H σταθερά ολοκληρώσεως C θα προκύψει από την αρχική συνθήκη, ότι για t=0 είναι v=0, οπότε η (2) δίνει: ) (3) m 1 - e- t/t

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "H σταθερά ολοκληρώσεως C θα προκύψει από την αρχική συνθήκη, ότι για t=0 είναι v=0, οπότε η (2) δίνει: ) (3) m 1 - e- t/t"

Transcript

1 Υλικό σηµείο µάζας m βρίσκεται ακίνητο πάνω σε λείο οριζόντιο έδαφος στην θέση x= ιου άξονα Οx. Κάποια στιγµή επί του υλικού σηµείου εξασκείται δύναµη της µορφής: F = F e - t/t i όπου F, t θετικές και σταθερές ποσότητες και i το µοναδιαίο διά νυσµα του άξονα Οx. Να εκφράσετε την ταχύτητα και την µετατόπι ση του υλικού σηµείου σε συνάρτηση µε τον χρόνο και να εξετάσετε αν οι συναρτήσεις που θα βρείτε οδηγούν σε λογικά και αναµενόµε να αποτελέσµατα, όταν t ". ΛΥΣΗ: Eφαρµόζοντας για το υλικό σηµείο τον δεύτερο νόµο κίνησης του Νεύ τωνα παίρνουµε την σχέση: m dv = F e- t/t dv = F m e- t/t dv = F m e- t/t όπου v η ταχύτητά του κατά την τυχαία χρονική στιγµή t. Ολοκληρώνοντας την έχουµε: v = - F t m e- t/t + C H σταθερά ολοκληρώσεως C θα προκύψει από την αρχική συνθήκη, ότι για t= είναι v=, οπότε η δίνει: = - F t m + C C = F t m Έτσι η σχέση παίρνει την µορφή: v = - F t m e- t/t + F t m v = F t m - e- t/t 3 Παρατηρούµε από την 3 ότι η ταχύτητα του υλικού σηµείου αυξάνεται εκθετικά µε τον χρόνο από την τιµή µηδέν σε µια οριακή τιµή F t /m την οποία λαµβάνει ασυµπωτικά. Αυτό είναι λογικό και αναµενόµενο αποτέλεσµα, διότι η δύναµη που προκαλεί την αύξηση της ταχύτητας συνεχώς φθίνει και τελικά

2 µηδενίζεται, οπότε το υλικό σηµείο παύει να επιταχύνεται και στην συνέχεια θα κινείται ευθύγραµµα και οµαλά. Εξάλλου η σχέση 3 γράφεται: dx = F t m - e- t/t dx = F t m - F t m e- t/t 4 όπου x η µετατόπιση του υλικού σηµείου την χρονική στιγµή t. Ολοκληρώ νοντας την 4 παίρνουµε: x = F t m t + F t m e- t/t + C 5 Η σταθερά ολοκληρώσεως C θα προκύψει από την αρχική συνθήκη ότι, για t= είναι x=, οπότε η 5 δίνει: = + F t m + C C= - F t m Έτσι η 5 παίρνει την µορφή: x = F t m t + F t m e- t/t - F t m x = F t m t - F t m - e- t/t 6 Aπό την 6 προκύπτει ότι για t το x, γεγονός αναµενόµενο. P.M. fysikos Ένας δορύφόρος µάζας m κινείται σε κυκλική τροχιά γύρω από την Γη σε απόστση r από το κέντρο της και κάποια στιγµή λόγω εσωτερικής έκρηξης διασπάται σε δύο µάζες, εκ των οποίων η µία έχει µηδενική ταχύτητα και εκτελεί κατακόρυφη κίνη ση προς την Γη, ενώ η άλλη διαφεύγει από το πεδίο βαρύτητας της Γης. i Nα βρεθεί ποιος µπορεί να είναι ο λόγος των δύο µαζών. ii Nα βρεθεί η ελάχιστη ενέργεια που µπορεί να ελευθερωθεί κατά την έκρηξη. iii Nα βρεθεί η τελική ταχύτητα της µάζας που διαφεύγει. Δίνεται η µάζα Μ της Γης, η παγκόσµια σταθερά G της βαρύτητας και ότι στην περιοχή που κινείται ο δορυφόρος δεν υπάρχει ατµοσφαι ρικός αέρας. ΛΥΣΗ: i Πριν ο δορυφόρος εκραγεί δέχεται βαρυτική έλξη από την Γη που αποτελεί για τον δορυφόρο κεντροµόλο δύναµη, δηλαδή ισχύει η σχέση:

3 GMm = mv r r v = GM r όπου v το σταθερό µέτρο της ταχύτητας περιφοράς του περί την Γη. Κατά τον πολύ µικρό χρόνο της έκρηξης του δορύφόρου η ώθηση της βαρυτικής έλξης τείνει στο µηδέν, που σηµαίνει ότι η ορµή του δορυφόρου λίγο πριν την έκρηξη είναι ίση µε την ορµή του συστήµατος των δύο θραυσµάτων αµέσως µετά την έκρηξη, δηλαδή µπορούµε να γράψουµε την σχέση: m v = m v + m v m v = m v Σχήµα όπου v η ταχύτητα αµέσως µετά την έκρηξη του θραύσµατος µάζας m που διαφευγει από το πεδίο βαρύτητας της Γης. Όµως η µάζα m κίνειται ή επί παραβολικής τροχιάς, οπότε διαφεύγει οριακά από το πεδίο βαρύτητας ή κινεί ται επί υπερβολικής τροχιάς, οπότε φθάνει στο άπειρο έχοντας κάποια ταχύ τητα. Αυτό σηµαίνει ότι η µηχανική ενέργεια της µάζας m είναι µεγαλύτερη ή ίση του µηδενός, δηλαδή ισχύει: m v - GMm r v GM r 3 Όµως από την έχουµε v =mv /m, οπότε η σχέση 3 γράφεται: m v m GM r m v m v m m m m m + m m m m - 4 ii H ενέργεια Ε που ελευθερώνεται κατά την έκρηξη εµφανίζεται ως αυξηση της κινητικής ενέργειας των δύο θραυσµάτων σε σχέση µε την κινητική ενέρ γεια του δορυφόρου, δηλαδή ισχύει: E = m v - mv = m m v - mv m = mv m - " m

4 E = GMm r m + m - " m = GMm r " m m m = Er 4 m GMm Er GMm - E GMm r - 5 iii Aς δεχθούµε ότι η µάζα m φθάνει στο άπειρο µε ταχύτητα v. Εφαρµόζον τας για την µάζα αυτή το θεώρηµα διατήρησης της µηχανικής ενέργειας παίρ νουµε την σχέση: m v - GMm r = m v + v - GM r = v m v m - GM r = v " m + m m v - GM r = v + m " m GM r - GM r = v GM r v " + GM r GM r v " + GM r v " γεγονός που αναµενόταν και χωρίς υπολογισµούς. P.M. fysikos Ενα διαστηµόπλοιο κινείται στο αστρικό διάστη µα σε περιοχή όπου απουσιάζει κάθε βαρυτικό πεδίο, µε ταχύτητα v. Κάποια στιγµή που θεωρείται ως αρχή µέτρησης του χρόνου το δια στηµόπλοιο εισέρχεται εντός αστρικού νέφους και τότε τίθεται σε λειτουργία µε την βοήθεια αυτόµατου µηχανισµού σύστηµα εκτόξευ σης καυσαερίων µε κατεύθυνση αντίρροπη της κίνησής του. Τα καυ σαέρια αποβάλλονται µε σταθερή σχετική ταχύτητα v " ως προς το διαστηµόπλοιο και µε σταθερό ρυθµό dm/=µ, ενώ η αστρική σκόνη προβάλλει στην κίνηση του διαστηµόπλοιου αντίσταση A της µορφής: A = -µ v όπου v η ταχύτητα του διαστηµόπλοιου. i Eάν η αρχική µάζα του διαστηµόπλοιου είναι Μ, να εκφράσετε σε συνάρτηση µε τον χρόνο την ταχύτητά του. ii Eάν η µάζα του καύσιµου υλικού του διαστηµόπλοιου είναι Μ /, να βρεθεί η µετατόπισή του στο χρονικό διάστηµα που απαιτείται για να εξαντληθούν τα καύσιµά του.

