm Puķu dobe sadalīta n rindās pa n stādiem katrā rindā. Šajā dobē ir jāiestāda trīs veidu puķes: narcises, hiacintes un tulpes tā, lai vienlaicīgi izpildītos šādi nosacījumi: ) katrā rindā ir iestādīts nepāra skaits katra veida stādu; ) nav iespējams atrast divas tādas rindas, kurās gan narcišu, gan hiacinšu, gan tulpju daudzumi sakristu. Nosaki, kāda ir mazākā iespējamā n vērtība, pie kuras iespējams to izdarīt! 34
LATVIJAS RAJONU 33. OLIMPIĀDE. 4. klase
Materiāls ņemts no grāmatas:andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas matemātikas olimpiāžu (5.-5.).kārtas (rajonu) uzdevumi un atrisinājumi" LATVIJAS RAJONU 33. OLIMPIĀDE 4. klase 33.. Ievietot
Διαβάστε περισσότεραĪsi atrisinājumi Jā, piemēram, 1, 1, 1, 1, 1, 3, 4. Piezīme. Uzdevumam ir arī vairāki citi atrisinājumi Skat., piemēram, 1. zīm.
Īsi atrisinājumi 5.. Jā, piemēram,,,,,, 3, 4. Piezīme. Uzdevumam ir arī vairāki citi atrisinājumi. 5.. Skat., piemēram,. zīm. 6 55 3 5 35. zīm. 4. zīm. 33 5.3. tbilde: piemēram, 4835. Ievērosim, ka 4 dalās
Διαβάστε περισσότεραLU A.Liepas Neklātienes matemātikas skola /2011.m.g. sagatavošanās olimpiāde matemātikā
2010.26.11. LU A.Liepas Neklātienes matemātikas skola 2010./2011.m.g. sagatavošanās olimpiāde matemātikā Katra metodiskā apvienība pati nolemj, vai un kad tā rīkos vai nerīkos šādu olimpiādi un, ja rīkos,
Διαβάστε περισσότεραESF projekts Pedagogu konkurētspējas veicināšana izglītības sistēmas optimizācijas apstākļos Vienošanās Nr. 2009/0196/1DP/
ESF projekts Pedagogu konkurētspējas veicināšana izglītības sistēmas optimizācijas apstākļos Vienošanās Nr. 009/0196/1DP/1...1.5/09/IPIA/VIAA/001 ESF projekts Pedagogu konkurētspējas veicināšana izglītības
Διαβάστε περισσότεραRekurentās virknes. Aritmētiskā progresija. Pieņemsim, ka q ir fiksēts skaitlis, turklāt q 0. Virkni (b n ) n 1, kas visiem n 1 apmierina vienādību
Rekurentās virknes Rekursija ir metode, kā kaut ko definēt visbiežāk virkni), izmantojot jau definētas vērtības. Vienkāršākais šādu sakarību piemērs ir aritmētiskā un ǧeometriskā progresija, kuras mēdz
Διαβάστε περισσότεραLATVIJAS REPUBLIKAS 38. OLIMPIĀDE
Materiāls ņemts o grāmatas: Adžās Agis, Bērziņa Aa, Bērziņš Aivars "Latvijas Republikas 6.-5. matemātikas olimpiādes" LATVIJAS REPUBLIKAS 8. OLIMPIĀDE UZDEVUMI 8. klase 8.. Vai eksistē tāda kvadrātfukcija
Διαβάστε περισσότεραRīgas Tehniskā universitāte. Inženiermatemātikas katedra. Uzdevumu risinājumu paraugi. 4. nodarbība
Rīgas Tehniskā univesitāte Inženiematemātikas kateda Uzdevumu isinājumu paaugi 4 nodabība piemēs pēķināt vektoa a gaumu un viziena kosinusus, ja a = 5 i 6 j + 5k Vektoa a koodinātas i dotas: a 5 ; a =
Διαβάστε περισσότεραLATVIJAS REPUBLIKAS 35. OLIMPIĀDE
Materiāls ņemts o grāmatas: Adžās Agis, Bērziņa Aa, Bērziņš Aivars "Latvijas Republikas 26.-5. matemātikas olimpiādes" LATVIJAS REPUBLIKAS 35. OLIMPIĀDE UZDEVUMI 8. klase 35. Atrisiāt vieādojumu x + 2x
Διαβάστε περισσότεραATRISINĀJUMI LATVIJAS REPUBLIKAS 32. OLIMPIĀDE
Materiāls ņemts no grāmatas: Andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas Republikas 6.-5. matemātikas olimpiādes" LATVIJAS REPUBLIKAS. OLIMPIĀDE ATRISINĀJUMI.. Pirmā apskatāmā skaitļa ciparu
Διαβάστε περισσότεραAgnis Andžāns, Julita Kluša /95. m.g. matemātikas olimpiāžu uzdevumi ar atrisinājumiem
Agnis Andžāns, Julita Kluša 994./95. m.g. matemātikas olimpiāžu uzdevumi ar atrisinājumiem Rīga, 997 Anotācija Šajā izstrādnē apkopoti 994./95. mācību gadā notikušo Latvijas mēroga matemātikas sacensību
Διαβάστε περισσότεραLATVIJAS RAJONU 43. OLIMPIĀDE
Materiāls ņemts no grāmatas:andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas matemātikas olimpiāžu (5-5) kārtas (rajonu) uzdevumi un atrisinājumi" LATVIJAS RAJONU 43 OLIMPIĀDE ATRISINĀJUMI 43 Pārlokot
