PREDIKĀTU LOĢIKA. Izteikumu sauc par predikātu, ja tas ir izteikums, kas ir atkarīgs no mainīgiem lielumiem.
|
|
- Ἀδελφός Σερπετζόγλου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 005, Pēteris Daugulis PREDIKĀTU LOĢIKA Izteikumu sauc par predikātu, ja tas ir izteikums, kas ir atkarīgs no mainīgiem lielumiem. Par predikātiem ir jādomā kā par funkcijām, kuru vērtības apgabals ir patiesumvērtību kopa. Predikātu piemēri: P ( = u ir pāra skaitlis, P ( ir patiess apgalvojums, ja u ir pāra skaitlis un aplams, ja u ir nepāra skaitlis; Q ( u, v) = u dalās ar v, ( u, v) (6,) (6,4 Q patiess, ja u dalās ar v, piemēram, Q ir patiess, un aplams, ja u nedalās ar v, piemēram, Q ) ir aplams. Izteikumu un predikātu pielietojumi: Nosacītās pārejas un ciklu operatori programmēšanā: if ( ja ) operators, while ( kamēr ) operators. until ( līdz ) operators
2 005, Pēteris Daugulis Operācijas ar predikātiem Par predikāta konkretizāciju sauc izteikumu P (c) ar kādu konkrētu argumenta vērtību c. Par predikāta P ( noliegumu sauc predikātu ( P )( = ( P( ). Par predikātu ( P un Q ( konjunkciju ( P Q)(, disjunkciju ( P Q)(, implikāciju ( P Q)( un ekvivalenci ( P Q)( sauc predikātus, kas katram u definēti ar formulām ( P Q)( = ( P( Q( ), ( P Q)( = ( P( Q( ), ( P Q)( = ( P( Q( ) ( P Q)( = ( P( Q( ),. Kvantori Par predikāta P ( universālkvantoru u P( ( katram u izteikums ( P ir patiess ) sauc visu izteikumu P ( konjunkciju P( x X, kur x pieņem visas iespējamās vērtības.
3 005, Pēteris Daugulis 3 Par predikāta P ( eksistences kvantoru u P( ( vismaz vienam u izteikums P ( ir patiess ) sauc visu izteikumu P ( disjunkciju P( x X, kur x pieņem visas iespējamās vērtības. Par predikāta P ( unitātes kvantoru! u P( ( tieši vienam u izteikums ( P ir patiess ) sauc izteikumu, kas ir patiess tad un tikai tad, ja tieši viens no izteikumiem P ( ir patiess, kad x pieņem visas iespējamās vērtības. Tāpat kā izteikumu (parastās matemātiskās loģikas) formulas, arī predikātu loģikas formulas ir pareizi jāpieraksta, lai tās varētu viennozīmīgi interpretēt. Predikātu loģikas alfabēts ir kopa A = { A, A, A3, A4, A5, A6}, kur A = { x...} ir argumentu (mainīgo) kopa, ni A = { P } A A A i i I ir predikātu simbolu kopa, n j 3 = { f j } j J ir funkcionālo simbolu kopa, = { a k } k K 4 ir konstanšu kopa, = {,,,,,, } 5 k K ir loģisko simbolu
4 005, Pēteris Daugulis 4 kopa, A = {,,(, 6 )} ir palīgsimbolu kopa. Kopas I, J, K ir galīgas indeksu kopas. n P i i ir n i argumentu predikāts, argumentu Būla funkcija. n f j j ir n j Kopu σ = { A, A3, A4} sauc par signatūru. Definēsim signatūras σ termus: ) mainīgie un konstantes ir termi; n j ) ja t,...t j ir termi, tad f j ( t,..., t j ) terms; 3) citu termu nav. arī ir Par σ atomāro formulu sauksim jebkuru vārdu n Pi i ( t,..., t i ), kur t,...ti ir termi. Definēsim signatūras σ formulas: ) jebkura atomāra formula ir formula; ) ja A un B ir formulas, tad ( A),( A B),( A B),( A B),( A B) ir formulas;
5 005, Pēteris Daugulis 5 3) ja A ir formula un x ir mainīgais, tad x A un x A ir formulas (šajā gadījumā formulas x A un x A sauc par kvantoru x un x darbības diapazoniem); 4) citu formulu nav. Argumentu x sauc par saistītu, ja tas atrodas kāda kvantora darbības diapazonā. Pretējā gadījumā argumentu sauc par brīvu. Formulu sauc par pareizi noformētu, ja katrs kvantors saista vismaz vienu argumentu. Pareizi noformētu formulu, kurā visi argumenti ir saistīt, sauc par teikumu. TEORĒMA (kvantoru pamatīpašības) ) ( x P( x ( P)( ) ( x P( x ( P)( 3) ( Qx P( R Qx ( P( R) 4) ( Qx P( R Qx ( P( R) 5) ( 6) Q x P( ( Qx R( Q xq y ( P( R( Q x P( ( Qx R( Q xq y ( P( R( ( x P( ( x R( x ( P( R( x ( 7) ))
6 005, Pēteris Daugulis 6 8) ( x P( ( x R( x ( P( R( 9)! xp ( x( P( ( y( P( y) ( x = )) x y P( y) y x P( y x y P( y) y x P( y 0) ) ) ). PIERĀDĪJUMS Patstāvīgs darbs. Pareizi noformēta formula ir preneksa normālajā formā (PNF), ja visi kvantori ir formulas sākumā un katra kvantora diapazons ir apakšformula, kas atrodas pa labi no tā. Vispārīgā veidā PNF izskatās šādi: Q x Q x... Q x F n n, kur visi Q i ir kvantori, visi argumenti x i ir dažādi un F ir matemātiskās loģikas formula, kas ir atkarīga no argumentiem x i un kas nesatur kvantorus (F sauc par matric. PIEMĒRS Formula x y P( y) ir PNF, bet formula x ( P( y) ( y P( nav PNF. Ja visi kvantori Q i ir universālie kvantori, tad PNF sauc par - formulu, ja visi kvantori ir eksistences kvantori, tad to sauc par - formulu.