5 ΛΥΣΗ: i Κατά την κίνηση του διαστηµοπλοίου εντός του αστρικού νέφους αυτό αποτελεί σώµα από το οποίο εκκρέει µάζα, οπότε η διαφορική εξίσωση της κίνησής του έχει την µορφή: m d v = F " " - dm v όπου m η µάζα του διαστηµοπλοίου την στιγµή t που το εξετάζουµε, v η αντί στοιχη ταχύτητά του και F " η συνισταµένη των εξωτερικών δυνάµεων που δέ Σχήµα χεται από το περιβάλλον του. Λαµβάνοντας ως θετική φορά την κατεύθυνση της αρχικής του ταχύτητας v η διανυσµατική σχέση µετατρέπεται σε σχέ ση αλγεβρικών τιµών της µορφής: m dv = -A - dm v " m dv = -µv - µv " m dv = -µ v + v " M - µt d v + v " = v + v " -µ M - µt d v + v " d v + v " = d M - µt v + v " M - µt = -µ v + v " Ολοκληρώνοντας την παίρνουµε: ln v + v " = ln M - µt + lnc v + v " = C M - µt 3 Η σταθερά ολοκληρώσεως C θα υπολογιστεί από την αρχική συνθήκη κίνησης v=v, οπότε η 3 δίνει C=v +v σχ /Μ και εποµένως θα έχουµε: v + v " = v + v " M M - µt v = v + v " M M - µt - v " 4

6 ii H σχέση 4 γράφεται: dx = v + v " M M - µt η οποία µε ολοκλήρωση δίνει: - v " dx = v + v " M M - µt - v " x = v + v " M M t - µt - v " t + C 5 όπου x η µετατόπιση του διαστηµόπλοιου εντός του αστρικού νέφους σε χρόνο t. Η σταθερά ολοκληρώσεως C θα προκύψει από την αρχική συνθήκη κίνησης x=, οπότε η 5 δίνει C = και εποµένως γράφεται: x = v + v " M M t - µt - v " t 6 Ο χρόνος κίνησης t * του διαστηµόπλοιου µέχρις ότου εξαντληθούν τα κάυσιµά του είναι ίσος µε Μ /µ και εποµένως η αντίστοιχη µετατόπιση του x *, σύµ φωνα µε την 6 είναι: x * = v + v " M M M µ - µm M 8µ - v " µ x * = v + v " M 3M 8µ - M v " M - v " µ x * = 3M 8µ v + v " µ x * = 3M 8µ 3v - v " µε v > v " / 3 P.M. fysikos Ενα σώµα αφήνεται από ύψος h εκ του οριζοντίου εδάφους και κινούµενο εντός του ατµοσφαιρικού αέρα δέχεται από αυτόν δύναµη τριβής T αντίρροπη της ταχύτητάς του v, της οποίας το µέτρο ακολουθεί την σχέση: T = kv όπου k θετική και σταθερή ποσότητα. i Nα δείξετε ότι ο ρυθµός µεταβολής της µηχανικής ενέργειας Ε του σώµατος ικανοποιεί την σχέση: de/ = -kv 3

7 ii Nα βρείτε την ταχύτητα του σώµατος την στιγµή που φθάνει στο έδαφος. ΛΥΣΗ: i Eάν v είναι η ταχύτητα του σώµατος την στιγµή t που η µετατό πισή του ως προς την αρχική του θέση Ο είναι y, τότε η αντίστοιχη µηχανική του ενέργεια Ε είναι: E = mv / + mgh - y όπου m η µάζα του σώµατος. Διαφορίζοντας την παίρνουµε: de = mvdv- mgdy de dv dy = mv - mg Σχήµα 3 Όµως το διαφορικό πηλίκο dy/ αποτελεί το µέτρο της ταχύτητας v και επο µένως η σχέση γράφεται: de dv de = mv - mgv = v m dv " - mg 3 Eφαρµόζοντας εξάλλου για το σώµα τον δεύτερο νόµο κίνησης του Νεύτωνα, µε θετική φορά στην κατακόρυφη διεύθυνση Οy την προς τα κάτω, παίρνουµε την σχέση: m dv dv = mg - T m = mg - kv m dv - mg = -kv 4 Συνδυάζοντας τις 3 και 4 έχουµε την αποδεικτέα σχέση: de/ = -kv 3 5 ii Η δεύτερη εκ των σχέσεων 4 µετασχηµατίζεται ως εξής:

8 dv = g - kv m v dv dy = g - kv m d kv / m g - k/mv = kdy m dv dy dy = g - kv m d kv / m k/mdy = g - kv m d g - kv / m = - kdy g - k/mv m 6 Oλοκληρώνοντας την 6 παίρνουµε: ln g - kv " m = - ky m + C Η σταθερά ολοκληρώσεως C θα βρεθεί από τις αρχικές συνθήκες v= και y=, οπότε η πιο πάνω σχέση δίνει C=lng µε αποτέλεσµα να γράφεται: ln g - kv " m = - ky m + lng 7 H 7 την στιγµή που το σώµα φθάνει στο έδαφος δίνει: ln g - kv A " m = - kh g - m + lng ln m g " kv A = - kh m - kv A mg = e-kh/m v A = όπου v A η ζητούµενη ταχύτητα. mg k - e-kh/m P.M. fysikos Στην διάταξη του σχήµατος 4 ο δακτύλιος Δ έχει µάζα m και µπορεί να ολισθαίνει κατά µήκος λείου κυκλικού οδηγού ακτίνας R, ο οποίος είναι στερεωµένος µε το επίπεδό του κατακόρυ φο. To ελατή ριο θεωρείται ιδανικό µε φυσικό µήκος ίσο µε R/,, το άκρο του Ο είναι ακλόνητο σε απόσταση R/ από το κέντρο Κ του κυκλικού οδηγού, η δε σταθερά του k ικανοποιεί την σχέση k=mg/r, όπου g η επιτάχυνση της βαρύτητας. i Nα καθορίσετε για τις διάφορες τιµές της σταθεράς k του ελατη ρίου τις θέσεις και το είδος ισορροπίας του δακτυλίου.

9 ii Εάν ο δακτύλιος εκτραπεί πολύ λίγο από την ανώτατη θέση του Α να βρεθεί η µέγιστή ταχύτητα του, στην περίπτωση που είναι k=mg/r. ΛΥΣΗ: i Εξετάζουµε το σύστηµα δακτύλιος-ελατήριο σε µια τυχαία θέση, όπου η επιβατική ακτίνα του δακτυλίου σχηµατίζει µε την κατακόρυφη ακτίνα ΚΒ του οδηγού γωνία φ. Στην θέση αυτή το µήκος L του ελατηρίου είναι: L = O + = R/ + R" + Rµ L = R 4 + R " + R " + R µ = R 5 + 4" H δυναµική ενέργεια Uφ του συστήµατος στην θέση αυτή είναι ίση µε την βαρυτική δυναµική ενέργεια του δακτυλίου συν την δυναµική ενέργεια ελαστι κής παραµόφφωσης του ελατηρίου, δηλαδή ισχύει η σχέση: U = mgr - R" + kl / Σχήµα 4 Όµως η επιµήκυνση ΔL του ελατηρίου από την φυσική του κατάσταση είναι ίση µε L-R/, οπότε η προηγούµενη σχέση γράφεται: U = mgr - " + kl - R/ / U = mgr - " + kr " - Επειδή µεταξύ του δακτυλίου και του οδηγού δεν υπάρχει τριβή, στην θέση ισορροπίας του συστήµατος πρέπει η πρώτη παράγωγος της Uφ να µηδενίζε ται, δηλαδή πρέπει να ισχύει:

10 du = d d d mgr - " + kr " - * = Όµως mgrµ" + kr 8 d d d d" 5 +4" - = d d 5 + 4" - = 3 6+4" - 5+4" = = - 4µ" + 4µ" + = " * + µ" 5 +4" * οπότε η 3 γράφεται: mgrµ" + kr 8-4µ" + 4µ" + = 5 +4" * + -,- mgr - kr -. * µ = 4 5+4" / Aπό την 4 προκύπτει ότι οι θέσεις ισορροπίας του δακτυλίου είναι φ=, φ=π και φ=φ, µε: mgr - kr - -mgr + kr = * = ή 5+4" kr 5+4" ή = - mg 5+4" kr 5 Για να καθορίσουµε το είδος ισορροπίας του συστήµατος εξετάζουµε την δεύτε ρη παράγωγο της Uφ, οπότε θα έχουµε: d U d = d,. -. mgr"µ + kr 8-4"µ + 4"µ / * = =mgr"- kr " + kr " 5+4" + µ 5+4" / 5 +4" *, +

11 d U =mgr"- kr " d + kr " 5+4" + µ + 5+4" 3 / + * = d U + = - mgr- kr - d,-. * 5 +4" / " + kr µ 5+4" 3 / 6 Για φ= προκύπτει: " d U d = " = mgr- kr - + * - 3, = R * mg- kr >, εφ όσον mg>kr/3 ή k<3mg/r. Tότε η συνάρτηση Uφ θα παρουσιάζει στην θέση φ= τοπικό ελάχιστο σχ. 5, που σηµαίνει ότι το σύστηµα στην θέση αυτή ισορροπεί ευσταθώς. Για φ=π προκύπτει: " d U d = = - mgr < δήλαδή στην θέση αυτή η συνάρτηση Uφ παρουσιάζει τοπικό µέγιστο σχ. 5, που σηµαίνει ότι το σύστηµα ισορροπεί ασταθώς. Για φ=φ προκύπτει: Σχήµα 5 Σχήµα 6 " d U " d = mgr- kr = + - -,. 5 +4* / * + kr µ 5+4* 5 3 / " d U " d = mgr- kr = -+ mg + * -./ kr +kr µ - mg + * -, kr, 3

