i) Εάν η κρούση είναι µετωπική και πλαστική, να δείξετε ότι η τρο χιά του συσσωµατώµατος που δηµιουργείται είναι ελλειπτική.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "i) Εάν η κρούση είναι µετωπική και πλαστική, να δείξετε ότι η τρο χιά του συσσωµατώµατος που δηµιουργείται είναι ελλειπτική."

Transcript

1 Ένας δορυφόρος µάζας m κινείται περί την Γη επί κυκλικής τροχιάς ακτίνας και κάποια στιγµή προσκρούει ακτινικά πάνω σ αυτόν σώµα µάζας m και της ίδιας κινητικής ενέργειας µε τον δορυφόρο. i) Εάν η κρούση είναι µετωπική και πλαστική, να δείξετε ότι η τρο χιά του συσσωµατώµατος που δηµιουργείται είναι ελλειπτική. ii) Nα βρείτε την µέγιστη και την ελάχιστη απόσταση του συσσωµατώ µατος από το κέντρο της Γης. Η Γη θα θεωρηθεί οµογενής και ακίνη τη σφαίρα. ΛΥΣΗ: i) Κατά τον πολύ µικρο χρόνο Δt Δt ) της πλαστικής κρούσεως του σώµατος µε τον δορυφόρο η ορµή του συστήµατος κατά την ακτινική και κατά την εφαπτοµενική διεύθυνση της κυκλικής τροχιάς του δορυφόρου στην θέση Κ της κρούσεως δεν µεταβάλλεται, δηλαδή µπορούµε να γράψουµε τις σχέσεις: και m v + = mv v = v / = v / ) mv + = mv e v e = v / ) όπου v, v e ακτινική και η εγκάρσια συνιστώσα αντιστοίχως της ταχύτητας του συσσωµατώµατος αµέσως µετά την κρούση, v η ταχύτητα του δορυφόρου λίγο πριν την κρούση και v η αντίστοιχη ταχύτητα του σώµατος, κατα µέτρο ίση µε την v, διότι η κινητική του ενέργεια είναι ίση µε εκείνη του δορυφό ρου. Η µηχανική ενέργεια Ε του συσσωµατώµατος είναι: E = mv + mv e - mgm E = mv 4 + mv 4 - mmg = mv - mmg 3) όπου G η σταθερά της βαρύτητας και Μ η µάζα της Γης. Όµως πριν την κρούση η Νευτώνεια έλξη F N που δέχεται ο δορυφόρος αποτελεί κεντροµόλο δύναµη, οπότε ισχύει η σχέση:

2 F N = mv GMm = mv v = GM 4) Σχήµα Συνδιάζοντας τις σχέσεις 3) και 4) παίρνουµε: E = mv - mv = - 3mv < 5) H 5) εγγυάται ότι η τροχιά του συσσωµατώµατος είναι κυκλική ή ελλειπτική. Η κυκλική τροχιά αποκλείεται, διότι το συσσωµάτωµα στην θέση Κ έχει και ακτινική ταχύτητα, οπότε το συσσωµάτωµα διαγράφει ελλειπτική τροχιά της οποίας µία εστία ταυτίζεται µε το κέντρο Ο της Γης. Εάν v, v είναι οι ταχύ τητες του συσσωµατώµατος στο περίγειο Π και στο απόγειο Α αντιστοίχως της τροχιάς του σχ. ), θα έχουµε λόγω της διατήρησης της στροφορµής του περί το κέντρο Ο, τις σχέσεις: και mv min = mv e v = v e min = v min 6) mv max = mv e v = v e max = v max 7) όπου min, max η ελάχιστη αντιστοίχως η µέγιστη απόστασή του από το Ο. Όταν το συσσωµάτωµα βρίσκεται στο περίγειο Π θα ισχύει:

3 - 3mv = mv - GmM 4),6) min - 3mv = m v min - m v min - 3 = - 4 min min - 6 min = - 8 min 6 min - 8 min + = 8) Mε τον ίδιο τρόπο εργαζόµενοι όταν το συσσωµάτωµα βρίσκεται στο απόγειο Α, καταλήγουµε στην σχέση: 6 max - 8 max + = 9) Oι δεκτές ρίζες των δευτεροβάθµιων εξισώσεων 8) και 9) είναι: min = 4 - )/ 6 και max = 4 + )/ 6 P.M. fysikos Ένα δυναµικό πεδίο παρουσιάζει τρία ελκτικά κέν τρα Ο, Ο, Ο 3 που βρίσκονται σε περιφέρεια κύκλου κέντρου Κ και ακτίνας R, σε ίσες αποστάσεις µεταξύ τους. Μια µάζα m ευρισκόµενη σε τυχαία θέση Μ, της οποίας το διάνυσµα θέσεως ως προς το κέντρο Κ είναι δέχεται από τα ελκτικά κέντρα δυνάµεις της µορφής: F n = -k R n µε n=,, 3 όπου k θετική και σταθερή ποσότητα και R n το διάνυσµα θέσεως της µάζας m ως προς κάθε ελκτικό κέντρο. i) Να δείξετε ότι η µάζα m θα εκτελέσει επίπεδη κίνηση και να βρείτε την διαφορική εξίσωση που περιγράφει την κίνηση αυτή. ii) Nα λύσετε την διαφορική αυτή εξίσωση, αν την στιγµή t= το διά νυσµα θέσεως της µάζας ως προς το Κ είναι και η ταχύτητά της v. Ποια θα είναι η µορφή της τροχιάς της µάζας m στην περίπτωση που είναι =x i και v =v j, όπου x, v σταθερές θετικές ποσότητες και i, j τα µοναδιαία διανύσµατα των αξόνων Κx, Κy αντιστοίχως του επιπέ δου κίνησης της µάζας; Κάτω από ποιες προυποθέσεις η τροχιά αυτή είναι κυκλική; ΛΥΣΗ: i) Εάν F, F, F 3 είναι οι δυνάµεις που ασκούν τα ελκτικά κέντρα Ο, Ο, Ο 3 αντιστοίχως στην µάζα m, θα έχουµε: F = -ko A F = -ko A F 3 = -ko 3 A + ) F + F + F 3 = -k O A + O A + O 3 A)