7 005, Pēteris Daugulis 7 Ja eksistē indekss i n tāds, ka visi kvantori Q k, k i ir eksistences kvantori un visi pārējie kvantori ir universālie kvantori, tad šāda PNF ir Skolema normālajā formā (SNF), šādu formu sauc arī par - formu. TEORĒMA Jebkura formula ar kvantoriem ir ekvivalenta formulai preneksa normālajā formā. PIERĀDĪJUMS Pierādīsim šo teorēma dodot algoritmu, ar kura palīdzību jebkuru predikāti formulu var pārveidot PNF:.solis atbrīvoties no implikācijām un ekvivalencēm tāpat kā izteikumu gadījumā..solis pielietojot iepriekšējās teorēmas formulas ) un ) ienest negācijas pēc predikātiem. 3.solis pielietojot iepriekšējās teorēmas formulas 3) - 9) pārnest kvantorus preneksa formā. PIEMĒRS Pārveidosim formulu ( x y P( ( x y R( PNF veidā: ( x y P( ( x y R( ( x y( P( ) ( x yr( x x x x (( y P( x x 3 x 4, ( P( x, x 3 ( yr( x ) R( x, ), x 4 ))
8 005, Pēteris Daugulis 8 Pareizi noformētu formulu sauc par atomāru, ja tajā nav loģikas operāciju. Pretējā gadījumā formulu sauc par saliktu. Par pirmās kārtas loģiku sauc tādu formulu pētīšanu, kurās kvantori ir pielietoti matemātiskās loģikas formulām. Par otrās kārtas loģiku sauc tādu formulu pētīšanu, kurās kvantori ir pielietoti attieksmēm matemātiskās loģikas formulu kopā. PAPILDMATERIĀLS PREDIKĀTU PIELIETOJUMI MATEMĀTISKO PIERĀDĪJUMU TEORIJĀ UN TEHNIKĀ Spēja izdarīt loģiski pareizus secinājumus un pietiekoši garas un saskaņotas šādu secinājumu virknes ir svarīga iemaņa, kas ir vajadzīga jebkuram cilvēkam. Vēl jo vairāk šī iemaņa ir vajadzīga tiem, kas ikdienā saskaras ar skaitļošanu un algoritmiem piemēram, programmētājiem vai inženieriem. Šajā nodaļā mēs apskatīsim vienkāršākos matemātisko pierādījumu teorijas un tehnikas jautājumus. Priekšzināšanas, kas ir
9 005, Pēteris Daugulis 9 nepieciešamas šīs nodaļas apgūšanai ir matemātiskās loģikas pamatjēdzieni matemātiskie izteikumi, predikāti u operācijas ar tiem, matemātiskās loģikas formulas, Būla funkcijas, to normālās formas. Matemātisko pierādījumu formalizācijas pirmos mēģinājumus veica matemātiķis G.Leibnics 7.gadsimta otrajā pusē, taču sistēmātiska matemātisko pierādījumu kā matemātikas objekta pētīšana sākās 9.gadsimta beigās. Cilvēka spēja izdarīt pareizus secinājumus un prognozes nākotnes paredzēšanas nolūkā ir augstākās nervu darbības funkcionalitāte, kas ir radusies evolucionārās atlases ceļā. Pamatproblēma, kas katru brīdi ir jārisina dzīviem organismiem, ir šāda ja ir dota noteikta situācija laikā vai telpā, kāda būs šī situācija vēlākā laika momentā vai citos telpas punktos. Šī pamatproblēma liek definēt un pētīt saliktus izteikumus formā JA A (ir patiess izteikums), TAD B (arī ir patiess izteikums), (.) kur A un B ir izteikumi. Teiksim, ka predikāts q seko (loģiski seko) no predikāta p (apzīmē ar pierakstu p q ), ja q ir patiess ar visām tām predikāta argumentu vērtībām,
10 005, Pēteris Daugulis 0 ar kurām p ir patiess. Citiem vārdiem sakot, ja predikāts p ir patiess ar kādu argumentu vērtību sarakstu tad predikāts q arī ir patiess ar šo vērtību sarakstu x. Šādā gadījumā izteikumu vai predikātu p q sauksim par nosacījuma apgalvojumu. Izteikuma (predikāta) p q patiesumvērtība tiek definēta kā patiess, ja tas ir nosacījuma apgalvojums un nepatiess pretējā gadījumā. Var domāt, ka p q = x ( p( q(, kur ir matemātiskās loģikas implikācijas operācija. Predikātu p sauc par nosacījumu vai pietiekamo nosacījumu attiecībā uz q, bet predikātu q - par secinājumu vai nepieciešamo nosacījumu attiecībā uz p. Par nosacījuma apgalvojumu var domāt kā par predikātu, kura argumenti ir predikāti vai kā par attiecību (attieksmi) predikātu kopā, kurā tiek saistīts nosacījums un secinājums. Izteikumu p q parasti formulē veidā ja p, tad q. Izteikumu ( p q) ( q p) formulēsim veidā p tad un tikai tad, ja q, to sauksim par loģisko ekvivalenci un apzīmēsim ar p q. Nosacījuma apgalvojumu var saukt arī par pareizu secinājumu. Nosacījuma apgalvojumu var mēģināt vizualizēt, izmantojot Eilera-Venna diagrammas šādā veidā. Ja ir doti divi predikāti p un q, tad uzskatīsim, ka katrai argumentu virknei atbilst punkts universā un
11 005, Pēteris Daugulis piekārtosim katram no predikātiem to universa apakškopu, ar kuras elementu vērtībām predikāts ir patiess, apzīmēsim šos apgabalus ar P, Q. Apakškopas P un Q sauc par predikātu p un q patiesumvērtību kopām. Viegli redzēt, ka nosacījuma apgalvojuma p q patiesums nozīmē, ka P Q : U P Q Zīm... nosacījuma apgalvojuma vizualizācija ar predikātu patiesumvērtību kopu palīdzību. Izteikuma p q patiesums nozīmē, ka P = Q (predikātu patiesumvērtību kopas sakrīt): U P = Q
12 005, Pēteris Daugulis Zīm... loģiskās ekvivalences vizualizācija. Nosacījuma apgalvojumu interpretācija ar patiesumvērtību kopu izmantošanu ļauj viegli noformulēt nosacījuma apgalvojuma kritēriju gadījumā, kad predikātu argumenti ir Būla mainīgie un predikāti ir izteikti PDNF: TEORĒMA. p q ir nosacījuma apgalvojums tad un tikai tad, ja katra elementārā konjunkcija, kas piedalās predikāta p PDNF, piedalās arī predikāta q PDNF. PIERĀDĪJUMS Pieņemsim, ka p q ir ε ε nosacījuma apgalvojums, tātad, ja p( X, X,..., X n ) ir patiess, tad arī ε ε q( X, X,..., X n ). Izteikums ε ε p( X, X,..., X n ) ir patiess, tad un tikai tad, ja elementāra konjunkcija ε ε X X... X n piedalās predikāta p PDNF, ε ε q( X, X,..., X n ) ir patiess, tad un tikai tad, ja tā piedalās arī predikāta q PDNF. ε ε Tātad, ja X X... X n piedalās predikāta p PDNF, tad ε ε X X... X n piedalās predikāta q PDNF. Pieņemsim, ka katra elementārā konjunkcija, kas piedalās predikāta p PDNF, piedalās arī predikāta q PDNF. Tātad, ja ε ε X X... X n piedalās predikāta ε ε p PDNF, tad X X... X n piedalās arī predikāta q ε ε PDNF. Ja X X... X n piedalās predikātu p un q n PDNF, tad p( X ε ε, X,..., X n ) ε ε q( X,,..., ) X X n ir patiesi un teorēma ir pierādīta. QED