12 " d U d = kr µ - mg, +. * kr - = 3 > εφ όσον -mg/kr> ή k>mg/r. Tότε η συνάρτηση Uφ θα παρουσιάζει στην θέση φ=φ τοπικό ελάχιστο σχ. 6, που σηµαίνει ότι το σύστηµα στην θέση αυτή ισορροπεί ευσταθώς. ii Όταν η σταθερά του ελατηρίου είναι ίση µε mg/r k<3mg/r, τότε συµφωνα µε την προηγούµενη ανάλυση η θέση φ= είναι θέση ευσταθούς ισορροπίας του συστήµατος και η δυναµική του ενέργεια ελαχιστοποιείται όταν το σύστηµα βρεθεί στην θέση αυτή. Όµως κατά την κίνηση του δακτυλίου η µηχανική ενέρ γεια του συστήµατος διατηρείται και εποµένως στην θέση φ= η κινητική ενέρ γεια του δακτυλίου παίρνει την µεγαλύτερη τιµή της που σηµαίνει ότι ο δακτύλιος αποκτά την µεγαλύτερη ταχύτητα όταν βρεθεί στην κατώτερη θέση του Β. Εφαρµόζοντας για το σύστηµα το θεώρηµα διατήρησης της µηχανικής ενέργειας µεταξύ της αρχικής του θέσεως φ=π θέση ασταθούς ισορροπίας και θέσεως φ=, παίρνουµε την σχέση: mgr = mv max / + U min 4gR - U min /m = v max 7 Όµως από την σχέση έχουµε: U min = U = mgr - " + kr " - U min = kr = mgr οπότε η 7 γράφεται: v max = 4gR - mgr/m v max = 7gR / P.M fysikos Στην διάταξη του σχήµατος 7 ο δακτύλιος Δ έχει µάζα m και µπορεί να ολισθαίνει κατά µήκος λείου κυκλικού οδηγού ακτίνας R, ο οποίος είναι στερεωµένος µε το επίπεδό του κατακόρυ φο. To ελατήριο θεωρείται ιδανικό µε φυσικό µήκος R/ και σταθερά k που ικανοποιεί την σχέση k=mg/r, όπου g η επιτάχυνση της βαρύ τητας. i Να βρείτε την διαφορική εξίσωση, της οποίας η λύση επιτρέπει να καθορισθεί η θέση του δακτυλίου σε συνάρτηση µε τον χρόνο. ii Nα δείξετε ότι για φ=π/3 ο δακτύλιος ισορροπεί ευσταθώς. Τι εί δους κίνηση θα εκτελέσει ο δακτύλιος αν αποµακρυνθεί λίγο από την θέση ευσταθούς ισορροπίας του;

13 ΛΥΣΗ: i Εξετάζουµε το σύστηµα δακτύλιος-ελατήριο σε µια τυχαία θέση, όπου η επιβατική ακτίνα του δακτυλίου το σχηµατίζει µε τον πολικό άξονα Κy γωνία φ. Στην θέση αυτή ο δακτύλιος, δέχεται το βάρος του w το οποίο παρέχει εφαπτοµενική συνιστώσα w, την αντίδραση Q του λείου οδηγού η οποία έχει ακτινική διεύθυνση και την δύναµη F από το ελατήριο, η οποία παρέχει εφαπτοµενική συνιστώσα F. Εφαρµόζοντας τον δεύτερο νόµο κίνησης του Νεύτωνα κατα την εφαπτοµενική διεύθυνση παίρνουµε την σχέση: m dv = w - F mr d = mg" - F" / mr d = mg" - kl" / Σχήµα 7 όπου v η γραµµική ταχύτητα και η γωνιακή ταχύτητα του δακτυλίου κατά την στιγµή που τον εξετάζουµε. Όµως η επικήκυνση ΔL του ελατηρίου από την φυσική του κατάσταση είναι: L=O -R/ = R +R -R " -R/ = R -"-R/ L = R"µ - R = R * "µ - -, / +. οπότε η γράφεται: mr d = mg"µ - kr "µ -, + * -./ mr d = mg"µ *+ - mg R R, "µ - /. - *+

14 d = g R ", * +µ * - +µ * + /. - όπου d = g R - "µ, + * -./ d = g f 3 R f = - "µ, + * -./ µε <φ<π 4 Η 3 είναι µια µη γραµµική διαφορική εξίσωση δευτέρας τάξεως και δεν λύνε ται αναλύτικά, αλλά µε αριθµητική µέθοδο που χρησιµοποιεί κατάλληλο µαθη µατικό πρόγραµµα. ii Eξετάζοντας την δυναµική ενέργεια Uφ του συστήµατος παρατηρούµε ότι αυτή είναι ίση µε την βαρυτική δυναµική ενέργεια του δακτυλίου συν την δυ ναµική ενέργεια ελαστικής παραµόφφωσης του ελατηρίου, δηλαδή ισχύει: U = -mg R - R" + kl / U = -mgr - " + mg, R R µ + - /. - *, U = mgr - + " + µ -. + * -. / 5 Επειδή µεταξύ του δακτυλίου και του οδηγού δεν υπάρχει τριβή, στις θέσεις ισορροπίας του συστήµατος πρέπει η πρώτη παράγωγος της Uφ να µηδενίζε ται, δηλαδή πρέπει να ισχύει: du d 5 = d, - + " + µ -. + * -. / = -µ" + µ " - *+ " = -µ" + 4µ " " * + - " + = * -µ" + µ" - " + = *

15 ", * +µ /. * - = 4 - Οι ρίζες της 4 είναι φ=π και φ=π/3 Για να καθορίσουµε το είδος ισορροπίας του συστήµατος εξετάζουµε την δεύτε ρη παράγωγο της Uφ, οπότε θα έχουµε: d U = mgr d d d "µ - * + = mgr + "µ + * από την οποία προκύπτουν: και " d U d " d U d =/3 = = mgr - +, +. = - mgr < * - = mgr +, +. = 3mgR > * - 4 δηλαδή στην θέση φ=π/3 το σύστηµα ισορροπεί ευσταθώς, ενώ στην θέση φ=π η ισορροπία του είναι ασταθής. Ας δεχθούµε ότι ο δακτύλιος υλικό εκτρέπεται ελάχιστα από την θέση ευστα θούς ισορροπίας του, ώστε η µεταβλήτη φ να εγκλωβίζεται σε µια περιοχή του π/3 πολύ µικρού εύρους ε ε, δηλαδή ισχύει φ-π/3 ε. Αναπτύσσοντας την συνάρτηση fφ κατά Taylor εντός της περιοχής αυτής παίρνουµε: f = f"/3+ df d f " f/3+ df d Όµως έχουµε: =/3 ="/3 - "/3 + d f d ="/3 - "/ /3 5 και f/3= g R " 6 - µ + = 3* " df d =/3 = - / - µ. - *+, =/3 = - - µ 6 - *+, / = οπότε η 5 γράφεται:

16 f = - - " / 3 8 = " 6 3 Συνδυάζοντας την 6 µε την διαφορική εξίσωση κίνησης 3 του δακτυλίου παίρνουµε την σχέση: d = - g R " d 3 + 3g 4R - " = 3 d x + 3g 4R x = d x + x = 7 όπου τέθηκε x=φ-π/3 και Ω =3g/4R. Η 7 είναι η χαρακτηριστική διαφορική εξίσωση µιας αρµονικής ταλάντωσης, που σηµαίνει ότι αν ο δακτύλιος εκτραπεί πολύ λίγο από την θέση ευταθούς ισορροπίας του θα εκτελέσει περί την θέση αυτή αρµονική ταλάντωση κυκλικής συχνότητας Ω. P.M fysikos Mικρό σφαιρίδιο µάζας m, µπορεί να ολισθαίνει κατα µήκος ενός λεπτού οδηγού που είναι στερεωµένος στο κατακό ρυφο επίπεδο Oxy το δε σχήµα του είναι παραβολικό και αντιστοιχεί στην συνάρτηση y=αx / µε x. Mεταξύ του σφαιριδίου και του οδη γού υπάρχει τριβή, µε συντελεστή τριβής ολίσθησης µ. Την στιγµή t= το σφαιρίδιο εκτοξεύεται µε οριζόντια ταχύτητα v από το κατώτατο σηµείο Ο του οδηγού και κινούµενο κατά µήκος αυτού ανέρχεται. i Nα δείξετε ότι κατά την άνοδο του σφαιριδίου η x-συντεταγµένη του ικανοποιεί την διαφορική εξίσωση: " x + x + µ d x + " dx = -g ii Χρησιµοποιώντας την παραπάνω διαφορική εξίσωση να δείξετε, ότι κατά την άνοδο του σφαιριδίου η x-συνιστώσα v x της ταχύτητάς του ικανοποιεί την σχέση: g + v x g + v = " e µ όπου φ η κλίση της παραβολικής τροχιάς στην θέση που βρίσκεται το σφαιρίδιο την στιγµή που το εξετάζουµε. Δίνεται η επιτάχυνση g της βαρύτητας. ΛΥΣΗ: i Το σφαιρίδιο κατά την άνοδό του δέχεται το βάρος του m g και την αντίδραση του οδηγού που αναλύεται στην τριβή ολίσθήσεως T µε κατεύθυνση αντίρροπη της ταχύτητάς του v και στην κάθετη αντίδραση N που κατευθύ

17 νεται προς το κοίλο µέρος της τροχιάς κάθετα προς το διάνυσµα της ταχύτητας v. Εφαρµόζοντας τον δεύτερο νόµο της κίνησης του Νεύτωνα κατά την διεύ θυνση των αξόνων x και y παίρνουµε τις σχέσεις: Σχήµα 8 m d x =-Nµ"-T" m d y =N"-Tµ"-mg m d x =-Nµ"-µN" m d y =N"-µNµ"-mg d x = - N m d y = N m µ" + µ" " - µµ" - g d x = - N m d y + g = N m µ" + µ" " - µµ" Απαλοίφοντας το Ν µεταξύ των σχέσεων παίρνουµε: d x / d y / + g = - " + µ - µ" = x + µ µx - διότι ισχύει dy/dx = x = ". Eξάλλου παραγωγίζοντας δύο φορές ως προς τον χρόνο t την εξίσωση της παραβολικής τροχιάς y=αx / παίρνουµε: dy = x dx d y = x d x + " dx και η γράφεται: d x / xd x / + dx / + g = x + µ µx - d x µx - = x d x * * + " dx + + g- x + µ, -

