Υλικό σηµείο µάζας m έλκεται από σταθερό κέν τρο Ο µε δύναµη F! που περιγράφεται από την σχέση:! F = f(r)! r

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Υλικό σηµείο µάζας m έλκεται από σταθερό κέν τρο Ο µε δύναµη F! που περιγράφεται από την σχέση:! F = f(r)! r"

Transcript

1 Υλικό σηµείο µάζας m έλκεται από σταθερό κέν τρο Ο µε δύναµη F που περιγράφεται από την σχέση: F fr) r όπου fr) µια συνάρτηση, η οποία δεν ακολουθεί τον νόµο του αντιστρόφου τετραγώνου της απόστασης r του υλικού σηµείου από το ελκτικό κέντρο Ο. Το υλικό σηµείο εκτοξεύεται µε κατάλληλη αρχική ταχύτητα, ωστε να διαγράφει κυκλική τροχιά ακτίνας R, της οποίας το κέντρο Κ δεν συµπίπτει µε το ελκτικό κέντρο Ο. i) Εάν v, v είναι οι ταχύτητες του υλικού σηµείου στις θέσεις της ελάχιστης και µεγιστης απόστασης αντιστοίχως από το Ο, να δείξετε ότι η περίοδος Τ της κυκλικής του κινήσεως ικανοποιεί την σχέση: T R + % v v ii) Iσχύει για την κίνηση του υλικού σηµείου ο 3oς νόµος του Kepler; ΛΥΣΗ: i) Eάν ds είναι το στοιχειώδες εµβαδον που διαγράφει η επιβατική ακ τίνα r του υλικού σηµείου µεταξύ των χρονικών στιγµών t και t+dt σχ. ) θα ισχύει η σχέση: ds rdrµ Σχήµα ds dt r dr$ 'µ ds dt% dt rv µ ) όπου v η ταχύτητα του υλικού σηµείου την χρονική στιγµή t και θ η γωνία

2 των διανυσµάτων v και r. Εξάλλου η στροφορµή L του υλικού σηµείου περί το ελκτικό κέντρο Ο είναι σταθερή και το µέτρο της υπολογίζεται από την σχέ ση: L r m v ) mrvµ ) όπου m η µάζα του υλικού σηµείου. Συνδυάζοντας τις σχέσεις ) και ) παίρ νουµε: ds dt L m ds dt mr v m r v ds r v dt 3) όπου r η εγγύτερη απόσταση του υλικού σηµείου από το ελκτικό κέντρο Ο. Εάν r είναι η µεγαλύτερη απόσταση του υλικού σηµείου από το Ο θα έχουµε: R r + r mr v mr v r R - r r v r v r v R - r )v v + v )r Rv r Rv v + v 4) H 3) λόγω της 4) γράφεται: ds Rv v v + v dt 5) Oλοκληρώνοντας την 5) για µια περιστροφή του υλικού σηµείου παίρνουµε: R Rv v T v + v T R v + v % $ v v ' T R v + % $ v ' 6) ii) Στην εγγύτερη θέση Α και στην απώτερη θέση Α ως προς το Ο, η ελκτική δύναµη που δέχεται το υλικό σηµείο από το ελκτικό κέντρο ενεργεί ως κεν τροµόλος δύναµη, δηλαδη θα έχουµε τις σχέσεις: fr ) mv /R fr ) mv /R v Rfr )/m v Rfr )/m $ 7) Συνδυάζοντας τις 6) και 7) παίρνουµε: T R$ m Rfr ) + m % ' Rfr ) T Rm fr ) + % $ ' fr ) 8) Aπό την 8) προκύπτει ότι το τετράγωνο της περιόδου Τ του υλικού σηµείου είναι ανάλογο της ακτίνας R της κυκλικής τροχιάς, που σηµαίνει ότι δεν ισχύ ει ο νόµος του Kepler. P.M. fysikos

3 Ένας δορυφόρος κινείται σε κυκλική τροχιά περί την Γη, της οποίας το κέντρο ταυτίζεται µε το κέντρο της Γης και η ακτίνα της είναι διπλάσια της ακτίνας της Γης. Κάποια στιγµή εκτο ξεύεται από τον δορυφόρο µικρός πύραυλος βαλλιστικός πύραυλος) που σε βραχύ χρονικό διάστηµα µεταβάλλει την διευθυνση της ταχύτη τας του δορυφόρου κατά γωνία φ <φ<π/) προς το µέρος της Γης, αλλά όχι και το µέτρο της. Να βρεθεί η γωνία φ, ώστε η νέα τροχιά του δορυφόρου να είναι συνεπίπεδη της αρχικής του τροχιάς και µόλις να εφάπτεται της Γης. Η Γη να θεωρηθεί οµογενής και ακίνητη σφαίρα. ΛΥΣΗ: Έστω Μ η θέση του δορυφόρου στην οποία η ταχύτητά του µεταβάλλε ται από v M σε v ' M. Επειδή η νέα τροχιά του δορυφόρου είναι συνεπίπεδη της αρχικής κυκλικής του τροχιάς, το διάνυσµα v ' M ανήκει στο επίπεδο της κυκλι κής τροχιάς. Εξάλλου η µηχανική ενέργεια Ε Μ του δορυφόρου αµέσως µετά την εκτόξευση του βαλλιστικού πυραύλου είναι ίση µε την µηχανική του ενέργεια Ε Μ λίγο πριν την εκτόξευση, διότι οι ταχύτητες v M και v ' M έχουν το ίδιο µέτρο, δηλαδη ισχύει η σχέση: E' M E M mv M - GmM R ) Σχήµα όπου Μ Γ η µάζα της Γης, m η µάζα του δορυφόρου και G η παγκόσµια σταθερά της βαρύτητας. Όµως στην θέση Μ, λίγο πριν µεταβληθεί η ταχύτητα του δορυφόρου, η Νευτώνεια έλξη που δέχεται από την Γη αποτελει για τον δορυφόρο κεντροµόλο δύναµη, δηλαδή έχουµε την σχέση: GM m R) mv M R v M GM 4R v GM M R ) Συνδιάζοντας τις σχέσεις ) και ) παίρνουµε: E' M GmM 4R - GmM R - GmM 4R < 3)

4 To αρνητικό πρόσηµο της Ε Μ δηλώνει ότι η νέα τροχιά του δορυφόρου είναι έλλειψη της οποίας µία εστία ταυτίζεται µε το κέντρο Ο της Γης και συµφωνα µε τα δεδοµένα του προβλήµατος πρέπει η έλλειψη αυτή να εφάπτεται της Γης σχ. ). Κατά την κίνηση του δορυφόρου επί της ελλειπτικής τροχιάς η στροφορ µή του περί το Ο και η µηχανική του ενέργεια παραµένουν αναλλοίωτες, δηλαδή θα έχουµε τις σχέσεις: L ' M L ' A E' M E A 3) mv' M R$ mv A R - GmM % 4R mv A - GmM % R ' ) v' M $ v A 3GM % 4R v A ' ) $ v A v M v A 3GM % R ' ) ) GM R $% 3GM R $ 3 6 P.M. fysikos Ένα σώµα διαγράφει ελλειπτική τροχιά εκκεντ ρότητας e e<), υπό την επίδραση κεντρικής δύναµης που εκπορεύε ται από ελκτικό κέντρο Ο και ακολουθεί τον νόµο του αντιστρόφου τετραγώνου της απόστασης. Όταν το σώµα βρίσκεται στο άκρο του µικρού ηµιάξονα της τροχιάς του δέχεται εξωτερική επίδραση βραχεί ας διάρκειας, που του διπλασιάζει την ταχύτητα. Να δείξετε ότι η νέα τροχιά του σώµατος είναι υπερβολή, της οποίας να προσδιορίσετε την εκκεντρότητα. ΛΥΣΗ: Εάν x, y είναι οι συντεταγµένες ενός τυχαίου σηµείου Μ της ελλειπτι κής τροχίας του σώµατος ως προς το ορθογώνιο συστηµα άξόνων Οxy και r, φ οι αντίστοιχες πολικές συντεταγµένες του σηµείου, θα έχουµε: y rµ pµ + e$% ) όπου p θετικη παράµετρος χαρακτηριστική της ελλειπτικής τροχιάς. Στο άκρο Α του µικρού ηµιάξονα της τροχιάς η y-συντεταγµένη γίνεται έλαχιστη που ση µαίνει ότι για το σηµείο αυτό ισχύει η σχέση: dy / d ) y ya ) Παραγωγίζοντας την ) ως προς φ παίρνουµε: dy d p$ + e$) - p%µ-e%µ) + e$)