13 005, Pēteris Daugulis 3 Par divu nosacījuma apgalvojumu p q un q r kompozīciju sauksim izteikumu p r. Par pierādījumu sauksim vairāku nosacījuma apgalvojumu kompozīciju: ( = q p a q) ( p p... pn ). (.) Viegli redzēt, ka pierādījums arī ir nosacījuma apgalvojums: ja visi izteikumi p p, p p3,..., p n p n ir patiesi, tad, ja izteikums p ( ir patiess, tad p ( ir patiess; ja p ( ir patiess, tad p 3( x ) ir patiess;... ; ja p ( x n ) ir patiess, tad p n ( ir patiess. Tātad kompozīcija p pn arī ir nosacījuma apgalvojums. Par teorēmu (grieķu valodā skaties! ) sauksim apgalvojumu, kas tiek iegūts pareiza pierādījuma ceļā no aksiomām (dotiem predikātiem vai izteikumiem, kas tiek uzskatīti par patiesiem, grieķu valodā atbilstošā vārda nozīme ir vērtīgs ). Parasti teorēmas veido formā p q ( no p seko q ) vai p q( p tad un tikai tad, ja q, p q un p Par lemmu sauksim teorēmu, kas ir starpposms kādas svarīgākas teorēmas pierādījumā. Par secinājumu no teorēmas sauksim izteikumu, ko var relatīvi viegli pierādīt, pieņemot šo teorēmu. q )
14 005, Pēteris Daugulis 4 Par apgalvojuma/teorēmas p q apgriezto apgalvojumu sauksim q p, par pretējo apgalvojumu sauksim q p, par pretējam apgriezto apgalvojumu sauksim p q. Par matemātisku teoriju (pierādījumu sistēm sauc struktūru, kas satur fiksētu alfabētu, apgalvojumu veidošanas likumus, fiksētu aksiomu kopu un fiksētu nosacījuma apgalvojumu veidu (likum kopu. Aksiomas var būt gan vispārīgas (loģiskas), gan arī specifiskas dotajai teorijai (neloģiskas). Aksiomu kopa var būt gan galīga, gan arī bezgalīga. Aksiomu kopu sauksim par neatkarīgu, ja nekāda no aksiomām nav pierādāma, izmantojot pārējās aksiomas. Parasti dotajā teorijā atļauto nosacījuma apgalvojumu veidu kopa ir galīga. Katras matemātiskās teorijas attīstība sastāv no tās objektu un valodas koordinatizēšanas un formalizēšanas, grūtu teorēmu pierādīšana, teorijas galamērķu noteikšanas un sasniegšanas. Matemātisku teoriju sauc par nepretrunīgu, ja tajā nav iespējams pierādīt kādu apgalvojumu s un tā noliegumu s. Matemātisku teoriju sauc par pilnu, ja tajā katra patiesa teorēma ir pierādāma. Matemātisku teoriju sauc par atrisināmu, ja eksistē algoritms (piemēram, Tjūringa mašīna), kas katram teorijas apgalvojumam nosaka, vai tas ir pierādāms.
ATTĒLOJUMI UN FUNKCIJAS. Kopas parasti tiek uzskatītas par fiksētiem, statiskiem objektiem.
2005, Pēteris Daugulis 1 TTĒLOJUMI UN FUNKCIJS Kopas parasti tiek uzskatītas par iksētiem, statiskiem objektiem Lai atļautu kopu un to elementu pārveidojumus, ievieš attēlojuma jēdzienu ttēlojums ir kāda
ATTIECĪBAS. Attiecības - īpašība, kas piemīt vai nepiemīt sakārtotai vienas vai vairāku kopu elementu virknei (var lietot arī terminu attieksme).
004, Pēteris Daugulis ATTIECĪBAS Attiecības - īpašība, kas piemīt vai nepiemīt sakārtotai vienas vai vairāku kopu elementu virknei (var lietot arī terminu attieksme). Bināra attiecība - īpašība, kas piemīt
Rekurentās virknes. Aritmētiskā progresija. Pieņemsim, ka q ir fiksēts skaitlis, turklāt q 0. Virkni (b n ) n 1, kas visiem n 1 apmierina vienādību
Rekurentās virknes Rekursija ir metode, kā kaut ko definēt visbiežāk virkni), izmantojot jau definētas vērtības. Vienkāršākais šādu sakarību piemērs ir aritmētiskā un ǧeometriskā progresija, kuras mēdz
ESF projekts Pedagogu konkurētspējas veicināšana izglītības sistēmas optimizācijas apstākļos Vienošanās Nr. 2009/0196/1DP/
ESF projekts Pedagogu konkurētspējas veicināšana izglītības sistēmas optimizācijas apstākļos Vienošanās Nr. 009/0196/1DP/1...1.5/09/IPIA/VIAA/001 ESF projekts Pedagogu konkurētspējas veicināšana izglītības
Rīgas Tehniskā universitāte. Inženiermatemātikas katedra. Uzdevumu risinājumu paraugi. 4. nodarbība
Rīgas Tehniskā univesitāte Inženiematemātikas kateda Uzdevumu isinājumu paaugi 4 nodabība piemēs pēķināt vektoa a gaumu un viziena kosinusus, ja a = 5 i 6 j + 5k Vektoa a koodinātas i dotas: a 5 ; a =
Īsi atrisinājumi Jā, piemēram, 1, 1, 1, 1, 1, 3, 4. Piezīme. Uzdevumam ir arī vairāki citi atrisinājumi Skat., piemēram, 1. zīm.
Īsi atrisinājumi 5.. Jā, piemēram,,,,,, 3, 4. Piezīme. Uzdevumam ir arī vairāki citi atrisinājumi. 5.. Skat., piemēram,. zīm. 6 55 3 5 35. zīm. 4. zīm. 33 5.3. tbilde: piemēram, 4835. Ievērosim, ka 4 dalās
Atrisinājumi Latvijas 64. matemātikas olimpiāde 3. posms x 1. risinājums. Pārveidojam doto izteiksmi, atdalot pilno kvadrātu:
trisiājumi Latvijas 6 matemātikas olimpiāde posms 9 Kādu mazāko vērtību var pieņemt izteiksme 0, ja > 0? risiājums Pārveidojam doto izteiksmi, atdalot pilo kvadrātu: 0 ( ) 0 0 0 0 0 Tā kā kvadrāts viemēr
LATVIJAS RAJONU 33. OLIMPIĀDE. 4. klase
Materiāls ņemts no grāmatas:andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas matemātikas olimpiāžu (5.-5.).kārtas (rajonu) uzdevumi un atrisinājumi" LATVIJAS RAJONU 33. OLIMPIĀDE 4. klase 33.. Ievietot
Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013
Ι 55 C 35 C A A B C D E F G 47 17 21 18 19 19 18 db kw kw db 2015 811/2013 Ι A A B C D E F G 2015 811/2013 Izstrādājuma datu lapa par energopatēriņu Turpmākie izstrādājuma dati atbilst ES regulu 811/2013,
LATVIJAS REPUBLIKAS 45. OLIMPIĀDE
Materiāls ņemts no grāmatas: Andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas Republikas 6.-. matemātikas olimpiādes" LATVIJAS REPUBLIKAS 4. OLIMPIĀDE ATRISINĀJUMI 4.. Dotās nevienādības > abas puses
Logatherm WPS 10K A ++ A + A B C D E F G A B C D E F G. kw kw /2013
51 d 11 11 10 kw kw kw d 2015 811/2013 2015 811/2013 Izstrādājuma datu lapa par energopatēriņu Turpmākie izstrādājuma dati atbilst S regulu 811/2013, 812/2013, 813/2013 un 814/2013 prasībām, ar ko papildina
ATRISINĀJUMI LATVIJAS REPUBLIKAS 32. OLIMPIĀDE
Materiāls ņemts no grāmatas: Andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas Republikas 6.-5. matemātikas olimpiādes" LATVIJAS REPUBLIKAS. OLIMPIĀDE ATRISINĀJUMI.. Pirmā apskatāmā skaitļa ciparu
Agnis Andžāns, Julita Kluša /95. m.g. matemātikas olimpiāžu uzdevumi ar atrisinājumiem
Agnis Andžāns, Julita Kluša 994./95. m.g. matemātikas olimpiāžu uzdevumi ar atrisinājumiem Rīga, 997 Anotācija Šajā izstrādnē apkopoti 994./95. mācību gadā notikušo Latvijas mēroga matemātikas sacensību
5. un 6.lekcija. diferenciālvienādojumiem Emdena - Faulera tipa vienādojumi. ir atkarīgas tikai no to attāluma r līdz lodes centram.