Διαβάστε περισσότεραKomandu olimpiāde Atvērtā Kopa. 8. klases uzdevumu atrisinājumi
Komandu olimpiāde Atvērtā Kopa 8. klases uzdevumu atrisinājumi 1. ΔBPC ir vienādmalu trijstūris, tādēļ visi tā leņķi ir 60. ABC = 90 (ABCDkvadrāts), tādēļ ABP = 90 - PBC = 30. Pēc dotā BP = BC un, tā kā
Διαβάστε περισσότεραLATVIJAS REPUBLIKAS 45. OLIMPIĀDE
Materiāls ņemts no grāmatas: Andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas Republikas 6.-. matemātikas olimpiādes" LATVIJAS REPUBLIKAS 4. OLIMPIĀDE ATRISINĀJUMI 4.. Dotās nevienādības > abas puses
Διαβάστε περισσότεραKomandu olimpiāde Atvērtā Kopa Atrisinājumi 7. klasei
01 Komandu olimpiāde Atvērtā Kopa Atrisinājumi 7. klasei 1. Varam pieņemt, ka visos darbos Kristiāna strāda piecu darba dienu nedēļu, tātad 40 stundas nedēļā (drīkst arī pieņemt, ka Kristiāna strādā nedēļas
Διαβάστε περισσότεραAtrisinājumi Latvijas 64. matemātikas olimpiāde 3. posms x 1. risinājums. Pārveidojam doto izteiksmi, atdalot pilno kvadrātu:
trisiājumi Latvijas 6 matemātikas olimpiāde posms 9 Kādu mazāko vērtību var pieņemt izteiksme 0, ja > 0? risiājums Pārveidojam doto izteiksmi, atdalot pilo kvadrātu: 0 ( ) 0 0 0 0 0 Tā kā kvadrāts viemēr
Διαβάστε περισσότεραLielumus, kurus nosaka tikai tā skaitliskā vērtība, sauc par skalāriem lielumiem.
1. Vektori Skalāri un vektoriāli lielumi Lai raksturotu kādu objektu vai procesu, tā īpašības parasti apraksta, izmantojot dažādus skaitliskus raksturlielumus. Piemēram, laiks, kas nepieciešams, lai izlasītu
Διαβάστε περισσότεραGATAVOSIMIES CENTRALIZĒTAJAM EKSĀMENAM MATEMĀTIKĀ
Profesionālās vidējās izglītības programmu Lauksaimniecība un Lauksaimniecības tehnika īstenošanas kvalitātes uzlabošana 1.2.1.1.3. Atbalsts sākotnējās profesionālās izglītības programmu īstenošanas kvalitātes
Διαβάστε περισσότεραLai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.
6. VIRKNES Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri Stundas piemērs M_10_UP_06_P1 Iracionāla skaitļa π aptuvenās vērtības noteikšana Skolēna darba lapa M_10_LD_06 Virknes
Διαβάστε περισσότεραATTĒLOJUMI UN FUNKCIJAS. Kopas parasti tiek uzskatītas par fiksētiem, statiskiem objektiem.
2005, Pēteris Daugulis 1 TTĒLOJUMI UN FUNKCIJS Kopas parasti tiek uzskatītas par iksētiem, statiskiem objektiem Lai atļautu kopu un to elementu pārveidojumus, ievieš attēlojuma jēdzienu ttēlojums ir kāda
Διαβάστε περισσότερα"Profesora Cipariņa klubs" 2005./06. m.g. 1. nodarbības uzdevumu atrisinājumi. A grupa
"Profesora Cipariņa klubs" 005./06. m.g.. nodarbības udevumu atrisinājumi A grupa. Viegli pārbaudīt, ka 3 4=44. Tātad meklējamie skaitļi var būt ; 3; 4. Pierādīsim, ka tie nevar būt citādi. Tiešām, ivēloties
Διαβάστε περισσότεραLai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.
5.TEMATS FUNKCIJAS Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri M UP_5_P Figūras laukuma atkarība no figūras formas Skolēna darba lapa M UP_5_P Funkcijas kā reālu procesu modeļi
Διαβάστε περισσότεραFIZIKĀLO FAKTORU KOPUMS, KAS VEIDO ORGANISMA SILTUMAREAKCIJU AR APKĀRTĒJO VIDI UN NOSAKA ORGANISMA SILTUMSTĀVOKLI
Mikroklimats FIZIKĀLO FAKTORU KOPUMS, KAS VEIDO ORGANISMA SILTUMAREAKCIJU AR APKĀRTĒJO VIDI UN NOSAKA ORGANISMA SILTUMSTĀVOKLI P 1 GALVENIE MIKROKLIMATA RĀDĪTĀJI gaisa temperatūra gaisa g relatīvais mitrums
Διαβάστε περισσότεραATTIECĪBAS. Attiecības - īpašība, kas piemīt vai nepiemīt sakārtotai vienas vai vairāku kopu elementu virknei (var lietot arī terminu attieksme).
004, Pēteris Daugulis ATTIECĪBAS Attiecības - īpašība, kas piemīt vai nepiemīt sakārtotai vienas vai vairāku kopu elementu virknei (var lietot arī terminu attieksme). Bināra attiecība - īpašība, kas piemīt
Διαβάστε περισσότεραPREDIKĀTU LOĢIKA. Izteikumu sauc par predikātu, ja tas ir izteikums, kas ir atkarīgs no mainīgiem lielumiem.