5 dy d p$ + pe$ + pe%µ + e$) p$ + e) + e$) dy% d p)* ) A + e) + e)* y y A A ) p$ A + e) $ A -e 3) Σχήµα 3 Eξάλλου η στροφορµή L του σώµατος περί το ελκτικό κέντρο Ο διατηρείται σταθερή στην διάρκεια της κίνησής του επί της ελλειπτικής τροχιάς, το δε µέτρο της δίνεται από την σχέση: L mr A v A µ - A ) m pv µ A A m pv - A $% 3) A + e$% A + e$% A L m pv - A e pmv A 4) - e - e όπου v A η ταχύτητα του σώµατος στη θέση Α. Eπειδή η ελκτική δύναµη που δέχεται το σώµα ακολουθεί τον νόµο του αντιστρόφου τετραγώνου της απόστα σης r, το µέτρο της θα δίνεται από µια σχέση της µορφής Fk/r, όπου k θετική και σταθερή ποσότητα, οπότε η παράµετρος p θα είναι ίση µε L /km και η 4) γράφεται: L L mv A v A k - e km - e L Σύµφωνα µε το πρόβληµα η ταχύτητα του σώµατος στό Α αµέσως µετά την δράση της εξωτερικής επίδρασης διπλάσιάζεται οπότε η νέα στροφορµή του σώ µατος περί το Ο θα γίνει L ' L και θα διατηρείται πάλι σταθερή επί της νέας τροχιάς που θα ακολουθήσει. Η µηχανική ενέργεια Ε του σώµατος επί της νέας του τροχιάς θα διατηρείται σταθερή και ίση µε εκείνη που απόκτησε στο Α αµέσως µετά την εξωτερική επίδραση, οπότε θα έχουµε: 5) E' mv A ) - k r A mv A - k + e$ A ) p ),5) E' mk - e ) L - k - e ) L / km mk - e ) L > 6)

6 δηλαδή η νέα τροχιά του σώµατος είναι υπερβολή συνεπίπεδη της έλλειψης, µε εστία το ελκτικό κέντρο Ο. Η εκκεντρότητα e της υπερβολικής τροχιάς υπολο γίζεται µέσω της σχέσεως: e' + 6) E'L ' E'L ) + mk mk e' + 8mk - e ) L L mk e' e ) 9-8e > P.M. fysikos Υλικό σηµείο µάζας m έλκεται από σταθερό κέν τρο Ο µε δύναµη F που ακολουθεί τον νόµο: F -km r /r 6 όπου k θετική σταθερά και r το διάνυσµα θέσεως του υλικού σηµεί ου ως προς το ελκτικό κέντρο Ο. Το υλικό σηµείο εκτοξευεται από το άπειρο µε ταχύτητα v, της οποίας ο ο φορέας απέχει από τον πολικό άξονα Οx απόσταση α, η δε στροφορµή του περί το ελκτικό κέντρο Ο έχει µέτρο ίσο µε m k /. Να βρεθεί η εξίσωση της τροχιάς του υλικού σηµείου σε πολικές συντεταγµένες. ΛΥΣΗ: Το υλικό σηµείο υπό την επίδραση της κεντρικής δύναµης F διαγρά φει καµπύλη τροχιά στο επίπεδο που καθορίζει το ελκτικό κέντρο Ο και η αρχική του ταχύτητα v. Η διαφορική εξίσωση της κίνησης σε πολικές συντε ταγµένες r, θ) έχει την µορφή: d u d + u - m L u Fr) d u d + u - m L u d u d + u km u 5 L u d u d + u km u 3 m k / ) - km % d u d + u u 3 ) όπου η µεταβλητή u αποτελεί το αντίστροφο της απόστασης r του υλικού σηµείου από το ελκτικό κέντρο u/r) και L είναι η σταθερή στροφορµή του περί το ελκτικό κέντρο. Πολλαπλασιάζοντας και τα δύο µέλη της ) µε την ποσότητα du/dθ παίρνουµε την σχέση: r 5

7 du d d u du + d d u du d u 3 d d du% d + d ) d u d ) d u4 d du % d + d u ) d ) u4 du% d + u u 4 + C ) Σχήµα 4 όπου C σταθερά ολοκληρώσεως που θα βρεθεί από τις αρχικές συνθήκες κίνη σης του υλικού σηµείου. Η ) για t δίνει: du% d t οπότε η ) γράφεται: + + C C du % d t du% d + u u 4 + du % d t 3) Για τον υπολογισµό της ποσότητας du/dθ) t παρατηρούµε ότι: dr dt dr d d dt dr d L % $ mr ' - d/ r) d L % m - du d t L % m και dr$ dt% t - m k 'm du$ d % t -v - k du % $ d ' L mv m k / mv v k / t 4) οπότε η 4) γράφεται: - k - k du % $ d ' t du% d t - -v ) v 5) Συνδυάζοντας τις σχέσεις 3) και 5) παίρνουµε:

8 du% d du% d + u u 4 + du% d - u ) du ) d ± - u + 4 u 4 - u ) 6) Kατά την κίνηση του υλικού σηµείου η απόστασή του r από το ελκτικό κέντρο Ο µειώνεται σε πρώτο στάδιο, οπότε η ποσότητα du/dθ είναι θετική κατά το στάδιο αυτό, όταν δε συµβεί du/dθ, τότε θα είναι αu και η απόσταση r παίρνει την µικρότερη τιµή της α. Άρα /u α, δηλαδή -α u και η 6) είναι αποδεκτή µε το πρόσηµο +). Έτσι θα έχουµε: du d - u du - u d η οποία µε ολοκλήρωση δίνει: du - u + C' + u% ln$ ' - u + C' 7) όπου C σταθερά ολοκληρώσεως που θα βρεθεί αν εφαρµόσουµε την 7) για t, οπότε θα λάβουµε: ln + % - + C' C' και η 7) παίρνει την µορφή: + u% ln$ ' - u + u - u e r + r - e r + r - )e re - ) + e ) r e + % $ e - ' r coth ) 8) H 8) αποτελεί την ζητούµενη εξίσωση της τροχιάς του υλικού σηµείου σε πολικές συντεταγµένες. P.M. fysikos

9 Δύο σωµατίδια Σ, Σ µε αντίστοιχες µάζες m και m φέρουν ετερώνυµα ηλεκτρικά φορτία +q και q. Κάποια στιγµή βρίσκονται σε απόσταση α, οι δε ταχύτητές τους είναι κάθετες στην ευθεία που τα συνδέει και µεταξύ τους αντίρροπές, τα δε µέτρα τους είναι v v και v v µε: v q k /m όπου k ηλ η σταθερά του νόµου του Coulomb. i) Mε την προυπόθεση ότι τα σωµατίδια δέχονται µόνο τις αµοιβαίες ηλεκτροστατικές δυνάµεις, να δείξετε ότι η σχετική τροχία του ενός ως προς το άλλο είναι υπερβολή και να γραφεί η εξίσωσή της σε πολι κές συντεταγµένες. ii) Nα γραφούν οι εξισώσεις των τροχιών των σωµατιδίων σε πολικές συντεταγµένες, στο σύστηµα αναφοράς του κέντρου µάζας τους και να σχεδιαστούν οι τροχιές αυτές. ΛΥΣΗ: i) Όταν δύο σωµατίδια αλληλοεπιδρούν µεταξύ τους χωρίς όµως να δέχονται εξωτερικές δυνάµεις, τότε η σχετική κίνηση του ενός ως προς το άλλο είναι ισοδύναµη µε την κίνηση ενός νοητού σωµατιδίου µάζας ίσης προς την ενεργό µάζα µ του συστήµατος, πάνω στο οποίο ενεργεί η αντίστοιχη δύνα µη αλληλεπίδρασης. Στην περίπτωση των σωµατιδίων Σ, Σ η δύναµη αλληλε πιδρασής τους είναι δύναµη Coulomb, η δε διαφορική εξίσωση που περιγράφει την σχετική κίνηση του ενός ως προς το άλλο λογουχάρη του Σ ως προς το Σ ) έχει την µορφή: µ d r dt F m $ m + m % d r dt r - k ' q r r m$ 3 % d r dt - k q ' ) r Σχήµα 5 όπου r το µοναδιαίο διάνυσµα της σχετικής επιβατικής ακτίνας r του Σ ως προς το Σ. H ) δηλώνει ότι η σχετική κίνηση του ενός σωµατιδίου ως προς το

10 άλλο είναι ισοδύναµη µε την κίνηση ενός σωµατιδίου µάζας m/3 που έλκεται από σταθερό κέντρο µε δύναµη που ακολουθεί τον νόµο του αντιστρόφου τετραγώνου της απόστασής της r από αυτό. Σύµφωνα µε την θεωρία των κεν τρικών κινήσεων η αντίστοιχη σχετική τροχιά του σωµατιδίου έχει την µορφή κωνικής τοµής, η δε στροφορµή του περί το ελκτικό κέντρο και η µηχανική του ενέργεια διατηρούνται αµετάβλητες. Εάν Ε είναι η µηχανική ενέργεια του σωµατιδίου, αυτή θα είναι ίση µε την τιµή της την στιγµή που η απόσταση των Σ, Σ είναι α, δηλαδή θα ισχύει: E m 3 v k ) $ q - % m 3 v k ) $ q - % Όµως για την αντίστοιχη σχετική ταχύτητα v του Σ ως προς το Σ θα ισχύει: v v - v v + - v ) v v + v 3v v 9v 9q k $ /%m οπότε η ) γράφεται: E m 3 $ 9k q ' % m ) - k q q k m > 3) To θετικό πρόσηµο της Ε δηλώνει ότι η σχετική τροχιά του Σ, ως προς το Σ είναι υπερβολή µε εστία το Σ σχ. 5). Η εξίσωση της υπερβολής αυτής σε πολικές συντεταγµένες r, θ) έχει την µορφή: r p + e$ 4) στην οποία το p αποτελεί σταθερή παράµετρο, το δε e εκφράζει την εκκεντρό τητα της υπερβολής. Εάν L είναι η σταθερή στροφορµή της σηµειακής µάζας m/3, η παράµετρος p υπολογίζεται από την σχέση: p L m/3)k q m/3) v $% m/3) 3v ) m/3)k q k q p 3m q k /m k q 3 5) Eξάλλου η εκκεντρότητα e υπολογίζεται µέσω της σχέσεως: e + EL m / 3)q k ) )