4 F = -k - [ ) + - ) + - )] 3 [ )] 3 F = -k όπου F η συνισταµένη δύναµη που δέχεται η µάζα m και,, 3 τα δια νύσµατα θέσεως των ελκτικών κέντρων Ο, Ο, Ο 3 ως προς το κέντρο Κ της περιφέρειας στην οποία ανήκουν. Επειδή τα τρία ελκτικά κέντρα ισαπέχουν ισχύει =, οπότε η προηγούµενη σχέση γράφεται: F = -3k ) Σχήµα Aπό την ) προκύπτει ότι η συνισταµένη δύναµη που δέχεται η µάζα m είναι κεντρική ελκτική δύναµη µε κέντρο το Κ, που σηµαίνει ότι η κίνησή της είναι επίπεδη και µάλιστα το επίπεδο κίνησής της xy είναι αυτό που καθορίζει το διά νυσµα θέσεώς της και η ταχύτητά της v την χρονική στιγµή t=. Eφαρµό ζοντας για την µάζα m τον δεύτερο νόµο κίνησης του Νεύτωνα παίρνουµε: m d dt = ) F m d dt d dt + = µε = 3k m = -3k d dt + 3k m = Η ) αποτελεί την διαφορική εξίσωση που περιγράφει την κίνηση της µάζας m. ii) H ) είναι µια οµογενής διαφορική εξίσωση δεύτερης τάξεως µε σταθερούς συντελεστές και δέχεται λύση της µορφής: = C µt + C t 3) όπου C, C σταθερά διανύσµατα, που θα προσδιορισθουν από τις αρχικές συν θήκες κίνησης της µάζας m. Παραγωγίζοντας την 3) ως προς τον χρόνο t παίρ νουµε την ταχύτητα v της µάζας, δηλαδή θα έχουµε: v = d / dt = C t - C µt 4) )

5 Για t= οι σχέσεις 3) και 4) δίνουν: = C v = C C = v / C = 5) Συνδυάζοντας τις σχέσεις ) και 5) παίρνουµε: = v µt / + t 6) H 6) αποτελεί την εξίσωση κίνησης της µάζας m, η οποία στην περίπτωση που οι αρχικές συνθήκες κίνησής της είναι =x i και v = v j παίρνει την µορφή: = v µt j / + x t i 7) Εάν x, y) είναι οι καρτεσιανές συντεταγµένες της µάζας m η 7) µας επιτρέπει να γράψουµε τις σχέσεις: x = x t y =v µt / x = x t y =v µ t / x /x = t y /v /) = µ t x x + y v /) = 8) Σχήµα 3 δηλαδή η τροχιά της µάζας m είναι έλλειψη µε κέντρο το Κ και ηµιάξονες x, και v /ω. Η έλλειψη αυτή µετατρέπεται σε περιφέρεια κύκλου αν τα µέτρα των διανυσµάτων και v ικανοποιούν την σχέση =v /ω, ή x =v /ω. P.M fysikos Σωµατίδιο µάζας m κινείται υπό την επίδραση κεν τρικής απωστικής δύναµης F, που περιγράφεται από την σχέση: F = k /

6 όπου k θετική σταθερά, η απόσταση του σωµατιδίου από το απωστι κό κέντρο O και το µοναδιαίο διάνυσµα της επιβατικής ακτίνας του σωµατιδίου ως προς το απωστικό κέντρο. Αρχικά το σωµατίδιο βρίσκεται σε πολύ µεγάλη απόσταση από το κέντρο πλησιάζοντας προς αυτό µε ταχύτητα v, της οποίας ο φορέας απέχει από το κέντρο Ο απόσταση b. i) Aφού εξηγήσετε γιατί η κίνηση του σωµατιδίου είναι επίπεδη, στην συνέχεια να δείξετε ότι οι πολικές του συντεταγµένες, φ) ικανοποι ουν κάθε στιγµή την σχέση: d / dt) = bv ii) Τελικά το σωµατίδιο θα βρεθεί και πάλι πολύ µακριά από το κέν τρο κινούµενο σε τροχιά που είναι σχεδόν ευθεία γραµµή και σχηµα τίζει γωνία π-θ µε τον πολικό άξονα Οx. Nα δείξετε την σχέση: / ) = k/mbv ΛΥΣΗ: i) Επειδή η δύναµη F που δέχεται το σωµατίδιο είναι κεντρική, η κί νησή του είναι επίπεδη µε επίπεδο κίνησης κάθετο στο σταθερό διάνυσµα L της στροφορµής του περί το απωστικό κέντρο Ο. Προφανώς το επίπεδο αυτό ταυτίζεται µε εκείνο που καθορίζεται από το διάνυσµα v της αρχικής ταχύτη τας του σωµατιδίου και από το απωστικό κέντρο Ο. Λόγω διατηρήσεως της στροφορµής του σωµατιδίου µπορούµε να γράψουµε την σχέση: mbv = mv bv = d /dt) d /dt) = bv ) Σχήµα 4 όπου v η εγκάρσια συνιστώσα της ταχύτητας v του σωµατιδίου και η από στασή του από το Ο την στιγµή που το εξετάζουµε. ii) Mέχρις ότου το σωµατίδιο αποκατασταθεί στην τελική ευθύγραµµη τροχιά του παρέρχεται θεωρητικά άπειρος χρόνος αφότου εισήλθε στο κεντρικό πεδίο της απωστικής δύναµης F. Εφαρµόζοντας κατά τον χρόνο αυτόν για το σωµατί διο το θεώρηµα ώθησης-ορµής παίρνουµε την σχέση:

7 + P x = F x dt P -mv - -mv + ) - P ) = Fdt + ) ) = Fdt * ) όπου F x η συνιστώσα της απωστικής δύναµης F κατά την διεύθυνση του πολι κού άξονα Οx και v η τελική ταχύτητα του σωµατιδίου, της οποίας ο φορέας σχηµατίζει γωνία π-θ µε τον πολικό άξονα. Όµως κατά την κίνηση του σωµατί δίου η µηχανική του ενέργεια διατηρείται σταθερή, όποτε θα έχουµε: U ) + K ) = U ) + K ) + mv / = + mv / v = v και η ) γράφεται: + -mv + mv = Fdt ) = Fdt mv - mv µ / + + ) = Fdt 3) Για τo ολοκλήρωµα του δεύτερου µέλους της 3) έχουµε: + Fdt = + ) k dt + Fdt = + kdt bv dt/d ) + kd Fdt = Fdt bv = k µ - ) bv - Συνδυάζοντας την 3) µε την 4) παίρνουµε: mv µ / ) = kµ bv mv µ / ) = kµ / + ) / ) ) = bv ) = kµ) bv 4) k mbv 5) H 5) αποτελεί την ζητούµενη σχέση. P.M. fysikos

8 Η ενεργός δυναµική ενέργεια µιας µάζας m που κινείται µέσα σε δυναµικό πεδίο κεντρικής δύναµης, ακολουθεί την σχέση: U ef ) = L m + k3 α) όπου L η σταθερή στροφορµή της µάζας περί το κέντρο Ο της δύνα µης, η απόσταση της από το Ο και k θετική σταθερά. i) Eάν η τροχιά της µάζας είναι κυκλική, να βρείτε την ακτίνα της κα θώς και την µηχανική ενέργεια της µάζας. Επιπλέον να δείξετε ότι στην περίπτωση αυτή η U ef αποβαίνει η ελάχιστη δυνατή. ii) Eάν διαταραχθεί ελαφρώς και ακτινικά η κυκλική τροχία, να δεί ξετε ότι η απόσταση θα µεταβάλλεται αρµονικά µε τον χρόνο περί την τιµή της ακτίνας της κυκλικής τροχιάς. iii) Eάν οι αρχικές συνθήκες κίνησης επιβάλλουν στην µάζα m µηχα νική ενέργεια Ε µεγαλύτερη της ελάχιστης τιµής της U ef και στρο φορµή διάφορη του µηδενός, να δείξετε ότι η τροχιά της εντός του δυ ναµικού πεδίου είναι κλειστή. Πως µπορούµε να βρούµε την µέγιστη και την ελάχιστη τιµή της απόστασης στην περίπτωση αυτή και ποιες είναι οι αντίστοιχες τιµές της κινητικής ενέργειας της µάζας m; ΛΥΣΗ: i) Aπό την σχέση α) προκύπτει ότι η δυναµική ενέργεια της µάζας m είναι: U) = C 3 ) οπότε η κεντρική δύναµη που δέχεται προκύπτει από την σχέση: F ) = - du) e ) F ) = -3C e ) όπου e το µοναδιαίο διάνυσµα της επιβατικής ακτίνας της µάζας, ως προς το κέντρο Ο από το οποίο εκπορεύεται η δύναµη. Για κυκλική τροχιά της µάζας m η δυναµη F ) αποτελεί κεντροµόλο δύναµη, δηλαδή ισχύει: ) FR) = mv / R 3CR = mv / R 3CR 3 = mv 3) όπου R η ακτίνα της κυκλικής τροχιάς και v το µέτρο της ταχύτητας της µά ζας. Εξάλλου για το µέτρο της στροφορµής L της µάζας m περί το κέντρο Ο, ισ χύει L = mv R L = m v R v = L /m R 4) οπότε η 3) γράφεται:

9 3CR 3 = ml /m R R 5 = L /3mC R = L /3mC) / 5 5) H µηχανική ενέργεια Ε της µάζας m υπολογίζεται από την σχέση: E = mv 4) + UR) E E = m = L + mc L /3mC) = 5L mr 6mR L m R + CR 3 = L + mcr 5 5) mr E = 5L 6m L /3mC) = 5L L / 5 6m 3mC / 5 6) Eάν η ενεργός δυναµική ενέργεια U ef ) της µάζας m παρουσιάζει τοπικό ακρό τατο αυτό θα αντιστοιχεί στην θέση για την οποία ισχύει: ) du ef ) = = - L m 3 + 3C = = L m = 3C 3 = L /3mC) / 5 5) = R Eξάλλου η δεύτερη παράγωγος της U ef ) ως προς στην θέση = είναι: d U ef ) = 3L ) m 4 = + 6C *, + = 3L m + 6C > 7) = Σχήµα 5 δηλαδή η U ef ) παρουσιάζει στην θέση =R τοπικό ελάχιστο σχ. 5). Παρατήρηση: Είναι χρήσιµο να παρατηρήσουµε ότι, για την συνάρτηση U ef ) ισχύουν ακόµη τα εξής:

10 lim U ef ) +, lim U ef ) + U min = + L mr + 3CR3 > Με βάση τα παραπάνω η γραφική παράσταση της συνάρτησης U ef ) έχει περί που την µορφή του σχήµατος 5). ii) Ας δεχθούµε ότι η µάζα m µε εξωτερική επέµβαση εκτρέπεται ακτινικά, ώστε η επιβατική ακτίνα της να εγκλωβίζεται σε µια περιοχή του R πολύ µικ ρού εύρους ε ε ), δηλαδή είναι -R ε. Tότε η κυκλική της τροχιά θα διατα ραχθεί, αλλά κατά την νέα επίπεδη κίνηση της η µηχανική της ενέργεια Ε θα µένει σταθερή και θα ισχύει η σχέση: m dt + U ef ) = E m dt d dt + du ef ) = dt d dt = - m du ef ) 8) Αναπτύσσοντας την συνάρτηση du ef )/ κατά Taylo εντός της περιοχής -R παίρνουµε: du ef ) = du ) ef = R + - R ) d U ef ) = R + - R ) d 3 U ef ) 3 = R +... Όµως η διαφορά -R είναι πολύ µικρή και αυτό µας επιτρέπει να θεωρούµε τους όρους, που περιέχουν την διαφορά αυτή σε δύναµη µεγαλύτερη του δύο αµελητέους, οπότε η προηγούµενη σχέση παίρνει την προσεγγιστική µορφή: du ef ) du ef ) du ) ef + - R ) = R + - R ) d U ef ) d U ef ) = R 7) = R du ef ) 3L - R) mr + 6CR Θέτοντας στην παραπάνω σχέση όπου R= L /3mC) / 5 και µετά από κάµποσες πράξεις, θα καταλήξουµε στην σχέση: du ef ) 3L A - R ) µε A = m L /3mC) 4 / 5 9) Συνδυάζοντας τις σχέσεις 8) και 9) παίρνουµε:

11 d dt = - 3L ma - R ) d x dt + 3L x ma = ) όπου τέθηκε x=-r. H ) εκφράζει ότι, αν η µάζα m εκτραπεί πολύ λίγο από την κυκλική της τροχιά θα εκτελεί αρµονική ταλάντωση περί την τροχιά αυτή, στην διάρκεια της οποίας η απόστασή της από το Ο θα µεταβάλλεται µε τον χρόνο t σύµφωνα µε την σχέση: = R + µ t + ) µε = 3L ma iii) Εάν η µηχανική ενέργεια της µάζας m είναι µεγαλύτερη της U min, τότε θα υπάρχει µια µέγιστη τιµή max και µια ελάχιστη τιµή min της απόστασης για τις οποίες η ακτινική συνιστώσα /dt της ταχύτητας της µάζας µηδενίζεται, ένω η εγκάρσια συνιστώσα της dφ/dt) θα είναι διάφορη του µηδενός, αφού η στροφορµή της είναι διάφορη του µηδενός σχ. 5). Αυτό σηµαίνει ότι η επίπεδη κίνηση της µάζας εγκλωβίζεται µεταξύ ενός εγγύτερου και ενός απώτατου προς το Ο ορίου, δηλαδή η τροχιά της µάζας θα είναι κλειστή. Εάν R * είναι η τιµή της απόστασης που προκαλεί µηδενισµό της ακτινικής ταχύτητας θα έχουµε την σχέση: L mr + CR 3 * = E L + mcr 5 * = mer * * R 5 * - me mc R * + L mc = R 5 * - E C R * + L mc = ) H µικρότερη πραγµατική ρίζα της ) αποτελεί το εγγύτατο όριο min της, ενώ η µεγαλύτερη πραγµατική ρίζα της αποτελεί το απώτατο όριο. Οι αντί στοιχες τιµές της κινητικής ενέργειας της µάζας m θα είναι: και K = m d min dt K = m d max dt = m = m L m min L m max = = L m min L m max P.M. fysikos Υλικό σηµείο µάζας m βρίσκεται σε δυναµικό πε δίο δεχόµενο κεντρική δύναµη, η οποία απορρέει από συνάρτηση δυ ναµικής ενέργειας της µορφής: U ) = - + k / < < + a)

12 όπου η απόσταση του υλικού σηµείου από το σταθερό κέντρο Ο της δύναµης και α, k σταθερές θετικές ποσότητες. i) Nα σχεδιάσετε τις γραφικές παραστάσεις των συναρτήσεων U) και F), σε συνάρτηση µε την απόσταση << +), όπου F) η αλγεβρική τιµή της κεντρικής δύναµης. ii) Nα δείξετε ότι για ορισµένη τιµή της το υλικό σηµείο ισορροπεί ευσταθώς. Τι είδους κίνηση θα εκτελέσει το υλικό σηµείο αν αποµακ ρυνθεί ελαφρώς και ακτινικά από την θέση ισορροπίας; iii) Σε πόσο χρόνο θα φθάσει το σωµατίδιο στην θέση ισορροπίας του, όταν αφεθεί ελεύθερο στην θέση =3k/α; ΛΥΣΗ: i) Για την συνάρτηση δυναµικής ενέργειας U) παρατηρούµε τα εξής: α. U ) = - + k = - + k lim U) + β. lim U) + γ. Εάν η συνάρτηση U) παρουσιάζει τοπικά ακρότατα, τότε σε κάθε θέση ακρο τάτου η πρώτη παράγωγός της θα είναι µηδέν, δηλαδή θα ισχύει: du) a) = d - + k = - k 3 = = k Η δεύτερη παράγωγος της U) στην θέση =k/α είναι: d U) =k/ = d * ) - k + -, 3 =k/ = * - ) 3 + 6k + -, 4 =k/ d U) =k/ = - k/ ) + 6k 3 k/ ) 4 = 4 8k + 6k 4 3 6k = 4 4 8k > 3 που σηµαίνει ότι η U) παρουσιάζει τοπικό ελάχιστο στην θέση x=k/α, του οποίου η τιµή είναι: U min = - k/ + k k/ ) = - k + k = - k < Άρα η θέση =k/α αποτελεί θέση ευταθούς ισορροπίας του σωµατιδίου. Με βάση όλα τα παραπάνω η γραφική παράσταση της U) έχει περίπου την µορφή που φαίνεται στο σχήµα 6). Εξάλλου η αλγεβρική τιµή της δύναµης επί του σωµατιδίου, η οποία απορρέει από την συνάρτηση U), δίνεται από την σχέση:

13 F) = - du) = - d - + k = - + k / < < + b) 3 Σχήµα 6 Για την συνάρτηση F) παρατηρούµε τα εξής: α. F) = - + k k = 3 lim F) + β. lim F) + γ. Εάν η συνάρτηση F) παρουσιάζει τοπικά ακρότατα, τότε σε κάθε θέση ακρο τάτου η πρώτη παράγωγός της θα είναι µηδέν, δηλαδή θα ισχύει: df) b) = d - + k = 3 3-6k 4 = = 3k Η δεύτερη παράγωγος της U) στην θέση =3k/α είναι: d F) =3k/ = d * ) 3-6k + -, 4 =3k/ = * - 6 ) 4 + 4k + -, 5 =3k/ d F) =3k/ = -6 3k/ ) + 4k 4 3k/ ) = k) k) = 5 4 3k) > 4 που σηµαίνει ότι η F) παρουσιάζει τοπικό ελάχιστο στην θέση =3k/α, του οποίου η τιµή είναι: F min = - 3k/ ) + k 3k/ ) 3 = - 9k + 7k = - 7k <

14 Με βάση τα παραπάνω η γραφική παράσταση της F) έχει περίπου την µορφή του σχήµατος 7). Σχήµα 7 ii) Προηγουµένως αποδείχθηκe ότι η συνάρτηση U) παρουσιάζει στην θέση =k/α τοπικό ελάχιστο, που σηµαίνει ότι η θέση αυτή αποτελεί θέση ευσταθούς ισορροπίας του σωµατιδίου. Ας δεχθούµε ότι το σωµατίδιο µε εξωτερική επέµ βαση εκτρέπεται ακτινικά, ώστε η απόστασή του από το κέντρο Ο της δύνα µης να εγκλωβίζεται σε µια περιοχή γύρω από την θέση k/α, πολύ µικρού εύρους ε ε ), δηλαδή ισχύει -k/α ε. Tότε η ισορροπία του θα διαταραχθεί και η δύναµη F) αναπτυσσόµενη κατά Taylo εντός της περιοχής αυτής θα παίρνει την µορφή: [ ] =k/ + F)= F) - k df) + * ) -, =k/ + - k d F) + * ) -, =k/ Όµως η διαφορά -k/α είναι πολύ µικρή και αυτό µας επιτρέπει να θεωρούµε αµελητέους τους όρους που περιέχουν την διαφορά αυτή σε δύναµη µεγαλύ τερη του δύο, οπότε η προηγούµενη σχέση παίρνει την προσεγγιστική µορφή: +... F) + - k ) df), + *. - =k/ = - k ) df), + *. - =k/ ) Όµως έχουµε και την σχέση: df) =k/ = οπότε η ) γράφεται: k/) - 6k 3 k/) 4 =k/ = 4 4k k 3 = - 4 8k 3 F) = k 8k 3 )

15 Εφαρµόζοντας για το σωµατίδιο τον δεύτερο νόµο κίνησης του Νεύτωνα παίρ νουµε: m d ) dt = F) d dt k 8mk 3 = d - k/ ) k dt 8mk 3 = d z dt + z = 3) όπου τέθηκε z=-k/α και ω =α 4 /8mk 3. H 3) είναι η τυπική διαφορική εξίσωση του αρµονικού ταλαντωτη, δηλαδή εκφράζει ότι, αν το σωµατίδιο εκτραπεί ακτι νικά και πολύ λίγο από την θέση ευσταθούς ισορροπίας του και αφεθεί ελεύθε ρο, θα εκτελεί αρµονική ταλάντωση περί την θέση αυτή. ii) Aπό το διάγραµµα του σχήµατος 7) παρατηρούµε ότι, αν το σωµατίδιο αφε θεί στην θέση =3k/α θα δεχθεί δύναµη µε κατεύθυνση προς το κέντρο Ο που θα το θέσει σε επιταχυνόµενη κίνηση. Eφαρµόζοντας για το σωµατίδιο το θεώ ρηµα διατήρησης της µηχανικής ενέργειας µεταξύ της θέσεως =3k/α και µιας τυχαίας θέσεως <3k/α, παίρνουµε: + U ) = mv / + U) - + k =3k/ = mv - + k mv = - 3k + k 9k + - k v = m - 9k + - k dt = m - 9k + - k dt = ± m - 9k + - k dt = - m - k - 9k όπου v η ταχύτητα του σωµατιδίου στην θέση. Oλοκληρώνοντας την 4) µε όρια ολοκλήρωσης για την µεταβλητή τις τιµές 3k/α και k/α, παίρνουµε τον ζητούµενο χρόνο t *, δηλαδή θα έχουµε: 4) t * = - m k / - k - = m 9k 3k / 3k / k / - k - 9k P.M. fysikos

της µορφής:! F = -mk! r

της µορφής:! F = -mk! r Ένα µικρό σώµα µάζας m, κινείται επί κυκλικής τροχιάς ακτίνας α µέσα σε δυναµικό πεδίο, ελκόµενο από σταθερό ση µείο Ο που αποτελεί το κέντρο της τροχιάς, µε δύναµη F της µορφής: F -mk όπου το διάνυσµα

Διαβάστε περισσότερα

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F!