005, Pēteris Daugulis PREDIKĀTU LOĢIKA Izteikumu sauc par predikātu, ja tas ir izteikums, kas ir atkarīgs no mainīgiem lielumiem. Par predikātiem ir jādomā kā par funkcijām, kuru vērtības apgabals ir patiesumvērtību
Διαβάστε περισσότεραKOMBINATORIKAS UN VARBŪTĪBU TEORIJAS ELEMENTI. matemātikas profīlkursam vidusskolā
Jānis Cīrulis KOMBINATORIKAS UN VARBŪTĪBU TEORIJAS ELEMENTI matemātikas profīlkursam vidusskolā ANOTĀCIJA Šī izstrādne ir mācību līdzeklis (tā pirmā puse) nosaukumā minēto tēmu apguvei, ko varētu gan vairāk
Διαβάστε περισσότεραLai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.
7.TEMATS Trigonometriskie vienādojumi un nevienādības Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri Stundas piemērs M SP_07_0_P Trigonometrisko izteiksmju pārveidojumi Skolēna
Διαβάστε περισσότεραCompress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013
Ι 55 C 35 C A A B C D E F G 47 17 21 18 19 19 18 db kw kw db 2015 811/2013 Ι A A B C D E F G 2015 811/2013 Izstrādājuma datu lapa par energopatēriņu Turpmākie izstrādājuma dati atbilst ES regulu 811/2013,
Διαβάστε περισσότεραLATVIJAS RAJONU 39. OLIMPIĀDE
Materiāls ņemts o grāmatas:adžās Agis, Bērziņa Aa, Bērziņš Aivars "Latvijas matemātikas olimpiāžu (-) kārtas (rajou) uzdevumi u atrisiājumi" LATVIJAS RAJONU 9 OLIMPIĀDE ATRISINĀJUMI 9 Ir jāaprēķia 00-ais
Διαβάστε περισσότεραMAZĀ UNIVERSITĀTE. 5. nodarbība, gada 31. marts. Mazā matemātikas universitāte
MAZĀ MATEMĀTIKAS UNIVERSITĀTE Mazā matemātikas universitāte 5. nodarbība, 2012. gada 31. marts Statistiskais eksperiments varbūtību teorijā. Kā vēl var aprēėināt notikumu varbūtības? Mazā matemātikas universitāte
Διαβάστε περισσότεραLai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.
1.TEMATS EKSPONENTVIENĀDOJUMI UN NEVIENĀDĪBAS Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri M_12_SP_01_P1 Eksponentvienādojumu atrisināšana Skolēna darba lapa M_12_SP_01_P2 Eksponentvienādojumu
Διαβάστε περισσότεραLogatherm WPS 10K A ++ A + A B C D E F G A B C D E F G. kw kw /2013
51 d 11 11 10 kw kw kw d 2015 811/2013 2015 811/2013 Izstrādājuma datu lapa par energopatēriņu Turpmākie izstrādājuma dati atbilst S regulu 811/2013, 812/2013, 813/2013 un 814/2013 prasībām, ar ko papildina
Διαβάστε περισσότεραLai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.
3.TEMTS PIRMĪD Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri M_12_SP_03_P1 Dažādas piramīdas Skolēna darba lapa M_12_SP_03_P2 Dažādas piramīdas Skolēna darba lapa M_12_SP_03_P2
Διαβάστε περισσότεραTemperatūras izmaiħas atkarībā no augstuma, atmosfēras stabilitātes un piesārħojuma
Temperatūras izmaiħas atkarībā no augstuma, atmosfēras stabilitātes un piesārħojuma Gaisa vertikāla pārvietošanās Zemes atmosfērā nosaka daudzus procesus, kā piemēram, mākoħu veidošanos, nokrišħus un atmosfēras
Διαβάστε περισσότεραGRAFOANALITISKO DARBU UZDEVUMI ELEKTROTEHNIKĀ UN ELEKTRONIKĀ VISPĀRĪGI NORĀDĪJUMI
GRAFOANALITISKO DARBU UZDEVUMI ELEKTROTEHNIKĀ UN ELEKTRONIKĀ VISPĀRĪGI NORĀDĪJUMI Kursa Elektrotehnika un elektronika programmā paredzēta patstāvīga grafoanalītisko uzdevumu izpilde. Šajā krājumā ievietoti
Διαβάστε περισσότεραTēraudbetona konstrukcijas
Tēraudbetona konstrukcijas tēraudbetona kolonnu projektēšana pēc EN 1994-1-1 lektors: Gatis Vilks, SIA «BALTIC INTERNATIONAL CONSTRUCTION PARTNERSHIP» Saturs 1. Vispārīga informācija par kompozītām kolonnām
Διαβάστε περισσότερα1. uzdevums. 2. uzdevums
1. uzdevums Reaktīvā pasažieru lidmašīna 650 km lielu attālumu bez nosēšanās veica 55 minūtēs. Aprēķini lidmašīnas kustības vidējo ātrumu, izteiktu kilometros stundā (km/h)! 1. solis Vispirms pieraksta
Διαβάστε περισσότεραTaisnzobu cilindrisko zobratu pārvada sintēze
LATVIJAS LAUKSAIMNIECĪBAS UNIVERSITĀTE Tehniskā fakultāte Mehānikas institūts J. SvētiĦš, Ē. Kronbergs Taisnzobu cilindrisko zobratu pārvada sintēze Jelgava 009 Ievads Vienkāršs zobratu pārvads ir trīslocekĝu
Διαβάστε περισσότερα1. Testa nosaukums IMUnOGLOBULĪnS G (IgG) 2. Angļu val. Immunoglobulin G
1. Testa nosaukums IMUnOGLOBULĪnS G (IgG) 2. Angļu val. Immunoglobulin G 3. Īss raksturojums Imunoglobulīnu G veido 2 vieglās κ vai λ ķēdes un 2 smagās γ ķēdes. IgG iedalās 4 subklasēs: IgG1, IgG2, IgG3,
Διαβάστε περισσότεραGaismas difrakcija šaurā spraugā B C
6..5. Gaismas difrakcija šaurā spraugā Ja plakans gaismas vilnis (paralēlu staru kūlis) krīt uz šauru bezgalīgi garu spraugu, un krītošās gaismas viļņa virsma paralēla spraugas plaknei, tad difrakciju
Διαβάστε περισσότεραMehānikas fizikālie pamati
1.5. Viļņi 1.5.1. Viļņu veidošanās Cietā vielā, šķidrumā, gāzē vai plazmā, tātad ikvienā vielā starp daļiņām pastāv mijiedarbība. Ja svārstošo ķermeni (svārstību avotu) ievieto vidē (pieņemsim, ka vide
Διαβάστε περισσότεραMARUTA AVOTIĥA, LAURA FREIJA. Matemātikas sacensības klasēm 2010./2011. mācību gadā
MARUTA AVOTIĥA, LAURA FREIJA Matemātikas sacesības 9 klasēm 00/0 mācību gadā RĪGA 0 M AvotiĦa, L Freija Matemātikas sacesības 9 klasēm 00/0 mācību gadā Rīga: Latvijas Uiversitāte, 0 56 lpp Grāmatā apkopoti
Διαβάστε περισσότερα5. un 6.lekcija. diferenciālvienādojumiem Emdena - Faulera tipa vienādojumi. ir atkarīgas tikai no to attāluma r līdz lodes centram.