11 e + q k /m)m/3) v $% m / 3)q k ) e + q k /m)m/3) 9v q k ) e + q k /m)m/3) 9q k /m) q k ) 6) H 4) λόγω των 5) και 6) γράφεται: r 3 + $% ii) Eάν r, r είναι τα διανύσµατα θέσεως των σωµατιδίων Σ, Σ αντιστοίχως ως προς το κέντρο µάζας τους C, θα έχουµε σύµφωνα µε τον ορισµό του κέντ ρου µάζας τις σχέσεις: 7) και r - r m r - mr m + m m r m + m 7) r m+ m mr 7) r m+ m Σχήµα 6 r r - + $% r r + $% Παρατήρηση: Eπειδή το σύστηµα των δύο φορτισµένων σωµατιδίων είναι µη χανικά µονωµένο η ορµή P C του κέντρου µάζας τους διατηρείται σταθερή και ίση µε την ορµή του την στιγµή που η απόστασή τους είναι α, δηλαδή θα ισχύ ει: P C m v + m v m v - m v που σηµαίνει ότι το κέντρο µάζας C είναι ακίνητο. P.M. fysikos

12 Ένας κοµήτης µάζας m, εισέρχεται στο βαρυτικό πεδίο της Γης διαγράφοντας παραβολική τροχιά, της οποίας η εστία ταυτίζεται µε το κέντρο Ο του Ήλιου και της οποίας η εξίσωση σε πολικές συντεταγµένες έχει την µορφή: r + $% όπου α η ακτίνα της κυκλικής τροχιάς που διαγράφει η Γη περί τον Ήλιο. Εάν τα επίπεδα των τροχιών του κοµήτη και της Γης συµπίπ τουν, να βρείτε: i) το µέτρο της σταθερής στροφορµής του κοµήτη περί το κέντρο του Ήλιου και ii) τον χρόνο παραµονής του στο εσωτερικό της τροχιάς της Γης. Δίνε ται η περίοδος Τ περιστροφής της Γης. ΛΥΣΗ: i) Όταν ο κοµήτης διέρχεται από την κορυφή Α της παραβολικής τροχιάς του έχει ταχύτητα v κάθετη προς τον πολικό άξονα Οx και απέχει από το κέντρο Ο του Ήλιου απόσταση r α/, διότι θ σχ. 7). Εξάλλου η πα ραβολική τροχιά του κοµήτη επιβάλλει σ αυτόν µηδενική µηχανική ενέργεια, δηλαδή ισχύει η σχέση: mv - GMm v GM r r v GM r 4GM GM ) Σχήµα 7 όπου Μ η µάζα του Ήλιου και G η σταθερά της βαρύτητας. Όµως η Νευτώνεια έλξη που δέχεται η Γη από τον Ήλιο αποτελεί κεντροµόλο δύναµη για την µεταφορική κυκλική της κίνηση περί τον Ήλιο, δηλαδή ισχύει η σχέση:

13 M v GMM GM v όπου M Γ η µάζα της Γης και v η γραµµική ταχύτητα του κέντρου της. Εξάλ λου η περίοδος Τ της Γης είναι: T /v v /T οπότε η σχέση ) γράφεται: GM 4 T 4 3 T 3) Συνδυάζοντας τις σχέσεις ) και 3) παίρνουµε: ) v 4 3 T 4 T 4) Το µέτρο της στροφορµής του κοµήτη ως προς το Ο είναι: 4) L mv r L m 4 T m T 5) ii) Εάν θ είναι η πολική γωνία του κοµήτη σε µια τυχαία χρονική στιγµή t και r η αντίστοιχη απόστασή του από το Ο, θα ισχύει: L mr d dt 5) m T mr d dt d dt Tr d dt T + $%) T + $%) dt T d + $%) T d 4$% 4 / ) dt T d[$ / )] %' $ / ) T 4 [+ $ /)]d[$ /)] 6) Εάν θ, θ είναι οι πολικές γωνίες που αντιστοιχούν στα σηµεία τοµής Α, Α αντιστοίχως της τροχιάς του κοµήτη µε την τροχιά της Γης σχ. 7), θα ισχύει για λόγους συµµετρίας η σχέση θ -θ, οπότε ο χρόνος κίνησης t A A του κοµήτη από τη θέση Α στη θέση Α είναι ίσος µε το χρόνο κίνησής του t AA από Α σε Α. Αυτό σηµαίνει ότι ο ζητούµενος χρόνος t ολ παραµονής του κοµήτη στο εσω τερικό της τροχιάς της Γης θά είναι:

14 t t dt) A A $ 6) t T ' [+$% /)]d[$% /)] 7) Όταν όµως ο κοµήτης βρίσκεται στη θέση Α, θα ισχύει: /+$% ) +$ / οπότε η σχέση 7) γράφεται: t T / ' [+$% /)]d[$% /)] T ) $% + 3 $%, + 3 *. - / t T $% $% ) 3 + T ' 4* 3 P.M. fysikos Ένας πλανήτης µάζας m, διαγράφει ελλειπτική τροχιά γύρω από τον Hλιο, της οποίας µία εστία ταυτίζεται µε το κέντρο του Ήλιου. i) Eάν M είναι η µάζα του Ήλιου και α το µήκος του µεγάλου ηµιά ξονα της ελλειπτικής τροχιάς του πλανήτη, να δείξετε ότι η µηχανική ενέργεια του πλανήτη δίνεται από την σχέση: E µ - GMm/ i) όπου G η παγκόσµια σταθερά της βαρύτητας. ii) Eάν e είναι η εκ κεντρότητα της τροχιάς του πλανήτη, να δείξετε ότι το µέτρο της στροφορµής του ικανοποιεί την σχέση: L GMm - e ) ii) iii) Xρησιµοποιώντας την σχέση ii) να αποδείξετε τον τρίτο νόµο του Kepler, δηλαδή την σχέση: T 4 3 /GM iii) όπου T η περίοδος περιστροφής του δορυφόρου. ΛYΣH: i) Eστω v, v οι ταχύτητες του πλανήτη, στο σύστηµα αναφοράς του Hλιου, όταν βρίσκεται στο περιήλιο A και στο αφήλιο A αντιστοίχως της ελλειπτικής τροχιάς του. Eπειδή κατά την κίνηση του πλανήτη η στοφορµή του περί το κέντρο του Ήλιου διατηρείται σταθερή, µπορούµε να γράψουµε την σχέση:

15 mv mv v v / ) όπου, οι αποστάσεις των A καί A από το κέντρο του Ήλιου σχ. 8). Eξάλλου, κατά την κίνηση του πλανήτη η µηχανική του ενέργεια στο σύστηµα αναφοράς του Ήλιου διατηρείται σταθερή, οπότε ισχύει η σχέση: - GMm mv - GMm v - v GM - mv v - v r GM r - min max $ v % $ ) % - r min ) GM r - r ) max min v + ) GM v GM v GM ) Eξάλλου η µηχανική ενέργεια E µηχ του πλανήτη σε µία τυχαία θέση της τροχιάς του είναι ίση µε την αντίστοιχη ενέργεια του στο περιήλιο A, οπότε θα έχουµε: Σχήµα 8 E µ mv - GMm ) E µ GMm - GMm E µ GMm $ % - ' ) GMm $ - % ' ) E µ GMm $ % - - ' ) - GMm 3) ii) Tο µέτρο της στροφορµής του πλανήτη σε κάθε θέση της τροχιάς του είναι ίσο µε το µέτρο της στροφορµής του, όταν αυτός βρίσκεται στο περιήλιο, δηλα δή ισχύει: L mv L m v )

16 L m $ GM % r ' GMm min % 4) Eξάλλου, εάν f είναι η εστιακή απόσταση της ελλειπτικής τροχιάς του πλανή τη, θα έχουµε: - f + f $.) - f - e - e ) 5) Συνδυάζοντας τις 4) καί 5) παίρνουµε την αποδεικτέα σχέση: L GMm - e ) 6) iii) Aπό το δεύτερο νόµο του Kepler είναι γνωστό ότι ο ρυθµός ds/dt µε τον οποίο η επιβατική ακτίνα r του πλανήτη διαγράφει εµβαδόν στο επίπεδο της ελλειπτικής τροχιάς είναι σταθερό καί ίσο µε L/m, δηλαδή ισχύει η σχέση: ds dt L m Ldt ds m 7) Oλοκληρώνοντας την σχέση 7) για µια πλήρη περιστροφή του πλανήτη, έχου µε: S LT m T ms L T 4m 6) S L 4S T GM-e ) 8) Όµως το εµβαδόν S ολ της ελλειπτικής τροχιάς του πλανήτη είναι ίσο µε παβ, όπου β το µήκος του µικρού ηµιάξονα της ελλειπτικής τροχιάς, οπότε η σχέση 8) γράφεται: T 4 GM - e ) 4 - f ) GM - e ) T 4 - e ) GM - e ) 4 3 GM P.M. fysikos

της µορφής:! F = -mk! r

της µορφής:! F = -mk! r Ένα µικρό σώµα µάζας m, κινείται επί κυκλικής τροχιάς ακτίνας α µέσα σε δυναµικό πεδίο, ελκόµενο από σταθερό ση µείο Ο που αποτελεί το κέντρο της τροχιάς, µε δύναµη F της µορφής: F -mk όπου το διάνυσµα

Διαβάστε περισσότερα

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F!