Parasto diferenciālvienādojumu nelineāras robežproblēmas 5. un 6.lekcija 1. Robežproblēmas diferenciālvienādojumiem ar neintegrējamām singularitātēm 1.1. Emdena - Faulera tipa vienādojumi Piemērs 5.1.
Tēraudbetona konstrukcijas
Tēraudbetona konstrukcijas tēraudbetona kolonnu projektēšana pēc EN 1994-1-1 lektors: Gatis Vilks, SIA «BALTIC INTERNATIONAL CONSTRUCTION PARTNERSHIP» Saturs 1. Vispārīga informācija par kompozītām kolonnām
Komandu olimpiāde Atvērtā Kopa. 8. klases uzdevumu atrisinājumi
Komandu olimpiāde Atvērtā Kopa 8. klases uzdevumu atrisinājumi 1. ΔBPC ir vienādmalu trijstūris, tādēļ visi tā leņķi ir 60. ABC = 90 (ABCDkvadrāts), tādēļ ABP = 90 - PBC = 30. Pēc dotā BP = BC un, tā kā
LATVIJAS RAJONU 39. OLIMPIĀDE
Materiāls ņemts o grāmatas:adžās Agis, Bērziņa Aa, Bērziņš Aivars "Latvijas matemātikas olimpiāžu (-) kārtas (rajou) uzdevumi u atrisiājumi" LATVIJAS RAJONU 9 OLIMPIĀDE ATRISINĀJUMI 9 Ir jāaprēķia 00-ais
AGNIS ANDŽĀNS, DACE BONKA, ZANE KAIBE, LAILA ZINBERGA. Matemātikas sacensības klasēm uzdevumi un atrisinājumi 2009./2010.
AGNIS ANDŽĀNS, DACE BONKA, ZANE KAIBE, LAILA ZINBERGA Matemātikas sacensības 4.-9. klasēm uzdevumi un atrisinājumi 009./00. mācību gadā Rīga 0 A. Andžāns, D. Bonka, Z. Kaibe, L. Zinberga. Matemātikas sacensības
KOMBINATORIKAS UN VARBŪTĪBU TEORIJAS ELEMENTI. matemātikas profīlkursam vidusskolā
Jānis Cīrulis KOMBINATORIKAS UN VARBŪTĪBU TEORIJAS ELEMENTI matemātikas profīlkursam vidusskolā ANOTĀCIJA Šī izstrādne ir mācību līdzeklis (tā pirmā puse) nosaukumā minēto tēmu apguvei, ko varētu gan vairāk
LU A.Liepas Neklātienes matemātikas skola /2011.m.g. sagatavošanās olimpiāde matemātikā
2010.26.11. LU A.Liepas Neklātienes matemātikas skola 2010./2011.m.g. sagatavošanās olimpiāde matemātikā Katra metodiskā apvienība pati nolemj, vai un kad tā rīkos vai nerīkos šādu olimpiādi un, ja rīkos,
1. Testa nosaukums IMUnOGLOBULĪnS G (IgG) 2. Angļu val. Immunoglobulin G
1. Testa nosaukums IMUnOGLOBULĪnS G (IgG) 2. Angļu val. Immunoglobulin G 3. Īss raksturojums Imunoglobulīnu G veido 2 vieglās κ vai λ ķēdes un 2 smagās γ ķēdes. IgG iedalās 4 subklasēs: IgG1, IgG2, IgG3,
Mehānikas fizikālie pamati
1.5. Viļņi 1.5.1. Viļņu veidošanās Cietā vielā, šķidrumā, gāzē vai plazmā, tātad ikvienā vielā starp daļiņām pastāv mijiedarbība. Ja svārstošo ķermeni (svārstību avotu) ievieto vidē (pieņemsim, ka vide
Satura rādītājs Apmācīšanās piemērs... 44
Satura rādītās. Neironu tīkli skaitļošanas paradigma... 3.. Neironu tīkls kā skaitļošanas sistēma... 3.. Bioloģiskie neironu tīkli... 4. Mākslīgais neirons... 7.. Neirona uzbūves un darbības pamatprincipi...
Temperatūras izmaiħas atkarībā no augstuma, atmosfēras stabilitātes un piesārħojuma
Temperatūras izmaiħas atkarībā no augstuma, atmosfēras stabilitātes un piesārħojuma Gaisa vertikāla pārvietošanās Zemes atmosfērā nosaka daudzus procesus, kā piemēram, mākoħu veidošanos, nokrišħus un atmosfēras
Lai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.
6. VIRKNES Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri Stundas piemērs M_10_UP_06_P1 Iracionāla skaitļa π aptuvenās vērtības noteikšana Skolēna darba lapa M_10_LD_06 Virknes
FIZIKĀLO FAKTORU KOPUMS, KAS VEIDO ORGANISMA SILTUMAREAKCIJU AR APKĀRTĒJO VIDI UN NOSAKA ORGANISMA SILTUMSTĀVOKLI
Mikroklimats FIZIKĀLO FAKTORU KOPUMS, KAS VEIDO ORGANISMA SILTUMAREAKCIJU AR APKĀRTĒJO VIDI UN NOSAKA ORGANISMA SILTUMSTĀVOKLI P 1 GALVENIE MIKROKLIMATA RĀDĪTĀJI gaisa temperatūra gaisa g relatīvais mitrums
LATVIJAS REPUBLIKAS 38. OLIMPIĀDE
Materiāls ņemts o grāmatas: Adžās Agis, Bērziņa Aa, Bērziņš Aivars "Latvijas Republikas 6.-5. matemātikas olimpiādes" LATVIJAS REPUBLIKAS 8. OLIMPIĀDE UZDEVUMI 8. klase 8.. Vai eksistē tāda kvadrātfukcija
Latvijas Universitāte Fizikas un matemātikas fakultāte Matemātiskās analīzes katedra. Inese Bula
Latvijas Universitāte Fizikas un matemātikas fakultāte Matemātiskās analīzes katedra Inese Bula STRATĒǦISKO SPĒĻU TEORIJA LEKCIJU KONSPEKTS 2007 SATURS Lekcija nr. 1. Kas ir spēļu teorija? 3 Lekcija nr.