18 d x " x + - µx " + dx x + µ = -g " x + d x x + µ + " dx = -g 3 ii Eάν v x είναι η x-συνιστώσα της ταχύτητας του σφαιριδίου θα έχουµε: d x = dv x = dv x dx dx = v dv x x dx οπότε η 3 γράφεται: " x + x + µ v x dv x dx = - g + v x - v dv x x g + v = " x + µ x x dx 4 + Όµως από την αx=εφφ µε διαφόριση παίρνουµε: dx = d" = d µ, +. = + µ, * + - *. - d dx = " + d = x + d οπότε η 4 γράφεται: - v dv x x g + v = " x + µ x x + Oλοκληρώνοντας την 5 παίρνουµε: x + d - v dv x x g + v = " + µ * d 5 x v x dg + v x " = - + µ d g + v x " ln g + v " x g + v v = -µ - + *d ln g + v " x g + v = -µ + ln*+ ln, g + v " " /. x g + v * -. + = -µ+ " g + v x " g + v * = e, µ+ g + v x + g + v = " e µ P.M. fysikos

ii) Να δείξετε ότι το σφαιρίδιο εκτελεί µια µη αρµονική περιοδική ταλάντωση, της οποίας να υπολογίσετε την περίοδο.

ii) Να δείξετε ότι το σφαιρίδιο εκτελεί µια µη αρµονική περιοδική ταλάντωση, της οποίας να υπολογίσετε την περίοδο. Το σύστηµα του σχήµατος αποτελείται από δύο όµοια ελατήρια στα θεράς και φυσικού µήκους α, των οποίων οι άξονες βρίσκονται πάνω στην ευθεία ΑΒ, όπου Α, Β είναι δύο ακλόνητα σηµεία του επιπέδου. Εκτρέπουµε

Διαβάστε περισσότερα

όπου Μ η µάζα της Γης την οποία θεωρούµε σφαίρα οµογενή, G η παγκόσµια σταθερά της βαρύτητας και L!

όπου Μ η µάζα της Γης την οποία θεωρούµε σφαίρα οµογενή, G η παγκόσµια σταθερά της βαρύτητας και L! Είναι γνωστό ότι, όταν ένα σώµα κινείται µέσα στο βαρυτικό πεδίο της Γης υπό την επίδραση µόνο της Νευτώνειας έλξεως, η τροχιά που διαγράφει το κέντρο µάζας του είναι επίπεδη και µάλιστα το επίπεδό της

Διαβάστε περισσότερα

µε φορά προς το κυρτό µέρος του σύρµατος (σχήµα α) η οποία µαζί µε την ακτινική συνιστώσα w!

µε φορά προς το κυρτό µέρος του σύρµατος (σχήµα α) η οποία µαζί µε την ακτινική συνιστώσα w! Το κυκλικό σύρµα του σχήµατος έχει µάζα m/ και είναι κρεµασµένο από κατακόρυφο σπάγκο αµελητέας µάζας αλλά επαρκούς αντοχής. Δύο όµοιες σηµειακές χάντρες, καθε µιά µε µάζα m, αφήνονται ταυτόχρονα από την

Διαβάστε περισσότερα

i) το πλάτος ταλάντωσης του καροτσιού µετά την ενσωµάτωση του σφαιριδίου σ' αυτό και

i) το πλάτος ταλάντωσης του καροτσιού µετά την ενσωµάτωση του σφαιριδίου σ' αυτό και Ένα καροτσάκι που περιέχει άµµο, συνολικής µάζας M, εκτελεί οριζόντια αρµονική ταλάντωση σε λείο επίπεδο, µε τη βοήθεια ιδανικού οριζόντιου ελατηρίου σταθεράς k. Ένα σφαιρίδιο µάζας m

Διαβάστε περισσότερα

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F!

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F! Οµογενής κυκλικός δίσκος µάζας m και ακτίνας, βρίσκεται πάνω σε λείο οριζόντιο έδαφος µε τον άξονα συµµετρίας του κατα κόρυφο. Εάν σ ένα σηµείο της περιφέρειας του δίσκου εξασκείται συνεχώς µια σταθερή

Διαβάστε περισσότερα

Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή

Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή ταχύτητα µέτρου V 0 πάνω σε λείο οριζόντιο έδαφος κατευθυνόµενο προς κατακόρυφο τοίχο. Το σώµα κάποια στιγµή συγκρούεται ελα στικά και µετωπικά µε µια µπάλα

Διαβάστε περισσότερα

, της οποίας το µέτρο ικανοποιεί τη σχέση:

, της οποίας το µέτρο ικανοποιεί τη σχέση: Στην κορυφή της κεκλιµένης έδρας µιας ορθογώνιας σφήνας µάζας M, η οποία ισορροπεί πάνω σε λείο οριζόντιο έδαφος, αφήνεται µικ ρός κύβος µάζας m. Nα δείξετε ότι η σφήνα κινείται στο σύστη µα αναφοράς του

Διαβάστε περισσότερα

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F!

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F! Υλικό σηµείο µάζας, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F (), η οποία ακολουθεί τον νόµο του αντιστρόφου τετραγώνου της απόστασης από το ελκτι κό κέντρο Ο, δηλαδή περιγράφεται

Διαβάστε περισσότερα

i) την ενέργεια που πρέπει να προσφερθεί στο σφαιρίδιο,

i) την ενέργεια που πρέπει να προσφερθεί στο σφαιρίδιο, Tο σφαιρίδιο του σχήµατος ισορροπεί πάνω στο λείο οριζόντιο δαπεδο, ενώ τα οριζόντια ελατήρια είναι τεντωµένα. H απόσταση των σηµείων στήριξης των δύο ελατηρίων είναι 3α, ενώ τα ελατήρια έχουν το ίδιο

Διαβάστε περισσότερα

της µορφής:! F = -mk! r

της µορφής:! F = -mk! r Ένα µικρό σώµα µάζας m, κινείται επί κυκλικής τροχιάς ακτίνας α µέσα σε δυναµικό πεδίο, ελκόµενο από σταθερό ση µείο Ο που αποτελεί το κέντρο της τροχιάς, µε δύναµη F της µορφής: F -mk όπου το διάνυσµα

Διαβάστε περισσότερα

i) Nα δείξετε ότι, κάθε στιγµή οι ταχύτητες των δύο πιθήκων ως προς το ακίνητο έδαφος είναι ίσες.

i) Nα δείξετε ότι, κάθε στιγµή οι ταχύτητες των δύο πιθήκων ως προς το ακίνητο έδαφος είναι ίσες. Δύο πιθηκάκια της ίδιας µάζας αναρριχώνται εκ της ηρεµίας κατά µήκος των τµηµάτων του αβαρούς σχοινιού, που διέρχεται από τον λαιµό µιας σταθερής τροχαλίας (σχ. ). H τροχαλία έχει αµελητέα µάζα και µπορεί

Διαβάστε περισσότερα

όπου x η συντεταγµένη του σωµατιδίου, θεωρούµενη µε αρχή ένα στα θερό σηµείο Ο του άξονα και α, U 0 σταθερές και θετικές ποσότητες.

όπου x η συντεταγµένη του σωµατιδίου, θεωρούµενη µε αρχή ένα στα θερό σηµείο Ο του άξονα και α, U 0 σταθερές και θετικές ποσότητες. Υλικό σωµατίδιο µάζας m κινείται πάνω σε σταθε ρό άξονα x x υπό την επίδραση δύναµης, της οποίας ο φορέας συµπί πτει µε τον άξονα. Η δύναµη απορρέει από συνάρτηση δυναµικής ενέργειας της µορφής: Ux) =

Διαβάστε περισσότερα

i) Εάν η κρούση είναι µετωπική και πλαστική, να δείξετε ότι η τρο χιά του συσσωµατώµατος που δηµιουργείται είναι ελλειπτική.

i) Εάν η κρούση είναι µετωπική και πλαστική, να δείξετε ότι η τρο χιά του συσσωµατώµατος που δηµιουργείται είναι ελλειπτική. Ένας δορυφόρος µάζας m κινείται περί την Γη επί κυκλικής τροχιάς ακτίνας και κάποια στιγµή προσκρούει ακτινικά πάνω σ αυτόν σώµα µάζας m και της ίδιας κινητικής ενέργειας µε τον δορυφόρο. i) Εάν η κρούση

Διαβάστε περισσότερα

ΛΥΣΗ: Έστω O η θέση ισορροπίας του σφαιριδίου. Στη θέση αυτή το σφαι ρίδιο δέχεται το βάρος του w!, τη δύναµη F

ΛΥΣΗ: Έστω O η θέση ισορροπίας του σφαιριδίου. Στη θέση αυτή το σφαι ρίδιο δέχεται το βάρος του w!, τη δύναµη F Ένα ιδανικό ελατήριο σταθεράς k κόβεται σε δύο τµήµατα µε µήκη L και L. Η µία άκρη κάθε τµήµατος συνδέεται στέρεα µε µικρό σφαιρίδιο µάζας m και οι ελέυθερες άκρες τους στερεώνονται σε ακλόνητα σηµεία

Διαβάστε περισσότερα

Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση.

Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση. Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση. i) Εάν Κ είναι το στιγµιαίο κέντρο περιστροφής του στερεού κάποια στιγµή και C η αντίστοιχη θέση του κέντρου µάζας

Διαβάστε περισσότερα

Δίνεται η ροπή αδράνειας I=mL 2 /3 της ράβδου ως προς τον άξονα περιστροφής της, η επιτάχυνση! g της βαρύτητας και ότι π 2!10.

Δίνεται η ροπή αδράνειας I=mL 2 /3 της ράβδου ως προς τον άξονα περιστροφής της, η επιτάχυνση! g της βαρύτητας και ότι π 2!10. Oµογενής ράβδος σταθερής διατοµής, µάζας m και µήκους L, µπορεί να στρέφεται περί οριζόντιο άξονα που διέρχεται από το ένα άκρο της. Όταν η ράβδος βρίσκεται στην θέση ευσταθούς ισορροπίας της εφαρµόζεται

Διαβάστε περισσότερα

i) Να βρεθεί ο χρόνος αιώρησης του διαστηµοπλοίου, µέχρις ότου εξαντληθούν τα καύσιµά του.

i) Να βρεθεί ο χρόνος αιώρησης του διαστηµοπλοίου, µέχρις ότου εξαντληθούν τα καύσιµά του. Ένα διαστηµόπλοιο αιωρείται στον αέρα σε στα θερό ύψος από την επιφάνεια της Γης, εκτοξεύοντας καυσαέρια µε σταθερή ταχύτητα v. Η αρχική µάζα του διαστηµόπλοιου µαζί µε τα καύσιµά του είναι m, η δε µάζα

Διαβάστε περισσότερα

που περιγράφεται από την σχέση:! R = -mk! v

που περιγράφεται από την σχέση:! R = -mk! v Mικρό σώµα µάζας m βάλλεται από σηµείο Ο του οριζόντιου εδάφους κατακόρυφα προς τα άνω, µε ταχύτητα µέτρου v. Στην διάρκεια της κίνησής του το σώµα δέχεται από τον ατµοσφαιρι κό αέρα αντίσταση R, που περιγράφεται

Διαβάστε περισσότερα

Θεωρούµε σύστηµα δύο σωµατιδίων Σ 1 και Σ 2 µε αντίστοιχες µάζες m 1 και m 2, τα οποία αλληλοεπιδρούν χωρίς όµως να δέχονται εξωτερικές δυνάµεις.

Θεωρούµε σύστηµα δύο σωµατιδίων Σ 1 και Σ 2 µε αντίστοιχες µάζες m 1 και m 2, τα οποία αλληλοεπιδρούν χωρίς όµως να δέχονται εξωτερικές δυνάµεις. Θεωρούµε σύστηµα δύο σωµατιδίων Σ και Σ µε αντίστοιχες µάζες m και m, τα οποία αλληλοεπιδρούν χωρίς όµως να δέχονται εξωτερικές δυνάµεις. i) Nα δείξετε ότι η σχετική ορµή P του ενός, λογουχάρη του Σ ως

Διαβάστε περισσότερα

, σταθερής κατεύθυνσης, της οποίας το µέτρο µεταβάλλεται µε τον χρόνο t, σύµφωνα µε την σχέση:

, σταθερής κατεύθυνσης, της οποίας το µέτρο µεταβάλλεται µε τον χρόνο t, σύµφωνα µε την σχέση: Σώµα µάζας m σχήµατος ορθογώνιου κιβωτίου, ισορροπεί πάνω σε τραχύ οριζόντιο επίπεδο και στην άνω επιφάνειά του έχει τοποθετηθεί σώµα µάζας m/. Κάποια στιγµή που λαµβάνε ται ως αρχή µέτρησης του χρόνου

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ

ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ 30/9/08 ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

τα µοναδιαία διανύσµατα των αξόνων Οx, Oy, Oz αντιστοί χως. Η αντίστοιχη στροφορµή L!

τα µοναδιαία διανύσµατα των αξόνων Οx, Oy, Oz αντιστοί χως. Η αντίστοιχη στροφορµή L! Στο ένα άκρο ράβδου µήκους L και αµελητέας µά ζας, έχει στερεωθεί σφαιρίδιο µάζας m. Η ράβδος είναι ακίνητη πάνω σε λείο οριζόντιο επίπεδο Οxy, µε το σφαιρίδιο στο σηµείο, και το άλλο της άκρο στο σηµείο

Διαβάστε περισσότερα

Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v!

Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v! Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v C. Σε σηµείο της περιφέρειας του τροχου έχει αρθρωθεί το ένα άκρο Β µιας λεπτής

Διαβάστε περισσότερα

i) Nα βρείτε την ταχύτητα του κέντρου της στεφάνης αµέσως µετά την κρού ση, η οποία θεωρείται βραχείας διάρκειας.

i) Nα βρείτε την ταχύτητα του κέντρου της στεφάνης αµέσως µετά την κρού ση, η οποία θεωρείται βραχείας διάρκειας. Mια κυκλική στεφάνη ακτίνας R, της οποίας η µάζα θεωρείται συγκεντρωµένη στην περιφέρεια της, κυλίεται ισοταχώς πάνω σε οριζόντιο επίπεδο το δε κέντρο της έχει ταχύτητα v. Kάποια στιγµή η στε φάνη προσκρούει

Διαβάστε περισσότερα

i) Nα βρεθεί η επιτάχυνση του κέντρου Κ της τροχαλίας την στιγµή t=0 αµέσως µετά την θραύση του νήµατος.

i) Nα βρεθεί η επιτάχυνση του κέντρου Κ της τροχαλίας την στιγµή t=0 αµέσως µετά την θραύση του νήµατος. H τροχαλία του σχήµατος () µάζας m και ακτίνας R, ισορροπεί εξαρτηµένη από τα νήµατα ΑΒ και ΓΔ τα οποία είναι ισο κεκλιµένα ως προς την οριζόντια διεύθυνση κατα γωνία φ. Κάποια στιγµή κόβουµε το νήµα ΑΒ

Διαβάστε περισσότερα

Οµογενής σφαίρα µάζας m και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση!!

Οµογενής σφαίρα µάζας m και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση!! Οµογενής σφαίρα µάζας και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση βραχείας διάρκειας, της οποίας ο φορέας βρίσκε ται άνωθεν του κέντρου της

Διαβάστε περισσότερα

Θεωρούµε δύο υλικά σηµεία µε µάζες m 1, m 2 τα οποία αλληλοεπιδ ρούν µε βαρυτική δύναµη, που ακολουθεί τον νόµο της παγκόσµιας έλξεως του Νεύτωνα.

Θεωρούµε δύο υλικά σηµεία µε µάζες m 1, m 2 τα οποία αλληλοεπιδ ρούν µε βαρυτική δύναµη, που ακολουθεί τον νόµο της παγκόσµιας έλξεως του Νεύτωνα. Θεωρούµε δύο υλικά σηµεία µε µάζες m, m τα οποία αλληλοεπιδ ρούν µε βαρυτική δύναµη, που ακολουθεί τον νόµο της παγκόσµιας έλξεως του Νεύτωνα. i) Εάν είναι το διάνυσµα θέσεως του ενός υλικού σηµείου σε

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και Δύο αβαρή και µη εκτατά νήµατα του ίδιου µή κους είναι στερεωµένα στο ίδιο σηµείο Ο, ενώ στις ελεύθερες άκρες των νηµάτων είναι δεµένα δύο σφαιρίδια, µε µάζες 1 και. Eκτρέ πουµε τα σφαιρίδια από την θέση

Διαβάστε περισσότερα

d 2! dt 2 #$%(! - "t) - g L &µ! = " 2 R L όπου! g η επιτάχυνση της βαρύτητας.

d 2! dt 2 #$%(! - t) - g L &µ! =  2 R L όπου! g η επιτάχυνση της βαρύτητας. Mια αβαρής ράβδος µήκους L έχει το ένα της άκ ρο Α αρθρωµένο κοντά στην περιφέρεια κυκλικής τροχαλίας ακτίνας R, όπως φαίνεται στο σχήµα 1. Στο άλλο άκρο της ράβδου είναι στε ρεωµένο σφαιρίδιο Σ που η

Διαβάστε περισσότερα

i) Nα βρείτε την επιτάχυνση του κέντρου της τροχαλίας τ 1.

i) Nα βρείτε την επιτάχυνση του κέντρου της τροχαλίας τ 1. Στην διάταξη του σχήµατος 1) οι τροχαλίες τ 1 και τ έχουν την ίδια µάζα Μ που θεωρείται συγκεντρωµένη στην περι φέρειά τους και την ίδια ακτίνα R. Στο αυλάκι της σταθερής τροχα λίας τ έχει περιτυλιχθεί

Διαβάστε περισσότερα

i) Να γράψετε τη διαφορική εξίσωση κίνησης του σώµατος και να δείξετε ότι δέχεται λύση της µορφής:

i) Να γράψετε τη διαφορική εξίσωση κίνησης του σώµατος και να δείξετε ότι δέχεται λύση της µορφής: Μικρό σώµα µάζας m στερεώνεται στο ένα άκρο οριζόντιου ιδα νικού ελατηρίου σταθεράς k, του οποίου το άλλο άκρο προσδένε ται σε κατακόρυφο τοίχωµα όπως φαίνεται στο σχήµα. Το σώµα µπορεί να ολισθαίνει πάνω

Διαβάστε περισσότερα

! =A'B=C!! C! = R" (1)

! =A'B=C!! C! = R (1) Οµογενής κύβος ακµής α ισορροπεί επί ακλό νητης σφαιρικής επιφάνειας ακτίνας R, µε το κέντρο µάζας του ακριβώς πάνω από την κορυφή Α της επιφάνειας. Εάν µεταξύ του κύβου και της σφαιρικής επιφάνειας υπάρχει

Διαβάστε περισσότερα

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου.