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F! Υλικό σηµείο µάζας, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F (), η οποία ακολουθεί τον νόµο του αντιστρόφου τετραγώνου της απόστασης από το ελκτι κό κέντρο Ο, δηλαδή περιγράφεται

Διαβάστε περισσότερα

Θεωρούµε σύστηµα δύο σωµατιδίων Σ 1 και Σ 2 µε αντίστοιχες µάζες m 1 και m 2, τα οποία αλληλοεπιδρούν χωρίς όµως να δέχονται εξωτερικές δυνάµεις.

Θεωρούµε σύστηµα δύο σωµατιδίων Σ 1 και Σ 2 µε αντίστοιχες µάζες m 1 και m 2, τα οποία αλληλοεπιδρούν χωρίς όµως να δέχονται εξωτερικές δυνάµεις. Θεωρούµε σύστηµα δύο σωµατιδίων Σ και Σ µε αντίστοιχες µάζες m και m, τα οποία αλληλοεπιδρούν χωρίς όµως να δέχονται εξωτερικές δυνάµεις. i) Nα δείξετε ότι η σχετική ορµή P του ενός, λογουχάρη του Σ ως

Διαβάστε περισσότερα

όπου Μ η µάζα της Γης την οποία θεωρούµε σφαίρα οµογενή, G η παγκόσµια σταθερά της βαρύτητας και L!

όπου Μ η µάζα της Γης την οποία θεωρούµε σφαίρα οµογενή, G η παγκόσµια σταθερά της βαρύτητας και L! Είναι γνωστό ότι, όταν ένα σώµα κινείται µέσα στο βαρυτικό πεδίο της Γης υπό την επίδραση µόνο της Νευτώνειας έλξεως, η τροχιά που διαγράφει το κέντρο µάζας του είναι επίπεδη και µάλιστα το επίπεδό της

Διαβάστε περισσότερα

Θετικό σηµειακό φορτίο q βρισκεται σε απόσταση D από το κέντρο µιας κοίλης µεταλλικής σφαίρας ακτίνας R (R<D), η οποία είναι προσγειωµένη.

Θετικό σηµειακό φορτίο q βρισκεται σε απόσταση D από το κέντρο µιας κοίλης µεταλλικής σφαίρας ακτίνας R (R<D), η οποία είναι προσγειωµένη. Θετικό σηµειακό φορτίο q βρισκεται σε απόσταση D από το κέντρο µιας κοίλης µεταλλικής σφαίρας ακτίνας R (R

Διαβάστε περισσότερα

Κίνηση πλανητών Νόµοι του Kepler

Κίνηση πλανητών Νόµοι του Kepler ΦΥΣ 111 - Διαλ.29 1 Κίνηση πλανητών Νόµοι του Keple! Θα υποθέσουµε ότι ο ήλιος είναι ακίνητος (σχεδόν σωστό αφού έχει τόσο µεγάλη µάζα και η γη δεν τον κινεί).! Οι τροχιές των πλανητών µοιάζουν κάπως σα

Διαβάστε περισσότερα

Θεωρούµε δύο υλικά σηµεία µε µάζες m 1, m 2 τα οποία αλληλοεπιδ ρούν µε βαρυτική δύναµη, που ακολουθεί τον νόµο της παγκόσµιας έλξεως του Νεύτωνα.

Θεωρούµε δύο υλικά σηµεία µε µάζες m 1, m 2 τα οποία αλληλοεπιδ ρούν µε βαρυτική δύναµη, που ακολουθεί τον νόµο της παγκόσµιας έλξεως του Νεύτωνα. Θεωρούµε δύο υλικά σηµεία µε µάζες m, m τα οποία αλληλοεπιδ ρούν µε βαρυτική δύναµη, που ακολουθεί τον νόµο της παγκόσµιας έλξεως του Νεύτωνα. i) Εάν είναι το διάνυσµα θέσεως του ενός υλικού σηµείου σε

Διαβάστε περισσότερα

όπου x η συντεταγµένη του σωµατιδίου, θεωρούµενη µε αρχή ένα στα θερό σηµείο Ο του άξονα και α, U 0 σταθερές και θετικές ποσότητες.

όπου x η συντεταγµένη του σωµατιδίου, θεωρούµενη µε αρχή ένα στα θερό σηµείο Ο του άξονα και α, U 0 σταθερές και θετικές ποσότητες. Υλικό σωµατίδιο µάζας m κινείται πάνω σε σταθε ρό άξονα x x υπό την επίδραση δύναµης, της οποίας ο φορέας συµπί πτει µε τον άξονα. Η δύναµη απορρέει από συνάρτηση δυναµικής ενέργειας της µορφής: Ux) =

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη.

ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη. ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη. 1 β) Σε ένα πεδίο κεντρικών δυνάµεων F =, ένα σώµα, µε µάζα

Διαβάστε περισσότερα

, της οποίας το µέτρο ικανοποιεί τη σχέση:

, της οποίας το µέτρο ικανοποιεί τη σχέση: Στην κορυφή της κεκλιµένης έδρας µιας ορθογώνιας σφήνας µάζας M, η οποία ισορροπεί πάνω σε λείο οριζόντιο έδαφος, αφήνεται µικ ρός κύβος µάζας m. Nα δείξετε ότι η σφήνα κινείται στο σύστη µα αναφοράς του

Διαβάστε περισσότερα

i) Εάν η κρούση είναι µετωπική και πλαστική, να δείξετε ότι η τρο χιά του συσσωµατώµατος που δηµιουργείται είναι ελλειπτική.

i) Εάν η κρούση είναι µετωπική και πλαστική, να δείξετε ότι η τρο χιά του συσσωµατώµατος που δηµιουργείται είναι ελλειπτική. Ένας δορυφόρος µάζας m κινείται περί την Γη επί κυκλικής τροχιάς ακτίνας και κάποια στιγµή προσκρούει ακτινικά πάνω σ αυτόν σώµα µάζας m και της ίδιας κινητικής ενέργειας µε τον δορυφόρο. i) Εάν η κρούση

Διαβάστε περισσότερα

A! Κινηµατική άποψη. Σχήµα 1 Σχήµα 2

A! Κινηµατική άποψη. Σχήµα 1 Σχήµα 2 A Κινηµατική άποψη Θεωρούµε στερεό σώµα σε τυχαία κίνηση, η οποία εξέταζεται από ένα αδρα νειακό σύστηµα αναφοράς ΟXYZ. Εφοδιάζουµε το σώµα µε κινητό σύστηµα συντεταγµένων xyz ακλόνητα συνδεδεµένο µε αυτό,

Διαβάστε περισσότερα

i) Να βρεθεί ο χρόνος αιώρησης του διαστηµοπλοίου, µέχρις ότου εξαντληθούν τα καύσιµά του.

i) Να βρεθεί ο χρόνος αιώρησης του διαστηµοπλοίου, µέχρις ότου εξαντληθούν τα καύσιµά του. Ένα διαστηµόπλοιο αιωρείται στον αέρα σε στα θερό ύψος από την επιφάνεια της Γης, εκτοξεύοντας καυσαέρια µε σταθερή ταχύτητα v. Η αρχική µάζα του διαστηµόπλοιου µαζί µε τα καύσιµά του είναι m, η δε µάζα

Διαβάστε περισσότερα

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F!

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F! Οµογενής κυκλικός δίσκος µάζας m και ακτίνας, βρίσκεται πάνω σε λείο οριζόντιο έδαφος µε τον άξονα συµµετρίας του κατα κόρυφο. Εάν σ ένα σηµείο της περιφέρειας του δίσκου εξασκείται συνεχώς µια σταθερή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Συστήµατα Υλικών Σηµείων

ΚΕΦΑΛΑΙΟ 7. Συστήµατα Υλικών Σηµείων ΚΕΦΑΛΑΙΟ 7. Συστήµατα Υλικών Σηµείων 1. Να βρεθεί το δυναµικό που οφείλεται σε δύο ακίνητα ελκτικά κέντρα µε µάζες 1 και. Γράψτε την εξίσωση της κίνησης ενός υλικού σηµείου µάζας στο παραπάνω δυναµικό.