Lai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.
5.TEMATS FUNKCIJAS Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri M UP_5_P Figūras laukuma atkarība no figūras formas Skolēna darba lapa M UP_5_P Funkcijas kā reālu procesu modeļi
Divkāršais noliegums sengrieķu valodā Double negation in Ancient Greek
VALODA: NOZĪME UN FORMA 5 Divkāršais noliegums sengrieķu valodā Double negation in Ancient Greek Gita Bērziņa Latvijas Universitāte, Humanitāro zinātņu fakultāte Klasiskās filoloģijas katedra Visvalža
Komandu olimpiāde Atvērtā Kopa Atrisinājumi 7. klasei
01 Komandu olimpiāde Atvērtā Kopa Atrisinājumi 7. klasei 1. Varam pieņemt, ka visos darbos Kristiāna strāda piecu darba dienu nedēļu, tātad 40 stundas nedēļā (drīkst arī pieņemt, ka Kristiāna strādā nedēļas
LATVIJAS REPUBLIKAS 35. OLIMPIĀDE
Materiāls ņemts o grāmatas: Adžās Agis, Bērziņa Aa, Bērziņš Aivars "Latvijas Republikas 26.-5. matemātikas olimpiādes" LATVIJAS REPUBLIKAS 35. OLIMPIĀDE UZDEVUMI 8. klase 35. Atrisiāt vieādojumu x + 2x
Andrejs Rauhvargers VISPĀRĪGĀ ĶĪMIJA. Eksperimentāla mācību grāmata. Atļāvusi lietot Latvijas Republikas Izglītības un zinātnes ministrija
Andrejs Rauhvargers VISPĀRĪGĀ ĶĪMIJA Eksperimentāla mācību grāmata Atļāvusi lietot Latvijas Republikas Izglītības un zinātnes ministrija Rīga Zinātne 1996 UDK p 54(07) Ra 827 Recenzenti: Dr. chem. J. SKRĪVELIS
GRAFOANALITISKO DARBU UZDEVUMI ELEKTROTEHNIKĀ UN ELEKTRONIKĀ VISPĀRĪGI NORĀDĪJUMI
GRAFOANALITISKO DARBU UZDEVUMI ELEKTROTEHNIKĀ UN ELEKTRONIKĀ VISPĀRĪGI NORĀDĪJUMI Kursa Elektrotehnika un elektronika programmā paredzēta patstāvīga grafoanalītisko uzdevumu izpilde. Šajā krājumā ievietoti
LATVIJAS RAJONU 43. OLIMPIĀDE
Materiāls ņemts no grāmatas:andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas matemātikas olimpiāžu (5-5) kārtas (rajonu) uzdevumi un atrisinājumi" LATVIJAS RAJONU 43 OLIMPIĀDE ATRISINĀJUMI 43 Pārlokot
MAZĀ UNIVERSITĀTE. 5. nodarbība, gada 31. marts. Mazā matemātikas universitāte
MAZĀ MATEMĀTIKAS UNIVERSITĀTE Mazā matemātikas universitāte 5. nodarbība, 2012. gada 31. marts Statistiskais eksperiments varbūtību teorijā. Kā vēl var aprēėināt notikumu varbūtības? Mazā matemātikas universitāte
INSTRUKCIJA ERNEST BLUETOOTH IMMOBILIZER
APRAKSTS: INSTRUKCIJA ERNEST BLUETOOTH IMMOBILIZER BLUETOOTH IMOBILAIZERS ir transporta līdzekļa papildus drošibas sistēma. IERĪCES DARBĪBA 1. Ja iekārta netiek aktivizēta 1 minūtes laikā, dzinējs izslēdzas.
Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts
Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts www.videszinatne.lv Saules enerģijas izmantošanas iespējas Latvijā / Seminārs "Atjaunojamo
MARUTA AVOTIĥA, LAURA FREIJA. Matemātikas sacensības klasēm 2010./2011. mācību gadā
MARUTA AVOTIĥA, LAURA FREIJA Matemātikas sacesības 9 klasēm 00/0 mācību gadā RĪGA 0 M AvotiĦa, L Freija Matemātikas sacesības 9 klasēm 00/0 mācību gadā Rīga: Latvijas Uiversitāte, 0 56 lpp Grāmatā apkopoti
Latvijas Universitāte Fizikas un matemātikas fakultāte. Inese Bula MIKROEKONOMIKA (MATEMĀTISKIE PAMATI)
Latvijas Universitāte Fizikas un matemātikas fakultāte Inese Bula MIKROEKONOMIKA (MATEMĀTISKIE PAMATI) LEKCIJU KONSPEKTS 2007 SATURS Priekšvārds 3 Lekcija nr. 1. Ievads mikroekonomikas teorijā 4 Lekcija
"Profesora Cipariņa klubs" 2005./06. m.g. 1. nodarbības uzdevumu atrisinājumi. A grupa
"Profesora Cipariņa klubs" 005./06. m.g.. nodarbības udevumu atrisinājumi A grupa. Viegli pārbaudīt, ka 3 4=44. Tātad meklējamie skaitļi var būt ; 3; 4. Pierādīsim, ka tie nevar būt citādi. Tiešām, ivēloties
2. PLAKANU STIEŅU SISTĒMU STRUKTŪRAS ANALĪZE
Ekspluatācijas gaitā jebkura reāla būve ārējo iedarbību rezultātā kaut nedaudz maina sākotnējo formu un izmērus. Sistēmas, kurās to elementu savstarpējā izvietojuma un izmēru maiņa iespējama tikai sistēmas
Spektrālaparā un spektrālie mērījumi Lekciju konspekts. Linards Kalvāns LU FMF gada 7. janvārī
Spektrālaparā un spektrālie mērījumi Lekciju konspekts Linards Kalvāns LU FMF 014. gada 7. janvārī Saturs I. Vispārīga informācija 4 I.1. Literatūras saraksts..........................................
Lielumus, kurus nosaka tikai tā skaitliskā vērtība, sauc par skalāriem lielumiem.