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου. Oµογενής ράβδος σταθερής διατοµής, µάζας m και µήκους L, µπορεί να στρέφεται περί οριζόντιο άξονα που διέρχεται από το ένα άκρο της. Όταν η ράβδος βρίσκεται στην θέση ευσταθούς ισορροπίας εφαρµόζεται στο

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/6 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Yλικό σηµείο κινείται στο επίπεδο Οxy διαγράφον τας καµπύλη τροχιά, η οποία περιγράφεται από την σχέση:

Yλικό σηµείο κινείται στο επίπεδο Οxy διαγράφον τας καµπύλη τροχιά, η οποία περιγράφεται από την σχέση: Yλικό σηµείο κινείται στο επίπεδο Οxy διαγράφον τας καµπύλη τροχιά, η οποία περιγράφεται από την σχέση: y = Αηµωx όπου Α, ω σταθερές και θετικές ποσότητες. Εάν το υλικό σηµείο κατά τον άξονα x κινείται

Διαβάστε περισσότερα

και όταν φθάσει στο σηµείο Γ αρχίζει να κινείται στο κυκλικό του τµήµα που έχει την µορφή λείου τεταρτο κυκλίου ακτίνας R.

και όταν φθάσει στο σηµείο Γ αρχίζει να κινείται στο κυκλικό του τµήµα που έχει την µορφή λείου τεταρτο κυκλίου ακτίνας R. Το σώµα Σ του σχήµατος (α) έχει µάζα και µπορεί να ολισθαίνει πάνω σε λείο οριζόντιο έδαφος. Ένα µικρό σφαιρίδιο µάζας m κινείται αρχικά πάνω στο οριζόντιο τµήµα του σώµατος µε ταχύτητα v 0 και όταν φθάσει

Διαβάστε περισσότερα

i) Nα εκφράσετε την ταχύτητα της αλυσίδας σε συνάρτηση µε το µή κος x του τµήµατος, που έχει εγκαταλείψει την πλάκα.

i) Nα εκφράσετε την ταχύτητα της αλυσίδας σε συνάρτηση µε το µή κος x του τµήµατος, που έχει εγκαταλείψει την πλάκα. Mια οµογενής αλυσίδα, γραµµικής πυκνότητας µ και µήκους L, είναι σωριασµένη πάνω σε οριζόντια πλάκα, η οποία φέρει µια οπή. Πλησιάζουµε το ένα άκρο της αλυσίδας στην οπή και φροντίζουµε να περάσει µέσα

Διαβάστε περισσότερα

# $ + L " = ml " ml! = ML " $ + ml " $ L " = ML/2(M + m) # $ (1) Eξάλλου, εάν L' α, L' σ είναι οι τελικές αποστάσεις του κέντρου µάζας C του

# $ + L  = ml  ml! = ML  $ + ml  $ L  = ML/2(M + m) # $ (1) Eξάλλου, εάν L' α, L' σ είναι οι τελικές αποστάσεις του κέντρου µάζας C του Mία σανίδα, µήκους L καί µάζας M, βρίσκεται πάνω σε λείο οριζόντιο επίπεδο. Στο ένα άκρο της σανίδας πατάει άνθ ρωπος µάζας m και αρχίζει να κινείται προς το άλλο άκρο της. Kατά πόσο θα µετατοπιστεί η

Διαβάστε περισσότερα

. Εάν η κρούση της ράβ δου µε το οριζόντιο έδαφος είναι τελείως ελαστική, να βρείτε:

. Εάν η κρούση της ράβ δου µε το οριζόντιο έδαφος είναι τελείως ελαστική, να βρείτε: Μια λεπτή λαστιχένια ράβδος ΑΒ µήκους L και µάζας m, εκτελεί ελεύθερη πτώση χώρίς να περιστρέφεται και κάποια στιγµή το άκρο της Α συναντά λείο οριζόντιο έδαφος. Την στιγµή αυτή η ράβδος έχει κλίση φ ως

Διαβάστε περισσότερα

(ΘΕΜΑ 17ο)

(ΘΕΜΑ 17ο) Εισαγωγικά: Με το πρόβληµα της αλληλεπίδρασης δύο µαζών, µέσω αβαρούς και µη εκτατού νήµατος παρουσία οµογενούς βαρυτικού πεδίου, είχα ασχοληθεί και στο παρελθόν παρουσιάζοντάς το στην ιστοσελίδα µου µε

Διαβάστε περισσότερα

Οµογενής ράβδος µάζας m και µήκους L, κρατεί ται οριζόντια ακουµπώντας σε σταθερή ακίδα που απέχει απόσταση x από το κέντρο µάζας C της ράβδου.

Οµογενής ράβδος µάζας m και µήκους L, κρατεί ται οριζόντια ακουµπώντας σε σταθερή ακίδα που απέχει απόσταση x από το κέντρο µάζας C της ράβδου. Οµογενής ράβδος µάζας m και µήκους L, κρατεί ται οριζόντια ακουµπώντας σε σταθερή ακίδα που απέχει απόσταση x από το κέντρο µάζας C της ράβδου. i) Να βρεθεί η απόσταση x, ώστε την στιγµή που η ράβδος αφήνεται

Διαβάστε περισσότερα

1. Κίνηση Υλικού Σημείου

1. Κίνηση Υλικού Σημείου 1. Κίνηση Υλικού Σημείου Εισαγωγή στην Φυσική της Γ λυκείου Τροχιά: Ονομάζεται η γραμμή που συνδέει τις διαδοχικές θέσεις του κινητού. Οι κινήσεις ανάλογα με το είδος της τροχιάς διακρίνονται σε: 1. Ευθύγραμμες

Διαβάστε περισσότερα

. Εάν η σφαίρα κυλίεται πάνω στο δοκάρι να βρείτε: i) την επιτάχυνση του δοκαριού και του κέντρου της σφαίρας, στο σύστηµα αναφοράς του δαπέδου και

. Εάν η σφαίρα κυλίεται πάνω στο δοκάρι να βρείτε: i) την επιτάχυνση του δοκαριού και του κέντρου της σφαίρας, στο σύστηµα αναφοράς του δαπέδου και Οµογενής σφαίρα µάζας m και ακτίνας R είναι ακίνητη πάνω σε οριζόντιο δοκάρι µάζας Μ και µήκους L, που µπορεί να ολισθαίνει χωρίς τριβή επί οριζοντίου δαπέδου. Η σφαίρα εφάπτεται στο δεξιό άκρο Β του δοκαριού

Διαβάστε περισσότερα

της οποίας ο φορέας σχηµατί ζει γωνία φ=π/6 µε την κατακόρυφη διεύθυνση και ανακλάται µε αντίστοιχη γωνία φ=π/4.

της οποίας ο φορέας σχηµατί ζει γωνία φ=π/6 µε την κατακόρυφη διεύθυνση και ανακλάται µε αντίστοιχη γωνία φ=π/4. Οριζόντιος δίσκος µάζας Μ ισορροπεί στηριζόµε νος στο πάνω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k, του οποίου το άλλο άκρο στηρίζεται στο έδαφος (σχήµα 1). Ένα µικρό σφαιρίδιο µάζας m, προσκρούει

Διαβάστε περισσότερα

i) Να δείξετε ότι: F max = (m 1 + m 2 όπου! g η επιτάχυνση της βαρύτητας.

i) Να δείξετε ότι: F max = (m 1 + m 2 όπου! g η επιτάχυνση της βαρύτητας. Δύο σώµατα Σ και Σ µε αντίστοιχες µάζες m και m, είναι στερεωµένα στις άκρες ενός κατακόρυφου αβαρούς ελατηρίου, όπως φαίνεται στο σχήµα. Εξασκούµε στο σώµα Σ κατακόρυφη δύναµη µε φορά προς τα κάτω, της

Διαβάστε περισσότερα

ii) Nα υπολογιστεί η κινητική ενέργεια του συστήµατος σε συνάρτηση µε τον χρόνο. Δίνεται η επιτάχυνση! g της βαρύτητας.

ii) Nα υπολογιστεί η κινητική ενέργεια του συστήµατος σε συνάρτηση µε τον χρόνο. Δίνεται η επιτάχυνση! g της βαρύτητας. Στην διάταξη του σχήµατος () η ράβδος ΑΒ είναι οµογενής, έχει µήκος L και µπορεί να στρέφεται περί οριζόντιο άξο να, που διέρχεται από σηµείο Ο ευρισκόµενο σε απόσταση 3L/4 από το άκρο της Α. Η τροχαλία

Διαβάστε περισσότερα

(σχ. 1). Εφαρ µόζοντας για την µεταφορική συνιστώσα της κύλισης του δίσκου τον

(σχ. 1). Εφαρ µόζοντας για την µεταφορική συνιστώσα της κύλισης του δίσκου τον Oµογενής λεπτός δίσκος ακτίνας R και µάζας m, ακινητεί επί οριζόντιου εδάφους µε το οποίο παρουσιάζει συντελεστή οριακής τριβής µ το δε επιπεδό του είναι κατακόρυφο,. Κάποια στιγµή εφαρµόζεται στο κέντρο

Διαβάστε περισσότερα

ακτινικής διεύθυνσης και στην οριακή τριβή T!"