Διαβάστε περισσότερα

Yλικό σηµείο κινείται στο επίπεδο Οxy διαγράφον τας καµπύλη τροχιά, η οποία περιγράφεται από την σχέση:

Yλικό σηµείο κινείται στο επίπεδο Οxy διαγράφον τας καµπύλη τροχιά, η οποία περιγράφεται από την σχέση: Yλικό σηµείο κινείται στο επίπεδο Οxy διαγράφον τας καµπύλη τροχιά, η οποία περιγράφεται από την σχέση: y = Αηµωx όπου Α, ω σταθερές και θετικές ποσότητες. Εάν το υλικό σηµείο κατά τον άξονα x κινείται

Διαβάστε περισσότερα

ANAΛYTIKH MEΛETH THΣ KENTPIKHΣ KINHΣHΣ *

ANAΛYTIKH MEΛETH THΣ KENTPIKHΣ KINHΣHΣ * ANAΛYTIKH MEΛETH THΣ KENTPIKHΣ KINHΣHΣ * 13. Tαχύτητα και επιτάχυνση υλικού σηµείου σε πολικές συντεταγµένες Θεωρούµε υλικό σηµείο, το οποίο εκτελεί επίπεδη κίνηση διαγράφοντας την τροχιά (C του σχήµατος

Διαβάστε περισσότερα

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,

Διαβάστε περισσότερα

Δυναµική της κίνησης συστήµατος δύο σωµατιδίων

Δυναµική της κίνησης συστήµατος δύο σωµατιδίων Δυναµική της κίνησης συστήµατος δύο σωµατιδίων Θεωρούµε δύο σωµατίδια Σ και Σ µε αντίστοιχες µάζες m και m, των οποίων τα διανύσµατα θέσεως ως προς την αρχή Ο ενός αδρανειακού συστή µατος αναφοράς Oxyz

Διαβάστε περισσότερα

Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή

Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή ταχύτητα µέτρου V 0 πάνω σε λείο οριζόντιο έδαφος κατευθυνόµενο προς κατακόρυφο τοίχο. Το σώµα κάποια στιγµή συγκρούεται ελα στικά και µετωπικά µε µια µπάλα

Διαβάστε περισσότερα

i) Nα βρείτε το δυναµικό ενός τυχαίου σηµείου M του επιπέδου Oyz, σε συνάρτηση µε τις συντεταγµένες y,z του σηµείου.

i) Nα βρείτε το δυναµικό ενός τυχαίου σηµείου M του επιπέδου Oyz, σε συνάρτηση µε τις συντεταγµένες y,z του σηµείου. Eυθύγραµµο µεταλλικό σύρµα µήκους L τοποθετείται στον άξονα τρισορθογώνιου συστήµατος αξόνων Oxz ώστε το µέσο του να συµπί πτει µε την αρχή O των αξόνων. Tο σύρµα φέρει θετικό ηλεκτρικό φορτίο οµοιόµορφα

Διαβάστε περισσότερα

ii) Να δείξετε ότι το σφαιρίδιο εκτελεί µια µη αρµονική περιοδική ταλάντωση, της οποίας να υπολογίσετε την περίοδο.

ii) Να δείξετε ότι το σφαιρίδιο εκτελεί µια µη αρµονική περιοδική ταλάντωση, της οποίας να υπολογίσετε την περίοδο. Το σύστηµα του σχήµατος αποτελείται από δύο όµοια ελατήρια στα θεράς και φυσικού µήκους α, των οποίων οι άξονες βρίσκονται πάνω στην ευθεία ΑΒ, όπου Α, Β είναι δύο ακλόνητα σηµεία του επιπέδου. Εκτρέπουµε

Διαβάστε περισσότερα

i) Nα δείξετε ότι, κάθε στιγµή οι ταχύτητες των δύο πιθήκων ως προς το ακίνητο έδαφος είναι ίσες.

i) Nα δείξετε ότι, κάθε στιγµή οι ταχύτητες των δύο πιθήκων ως προς το ακίνητο έδαφος είναι ίσες. Δύο πιθηκάκια της ίδιας µάζας αναρριχώνται εκ της ηρεµίας κατά µήκος των τµηµάτων του αβαρούς σχοινιού, που διέρχεται από τον λαιµό µιας σταθερής τροχαλίας (σχ. ). H τροχαλία έχει αµελητέα µάζα και µπορεί

Διαβάστε περισσότερα

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται

Διαβάστε περισσότερα

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014 ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 8-Μάρτη-014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

µε φορά προς το κυρτό µέρος του σύρµατος (σχήµα α) η οποία µαζί µε την ακτινική συνιστώσα w!

µε φορά προς το κυρτό µέρος του σύρµατος (σχήµα α) η οποία µαζί µε την ακτινική συνιστώσα w! Το κυκλικό σύρµα του σχήµατος έχει µάζα m/ και είναι κρεµασµένο από κατακόρυφο σπάγκο αµελητέας µάζας αλλά επαρκούς αντοχής. Δύο όµοιες σηµειακές χάντρες, καθε µιά µε µάζα m, αφήνονται ταυτόχρονα από την

Διαβάστε περισσότερα

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014 ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 8-Μάρτη-014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1 ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 00 ΘΕΜΑ : (α) Ταχύτητα ΚΜ: u KM = mu + mu m = u + u Εποµένως u = u u + u = u u, u = u u + u = u u (β) Διατήρηση ορµής στο ΚΜ: mu + mu = mv + mv u + u = V + V = 0 V = V

Διαβάστε περισσότερα

Σφαιρικά σώµατα και βαρύτητα

Σφαιρικά σώµατα και βαρύτητα ΦΥΣ 131 - Διαλ.28 1 Σφαιρικά σώµατα και βαρύτητα q Χρησιµοποιήσαµε τις εκφράσεις F() =! GMm που ισχύουν για σηµειακές µάζες Μ και m. 2 και V () =! GMm q Ένα χαρακτηριστικό γεγονός, που κάνει τους υπολογισµούς

Διαβάστε περισσότερα

Kινηµατική άποψη της επίπεδης κίνησης

Kινηµατική άποψη της επίπεδης κίνησης Kινηµατική άποψη της επίπεδης κίνησης Θα λέµε ότι ένα στερεό σώµα εκτελεί επίπεδη κίνηση, όταν οι αποστάσεις των υλικών του σηµείων από ένα ορισµένο επίπεδο αναφοράς (ε), παραµέ νουν αµετάβλητες µε το

Διαβάστε περισσότερα

ΦΥΣ η ΠΡΟΟΔΟΣ 7-Μάρτη-2015

ΦΥΣ η ΠΡΟΟΔΟΣ 7-Μάρτη-2015 ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 7-Μάρτη-015 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

i) το πλάτος ταλάντωσης του καροτσιού µετά την ενσωµάτωση του σφαιριδίου σ' αυτό και

i) το πλάτος ταλάντωσης του καροτσιού µετά την ενσωµάτωση του σφαιριδίου σ' αυτό και Ένα καροτσάκι που περιέχει άµµο, συνολικής µάζας M, εκτελεί οριζόντια αρµονική ταλάντωση σε λείο επίπεδο, µε τη βοήθεια ιδανικού οριζόντιου ελατηρίου σταθεράς k. Ένα σφαιρίδιο µάζας m

Διαβάστε περισσότερα

Τροχιές σωμάτων σε πεδίο Βαρύτητας. Γιώργος Νικολιδάκης

Τροχιές σωμάτων σε πεδίο Βαρύτητας. Γιώργος Νικολιδάκης Τροχιές σωμάτων σε πεδίο Βαρύτητας Γιώργος Νικολιδάκης 9/18/2013 1 Κωνικές Τομές Είναι καμπύλες που σχηματίζονται καθώς επίπεδα τέμνουν με διάφορες γωνίες επιφάνειες κώνων. Παραβολή Έλλειψη -κύκλος Υπερβολή

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος ΘΕΜΑ α) Υλικό σημείο μάζας κινείται στον άξονα Ο υπό την επίδραση του δυναμικού V=V() Αν για t=t βρίσκεται στη θέση = με ενέργεια Ε δείξτε ότι η κίνησή του δίνεται από

Διαβάστε περισσότερα

Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v!

Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v! Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v C. Σε σηµείο της περιφέρειας του τροχου έχει αρθρωθεί το ένα άκρο Β µιας λεπτής

Διαβάστε περισσότερα

διεύθυνση. Tο διάνυσµα αυτό δείχνει την φορά κατά την οποία η γωνία θ αυξά νεται. Συνδυάζοντας τις σχέσεις (1) και (2) παίρνουµε:

διεύθυνση. Tο διάνυσµα αυτό δείχνει την φορά κατά την οποία η γωνία θ αυξά νεται. Συνδυάζοντας τις σχέσεις (1) και (2) παίρνουµε: ANAΛYTIKH MEΛETH THΣ KENTPIKHΣ KINHΣHΣ * 13. Tαχύτητα και επιτάχυνση υλικού σηµείου σε πολικές συντεταγµένες Θεωρούµε υλικό σηµείο, το οποίο εκτελεί επίπεδη κίνηση διαγράφοντας την τροχιά (C του σχήµατος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ Στο κεφάλαιο αυτό θα ασχοληθούµε αρχικά µε ένα µεµονωµένο σύστηµα δύο σωµάτων στα οποία ασκούνται µόνο οι µεταξύ τους κεντρικές δυνάµεις, επιτρέποντας ωστόσο και την

Διαβάστε περισσότερα

( ) ω ( ) = 0. Aπό τις σχέσεις (2) προκύπτει ή ότι το διάνυσµα v K. είναι κάθετο στα διανύσµα τα r A

( ) ω ( ) = 0. Aπό τις σχέσεις (2) προκύπτει ή ότι το διάνυσµα v K. είναι κάθετο στα διανύσµα τα r A Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση και έστω (S) η κύρια* τοµή του στερεού κατά µια τυχαία χρονική στιγµή t. Να δείξετε ότι το αντίστοιχο προς την κύρια

Διαβάστε περισσότερα

ΜΕΡΟΣ Γ! 2η οµάδα λυµένων παραδειγµάτων

ΜΕΡΟΣ Γ! 2η οµάδα λυµένων παραδειγµάτων ΜΕΡΟΣ Γ η οµάδα λυµένων παραδειγµάτων Στις άκρες αβαρούς και λεπτής ράβδου µηκούς L, έχουν στερεωθεί δύο όµοιες σφαίρες, µάζας m και ακτίνας R, το δε σύστηµα στρέφεται µε σταθερή γωνιακή ταχύτητα περί

Διαβάστε περισσότερα

) ω ω. L λίγο πριν. . Nα βρεθούν:

) ω ω. L λίγο πριν. . Nα βρεθούν: Δύο σφαιρίδια A, B µάζας m το καθένα συνδέονται µεταξύ τους µε αβαρές και µη εκτατό νήµα µήκους L, ηρεµούν δε πάνω σε οριζόντιο τραπέζι ευρισκόµενα σε απόσταση α

Διαβάστε περισσότερα

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1. 1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα

Διαβάστε περισσότερα

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου.