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F! Υλικό σηµείο µάζας, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F (), η οποία ακολουθεί τον νόµο του αντιστρόφου τετραγώνου της απόστασης από το ελκτι κό κέντρο Ο, δηλαδή περιγράφεται

Διαβάστε περισσότερα

όπου x η συντεταγµένη του σωµατιδίου, θεωρούµενη µε αρχή ένα στα θερό σηµείο Ο του άξονα και α, U 0 σταθερές και θετικές ποσότητες.

όπου x η συντεταγµένη του σωµατιδίου, θεωρούµενη µε αρχή ένα στα θερό σηµείο Ο του άξονα και α, U 0 σταθερές και θετικές ποσότητες. Υλικό σωµατίδιο µάζας m κινείται πάνω σε σταθε ρό άξονα x x υπό την επίδραση δύναµης, της οποίας ο φορέας συµπί πτει µε τον άξονα. Η δύναµη απορρέει από συνάρτηση δυναµικής ενέργειας της µορφής: Ux) =

Διαβάστε περισσότερα

όπου Μ η µάζα της Γης την οποία θεωρούµε σφαίρα οµογενή, G η παγκόσµια σταθερά της βαρύτητας και L!

όπου Μ η µάζα της Γης την οποία θεωρούµε σφαίρα οµογενή, G η παγκόσµια σταθερά της βαρύτητας και L! Είναι γνωστό ότι, όταν ένα σώµα κινείται µέσα στο βαρυτικό πεδίο της Γης υπό την επίδραση µόνο της Νευτώνειας έλξεως, η τροχιά που διαγράφει το κέντρο µάζας του είναι επίπεδη και µάλιστα το επίπεδό της

Διαβάστε περισσότερα

Θεωρούµε δύο υλικά σηµεία µε µάζες m 1, m 2 τα οποία αλληλοεπιδ ρούν µε βαρυτική δύναµη, που ακολουθεί τον νόµο της παγκόσµιας έλξεως του Νεύτωνα.

Θεωρούµε δύο υλικά σηµεία µε µάζες m 1, m 2 τα οποία αλληλοεπιδ ρούν µε βαρυτική δύναµη, που ακολουθεί τον νόµο της παγκόσµιας έλξεως του Νεύτωνα. Θεωρούµε δύο υλικά σηµεία µε µάζες m, m τα οποία αλληλοεπιδ ρούν µε βαρυτική δύναµη, που ακολουθεί τον νόµο της παγκόσµιας έλξεως του Νεύτωνα. i) Εάν είναι το διάνυσµα θέσεως του ενός υλικού σηµείου σε

Διαβάστε περισσότερα

ii) Να δείξετε ότι το σφαιρίδιο εκτελεί µια µη αρµονική περιοδική ταλάντωση, της οποίας να υπολογίσετε την περίοδο.

ii) Να δείξετε ότι το σφαιρίδιο εκτελεί µια µη αρµονική περιοδική ταλάντωση, της οποίας να υπολογίσετε την περίοδο. Το σύστηµα του σχήµατος αποτελείται από δύο όµοια ελατήρια στα θεράς και φυσικού µήκους α, των οποίων οι άξονες βρίσκονται πάνω στην ευθεία ΑΒ, όπου Α, Β είναι δύο ακλόνητα σηµεία του επιπέδου. Εκτρέπουµε

Διαβάστε περισσότερα

Θεωρούµε σύστηµα δύο σωµατιδίων Σ 1 και Σ 2 µε αντίστοιχες µάζες m 1 και m 2, τα οποία αλληλοεπιδρούν χωρίς όµως να δέχονται εξωτερικές δυνάµεις.

Θεωρούµε σύστηµα δύο σωµατιδίων Σ 1 και Σ 2 µε αντίστοιχες µάζες m 1 και m 2, τα οποία αλληλοεπιδρούν χωρίς όµως να δέχονται εξωτερικές δυνάµεις. Θεωρούµε σύστηµα δύο σωµατιδίων Σ και Σ µε αντίστοιχες µάζες m και m, τα οποία αλληλοεπιδρούν χωρίς όµως να δέχονται εξωτερικές δυνάµεις. i) Nα δείξετε ότι η σχετική ορµή P του ενός, λογουχάρη του Σ ως

Διαβάστε περισσότερα

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F!