ακτινικής διεύθυνσης και στην οριακή τριβή T! Λεπτή κυκλική στεφάνη ακτίνας R και µάζας m, ισορρο πεί εφαπτόµενη σε δύο υποστηρίγµατα A και Γ, όπως φαίνεται στο σχήµα (1. Eάν ο συντελεστής οριακής τριβής µεταξύ της στεφάνης και των υποστη ριγµάτων

Διαβάστε περισσότερα

των Α και Β αντιστοίχως είναι παράλληλες (σχ. 12) που σηµαί Σχήµα 11 Σχήµα 12

των Α και Β αντιστοίχως είναι παράλληλες (σχ. 12) που σηµαί Σχήµα 11 Σχήµα 12 Δύο ακριβώς όµοιες λεπτές ράβδοι OA και AB µήκους L και µάζας m, αρθρώνονται στο σηµείο Α το δε άκρο Ο της ΟΑ αρθρώνεται σε σταθερό υποστήριγµα, ενώ το άκρο Β της ΑΒ µπο ρεί να ολισθαίνει πάνω σε λείο

Διαβάστε περισσότερα

Q του νήµατος που το συγκρατεί, συµφωνα δε µε τον δεύτερο νό µο κίνησης του Νεύτωνα θα ισχύει η σχέση: της τάσεως!

Q του νήµατος που το συγκρατεί, συµφωνα δε µε τον δεύτερο νό µο κίνησης του Νεύτωνα θα ισχύει η σχέση: της τάσεως! Αβαρής ράβδος αποτελείται από δύο συνεχόµενα τµήµατα ΟΑ και ΑΒ που είναι ορθογώνια µεταξύ τους. Το άκρο Ο της ράβδου είναι αρθρωµένο σε οριζόντιο έδαφος το δε τµήµα της ΟΑ είναι κατακόρυφο και εφάπτεται

Διαβάστε περισσότερα

η αντίστοιχη ταχύτητα του οχήµατος, θα ισχύει η σχέση:! 0 = m! v + M! V! md! v /dt = -Md!

η αντίστοιχη ταχύτητα του οχήµατος, θα ισχύει η σχέση:! 0 = m! v + M! V! md! v /dt = -Md! Tο νήµα µαθηµατικού εκκρεµούς µήκους L, είναι στερεωµένο στην οροφή µικρού οχήµατος µάζας M, το οποίο µπορεί να ολισθαίνει χωρίς τριβή πάνω σε οριζόντιο επίπεδο (σχήµα 1). i) Eάν το σφαιρίδιο του εκκρεµούς

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.1. Η απλή αρµονική ταλάντωση είναι κίνηση : (δ) ευθύγραµµη περιοδική Α.2. Σώµα εκτελεί απλή αρµονική

Διαβάστε περισσότερα

(τρίτος νόµος του Νεύτωνα) και την πλάγια αντίδραση του οριζόντιου εδάφους, η οποία αναλύεται στην τριβή ολίσθησης T!

(τρίτος νόµος του Νεύτωνα) και την πλάγια αντίδραση του οριζόντιου εδάφους, η οποία αναλύεται στην τριβή ολίσθησης T! Επί της κεκλιµένης έδρας µιας ορθογώνιας και ισοσκελούς σφήνας µάζας m, η οποία ισορροπεί πάνω σε οριζόντιο έδαφος, αφήνεται µικρός κύβος µάζας m. Μεταξύ του κύβου και της σφήνας δεν υπάρχει τριβή, ενώ

Διαβάστε περισσότερα

την αρχή Ο του ΟΧY, που είναι ένα αδρανειακό σύστηµα αναφοράς. Εάν

την αρχή Ο του ΟΧY, που είναι ένα αδρανειακό σύστηµα αναφοράς. Εάν Ένα στερεό σώµα εκτελεί επίπεδη κίνηση, όταν οι αποστάσεις των υλικών του σηµείων από ένα ορισµένο επίπεδο αναφοράς (ε, παραµένουν αµετάβλητες µε τον χρόνο. Για την µελέτη της επίπεδης κίνησης στερεού

Διαβάστε περισσότερα

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 27/09/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου, που εξασκεί στην µάζα m δύναµη η οποία απορρέει από συνάρτηση δυναµικής ενέργειας της µορφής:

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου, που εξασκεί στην µάζα m δύναµη η οποία απορρέει από συνάρτηση δυναµικής ενέργειας της µορφής: Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου, που εξασκεί στην µάζα m δύναµη η οποία απορρέει από συνάρτηση δυναµικής ενέργειας της µορφής: U = k 2 x2 + y ) 2 α) όπου k θετική και σταθερή ποσότητα

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις

Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις ~ Διάρκεια: 3 ώρες ~ Θέμα Α Α1. Η ορμή συστήματος δύο σωμάτων που συγκρούονται διατηρείται: α. Μόνο στην πλάγια κρούση. β. Μόνο στην έκκεντρη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος 1. Ένα σύστημα ελατηρίου σταθεράς = 0 π N/ και μάζας = 0, g τίθεται σε εξαναγκασμένη ταλάντωση. Αν είναι Α 1 και Α τα πλάτη της ταλάντωσης

Διαβάστε περισσότερα

Δυναµική της κίνησης συστήµατος δύο σωµατιδίων

Δυναµική της κίνησης συστήµατος δύο σωµατιδίων Δυναµική της κίνησης συστήµατος δύο σωµατιδίων Θεωρούµε δύο σωµατίδια Σ και Σ µε αντίστοιχες µάζες m και m, των οποίων τα διανύσµατα θέσεως ως προς την αρχή Ο ενός αδρανειακού συστή µατος αναφοράς Oxyz

Διαβάστε περισσότερα

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι.

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι. ΚΕΦΑΛΑΙΟ 1 ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 6α. Σφαίρα μάζας ισορροπεί δεμένη στο πάνω άκρο κατακόρυφου

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 24/09/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 24/09/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 017-018 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΟΠ / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 4/09/017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

του σφαιριδίου κατευθύνεται προς τα κάτω και σχηµατίζει µε την κατακόρυφη διεύθυνση γωνία φ.

του σφαιριδίου κατευθύνεται προς τα κάτω και σχηµατίζει µε την κατακόρυφη διεύθυνση γωνία φ. Μικρό σφαιρίδιο µάζας m, προσπίπτει σε σηµεί ο Α της περιφέρειας ενός δακτυλιδιού ακτίνας R, το οποίο µπορεί να περιστρέφεται περί οριζόντιο άξονα που διέρχεται από ένα σηµείο του Ο. Η ταχύτητα πρόσπτωσης

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ Α! του σώ µατος ισχύει η σχέση: η επιβατική ακτίνα ως προς το σηµείο P του τυχαίου υλικού σηµείου του στερεού µάζας m i και v!

ΘΕΩΡΗΜΑ Α! του σώ µατος ισχύει η σχέση: η επιβατική ακτίνα ως προς το σηµείο P του τυχαίου υλικού σηµείου του στερεού µάζας m i και v! ΘΕΩΡΗΜΑ Α Ο ρυθµός µεταβολής της στροφορµής στερεού σώµατος, θεωρούµενης περί ένα σηµείο του ή της επεκτάσεώς του και αναφερόµενης σε κάποιο αδρανειακό σύστηµα, είναι κάθε στιγµή ίσος µε την συνολική ροπή

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Ενδεικτικές Λύσεις ευτέρα 3 Σεπτέµβρη 2018 Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Ενδεικτικές Λύσεις ευτέρα 3 Σεπτέµβρη 2018 Θέµα Α Α.1. ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Ενδεικτικές Λύσεις ευτέρα 3 Σεπτέµβρη 2018 Θέµα Α Ακίνητο πυροβόλο όπλο εκπυρσοκροτεί (δ) Η ορµή του συστήµατος

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 17 Ε_3.ΦλΘ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΜΑ Α Ηµεροµηνία: Πέµπτη 5 Ιανουαρίου 17 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις

Διαβάστε περισσότερα

Σχήµα 20. οι οριζόντιες συνιστώσες των ταχυτήτων v! προσπτώσεως και ανακλάσεως αντιστοίχως του σφαιριδίου, T!