Parasto diferenciālvienādojumu nelineāras robežproblēmas 5. un 6.lekcija 1. Robežproblēmas diferenciālvienādojumiem ar neintegrējamām singularitātēm 1.1. Emdena - Faulera tipa vienādojumi Piemērs 5.1.
Διαβάστε περισσότεραAndrejs Rauhvargers VISPĀRĪGĀ ĶĪMIJA. Eksperimentāla mācību grāmata. Atļāvusi lietot Latvijas Republikas Izglītības un zinātnes ministrija
Andrejs Rauhvargers VISPĀRĪGĀ ĶĪMIJA Eksperimentāla mācību grāmata Atļāvusi lietot Latvijas Republikas Izglītības un zinātnes ministrija Rīga Zinātne 1996 UDK p 54(07) Ra 827 Recenzenti: Dr. chem. J. SKRĪVELIS
Διαβάστε περισσότεραKontroldarba varianti. (II semestris)
Kontroldarba varianti (II semestris) Variants Nr.... attēlā redzami divu bezgalīgi garu taisnu vadu šķērsgriezumi, pa kuriem plūst strāva. Attālums AB starp vadiem ir 0 cm, I = 0 A, I = 0 A. Aprēķināt
Διαβάστε περισσότεραUDK ( ) Ko743
1 UDK 178+614.2(474.3-25) Ko743 Teksta redaktore: Datormaketētājs: Vāka dizains: Ināra Stašulāne Artūrs Kalniņš Matīss Kūlis Publicēšanas un citēšanas gadījumā lūdzam uzrādīt informācijas avotu "Rīgas
Διαβάστε περισσότεραPašmācības materiāli izklājlapu lietotnes OpenOffice.org Calc apguvei
Pašmācības materiāli izklājlapu lietotnes OpenOffice.org Calc apguvei Guntars Lācis guntars_l@inbox.lv Saturs Izklājlapu lietotnes OpenOffice.org Calc darba vide... 4 Aprēķinu veikšana, izmantojot lietotni
Διαβάστε περισσότεραFizikas 63. valsts olimpiādes. III posms
Fizikas 63. valsts olimpiādes III posms 2013. gada 14. martā Fizikas 63. valsts olimpiādes III posms Uzdevumi Eksperimentālā kārta 2013. gada 14. martā 9. klase Jums tiek piedāvāti divi uzdevumi: eksperiments
Διαβάστε περισσότερα2. PLAKANU STIEŅU SISTĒMU STRUKTŪRAS ANALĪZE
Ekspluatācijas gaitā jebkura reāla būve ārējo iedarbību rezultātā kaut nedaudz maina sākotnējo formu un izmērus. Sistēmas, kurās to elementu savstarpējā izvietojuma un izmēru maiņa iespējama tikai sistēmas
Διαβάστε περισσότεραMULTILINGUAL GLOSSARY OF VISUAL ARTS
MULTILINGUAL GLOSSARY OF VISUAL ARTS (GREEK-ENGLISH-LATVIAN) Χρώματα Colours Krāsas GREEK ENGLISH LATVIAN Αυθαίρετο χρώμα: Χρϊμα που δεν ζχει καμία ρεαλιςτικι ι φυςικι ςχζςθ με το αντικείμενο που απεικονίηεται,
Διαβάστε περισσότερα10. klase 1. uzdevuma risinājums A. Dēļa garums l 4,5 m. sin = h/l = 2,25/4,5 = 0,5 = (2 punkti) W k. s = 2,25 m.