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου. Oµογενής ράβδος σταθερής διατοµής, µάζας m και µήκους L, µπορεί να στρέφεται περί οριζόντιο άξονα που διέρχεται από το ένα άκρο της. Όταν η ράβδος βρίσκεται στην θέση ευσταθούς ισορροπίας εφαρµόζεται στο

Διαβάστε περισσότερα

ακτινικής διεύθυνσης και στην οριακή τριβή T!"

ακτινικής διεύθυνσης και στην οριακή τριβή T! Λεπτή κυκλική στεφάνη ακτίνας R και µάζας m, ισορρο πεί εφαπτόµενη σε δύο υποστηρίγµατα A και Γ, όπως φαίνεται στο σχήµα (1. Eάν ο συντελεστής οριακής τριβής µεταξύ της στεφάνης και των υποστη ριγµάτων

Διαβάστε περισσότερα

# $ + L " = ml " ml! = ML " $ + ml " $ L " = ML/2(M + m) # $ (1) Eξάλλου, εάν L' α, L' σ είναι οι τελικές αποστάσεις του κέντρου µάζας C του

# $ + L  = ml  ml! = ML  $ + ml  $ L  = ML/2(M + m) # $ (1) Eξάλλου, εάν L' α, L' σ είναι οι τελικές αποστάσεις του κέντρου µάζας C του Mία σανίδα, µήκους L καί µάζας M, βρίσκεται πάνω σε λείο οριζόντιο επίπεδο. Στο ένα άκρο της σανίδας πατάει άνθ ρωπος µάζας m και αρχίζει να κινείται προς το άλλο άκρο της. Kατά πόσο θα µετατοπιστεί η

Διαβάστε περισσότερα

(ΘΕΜΑ 17ο)

(ΘΕΜΑ 17ο) Εισαγωγικά: Με το πρόβληµα της αλληλεπίδρασης δύο µαζών, µέσω αβαρούς και µη εκτατού νήµατος παρουσία οµογενούς βαρυτικού πεδίου, είχα ασχοληθεί και στο παρελθόν παρουσιάζοντάς το στην ιστοσελίδα µου µε

Διαβάστε περισσότερα

Θέµατα Φυσικής Θετικής Κατεύθυνσης Β Λυκείου 1999 ΕΚΦΩΝΗΣΕΙΣ

Θέµατα Φυσικής Θετικής Κατεύθυνσης Β Λυκείου 1999 ΕΚΦΩΝΗΣΕΙΣ Θέµατα Φυσικής Θετικής Κατεύθυνσης Β Λυκείου 999 Ζήτηµα ο ΕΚΦΩΝΗΣΕΙΣ. Μάζα που κινείται οριζόντια µε ορµή µέτρου 0 Kg m/s προσπίπτει σε κατακόρυφο τοίχο και ανακλάται οριζόντια µε ορµή ίδιου µέτρου. Το

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 4 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε µε σαφήνεια και συντοµία. Η ορθή πλήρης απάντηση θέµατος εκτιµάται περισσότερο από τη

Διαβάστε περισσότερα

των Α και Β αντιστοίχως είναι παράλληλες (σχ. 12) που σηµαί Σχήµα 11 Σχήµα 12

των Α και Β αντιστοίχως είναι παράλληλες (σχ. 12) που σηµαί Σχήµα 11 Σχήµα 12 Δύο ακριβώς όµοιες λεπτές ράβδοι OA και AB µήκους L και µάζας m, αρθρώνονται στο σηµείο Α το δε άκρο Ο της ΟΑ αρθρώνεται σε σταθερό υποστήριγµα, ενώ το άκρο Β της ΑΒ µπο ρεί να ολισθαίνει πάνω σε λείο

Διαβάστε περισσότερα

ΕΥΤΕΡΑ 28 ΙΟΥΝΙΟΥ 1999 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΥΤΕΡΑ 28 ΙΟΥΝΙΟΥ 1999 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΥΤΕΡΑ 28 ΙΟΥΝΙΟΥ 1999 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1-5, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Μάζα που κινείται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2003

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2003 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 3 Θέµα 1 (5 µονάδες) Απαντήστε στις ακόλουθες ερωτήσεις µε συντοµία και σαφήνεια Τµήµα Π Ιωάννου & Θ Αποστολάτου (α) Η ταχύτητα ενός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I Σεπτεμβρίου 00 Απαντήστε και στα 0 ερωτήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.. Ένας

Διαβάστε περισσότερα

Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση.

Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση. Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση. i) Εάν Κ είναι το στιγµιαίο κέντρο περιστροφής του στερεού κάποια στιγµή και C η αντίστοιχη θέση του κέντρου µάζας

Διαβάστε περισσότερα

Ποια μπορεί να είναι η κίνηση μετά την κρούση;

Ποια μπορεί να είναι η κίνηση μετά την κρούση; Ποια μπορεί να είναι η κίνηση μετά την κρούση; ή Η επιτάχυνση και ο ρυθµός µεταβολής του µέτρου της ταχύτητας. Ένα σώµα Σ ηρεµεί, δεµένο στο άκρο ενός ελατηρίου. Σε µια στιγµή συγκρούεται µε ένα άλλο κινούµενο

Διαβάστε περισσότερα

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου, που εξασκεί στην µάζα m δύναµη η οποία απορρέει από συνάρτηση δυναµικής ενέργειας της µορφής:

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου, που εξασκεί στην µάζα m δύναµη η οποία απορρέει από συνάρτηση δυναµικής ενέργειας της µορφής: Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου, που εξασκεί στην µάζα m δύναµη η οποία απορρέει από συνάρτηση δυναµικής ενέργειας της µορφής: U = k 2 x2 + y ) 2 α) όπου k θετική και σταθερή ποσότητα

Διαβάστε περισσότερα

και όταν φθάσει στο σηµείο Γ αρχίζει να κινείται στο κυκλικό του τµήµα που έχει την µορφή λείου τεταρτο κυκλίου ακτίνας R.

και όταν φθάσει στο σηµείο Γ αρχίζει να κινείται στο κυκλικό του τµήµα που έχει την µορφή λείου τεταρτο κυκλίου ακτίνας R. Το σώµα Σ του σχήµατος (α) έχει µάζα και µπορεί να ολισθαίνει πάνω σε λείο οριζόντιο έδαφος. Ένα µικρό σφαιρίδιο µάζας m κινείται αρχικά πάνω στο οριζόντιο τµήµα του σώµατος µε ταχύτητα v 0 και όταν φθάσει

Διαβάστε περισσότερα

Βαρύτητα Βαρύτητα Κεφ. 12

Βαρύτητα Βαρύτητα Κεφ. 12 Κεφάλαιο 1 Βαρύτητα 6-1-011 Βαρύτητα Κεφ. 1 1 Νόμος βαρύτητας του Νεύτωνα υο ή περισσότερες μάζες έλκονται Βαρυτική δύναμη F G m1m ˆ Βαρυτική σταθερά G =667*10 6.67 11 N*m Nm /kg παγκόσμια σταθερά 6-1-011

Διαβάστε περισσότερα

την αρχή Ο του ΟΧY, που είναι ένα αδρανειακό σύστηµα αναφοράς. Εάν

την αρχή Ο του ΟΧY, που είναι ένα αδρανειακό σύστηµα αναφοράς. Εάν Ένα στερεό σώµα εκτελεί επίπεδη κίνηση, όταν οι αποστάσεις των υλικών του σηµείων από ένα ορισµένο επίπεδο αναφοράς (ε, παραµένουν αµετάβλητες µε τον χρόνο. Για την µελέτη της επίπεδης κίνησης στερεού

Διαβάστε περισσότερα

Κεφάλαιο 8. Βαρυτικη Δυναμικη Ενεργεια { Εκφραση του Βαρυτικού Δυναμικού, Ταχύτητα Διαφυγής, Τροχιές και Ενέργεια Δορυφόρου}

Κεφάλαιο 8. Βαρυτικη Δυναμικη Ενεργεια { Εκφραση του Βαρυτικού Δυναμικού, Ταχύτητα Διαφυγής, Τροχιές και Ενέργεια Δορυφόρου} Κεφάλαιο 8 ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ Νομος της Βαρυτητας {Διανυσματική Εκφραση, Βαρύτητα στη Γη και σε Πλανήτες} Νομοι του Kepler {Πεδίο Κεντρικών Δυνάμεων, Αρχή Διατήρησης Στροφορμής, Κίνηση Πλανητών και Νόμοι του

Διαβάστε περισσότερα

( ) ( r) V r. ( ) + l 2. Τι είδαμε: m!! r = l 2. 2mr 2. 2mr 2 + V r. q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης

( ) ( r) V r. ( ) + l 2. Τι είδαμε: m!! r = l 2. 2mr 2. 2mr 2 + V r. q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης ΦΥΣ 2 - Διαλ.4 Τι είδαμε: q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης ü Ανάγαμε το πρόβλημα 2 σωμάτων σε πρόβλημα κεντρικής δύναμης ü διατήρηση ορμής CM μετατρέπει το πρόβλημα από 6 DoF σε