1. Vektori Skalāri un vektoriāli lielumi Lai raksturotu kādu objektu vai procesu, tā īpašības parasti apraksta, izmantojot dažādus skaitliskus raksturlielumus. Piemēram, laiks, kas nepieciešams, lai izlasītu
P A atgrūšanās spēks. P A = P P r P S. P P pievilkšanās spēks
3.2.2. SAITES STARP ATOMIEM SAIŠU VISPĀRĪGS RAKSTUROJUMS Lai izprastu materiālu fizikālo īpašību būtību jābūt priekšstatam par spēkiem, kas darbojas starp atomiem. Aplūkosim mijiedarbību starp diviem izolētiem
Gaismas difrakcija šaurā spraugā B C
6..5. Gaismas difrakcija šaurā spraugā Ja plakans gaismas vilnis (paralēlu staru kūlis) krīt uz šauru bezgalīgi garu spraugu, un krītošās gaismas viļņa virsma paralēla spraugas plaknei, tad difrakciju
Lielais dānis Nilss Bors
Lielais dānis Nilss Bors No kā sastāv atoms? Atoma kodola atklāšana Atoma planetārais modelis. Bora teorija Orbitālais kvantu skaitlis Magnētiskais kvantu skaitlis. Magnētiskā mijiedarbība atomā Elektrona
6. Pasaules valstu attīstības teorijas un modeļi
6. Pasaules valstu attīstības teorijas un modeļi Endogēnās augsmes teorija (1980.-jos gados) Klasiskās un neoklasiskās augsmes teorijās un modeļos ir paredzēts, ka ilgtermiņa posmā ekonomiskā izaugsme
TIEŠĀ UN NETIEŠĀ GRADIENTA ANALĪZE
TIEŠĀ UN NETIEŠĀ GRADIENTA ANALĪZE Botānikas un ekoloăijas katedra Iluta Dauškane Vides gradients Tiešā un netiešā gradienta analīze Ordinācijas pamatideja Ordinācijas metodes Gradientu analīze Sugu skaits
Ο ΠΕΡΙ ΤΕΛΩΝΕΙΑΚΟΥ ΚΩΔΙΚΑ ΝΟΜΟΣ ΤΟΥ 2004
Αριθμός 2204 Ο ΠΕΡΙ ΤΕΛΩΝΕΙΑΚΟΥ ΚΩΔΙΚΑ ΝΟΜΟΣ ΤΟΥ 2004 (Παράρτημα Παράγραφοι 1 και 2) Δηλοποιηση Κατασχέσεως Αναφορικά με τους ZBIGNIEW και MAKGORZATA EWERTWSKIGNIEWEK, με αριθμούς διαβατηρίων Πολωνίας
6.2. Gaismas difrakcija Gaismas difrakcijas veidi
6.. Gaismas difrakcija Ļoti pierasts un katram pilnīgi saprotams liekas priekšstats par gaismas taisnvirziena izplatīšanos homogēnā vidē. Tomēr, daudzos gadījumos gaismas intensitātes sadalījums uz robežas,
Laboratorijas darbu apraksts (I semestris)
Laboratorijas darbu apraksts (I semestris) un mērījumu rezultātu matemātiskās apstrādes pamati 1. Fizikālo lielumu mērīšana Lai kvantitatīvi raksturotu kādu fizikālu lielumu X, to salīdzina ar tādas pašas
Jauni veidi, kā balansēt divu cauruļu sistēmu
Jauni veidi, kā balansēt divu cauruļu sistēmu Izcila hidrauliskā balansēšana apkures sistēmās, izmantojot Danfoss RA-DV tipa Dynamic Valve vārstu un Grundfos MAGNA3 mainīga ātruma sūkni Ievads Zema enerģijas
Taisnzobu cilindrisko zobratu pārvada sintēze
LATVIJAS LAUKSAIMNIECĪBAS UNIVERSITĀTE Tehniskā fakultāte Mehānikas institūts J. SvētiĦš, Ē. Kronbergs Taisnzobu cilindrisko zobratu pārvada sintēze Jelgava 009 Ievads Vienkāršs zobratu pārvads ir trīslocekĝu
Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.
(, ) =,, = : = = ( ) = = = ( ) = = = ( ) ( ) = = ( ) = = = = (, ) =, = = =,,...,, N, (... ) ( + ) =,, ( + ) (... ) =,. ( ) = ( ) = (, ) = = { } = { } = ( ) = \ = { = } = { = }. \ = \ \ \ \ \ = = = = R
Jauna tehnoloģija magnētiskā lauka un tā gradienta mērīšanai izmantojot nanostrukturētu atomārās gāzes vidi
Projekts (vienošanās ) Jauna tehnoloģija magnētiskā lauka un tā gradienta mērīšanai izmantojot nanostrukturētu atomārās gāzes vidi Izveidotā jaunā magnētiskā lauka gradienta mērīšanas moduļa apraksts Aktivitāte
MULTILINGUAL GLOSSARY OF VISUAL ARTS
MULTILINGUAL GLOSSARY OF VISUAL ARTS (GREEK-ENGLISH-LATVIAN) Χρώματα Colours Krāsas GREEK ENGLISH LATVIAN Αυθαίρετο χρώμα: Χρϊμα που δεν ζχει καμία ρεαλιςτικι ι φυςικι ςχζςθ με το αντικείμενο που απεικονίηεται,
Donāts Erts LU Ķīmiskās fizikas institūts
Donāts Erts LU Ķīmiskās fizikas institūts Nanovadu struktūras ir parādījušas sevi kā efektīvi (Nat. Mater, 2005, 4, 455) fotošūnu elektrodu materiāli 1.katrs nanovads nodrošina tiešu elektronu ceļu uz
Oriģinālu signālu apstrādes paņēmienu izveide un izpēte konkurētspējīgu IT tehnoloģiju radīšanai
Valsts pētījumu programma Informācijas tehnoloģiju zinātniskā bāze Projekta Nr.3 Oriģinālu signālu apstrādes paņēmienu izveide un izpēte konkurētspējīgu IT tehnoloģiju radīšanai INFORMATĪVĀ ATSKAITE PAR
Klasificēšanas kritēriji, ņemot vērā fizikāli ķīmiskās īpašības
, ņemot vērā fizikāli ķīmiskās īpašības Mg.sc.ing. Līga Rubene VSIA "Latvijas Vides, ģeoloģijas un meteoroloģijas centrs" Informācijas analīzes daļa Ķīmisko vielu un bīstamo atkritumu nodaļa 20.04.2017.
Ķermeņa inerce un masa. a = 0, ja F rez = 0, kur F visu uz ķermeni darbojošos spēku vektoriālā summa
2.1. Ķereņa inerce un asa Jebkurš ķerenis saglabā iera stāvokli vai turpina vienērīgu taisnlīnijas kustību ar neainīgu ātruu (v = const) tikēr, kaēr uz to neiedarbojas citi ķereņi vai ta pieliktie ārējie
6. LATVIJAS UNIVERSITĀTES ĶĪMIJAS FAKULTĀTES JAUNO ĶĪMIĶU KONKURSA 2.KĀRTAS UZDEVUMU ATBILDES 8.-9.klases uzdevumi
6. LATVIJAS UNIVERSITĀTES ĶĪMIJAS FAKULTĀTES JAUNO ĶĪMIĶU KONKURSA 2.KĀRTAS UZDEVUMU ATBILDES 8.-9.klases uzdevumi 1. uzdevums Vai tu to vari? Gāzes Ķīmisko reakciju vienādojumi Ūdeņradis, oglekļa dioksīds,
Laboratorijas darbs disciplīnā Elektriskās sistēmas. 3-FAŽU ĪSSLĒGUMU APRĒĶINAŠANA IZMANTOJOT DATORPROGRAMMU PowerWorld version 14
RĪGAS TEHNISKĀ UNIVERSITĀTE Enerģētikas un elektrotehnikas fakultāte Enerģētikas institūts Laboratorijas darbs disciplīnā Elektriskās sistēmas 3-FAŽU ĪSSLĒGUMU APRĒĶINAŠANA IZMANTOJOT DATORPROGRAMMU PowerWorld