0. klase. uzdevuma risinājums A. Dēļa garums l 4,5 m. sin = h/l =,5/4,5 = 0,5 = 0 0. ( punkti) B. v o = 0 m/s. Tādēļ s = at / un a = s/t Ja izvēlas t = s, veiktais ceļš s = 4m. a = 4/ = m/s. ( punkti)
Διαβάστε περισσότεραRīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts
Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts www.videszinatne.lv Saules enerģijas izmantošanas iespējas Latvijā / Seminārs "Atjaunojamo
Διαβάστε περισσότεραMATEMĀTIKA klase MĀCĪBU PRIEKŠMETA PROGRAMMA
MATEMĀTIKA 7. 9. klase MĀCĪBU PRIEKŠMETA PROGRAMMA Mācību priekšmeta programmu matemātikā veidoja Programmu izstrādāja Aira Kumerdanka, Indra Muceniece, Inga Riemere, Jānis Vilciņš, Aivars Ančupāns, Jeļena
Διαβάστε περισσότερα2. Kā tu uztver apkārtējo pasauli? Kas tev ir svarīgāk: redzēt, dzirdēt, sajust?
Romāns. Marks Hedons ROMĀNS MARKS HEDONS (1962) UZZIŅAI Britu rakstnieks M. Hedons ir Anglijā pazīstams bērnu grāmatu rakstnieks un ilustrators, piecpadsmit grāmatu autors. Viņš rakstījis scenārijus BBC
Διαβάστε περισσότεραDonāts Erts LU Ķīmiskās fizikas institūts
Donāts Erts LU Ķīmiskās fizikas institūts Nanovadu struktūras ir parādījušas sevi kā efektīvi (Nat. Mater, 2005, 4, 455) fotošūnu elektrodu materiāli 1.katrs nanovads nodrošina tiešu elektronu ceļu uz
Διαβάστε περισσότεραPalīgmateriāli gatavojoties centralizētajam eksāmenam ėīmijā
Palīgmateriāli gatavojoties centralizētajam eksāmenam ėīmijā CE ietverto tēmu loks ir Ĝoti plašs: ėīmijas pamatjautājumi (pamatskolas kurss), vispārīgā ėīmija, neorganiskā ėīmija, organiskā ėīmija, ėīmija
Διαβάστε περισσότεραSKICE. VĪTNE SATURS. Ievads Tēmas mērķi Skice Skices izpildīšanas secība Mērinstrumenti un detaļu mērīšana...
1 SKICE. VĪTNE SATURS Ievads... 2 Tēmas mērķi... 2 1. Skice...2 1.1. Skices izpildīšanas secība...2 1.2. Mērinstrumenti un detaļu mērīšana...5 2. Vītne...7 2.1. Vītņu veidi un to apzīmējumi...10 2.1.1.
Διαβάστε περισσότεραFizikas valsts 66. olimpiāde Otrā posma uzdevumi 12. klasei
Fizikas valsts 66. olimpiāde Otrā posma uzdevumi 12. klasei 12-1 Pseido hologramma Ievēro mērvienības, kādās jāizsaka atbildes. Dažus uzdevuma apakšpunktus var risināt neatkarīgi no pārējiem. Mūsdienās
Διαβάστε περισσότεραSatura rādītājs Apmācīšanās piemērs... 44
Satura rādītās. Neironu tīkli skaitļošanas paradigma... 3.. Neironu tīkls kā skaitļošanas sistēma... 3.. Bioloģiskie neironu tīkli... 4. Mākslīgais neirons... 7.. Neirona uzbūves un darbības pamatprincipi...
Διαβάστε περισσότερα6. LATVIJAS UNIVERSITĀTES ĶĪMIJAS FAKULTĀTES JAUNO ĶĪMIĶU KONKURSA 2.KĀRTAS UZDEVUMU ATBILDES 8.-9.klases uzdevumi
6. LATVIJAS UNIVERSITĀTES ĶĪMIJAS FAKULTĀTES JAUNO ĶĪMIĶU KONKURSA 2.KĀRTAS UZDEVUMU ATBILDES 8.-9.klases uzdevumi 1. uzdevums Vai tu to vari? Gāzes Ķīmisko reakciju vienādojumi Ūdeņradis, oglekļa dioksīds,
Διαβάστε περισσότεραLaboratorijas darbu apraksts (I semestris)
Laboratorijas darbu apraksts (I semestris) un mērījumu rezultātu matemātiskās apstrādes pamati 1. Fizikālo lielumu mērīšana Lai kvantitatīvi raksturotu kādu fizikālu lielumu X, to salīdzina ar tādas pašas
Διαβάστε περισσότεραĶermeņa inerce un masa. a = 0, ja F rez = 0, kur F visu uz ķermeni darbojošos spēku vektoriālā summa
2.1. Ķereņa inerce un asa Jebkurš ķerenis saglabā iera stāvokli vai turpina vienērīgu taisnlīnijas kustību ar neainīgu ātruu (v = const) tikēr, kaēr uz to neiedarbojas citi ķereņi vai ta pieliktie ārējie
Διαβάστε περισσότεραSalaspils kodolreaktora gada vides monitoringa rezultātu pārskats
Lapa 1 (15) Apstiprinu VISA Latvijas Vides, ģeoloģijas un meteoroloģijas centrs Valdes priekšsēdētājs K. Treimanis Rīgā, 2016. gada. Salaspils kodolreaktora 2015. gada vides monitoringa Pārskatu sagatavoja
Διαβάστε περισσότεραLaboratorijas darbs disciplīnā Elektriskās sistēmas. 3-FAŽU ĪSSLĒGUMU APRĒĶINAŠANA IZMANTOJOT DATORPROGRAMMU PowerWorld version 14
RĪGAS TEHNISKĀ UNIVERSITĀTE Enerģētikas un elektrotehnikas fakultāte Enerģētikas institūts Laboratorijas darbs disciplīnā Elektriskās sistēmas 3-FAŽU ĪSSLĒGUMU APRĒĶINAŠANA IZMANTOJOT DATORPROGRAMMU PowerWorld
Διαβάστε περισσότεραBūvfizikas speckurss. LBN Ēku norobežojošo konstrukciju siltumtehnika izpēte. Ūdens tvaika difūzijas pretestība
Latvijas Lauksaimniecības universitāte Lauku inženieru fakultāte Būvfizikas speckurss LBN 002-01 Ēku norobežojošo konstrukciju siltumtehnika izpēte. difūzijas pretestība Izstrādāja Sandris Liepiņš... Jelgava
Διαβάστε περισσότεραLatvijas Universitāte Fizikas un matemātikas fakultāte Matemātiskās analīzes katedra. Inese Bula
Latvijas Universitāte Fizikas un matemātikas fakultāte Matemātiskās analīzes katedra Inese Bula STRATĒǦISKO SPĒĻU TEORIJA LEKCIJU KONSPEKTS 2007 SATURS Lekcija nr. 1. Kas ir spēļu teorija? 3 Lekcija nr.