Σχήµα 20. οι οριζόντιες συνιστώσες των ταχυτήτων v! προσπτώσεως και ανακλάσεως αντιστοίχως του σφαιριδίου, T! Ένα στερεό σώµα εκτελεί επίπεδη κίνηση και δύο σηµεία αυτού βρίσκονται κάποια στιγµή t στις θέσεις Α(,) και Β(,α) του επιπέδου κίνησής του (x,y) Εάν οι ταχύτητες των σηµείων αυτών έχουν το ίδιο µέτρο v

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Θέµα ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένα σηµειακό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)

ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) 30/9/208 ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

Ο δεύτερος νόµος του Νεύτωνα για σύστηµα µεταβλητής µάζας

Ο δεύτερος νόµος του Νεύτωνα για σύστηµα µεταβλητής µάζας Ο δεύτερος νόµος του Νεύτωνα για σύστηµα µεταβλητής µάζας Όταν εξετάζουµε ένα υλικό σύστηµα µεταβλητής µάζας, δηλαδή ένα σύστη µα που ανταλλάσσει µάζα µε το περιβάλλον του, τότε πρέπει να είµαστε πολύ

Διαβάστε περισσότερα

Υλικό σηµείο µάζας m έλκεται από σταθερό κέν τρο Ο µε δύναµη F! που περιγράφεται από την σχέση:! F = f(r)! r

Υλικό σηµείο µάζας m έλκεται από σταθερό κέν τρο Ο µε δύναµη F! που περιγράφεται από την σχέση:! F = f(r)! r Υλικό σηµείο µάζας m έλκεται από σταθερό κέν τρο Ο µε δύναµη F που περιγράφεται από την σχέση: F fr) r όπου fr) µια συνάρτηση, η οποία δεν ακολουθεί τον νόµο του αντιστρόφου τετραγώνου της απόστασης r

Διαβάστε περισσότερα

A! Κινηµατική άποψη. Σχήµα 1 Σχήµα 2

A! Κινηµατική άποψη. Σχήµα 1 Σχήµα 2 A Κινηµατική άποψη Θεωρούµε στερεό σώµα σε τυχαία κίνηση, η οποία εξέταζεται από ένα αδρα νειακό σύστηµα αναφοράς ΟXYZ. Εφοδιάζουµε το σώµα µε κινητό σύστηµα συντεταγµένων xyz ακλόνητα συνδεδεµένο µε αυτό,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

=-v και dm=µdx, όπου dx η αυξηση του µήκους x του αιωρούµενου τµήµατος µεταξύ των χρονικών στιγµών t και t+dt, οπότε η σχέση (1) γράφεται:

=-v και dm=µdx, όπου dx η αυξηση του µήκους x του αιωρούµενου τµήµατος µεταξύ των χρονικών στιγµών t και t+dt, οπότε η σχέση (1) γράφεται: Mια οµογενής αλυσίδα, γραµµικής πυκνότητας µ και µήκους L, είναι σωριασµένη πάνω σε οριζόντια πλάκα, η οποία φέρει µια οπή. Πλησιάζουµε το ένα άκρο της αλυσίδας στην οπή και φροντίζουµε να περάσει µέσα

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση Ι - Κρούσεις

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση Ι - Κρούσεις ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση Ι - Κρούσεις Σύνολο Σελίδων: οχτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Σάββατο 13 Αυγούστου 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 6 Ιανουαρίου, Προτεινόμενες Λύσεις Πρόβλημα - ( μονάδες) Ένα όχημα, μαζί με ένα κανόνι που είναι ακλόνητο πάνω σε αυτό,

Διαβάστε περισσότερα

) ω ω. L λίγο πριν. . Nα βρεθούν:

) ω ω. L λίγο πριν. . Nα βρεθούν: Δύο σφαιρίδια A, B µάζας m το καθένα συνδέονται µεταξύ τους µε αβαρές και µη εκτατό νήµα µήκους L, ηρεµούν δε πάνω σε οριζόντιο τραπέζι ευρισκόµενα σε απόσταση α

Διαβάστε περισσότερα

διέρχεται από το σηµείο Ο της ράβδου, υπό την επίδραση των βαρών m 1 από τον άξονα περιστροφής, που αναλύεται στην οριζόντια συνιστώσα!

διέρχεται από το σηµείο Ο της ράβδου, υπό την επίδραση των βαρών m 1 από τον άξονα περιστροφής, που αναλύεται στην οριζόντια συνιστώσα! Θεωρήστε οριζόντια ράβδο αµελητέας µάζας, η οποία µπορεί να περιστρέφεται περί σταθερό οριζόντιο άξονα κάθετο στη ράβδο. Στα άκρα της υπάρχουν δυο διαφορετικές σηµειακές µάζες m, m, που οι αντίστοιχες

Διαβάστε περισσότερα

1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 9 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική

1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 9 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική 1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 9 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ

ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ 1. Κατακόρυφο ελατήριο σταθεράς k=1000 N /m έχει το κάτω άκρο του στερεωμένο σε ακίνητο σημείο. Στο πάνω άκρο του ελατηρίου έχει προσδεθεί σώμα Σ 1 μάζας m 1 =8 kg, ενώ ένα δεύτερο

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 24/07/2014

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 24/07/2014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 4/07/014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β

ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ Ο : ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ : ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β Ερώτηση Ένα σώμα εκτελεί απλή

Διαβάστε περισσότερα

ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ. =1 kg που κινείται προς τα δεξιά με ταχύτητα μέτρου u 1. =8m /s συγκρούεται κεντρικά

ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ. =1 kg που κινείται προς τα δεξιά με ταχύτητα μέτρου u 1. =8m /s συγκρούεται κεντρικά ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ 1. Σφαίρα μάζας m 1 =1 kg που κινείται προς τα δεξιά με ταχύτητα μέτρου u 1 =8m /s συγκρούεται κεντρικά και ελαστικά με άλλη σφαίρα μάζας =3 kg που κινείται προς τα αριστερά με ταχύτητα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π Γ ΛΥΚΕΙΟΥ 22 / 04 / 2018

ΦΥΣΙΚΗ Ο.Π Γ ΛΥΚΕΙΟΥ 22 / 04 / 2018 Γ ΛΥΚΕΙΟΥ 22 / 04 / 2018 ΦΥΣΙΚΗ Ο.Π ΘΕΜΑ Α Α1. Μία ηχητική πηγή που εκπέμπει ήχο συχνότητας κινείται με σταθερή ταχύτητα πλησιάζοντας ακίνητο παρατηρητή, ενώ απομακρύνεται από άλλο ακίνητο παρατηρητή.

Διαβάστε περισσότερα

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα). Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα

Διαβάστε περισσότερα

όπου Α το πλάτος της ταλάντωσης, φ η αρχική της φάση και ω η γωνιακή της συχνότητα. Οι σχέσεις (2) εφαρµοζόµενες τη χρονική στιγµή t=0 δίνουν:

όπου Α το πλάτος της ταλάντωσης, φ η αρχική της φάση και ω η γωνιακή της συχνότητα. Οι σχέσεις (2) εφαρµοζόµενες τη χρονική στιγµή t=0 δίνουν: Tο ένα άκρο κατακόρυφου ιδανικού ελατηρίου είναι στερεωµένο στο οριζόντιο έδαφος, ενώ το άλλο του άκρο είναι ελεύθερο. Mικρό σφαιρίδιο, µάζας m, αφήνεται σε ύψος h από το άκρο Β. Το σφαιρίδιο πέφτοντας

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται

Διαβάστε περισσότερα

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). 1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). Να βρείτε: α. το πλάτος της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης. β.

Διαβάστε περισσότερα

ΘΕΜΑ Α A1. Στις ερωτήσεις 1 9 να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση, χωρίς να αιτιολογήσετε την επιλογή σας.

ΘΕΜΑ Α A1. Στις ερωτήσεις 1 9 να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση, χωρίς να αιτιολογήσετε την επιλογή σας. ΜΑΘΗΜΑ / Προσανατολισμός / ΤΑΞΗ ΑΡΙΘΜΟΣ ΦΥΛΛΟΥ ΕΡΓΑΣΙΑΣ: ΗΜΕΡΟΜΗΝΙΑ: ΤΜΗΜΑ : ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΦΥΣΙΚΗ/ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / Γ ΛΥΚΕΙΟΥ 1 Ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ( ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ) ΘΕΜΑ Α A1. Στις ερωτήσεις

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Α ΦΑΣΗ) ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 16 Δεκεμβρίου, 01 Προτεινόμενες Λύσεις Πρόβλημα-1 (15 μονάδες) Μια

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

ως προς τον ατµολέβητα. Εάν η µάζα M του ατµού µεταβάλλεται µε τον χρόνο t σύµφωνα µε την σχέση:

ως προς τον ατµολέβητα. Εάν η µάζα M του ατµού µεταβάλλεται µε τον χρόνο t σύµφωνα µε την σχέση: Ένας κυλινδρικός ατµολέβητας αµελητέας µάζας χωρίς τον υδρατµό και ακτίνας R, θερµαίνεται και ο παραγόµενος υδρατµός διαφεύγει από δύο αντιδιαµετρικά ακροφύσια της εξωτε ρικής του επιφάνειας, ώστε η ταχύτητα

Διαβάστε περισσότερα

ΛΥΣΗ: Από τo σύστηµα πλαστική σφαίρα-πεπιεσµένος αέρας εκκρέει µάζα, οπότε η διαφορική εξίσωση που καθορίζει την κίνησή του έχει την µορφή: !

ΛΥΣΗ: Από τo σύστηµα πλαστική σφαίρα-πεπιεσµένος αέρας εκκρέει µάζα, οπότε η διαφορική εξίσωση που καθορίζει την κίνησή του έχει την µορφή: ! Μια κοίλη πλαστική σφαίρα µάζας Μ, περιέχει πεπιεσµένο αέρα και φέρει κατάλληλο µηχανισµό, ο οποίος όταν ενερ γοποιηθεί προκαλεί το άνοιγµα στην επιφάνεια της σφαίρας µιας µικρής οπής, από την οποία εκτοξεύεται

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1 ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 00 ΘΕΜΑ : (α) Ταχύτητα ΚΜ: u KM = mu + mu m = u + u Εποµένως u = u u + u = u u, u = u u + u = u u (β) Διατήρηση ορµής στο ΚΜ: mu + mu = mv + mv u + u = V + V = 0 V = V

Διαβάστε περισσότερα

ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ

ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ Οι δακτύλιοι του Κρόνου είναι ένα σύστημα πλανητικών δακτυλίων γύρω από αυτόν. Αποτελούνται από αμέτρητα σωματίδια των οποίων το μέγεθος κυμαίνεται από μm μέχρι m, με

Διαβάστε περισσότερα