Διαβάστε περισσότερα

. Για τα δύο σωµατίδια Α και Β ισχύει: q Α q, Α, q Β - q, Β 4 και u Α u Β u. Τα δύο σωµατίδια εισέρχονται στο οµογενές µαγνητικό πεδίο, µε ταχύτητες κ

. Για τα δύο σωµατίδια Α και Β ισχύει: q Α q, Α, q Β - q, Β 4 και u Α u Β u. Τα δύο σωµατίδια εισέρχονται στο οµογενές µαγνητικό πεδίο, µε ταχύτητες κ ΑΠΑΝΤΗΣΕΙΙΣ ΣΤΟ ΙΙΑ ΑΓΓΩΝΙΙΣΜΑ ΦΥΣΙΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΙΟΥ 10 3 013 ΘΕΜΑ 1 ο 1. β. γ 3. α 4. β 5. α ΘΕΜΑ ο 1. α. Σωστό Η δυναµική ενέργεια του συστήµατος των δύο φορτίων δίνεται απόό τη σχέση: q 1

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης (Με ιδέες και υλικό από ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ε. Στυλιάρης από παλαιότερες διαφάνειες του κ. Καραμπαρμπούνη) ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 05 06 06 ΒΑΡΥΤΗΤΑ Νόμος της Βαρύτητας Βαρύτητα στο Εσωτερικό και Πάνω από

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ 3. Νίκος Κανδεράκης

ΔΥΝΑΜΙΚΗ 3. Νίκος Κανδεράκης ΔΥΝΑΜΙΚΗ 3 Νίκος Κανδεράκης Νόμος της βαρύτητας ή της παγκόσμιας έλξης Δύο σώματα αλληλεπιδρούν με βαρυτικές δυνάμεις Η δύναμη στο καθένα από αυτά: Είναι ανάλογη με τη μάζα του m Είναι ανάλογη με τη μάζα

Διαβάστε περισσότερα

Δίνεται η ροπή αδράνειας I=mL 2 /3 της ράβδου ως προς τον άξονα περιστροφής της, η επιτάχυνση! g της βαρύτητας και ότι π 2!10.

Δίνεται η ροπή αδράνειας I=mL 2 /3 της ράβδου ως προς τον άξονα περιστροφής της, η επιτάχυνση! g της βαρύτητας και ότι π 2!10. Oµογενής ράβδος σταθερής διατοµής, µάζας m και µήκους L, µπορεί να στρέφεται περί οριζόντιο άξονα που διέρχεται από το ένα άκρο της. Όταν η ράβδος βρίσκεται στην θέση ευσταθούς ισορροπίας της εφαρµόζεται

Διαβάστε περισσότερα

Μέθοδος Hohmann αλλαγής τροχιάς δορυφόρου και σχεδιασμός διαπλανητικών τροχιών

Μέθοδος Hohmann αλλαγής τροχιάς δορυφόρου και σχεδιασμός διαπλανητικών τροχιών Μέθοδος Hohmann αλλαγής τροχιάς δορυφόρου και σχεδιασμός διαπλανητικών τροχιών Διονύσης Στεφανάτος Ειδικός Επιστήμονας, Στρατιωτική Σχολή Ευελπίδων 1. Εισαγωγή Σε αυτήν την ενότητα παρουσιάζουμε μια απλή

Διαβάστε περισσότερα

Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 7 Μάη 2017 Οριζόντια Βολή-Κυκλική Κίνηση-Ορµή Ηλεκτρικό& Βαρυτικό Πεδίο

Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 7 Μάη 2017 Οριζόντια Βολή-Κυκλική Κίνηση-Ορµή Ηλεκτρικό& Βαρυτικό Πεδίο Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 7 Μάη 2017 Οριζόντια Βολή-Κυκλική Κίνηση-Ορµή Ηλεκτρικό& Βαρυτικό Πεδίο Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα

Διαβάστε περισσότερα

i) Σε κάθε πλήρη περιστροφή το κινητό Α διαγράφει τόξο ίσου µήκους µε το τόξο που διαγράφει το κινητό Β

i) Σε κάθε πλήρη περιστροφή το κινητό Α διαγράφει τόξο ίσου µήκους µε το τόξο που διαγράφει το κινητό Β Φύλλο Εργασίας: ΚΙΝΗΜΑΤΙΚΗ ΟΜΑΛΗΣ ΚΥΚΛΙΚΗΣ ΚΙΝΗΣΗΣ Λίγη γεωµετρία πριν ξεκινήσουµε: Σε κύκλο ακτίνας, η επίκεντρη γωνία Δθ µετρηµένη σε ακτίνια (rad) και το µήκος του τόξου Δs στο οποίο βαίνει, συνδέονται

Διαβάστε περισσότερα

ΜΕΡΟΣ Α! Κινηµατική άποψη

ΜΕΡΟΣ Α! Κινηµατική άποψη ΜΕΡΟΣ Α Κινηµατική άποψη Θεωρούµε στερεό σώµα που κινείται στον χώρο, ενώ ένα σηµείο του Ο είναι διαρκώς ακίνητο ως προς το αδρανειακό σύττηµα από το οποίο εξετάζεται. Η θέση του στερεού καθορίζεται κάθε

Διαβάστε περισσότερα

ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση

ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση 44 ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση F : U R R. Για εµάς φυσικά µια τέτοια συνάρτηση θα θεωρείται ότι είναι τουλάχιστον συνεχής και συνήθως C και βέβαια

Διαβάστε περισσότερα

που δέχονται οι τροχοί αυτοί αποτελούν κινητήριες δυνάµεις για το αυτοκί νητο, δηλαδή είναι δυνάµεις οµόρροπες προς την κίνησή του, ένω οι τριβές T!

που δέχονται οι τροχοί αυτοί αποτελούν κινητήριες δυνάµεις για το αυτοκί νητο, δηλαδή είναι δυνάµεις οµόρροπες προς την κίνησή του, ένω οι τριβές T! Tο κέντρο µάζας ενός επιβατηγού αυτοκινήτου απέχει από το οριζόντιο έδαφος απόσταση h. Δίνεται η µάζα Μ του αυτοκινήτου η µάζα m και η ακτίνα R κάθε τροχού, η επιτάχυνση g της βαρύτητας και οι αποστάσεις

Διαβάστε περισσότερα

ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ

ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ Η κίνηση των πλανητών είναι το αποτέλεσμα της σύνθεσης 2 κινήσεων: μίας περιστροφής γύρω από τον Ήλιο, η περίοδος της οποίας μας δίνει το έτος κάθε πλανήτη, και πραγματοποιείται

Διαβάστε περισσότερα

ΦΥΣ η ΠΡΟΟΔΟΣ 5-Μάρτη-2016

ΦΥΣ η ΠΡΟΟΔΟΣ 5-Μάρτη-2016 ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 5-Μάρτη-016 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

O y. (t) x = 2 cos t. ax2 + bx + c b 2ax b + arcsin. a 2( a) mk.

O y. (t) x = 2 cos t. ax2 + bx + c b 2ax b + arcsin. a 2( a) mk. Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ Τσίγκανου & Ν Βλαχάκη, 3 Ιανουαρίου 018 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία ( = bonus ερωτήματα) Ονοματεπώνυμο:,

Διαβάστε περισσότερα

F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται

F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται 6-04-011 1. Όχημα μάζας m ξεκινά από την αρχή του άξονα x χωρίς αρχική ταχύτητα και κινείται στον άξονα x υπό την επίδραση της δυνάμεως t F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται επίσης αντίσταση

Διαβάστε περισσότερα

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και Δύο αβαρή και µη εκτατά νήµατα του ίδιου µή κους είναι στερεωµένα στο ίδιο σηµείο Ο, ενώ στις ελεύθερες άκρες των νηµάτων είναι δεµένα δύο σφαιρίδια, µε µάζες 1 και. Eκτρέ πουµε τα σφαιρίδια από την θέση

Διαβάστε περισσότερα

Eφαρµόζοντας στο τρίγωνο OAΣ το θεώρηµα του συνηµιτόνου παίρνουµε:

Eφαρµόζοντας στο τρίγωνο OAΣ το θεώρηµα του συνηµιτόνου παίρνουµε: ΘΕΜΑ 6o Η κυκλική τροχαλία του σχήµατος (1) έχει µάζα Μ και ακτίνα R, είναι σε επαφή µε οριζόντιο δάπεδο (ε), ενώ στον άξονά της έχει πακτωθεί αβαρής ράβδος µήκους L, στο ελεύθερο ακρο της οποίας έχει

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος 1. Ένα σύστημα ελατηρίου σταθεράς = 0 π N/ και μάζας = 0, g τίθεται σε εξαναγκασμένη ταλάντωση. Αν είναι Α 1 και Α τα πλάτη της ταλάντωσης

Διαβάστε περισσότερα

όπου µ η γραµµική πυκνότητα του σχοινιού. Aν λοιπόν δηµιουργηθεί στο σταθε ρό άκρο Α ένας εγκάρσιος παλµός, αυτός θα διαδίδεται προς το ελεύθερο άκρο

όπου µ η γραµµική πυκνότητα του σχοινιού. Aν λοιπόν δηµιουργηθεί στο σταθε ρό άκρο Α ένας εγκάρσιος παλµός, αυτός θα διαδίδεται προς το ελεύθερο άκρο Oµογενές σχοινί µήκους L, στερεώνεται στο ένα άκρο του από µια οροφή και ισορροπεί, ώστε να είναι κατακόρυφο. i) Eάν πολύ κοντά στο σταθερό άκρο του σχοινιού δηµιουργήσουµε ένα εγκάρσιο παλµό βραχείας