Διαβάστε περισσότεραINSTRUKCIJA ERNEST BLUETOOTH IMMOBILIZER
APRAKSTS: INSTRUKCIJA ERNEST BLUETOOTH IMMOBILIZER BLUETOOTH IMOBILAIZERS ir transporta līdzekļa papildus drošibas sistēma. IERĪCES DARBĪBA 1. Ja iekārta netiek aktivizēta 1 minūtes laikā, dzinējs izslēdzas.
Διαβάστε περισσότεραLielais dānis Nilss Bors
Lielais dānis Nilss Bors No kā sastāv atoms? Atoma kodola atklāšana Atoma planetārais modelis. Bora teorija Orbitālais kvantu skaitlis Magnētiskais kvantu skaitlis. Magnētiskā mijiedarbība atomā Elektrona
Διαβάστε περισσότεραJauna tehnoloģija magnētiskā lauka un tā gradienta mērīšanai izmantojot nanostrukturētu atomārās gāzes vidi
Projekts (vienošanās ) Jauna tehnoloģija magnētiskā lauka un tā gradienta mērīšanai izmantojot nanostrukturētu atomārās gāzes vidi Izveidotā jaunā magnētiskā lauka gradienta mērīšanas moduļa apraksts Aktivitāte
Διαβάστε περισσότεραLATVIJAS 48. NACIONĀLĀ ĶĪMIJAS OLIMPIĀDE (2007)
LATVIJAS 48. NACIONĀLĀ ĶĪMIJAS OLIMPIĀDE (007) Rajona (pilsētas) posma olimpiādes uzdevumi 9. klasei Atrisināt tālāk dotos 6 uzdevumus! Darba izpildes laiks 4 astronomiskās stundas. Risinājumā parādīt
Διαβάστε περισσότεραSalaspils kodolreaktora gada vides monitoringa rezultātu pārskats
Lapa : 1 (16) Apstiprinu: VISA Latvijas Vides, ģeoloģijas un meteoroloģijas centrs Valdes priekšsēdētājs K. Treimanis Rīgā, 2017. gada. Salaspils kodolreaktora 2016. gada vides monitoringa Pārskatu sagatavoja:
Διαβάστε περισσότεραLatvijas Skolēnu 62. fizikas olimpiādes III posms
Latvijas Skolēnu 62 fizikas olimpiādes III posms Vērtēšanas kritēriji Teorētiskā kārta 212 gada 12 aprīlī 9 klase Uzdevums Caurplūdums, jeb ūdens tilpums, kas laika vienībā iztek caur šķērsgriezumu S ir
Διαβάστε περισσότεραIESKAITE DABASZINĪBĀS 9. KLASEI gads 1. variants, 1. daļa
IZGLĪTĪBAS SATURA UN EKSAMINĀCIJAS CENTRS IESKAITE DABASZINĪBĀS 9. KLASEI 2008. gads 1. variants, 1. daļa Maksimālais punktu skaits par 1. daļu 30 p. Aizpilda skolotājs: 1. uzdevums. Vai apgalvojums ir
Διαβάστε περισσότεραJauni veidi, kā balansēt divu cauruļu sistēmu
Jauni veidi, kā balansēt divu cauruļu sistēmu Izcila hidrauliskā balansēšana apkures sistēmās, izmantojot Danfoss RA-DV tipa Dynamic Valve vārstu un Grundfos MAGNA3 mainīga ātruma sūkni Ievads Zema enerģijas
Διαβάστε περισσότεραVispārīgā bioloģija ; Dzīvības ķīmija Biologi-2017 Laboratorijas darbs 2
Vispārīgā bioloģija ; Dzīvības ķīmija Biologi-2017 Laboratorijas darbs 2 Spektrofotometrija. Gaisma, gaismas spektrs, spektrofotometrijas pielietojums bioloģijā, spektrometrijā lietotās iekārtas (FEK,
Διαβάστε περισσότεραP A atgrūšanās spēks. P A = P P r P S. P P pievilkšanās spēks
3.2.2. SAITES STARP ATOMIEM SAIŠU VISPĀRĪGS RAKSTUROJUMS Lai izprastu materiālu fizikālo īpašību būtību jābūt priekšstatam par spēkiem, kas darbojas starp atomiem. Aplūkosim mijiedarbību starp diviem izolētiem
Διαβάστε περισσότεραXIX Baltijas Ķīmijas Olimpiāde. Teorētiskie uzdevumi Aprīlis 2011 Viļņa, Lietuva
XIX Baltijas Ķīmijas Olimpiāde Teorētiskie uzdevumi 1517 Aprīlis 2011 Viļņa, Lietuva XIX Baltic Chemistry Olympiad Vilnius, 1517 April 2011 Instrukcijas Uzraksti uz visām atbilžu lapām savu kodu. Jums
Διαβάστε περισσότεραFIZ 2.un 3.daļas standartizācija 2012.gads
FIZ.un 3.daļas standartizācija 0.gads Uzd. Uzdevums Punkti Kritēriji Uzraksta impulsu attiecību: m Lieto impulsa definīcijas formulu. Uzraksta attiecību. Pareizi izsaka meklējamo kr vkr lielumu. Iegūst
Διαβάστε περισσότεραIsover tehniskā izolācija
Isover tehniskā izolācija 2 Isover tehniskās izolācijas veidi Isover Latvijas tirgū piedāvā visplašāko tehniskās izolācijas (Isotec) produktu klāstu. Mēs nodrošinām efektīvus risinājumus iekārtām un konstrukcijām,
Διαβάστε περισσότερα9-1. uzdevums Maks. 2 punkti Latvijas Republikas gada budžets ir aptuveni 2,0 miljardi latu. Cik moli santīmu ir Latvijas gada budžetā?