2. Kā tu uztver apkārtējo pasauli? Kas tev ir svarīgāk: redzēt, dzirdēt, sajust?
Romāns. Marks Hedons ROMĀNS MARKS HEDONS (1962) UZZIŅAI Britu rakstnieks M. Hedons ir Anglijā pazīstams bērnu grāmatu rakstnieks un ilustrators, piecpadsmit grāmatu autors. Viņš rakstījis scenārijus BBC
Pašmācības materiāli izklājlapu lietotnes OpenOffice.org Calc apguvei
Pašmācības materiāli izklājlapu lietotnes OpenOffice.org Calc apguvei Guntars Lācis guntars_l@inbox.lv Saturs Izklājlapu lietotnes OpenOffice.org Calc darba vide... 4 Aprēķinu veikšana, izmantojot lietotni
ELEKTROĶĪMIJA. Metāls (cietā fāze) Trauks. Elektrolīts (šķidrā fāze) 1. att. Pirmā veida elektroda shēma
1 ELEKTROĶĪMIJA Elektroķīmija ir zinātnes nozare, kura pēta ķīmisko un elektrisko procesu savstarpējo sakaru ķīmiskās enerģijas pārvēršanu elektriskajā un otrādi. Šie procesi ir saistīti ar katra cilvēka
6.4. Gaismas dispersija un absorbcija Normālā un anomālā gaismas dispersija. v = f(λ). (6.4.1) n = f(λ). (6.4.2)
6.4. Gaismas dispersija un absorbcija 6.4.1. Normālā un anomālā gaismas dispersija Gaismas izplatīšanās ātrums vakuumā (c = 299 792,5 ±,3 km/s) ir nemainīgs lielums, kas nav atkarīgs no viļņa garuma. Vakuumā
3.2. Līdzstrāva Strāvas stiprums un blīvums
3.. Līdzstrāva Šajā nodaļā aplūkosim elektrisko strāvu raksturojošos pamatlielumus un pamatlikumus. Nodaļas sākumā formulēsim šos likumus, balstoties uz elektriskās strāvas parādības novērojumiem. Nodaļas
Matemātiskās statistikas pamatjēdzieni
Matemātskās statstkas pamatjēdze Uzskatīsm, ka ξ - gadījuma lelums, kas apraksta pētāmā objekta uzvedību (rādītāj par veu, va varākām objekta pazīmēm ). Gadījuma lelums ξ peņem vērtības o kādas kopas X.
Datu lapa: Wilo-Yonos PICO 25/1-6
Datu lapa: Wilo-Yonos PICO 25/1-6 Raksturlīknes Δp-c (konstants),4,8 1,2 1,6 Rp 1¼ H/m Wilo-Yonos PICO p/kpa 6 15/1-6, 25/1-6, 3/1-6 1~23 V - Rp ½, Rp 1, Rp 1¼ 6 5 v 1 2 3 4 5 6 7 Rp ½,5 1, p-c 1,5 2,
Datu lapa: Wilo-Yonos PICO 25/1-4
Datu lapa: Wilo-Yonos PICO 25/1-4 Raksturlīknes Δp-c (konstants) v 1 2 3 4,4,8 1,2 Rp ½ Rp 1,2,4,6,8 1, Rp 1¼ H/m Wilo-Yonos PICO p/kpa 15/1-4, 25/1-4, 3/1-4 4 1~23 V - Rp ½, Rp 1, Rp 1¼ 4 m/s Atļautie
Fizikas valsts 66. olimpiāde Otrā posma uzdevumi 12. klasei
Fizikas valsts 66. olimpiāde Otrā posma uzdevumi 12. klasei 12-1 Pseido hologramma Ievēro mērvienības, kādās jāizsaka atbildes. Dažus uzdevuma apakšpunktus var risināt neatkarīgi no pārējiem. Mūsdienās
Uponor PE-Xa. Ātrs, elastīgs, uzticams
Uponor PE-Xa Ātrs, elastīgs, uzticams Pasaulē pirmās, vislabākās un visbiežāk izmantotās PEX sistēmas Plastmasas risinājumu pionieru kompetence, vairāk nekā četru dekāžu pieredzes rezultāts Sistēma izstrādāta
Atlases kontroldarbs uz Baltijas valstu ķīmijas olimpiādi 2013.gada 07.aprīlī
Atlases kontroldarbs uz Baltijas valstu ķīmijas olimpiādi 2013.gada 07.aprīlī Atrisināt dotos sešus uzdevumus, laiks 3 stundas. Uzdevumu tēmas: 1) tests vispārīgajā ķīmijā; 2) ķīmisko reakciju kinētika;
Laboratorijas darbu apraksts (II semestris)
Laboratorijas darbu apraksts (II semestris).5. Zemes magnētiskā lauka horizontālās komponentes noteikšana ar tangensgalvanometru. Katrā zemeslodes vietā Zemes magnētiskā lauka indukcijas vektors attiecībā
Brīvie elektroni metālos. 1. Drudes metālu teorija
Brīvie eletroni metālos 1. Drudes metālu teorija Metālus vieno virne opīgu īpašību. Visi metāli ir labi siltuma un eletrisās strāvas vadītāji, tiem rasturīga aļamība, plastisums, gaismas spoguļreflesija.
4. APGAISMOJUMS UN ATTĒLI
4. APGAISMJUMS UN ATTĒLI ptisko mikroskopu vēsture un nākotne Gaismas avota stiprums. Gaismas plūsma Apgaismojums Elektriskie gaismas avoti. Apgaismojums darba vietā Ēnas. Aptumsumi Attēla veidošanās.