Διαβάστε περισσότερα

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει:

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ Ηλεκτρικό φορτίο Ηλεκτρικό πεδίο 1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 10 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: (α)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: ΚΕΝΤΡΙΚΕΣ ΥΝΑΜΕΙΣ

ΚΕΦΑΛΑΙΟ 4: ΚΕΝΤΡΙΚΕΣ ΥΝΑΜΕΙΣ ΚΕΦΑΛΑΙΟ 4: ΚΕΝΤΡΙΚΕΣ ΥΝΑΜΕΙΣ Οι σηµαντικότερες αντιπρόσποι της κατηγορίας αυτής τν δυνάµεν είναι οι δυνάµεις βαρύτητος και οι ηλεκτροστατικές δυνάµεις, που είναι ανάλογες του αντιστρόφου τετραγώνου της

Διαβάστε περισσότερα

( ) = ke r/a όπου k και α θετικές σταθερές

( ) = ke r/a όπου k και α θετικές σταθερές Παράδειγµα 1 ΦΥΣ 11 - Διαλ.15 1 Θεωρήστε την κίνηση ενός σώματος,μάζας m σε ελκτικό δυναμικό: V r ke r/a όπου k και α θετικές σταθερές (α) Σχεδιάστε το για μικρές και μεγάλες τιμές της στροφορμής,, και

Διαβάστε περισσότερα

Q του νήµατος που το συγκρατεί, συµφωνα δε µε τον δεύτερο νό µο κίνησης του Νεύτωνα θα ισχύει η σχέση: της τάσεως!

Q του νήµατος που το συγκρατεί, συµφωνα δε µε τον δεύτερο νό µο κίνησης του Νεύτωνα θα ισχύει η σχέση: της τάσεως! Αβαρής ράβδος αποτελείται από δύο συνεχόµενα τµήµατα ΟΑ και ΑΒ που είναι ορθογώνια µεταξύ τους. Το άκρο Ο της ράβδου είναι αρθρωµένο σε οριζόντιο έδαφος το δε τµήµα της ΟΑ είναι κατακόρυφο και εφάπτεται

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 6 Ιανουαρίου, Προτεινόμενες Λύσεις Πρόβλημα - ( μονάδες) Ένα όχημα, μαζί με ένα κανόνι που είναι ακλόνητο πάνω σε αυτό,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική Ι 20 Οκτωβρίου 2011

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική Ι 20 Οκτωβρίου 2011 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική Ι 20 Οκτωβρίου 20 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Θέμα Α: (α) Να υπολογίσετε το βαρυτικό δυναμικό σε απόσταση r από το κέντρο ευθύγραμμης ράβδου

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 17 Ε_3.ΦλΘ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΜΑ Α Ηµεροµηνία: Πέµπτη 5 Ιανουαρίου 17 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις

Διαβάστε περισσότερα

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική

Διαβάστε περισσότερα

i) Nα βρείτε την επιτάχυνση του κέντρου της τροχαλίας τ 1.

i) Nα βρείτε την επιτάχυνση του κέντρου της τροχαλίας τ 1. Στην διάταξη του σχήµατος 1) οι τροχαλίες τ 1 και τ έχουν την ίδια µάζα Μ που θεωρείται συγκεντρωµένη στην περι φέρειά τους και την ίδια ακτίνα R. Στο αυλάκι της σταθερής τροχα λίας τ έχει περιτυλιχθεί

Διαβάστε περισσότερα

Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Παρασκευή 25 Μάη 2018 Μηχανική - Ηλεκτρικό/Βαρυτικό Πεδίο

Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Παρασκευή 25 Μάη 2018 Μηχανική - Ηλεκτρικό/Βαρυτικό Πεδίο Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Παρασκευή 25 Μάη 2018 Μηχανική - Ηλεκτρικό/Βαρυτικό Πεδίο Σύνολο Σελίδων: επτά 7) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: ιαβάστε µε ΠΡΟΣΟΧΗ τις εκφωνήσεις

Διαβάστε περισσότερα

ΚΙΝΗΣΕΙΣ ΦΟΡΤΙΩΝ ΣΕ Ο.Μ.Π. 1. Στο σχήμα δίνονται δύο ομογενή μαγνητικά πεδία με εντάσεις μέτρων Β 2 =2Β 1

ΚΙΝΗΣΕΙΣ ΦΟΡΤΙΩΝ ΣΕ Ο.Μ.Π. 1. Στο σχήμα δίνονται δύο ομογενή μαγνητικά πεδία με εντάσεις μέτρων Β 2 =2Β 1 1. Στο σχήμα δίνονται δύο ομογενή μαγνητικά πεδία με εντάσεις μέτρων Β 2 =2Β 1. Ένα φορτισμένο σωματίδιο μπαίνει στο πρώτο από το μέσον Ο της πλευράς ΑΓ με ταχύτητα υ 0 και αφού διαγράψει τεταρτοκύκλιο,

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 26 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Μαΐου, 2012 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση Γενικές Οδηγίες: 1) Είναι πολύ σημαντικό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π Β Λ-Γ Λ ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ

ΦΥΣΙΚΗ Ο.Π Β Λ-Γ Λ ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ ΦΥΣΙΚΗ Ο.Π Β Λ-Γ Λ 25/11/2018 ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

{ } S= M(x, y,z) : x= f (u,v), y= f (u,v), z= f (u,v), για u,v (1.1)

{ } S= M(x, y,z) : x= f (u,v), y= f (u,v), z= f (u,v), για u,v (1.1) ΚΕΦΑΛΑΙΟ 1 ΕΠΙΦΑΝΕΙΕΣ ΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 1. Γενικά Επειδή οι επιφάνειες δευτέρου βαθµού συναντώνται συχνά στη µελέτη των συναρτήσεων πολλών µεταβλητών θεωρούµε σκόπιµο να τις περιγράψουµε στην αρχή του βιβλίου

Διαβάστε περισσότερα

GMR L = m. dx a + bx + cx. arcsin 2cx b b2 4ac. r 3. cos φ = eg. 2 = 1 c

GMR L = m. dx a + bx + cx. arcsin 2cx b b2 4ac. r 3. cos φ = eg. 2 = 1 c Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, 9 Μαΐου 01 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία bonus ερωτήματα Ονοματεπώνυμο:,

Διαβάστε περισσότερα

Η επιτάχυνση και ο ρόλος της.

Η επιτάχυνση και ο ρόλος της. Η επιτάχυνση και ο ρόλος της. Το μέγεθος «επιτάχυνση» το συναντήσαμε κατά τη διδασκαλία στην Α Λυκείου, όπου και ορίσθηκε με βάση την εξίσωση: t Όπου η παραπάνω μαθηματική εξίσωση μας λέει ότι η επιτάχυνση:

Διαβάστε περισσότερα

Κίνηση πλανητών Νόµοι του Kepler

Κίνηση πλανητών Νόµοι του Kepler ΦΥΣ 111 - Διαλ.29 1 Κίνηση πλανητών Νόµοι του Kepler q Τρεις οι νόµοι του Kepler: Ø Oι πλανήτες κινούνται σε ελλειπτικές τροχιές µε τον ήλιο σε µια εστία τους. Ø Η επιβατική ακτίνα ενός πλανήτη διαγράφει

Διαβάστε περισσότερα

H σταθερά ολοκληρώσεως C θα προκύψει από την αρχική συνθήκη, ότι για t=0 είναι v=0, οπότε η (2) δίνει: ) (3) m 1 - e- t/t

H σταθερά ολοκληρώσεως C θα προκύψει από την αρχική συνθήκη, ότι για t=0 είναι v=0, οπότε η (2) δίνει: ) (3) m 1 - e- t/t Υλικό σηµείο µάζας m βρίσκεται ακίνητο πάνω σε λείο οριζόντιο έδαφος στην θέση x= ιου άξονα Οx. Κάποια στιγµή επί του υλικού σηµείου εξασκείται δύναµη της µορφής: F = F e - t/t i όπου F, t θετικές και

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 11-Μάη-2015

ΦΥΣ. 211 Τελική Εξέταση 11-Μάη-2015 ΦΥΣ. 211 Τελική Εξέταση 11-Μάη-2015 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ΠΑΓΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΠΑΓΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΠΑΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.poias.weebly.co ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ

Διαβάστε περισσότερα

Φροντιστήριο 4 ο : Πεδίο βαρύτητος, Θερµότης,.

Φροντιστήριο 4 ο : Πεδίο βαρύτητος, Θερµότης,. Φροντιστήριο 4 ο : Πεδίο βαρύτητος, Θερµότης,. Νόµοι του Keple: Οι πλανήτες κινούνται σε ελλειπτικές τροχιές, τη µία εστία των οποίων καταλαµβάνει ο Ήλιος Η επιβατική ακτίνα κάθε πλανήτη µε αρχή αξόνων

Διαβάστε περισσότερα

ΦΥΕ14-5 η Εργασία Παράδοση

ΦΥΕ14-5 η Εργασία Παράδοση ΦΥΕ4-5 η Εργασία Παράδοση.5.9 Πρόβληµα. Συµπαγής οµογενής κύλινδρος µάζας τυλιγµένος µε λεπτό νήµα αφήνεται να κυλίσει από την κορυφή κεκλιµένου επιπέδου µήκους l και γωνίας φ (ϐλέπε σχήµα). Το ένα άκρο

Διαβάστε περισσότερα