Latvijas 45. nacionālā ķīmijas olimpiāde ( 2004) Rajona olimpiādes uzdevumi 9. klasei 9-1. uzdevums Maks. 2 punkti Latvijas Republikas 2004. gada budžets ir aptuveni 2,0 miljardi latu. Cik moli santīmu
Διαβάστε περισσότεραLATVIJAS NACIONĀLĀ ĶĪMIJAS OLIMPIĀDE RAJONA OLIMPIĀDES UZDEVUMI 9. KLASE
9 LATVIJAS NACIONĀLĀ ĶĪMIJAS OLIMPIĀDE 50 2009 RAJONA OLIMPIĀDES UZDEVUMI 9. KLASE Rajona olimpiādes uzdevumi 2009 9. KLASE 9. KLASE Rajona olimpiādes uzdevumi 2009 Salasāmā rokrakstā atrisināt tālāk dotos
Διαβάστε περισσότερα12. klase. Fizikas 64. valsts olimpiādes III posms gada 10. aprīlī
Fizikas 64. valsts olimpiādes III posms 2014. gada 10. aprīlī 12. klase Jums tiek piedāvāti trīs uzdevumi. Par katru uzdevumu maksimāli iespējams iegūt 10 punktus. Katra uzdevuma risinājumu vēlams veikt
Διαβάστε περισσότεραLabojums MOVITRAC LTE-B * _1114*
Dzinēju tehnika \ Dzinēju automatizācija \ Sistēmas integrācija \ Pakalpojumi *135347_1114* Labojums SEW-EURODRIVE GmbH & Co KG P.O. Box 303 7664 Bruchsal/Germany Phone +49 751 75-0 Fax +49 751-1970 sew@sew-eurodrive.com
Διαβάστε περισσότεραΟ ΠΕΡΙ ΤΕΛΩΝΕΙΑΚΟΥ ΚΩΔΙΚΑ ΝΟΜΟΣ ΤΟΥ 2004
Αριθμός 2204 Ο ΠΕΡΙ ΤΕΛΩΝΕΙΑΚΟΥ ΚΩΔΙΚΑ ΝΟΜΟΣ ΤΟΥ 2004 (Παράρτημα Παράγραφοι 1 και 2) Δηλοποιηση Κατασχέσεως Αναφορικά με τους ZBIGNIEW και MAKGORZATA EWERTWSKIGNIEWEK, με αριθμούς διαβατηρίων Πολωνίας
Διαβάστε περισσότεραJAUNO ĶĪMIĶU KONKURSA 2.KĀRTAS UZDEVUMI
C4. LATVIJAS UNIVERSITĀTES ĶĪMIJAS FAKULTĀTES JAUNO ĶĪMIĶU KONKURSA 2.KĀRTAS UZDEVUMI Atrisināt tālāk dotos sešus uzdevumus un atbildes ierakstīt MS Word atbilžu datnē, ko kā pievienoto dokumentu līdz
Διαβάστε περισσότεραDziļā mācīšanās - mācību stunda, stundas vērošana un vērtēšana. Jānis Bukins, Vaira Siliņa, Inguna Vuškāne Ratnieki
Dziļā mācīšanās - mācību stunda, stundas vērošana un vērtēšana Jānis Bukins, Vaira Siliņa, Inguna Vuškāne 17.08.2017. Ratnieki Domāsim, kādas problēmas un kādi ieguvumi ir skolā, ieviešot dziļās mācīšanās
Διαβάστε περισσότεραLatvijas 53. Nacionālā ķīmijas olimpiāde
9. klases teorētiskie uzdevumi Latvijas 53. Nacionālā ķīmijas olimpiāde 2012. gada 28. martā 9. klases Teorētisko uzdevumu atrisinājumi 1. uzdevums 7 punkti Molekulu skaitīšana Cik molekulu skābekļa rodas,
Διαβάστε περισσότεραTIEŠĀ UN NETIEŠĀ GRADIENTA ANALĪZE
TIEŠĀ UN NETIEŠĀ GRADIENTA ANALĪZE Botānikas un ekoloăijas katedra Iluta Dauškane Vides gradients Tiešā un netiešā gradienta analīze Ordinācijas pamatideja Ordinācijas metodes Gradientu analīze Sugu skaits
Διαβάστε περισσότερα4. APGAISMOJUMS UN ATTĒLI
4. APGAISMJUMS UN ATTĒLI ptisko mikroskopu vēsture un nākotne Gaismas avota stiprums. Gaismas plūsma Apgaismojums Elektriskie gaismas avoti. Apgaismojums darba vietā Ēnas. Aptumsumi Attēla veidošanās.