P. Leščevics, A. GaliĦš ELEKTRONIKA UN SAKARU TEHNIKA
P. Leščevics, A. GaliĦš ELEKTRONIKA UN SAKARU TEHNIKA Jelgava 008 P. Leščevics, A. GaliĦš ELEKTRONIKA UN SAKARU TEHNIKA Mācību līdzeklis lietišėajā elektronikā Jelgava 008 Mācību līdzeklis sagatavots un
Ceļu un ielu apgaismes sistēmu ierīkošanas pamatjautājumi un standartizācija. RTU EEF EI EK Dr.sc.ing. Kristīna Bērziņa
Ceļu un ielu apgaismes sistēmu ierīkošanas pamatjautājumi un standartizācija RTU EEF EI EK Dr.sc.ing. Kristīna Bērziņa Kristina.Berzina@rtu.lv 2016 LVS EN 13201 IELU APGAISMOJUMS ir: stacionāro apgaismes
Projekts Tālākizglītības programmas Bioloăijas skolotāja profesionālā pilnveide izstrāde un aprobācija (Nr. VPD1/ESF/PIAA/05/APK/
C Praktisko darbu modulis 1. laboratorijas darbs Nodarbība. Mikroskopēšanas pamatprincipi augu uzbūves pētīšanā Priekšstatu veidošanās par mikroskopiju Mikroskopēšana ir viena svarīgākajām bioloăijā pielietojamām
fx-82es PLUS fx-85es PLUS fx-95es PLUS fx-350es PLUS
LV fx-82es PLUS fx-85es PLUS fx-95es PLUS fx-350es PLUS Lietotāja pamācība CASIO Worldwide Education vietne: http://edu.casio.com CASIO IZGLĪTĪBAS FORUMS http://edu.casio.com/forum/ Išversta vertimų biure
UGUNSAIZSARDZĪBAS ROKASGRĀMATA 3/KOKS
UGUNSAIZSARDZĪBAS ROKASGRĀMATA 3/KOKS Vieglas un noslogotas koka konstrukcijas TERMINU SKAIDROJUMI UN SAĪSINĀJUMI Ugunsaizsardzība Ugunsizturība Ugunsdroša būvkonstrukcija Nestspējas R kritērijs Viengabalainība,
PAR ĒKU ENERGOEFEKTIVITĀTI. 1. Ievads
1 PAR ĒKU ENERGOEFEKTIVITĀTI. 1. Ievads 2012.gada 6. decembrī Saeima pieņēma jaunu Ēku energoefektivitātes likumu. Likuma mērķis ir veicināt energoresursu racionālu izmantošanu, uzlabojot ēku energoefektivitāti,
Lietošanas pamācība 3-22
Lietošanas pamācība 3-22 SATURA RĀ D Ī T Ā JS Oriģinālās lietošanas pamācības tulkojums weiß nichtlv Satura rādītājs Simbolu skaidrojums................................... 4 Vispārēji drošības noteikumi............................
Eiropas Savienības Oficiālais Vēstnesis L 94/75
8.4.2009. Eiropas Savienības Oficiālais Vēstnesis L 94/75 EIROPAS CENTRĀLĀS BANKAS REGULA (EK) Nr. 290/2009 (2009. gada 31. marts), ar ko groza Regulu (EK) Nr. 63/2002 (ECB/2001/18) par statistiku attiecībā
Latvijas 53. Nacionālā ķīmijas olimpiāde
9. klases teorētiskie uzdevumi Latvijas 53. Nacionālā ķīmijas olimpiāde 2012. gada 28. martā 9. klases Teorētisko uzdevumu atrisinājumi 1. uzdevums 7 punkti Molekulu skaitīšana Cik molekulu skābekļa rodas,
FIZ 2.un 3.daļas standartizācija 2012.gads
FIZ.un 3.daļas standartizācija 0.gads Uzd. Uzdevums Punkti Kritēriji Uzraksta impulsu attiecību: m Lieto impulsa definīcijas formulu. Uzraksta attiecību. Pareizi izsaka meklējamo kr vkr lielumu. Iegūst
Ievads Optometrija ir neatkarīga redzes aprūpes profesija primārās veselības aprūpes sfērā. Šī profesija vairumā attīstīto valstu tiek regulēta ar
Ievads Optometrija ir neatkarīga redzes aprūpes profesija primārās veselības aprūpes sfērā. Šī profesija vairumā attīstīto valstu tiek regulēta ar likumu (tās piekopšanai nepieciešama licence un reģistrēšanās).
Vispārīgā ķīmija medicīniskās ķīmijas kursam
Cilvēka fizioloģijas un bioķīmijas katedra Irina Kazuša, Āris Kaksis Vispārīgā ķīmija medicīniskās ķīmijas kursam Mācību līdzeklis 7., pārstrādāts un papildināts izdevums Rīga RSU 014 UDK 54 (074.8) K
ELEKTROTEHNIKA UN ELEKTRĪBAS IZMANTOŠANA
Ieguldījums tavā nākotnē Ieguldījums tavā nākotnē Profesionālās vidējās izglītības programmu Lauksaimniecība un Lauksaimniecības tehnika īstenošanas kvalitātes uzlabošana 1.2.1.1.3. Atbalsts sākotnējās
Lai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.
7.TEMATS Trigonometriskie vienādojumi un nevienādības Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri Stundas piemērs M SP_07_0_P Trigonometrisko izteiksmju pārveidojumi Skolēna
Matematička logika. novembar 2012
Predikatska logika 1 Matematička logika Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia novembar 2012 1 različiti nazivi: predikatska logika, logika prvog
1. MAIŅSTRĀVA. Fiz12_01.indd 5 07/08/ :13:03
1. MAIŅSRĀVA Ķeguma spēkstacija Maiņstrāvas iegūšana Maiņstrāvas raksturlielumumomentānās vērtības Maiņstrāvas raksturlielumu efektīvās vērtības Enerģijas pārvērtības maiņstrāvas ķēdē Aktīvā pretestība
Isover tehniskā izolācija
Isover tehniskā izolācija 2 Isover tehniskās izolācijas veidi Isover Latvijas tirgū piedāvā visplašāko tehniskās izolācijas (Isotec) produktu klāstu. Mēs nodrošinām efektīvus risinājumus iekārtām un konstrukcijām,
1. Drošības pasākumi. Aizliegts veikt modifikācijas ierīces konstrukcijā.
2 Satura rādītājs 1. Drošības pasākumi... 4 2. Vispārēja informācija... 5 3. Sagatavošana darbam... 6 4. Darbs ar iekārtu... 8 5. Specifikācija... 9 6. Tehniskā apkope un tīrīšana... 10 7. Garantijas saistības.
Salaspils kodolreaktora gada vides monitoringa rezultātu pārskats
Lapa : 1 (16) Apstiprinu: VISA Latvijas Vides, ģeoloģijas un meteoroloģijas centrs Valdes priekšsēdētājs K. Treimanis Rīgā, 2017. gada. Salaspils kodolreaktora 2016. gada vides monitoringa Pārskatu sagatavoja:
DARBA HIGIĒNA. Latvijas Brīvo arodbiedrību savienība. Labklājības ministrija
DARBA HIGIĒNA Latvijas Brīvo arodbiedrību savienība Labklājības ministrija Izdots Eiropas Savienības Struktūrfondu programmas Cilvēkresursi un nodarbinātība apakšaktivitātes Darba attiecību un darba drošības
1. Ievads bioloģijā. Grāmatas lpp
1. Ievads bioloģijā Grāmatas 6. 37. lpp Zaļā krāsa norāda uz informāciju, kas jāapgūst Ar dzeltenu krāsu izcelti īpaši jēdzieni, kas jāapgūst Ar sarkanu krāsu norādīti papildus informācijas avoti vai papildus
Elektromagnētisms (elektromagnētiskās indukcijas parādības)
atvijas Uiversitāte Fizikas u matemātikas fakutāte Fizikas oaļa Papiiājums ekciju kospektam kursam vispārīgajā fizikā ektromagētisms (eektromagētiskās iukcijas parāības) Asoc prof Aris Muižieks Noformējums