Διαβάστε περισσότεραAtlases kontroldarbs uz Baltijas valstu ķīmijas olimpiādi 2013.gada 07.aprīlī
Atlases kontroldarbs uz Baltijas valstu ķīmijas olimpiādi 2013.gada 07.aprīlī Atrisināt dotos sešus uzdevumus, laiks 3 stundas. Uzdevumu tēmas: 1) tests vispārīgajā ķīmijā; 2) ķīmisko reakciju kinētika;
Διαβάστε περισσότερα6.2. Gaismas difrakcija Gaismas difrakcijas veidi
6.. Gaismas difrakcija Ļoti pierasts un katram pilnīgi saprotams liekas priekšstats par gaismas taisnvirziena izplatīšanos homogēnā vidē. Tomēr, daudzos gadījumos gaismas intensitātes sadalījums uz robežas,
Διαβάστε περισσότεραROBOESL PROJEKTS. Robotikas izmantošana intervencei skolas neveiksmes un agrīnas izglītības pamešanas mazināšanai. Erasmus IT02-KA
ROBOESL PROJEKTS Robotikas izmantošana intervencei skolas neveiksmes un agrīnas izglītības pamešanas mazināšanai Erasmus+ Rezultāts (Output) 2: 10 sagatavotas mācību aktivitātes skolotājiem kombinētam
Διαβάστε περισσότεραĢeologa profesionālās iespējas Latvijā
Kuldīgas 2.vidusskola Ģeologa profesionālās iespējas Latvijā Pētnieciskais darbs sociālajās zinībās Darba autors: Mikus Prenclavs 7.a klases skolnieks Darba vadītāja: Mag.paed. Agita Grāvere-Prenclava
Διαβάστε περισσότερα4. TEMATS ELEKTRISKIE LĀDIŅI UN ELEKTRISKAIS LAUKS. Temata apraksts. Skolēnam sasniedzamo rezultātu ceļvedis. Uzdevumu piemēri
4. TEMATS ELEKTRISKIE LĀDIŅI UN ELEKTRISKAIS LAUKS Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri F_11_SP_04_01_P1 Elektriskais lādiņš un lādētu ķermeņu mijiedarbība Skolēna darba
Διαβάστε περισσότεραLai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.
6. MEHĀNISKĀS SVĀRSTĪBAS UN VIĻŅI Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri Stundas piemērs F_10_SP_06_P1 Uzdevums grupai Skolēna darba lapa F_10_UP_06_P1 Seismogrāfa darbības
Διαβάστε περισσότεραLATVIJAS UNIVERSITĀTES ĶĪMIJAS FAKULTĀTES 11. JAUNO ĶĪMIĶU KONKURSA 1. KĀRTAS UZDEVUMI
LATVIJAS UNIVERSITĀTES ĶĪMIJAS FAKULTĀTES 11. JAUNO ĶĪMIĶU KONKURSA 1. KĀRTAS UZDEVUMI Atrisini tālāk dotos sešus uzdevumus un atbildes noformē elektroniski (Word dokuments, PDF datne u.c.) un nosūti uz
Διαβάστε περισσότερα6.4. Gaismas dispersija un absorbcija Normālā un anomālā gaismas dispersija. v = f(λ). (6.4.1) n = f(λ). (6.4.2)
6.4. Gaismas dispersija un absorbcija 6.4.1. Normālā un anomālā gaismas dispersija Gaismas izplatīšanās ātrums vakuumā (c = 299 792,5 ±,3 km/s) ir nemainīgs lielums, kas nav atkarīgs no viļņa garuma. Vakuumā
Διαβάστε περισσότερα6. LATVIJAS UNIVERSITĀTES ĶĪMIJAS FAKULTĀTES JAUNO ĶĪMIĶU KONKURSA 3.KĀRTAS UZDEVUMU ATBILDES
6. LATVIJAS UNIVERSITĀTES ĶĪMIJAS FAKULTĀTES JAUNO ĶĪMIĶU KONKURSA 3.KĀRTAS UZDEVUMU ATBILDES 8.-9.klases uzdevumi 1. uzdevums Vecmāmiņas atmiņas Vielu triviālie (vēsturiskie) nosaukumi: Triviālais Sistemātiskais
Διαβάστε περισσότερα2. TEMATS SILTUMS UN DARBS. Temata apraksts. Skolēnam sasniedzamo rezultātu ceļvedis. Uzdevumu piemēri
2. TEMATS SILTUMS UN DARBS Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri F_11_SP_02_P1 Senie laiki Skolēna darba lapa F_11_SP_02_P2 Enerģija 19. gadsimtā: tvaika dzinēja laikmets
Διαβάστε περισσότεραBalvu novada pašvaldības informatīvais laikraksts 2014.gada 30.oktobris
Pašvaldības avīze - katram novada iedzīvotājam! Balvu Novada Ziņas Balvu novada pašvaldības informatīvais laikraksts 2014.gada 30.oktobris Tilžas internātpamatskolai - 55! 1959.gada nogalē pirmais skolas
Διαβάστε περισσότερα10. klase ĶĪMIJA 3.2
D A R B I 10. klase ĶĪMIJA 3.2 P Ā R B A U D E S Projekts Mācību satura izstrāde un skolotāju tālākizglītība dabaszinātņu, matemātikas un tehnoloģiju priekšmetos Pārbaudes darbi. Ķīmija 10. klase Autortiesības
Διαβάστε περισσότερα