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F! Οµογενής κυκλικός δίσκος µάζας m και ακτίνας, βρίσκεται πάνω σε λείο οριζόντιο έδαφος µε τον άξονα συµµετρίας του κατα κόρυφο. Εάν σ ένα σηµείο της περιφέρειας του δίσκου εξασκείται συνεχώς µια σταθερή

Διαβάστε περισσότερα

Υλικό σηµείο µάζας m έλκεται από σταθερό κέν τρο Ο µε δύναµη F! που περιγράφεται από την σχέση:! F = f(r)! r

Υλικό σηµείο µάζας m έλκεται από σταθερό κέν τρο Ο µε δύναµη F! που περιγράφεται από την σχέση:! F = f(r)! r Υλικό σηµείο µάζας m έλκεται από σταθερό κέν τρο Ο µε δύναµη F που περιγράφεται από την σχέση: F fr) r όπου fr) µια συνάρτηση, η οποία δεν ακολουθεί τον νόµο του αντιστρόφου τετραγώνου της απόστασης r

Διαβάστε περισσότερα

(ΘΕΜΑ 17ο)

(ΘΕΜΑ 17ο) Εισαγωγικά: Με το πρόβληµα της αλληλεπίδρασης δύο µαζών, µέσω αβαρούς και µη εκτατού νήµατος παρουσία οµογενούς βαρυτικού πεδίου, είχα ασχοληθεί και στο παρελθόν παρουσιάζοντάς το στην ιστοσελίδα µου µε

Διαβάστε περισσότερα

Θετικό σηµειακό φορτίο q βρισκεται σε απόσταση D από το κέντρο µιας κοίλης µεταλλικής σφαίρας ακτίνας R (R<D), η οποία είναι προσγειωµένη.

Θετικό σηµειακό φορτίο q βρισκεται σε απόσταση D από το κέντρο µιας κοίλης µεταλλικής σφαίρας ακτίνας R (R<D), η οποία είναι προσγειωµένη. Θετικό σηµειακό φορτίο q βρισκεται σε απόσταση D από το κέντρο µιας κοίλης µεταλλικής σφαίρας ακτίνας R (R

Διαβάστε περισσότερα

i) το πλάτος ταλάντωσης του καροτσιού µετά την ενσωµάτωση του σφαιριδίου σ' αυτό και

i) το πλάτος ταλάντωσης του καροτσιού µετά την ενσωµάτωση του σφαιριδίου σ' αυτό και Ένα καροτσάκι που περιέχει άµµο, συνολικής µάζας M, εκτελεί οριζόντια αρµονική ταλάντωση σε λείο επίπεδο, µε τη βοήθεια ιδανικού οριζόντιου ελατηρίου σταθεράς k. Ένα σφαιρίδιο µάζας m

Διαβάστε περισσότερα

, της οποίας το µέτρο ικανοποιεί τη σχέση:

, της οποίας το µέτρο ικανοποιεί τη σχέση: Στην κορυφή της κεκλιµένης έδρας µιας ορθογώνιας σφήνας µάζας M, η οποία ισορροπεί πάνω σε λείο οριζόντιο έδαφος, αφήνεται µικ ρός κύβος µάζας m. Nα δείξετε ότι η σφήνα κινείται στο σύστη µα αναφοράς του

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 4 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε µε σαφήνεια και συντοµία. Η ορθή πλήρης απάντηση θέµατος εκτιµάται περισσότερο από τη

Διαβάστε περισσότερα

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου.

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου. Oµογενής ράβδος σταθερής διατοµής, µάζας m και µήκους L, µπορεί να στρέφεται περί οριζόντιο άξονα που διέρχεται από το ένα άκρο της. Όταν η ράβδος βρίσκεται στην θέση ευσταθούς ισορροπίας εφαρµόζεται στο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη.

ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη. ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη. 1 β) Σε ένα πεδίο κεντρικών δυνάµεων F =, ένα σώµα, µε µάζα

Διαβάστε περισσότερα

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου, που εξασκεί στην µάζα m δύναµη η οποία απορρέει από συνάρτηση δυναµικής ενέργειας της µορφής:

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου, που εξασκεί στην µάζα m δύναµη η οποία απορρέει από συνάρτηση δυναµικής ενέργειας της µορφής: Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου, που εξασκεί στην µάζα m δύναµη η οποία απορρέει από συνάρτηση δυναµικής ενέργειας της µορφής: U = k 2 x2 + y ) 2 α) όπου k θετική και σταθερή ποσότητα

Διαβάστε περισσότερα

Δυναµική της κίνησης συστήµατος δύο σωµατιδίων

Δυναµική της κίνησης συστήµατος δύο σωµατιδίων Δυναµική της κίνησης συστήµατος δύο σωµατιδίων Θεωρούµε δύο σωµατίδια Σ και Σ µε αντίστοιχες µάζες m και m, των οποίων τα διανύσµατα θέσεως ως προς την αρχή Ο ενός αδρανειακού συστή µατος αναφοράς Oxyz

Διαβάστε περισσότερα

ANAΛYTIKH MEΛETH THΣ KENTPIKHΣ KINHΣHΣ *

ANAΛYTIKH MEΛETH THΣ KENTPIKHΣ KINHΣHΣ * ANAΛYTIKH MEΛETH THΣ KENTPIKHΣ KINHΣHΣ * 13. Tαχύτητα και επιτάχυνση υλικού σηµείου σε πολικές συντεταγµένες Θεωρούµε υλικό σηµείο, το οποίο εκτελεί επίπεδη κίνηση διαγράφοντας την τροχιά (C του σχήµατος

Διαβάστε περισσότερα

Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή

Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή ταχύτητα µέτρου V 0 πάνω σε λείο οριζόντιο έδαφος κατευθυνόµενο προς κατακόρυφο τοίχο. Το σώµα κάποια στιγµή συγκρούεται ελα στικά και µετωπικά µε µια µπάλα

Διαβάστε περισσότερα

Yλικό σηµείο κινείται στο επίπεδο Οxy διαγράφον τας καµπύλη τροχιά, η οποία περιγράφεται από την σχέση:

Yλικό σηµείο κινείται στο επίπεδο Οxy διαγράφον τας καµπύλη τροχιά, η οποία περιγράφεται από την σχέση: Yλικό σηµείο κινείται στο επίπεδο Οxy διαγράφον τας καµπύλη τροχιά, η οποία περιγράφεται από την σχέση: y = Αηµωx όπου Α, ω σταθερές και θετικές ποσότητες. Εάν το υλικό σηµείο κατά τον άξονα x κινείται

Διαβάστε περισσότερα

H σταθερά ολοκληρώσεως C θα προκύψει από την αρχική συνθήκη, ότι για t=0 είναι v=0, οπότε η (2) δίνει: ) (3) m 1 - e- t/t

H σταθερά ολοκληρώσεως C θα προκύψει από την αρχική συνθήκη, ότι για t=0 είναι v=0, οπότε η (2) δίνει: ) (3) m 1 - e- t/t Υλικό σηµείο µάζας m βρίσκεται ακίνητο πάνω σε λείο οριζόντιο έδαφος στην θέση x= ιου άξονα Οx. Κάποια στιγµή επί του υλικού σηµείου εξασκείται δύναµη της µορφής: F = F e - t/t i όπου F, t θετικές και

Διαβάστε περισσότερα

διεύθυνση. Tο διάνυσµα αυτό δείχνει την φορά κατά την οποία η γωνία θ αυξά νεται. Συνδυάζοντας τις σχέσεις (1) και (2) παίρνουµε:

διεύθυνση. Tο διάνυσµα αυτό δείχνει την φορά κατά την οποία η γωνία θ αυξά νεται. Συνδυάζοντας τις σχέσεις (1) και (2) παίρνουµε: ANAΛYTIKH MEΛETH THΣ KENTPIKHΣ KINHΣHΣ * 13. Tαχύτητα και επιτάχυνση υλικού σηµείου σε πολικές συντεταγµένες Θεωρούµε υλικό σηµείο, το οποίο εκτελεί επίπεδη κίνηση διαγράφοντας την τροχιά (C του σχήµατος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση.

Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση. Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση. i) Εάν Κ είναι το στιγµιαίο κέντρο περιστροφής του στερεού κάποια στιγµή και C η αντίστοιχη θέση του κέντρου µάζας

Διαβάστε περισσότερα

A! Κινηµατική άποψη. Σχήµα 1 Σχήµα 2

A! Κινηµατική άποψη. Σχήµα 1 Σχήµα 2 A Κινηµατική άποψη Θεωρούµε στερεό σώµα σε τυχαία κίνηση, η οποία εξέταζεται από ένα αδρα νειακό σύστηµα αναφοράς ΟXYZ. Εφοδιάζουµε το σώµα µε κινητό σύστηµα συντεταγµένων xyz ακλόνητα συνδεδεµένο µε αυτό,

Διαβάστε περισσότερα

ΛΥΣΗ: Έστω O η θέση ισορροπίας του σφαιριδίου. Στη θέση αυτή το σφαι ρίδιο δέχεται το βάρος του w!, τη δύναµη F

ΛΥΣΗ: Έστω O η θέση ισορροπίας του σφαιριδίου. Στη θέση αυτή το σφαι ρίδιο δέχεται το βάρος του w!, τη δύναµη F Ένα ιδανικό ελατήριο σταθεράς k κόβεται σε δύο τµήµατα µε µήκη L και L. Η µία άκρη κάθε τµήµατος συνδέεται στέρεα µε µικρό σφαιρίδιο µάζας m και οι ελέυθερες άκρες τους στερεώνονται σε ακλόνητα σηµεία

Διαβάστε περισσότερα

Κίνηση πλανητών Νόµοι του Kepler

Κίνηση πλανητών Νόµοι του Kepler ΦΥΣ 111 - Διαλ.29 1 Κίνηση πλανητών Νόµοι του Keple! Θα υποθέσουµε ότι ο ήλιος είναι ακίνητος (σχεδόν σωστό αφού έχει τόσο µεγάλη µάζα και η γη δεν τον κινεί).! Οι τροχιές των πλανητών µοιάζουν κάπως σα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I Σεπτεμβρίου 00 Απαντήστε και στα 0 ερωτήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.. Ένας

Διαβάστε περισσότερα

i) Nα δείξετε ότι, κάθε στιγµή οι ταχύτητες των δύο πιθήκων ως προς το ακίνητο έδαφος είναι ίσες.

i) Nα δείξετε ότι, κάθε στιγµή οι ταχύτητες των δύο πιθήκων ως προς το ακίνητο έδαφος είναι ίσες. Δύο πιθηκάκια της ίδιας µάζας αναρριχώνται εκ της ηρεµίας κατά µήκος των τµηµάτων του αβαρούς σχοινιού, που διέρχεται από τον λαιµό µιας σταθερής τροχαλίας (σχ. ). H τροχαλία έχει αµελητέα µάζα και µπορεί

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 22 Ιανουαρίου, 2019

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 22 Ιανουαρίου, 2019 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι Ιανουαρίου, 9 Καλή σας επιτυχία. Πρόβλημα Α Ένα σωματίδιο μάζας m κινείται υπό την επίδραση του πεδίου δύο σημειακών ελκτικών κέντρων, το ένα εκ των οποίων

Διαβάστε περισσότερα

i) Να βρεθεί ο χρόνος αιώρησης του διαστηµοπλοίου, µέχρις ότου εξαντληθούν τα καύσιµά του.

i) Να βρεθεί ο χρόνος αιώρησης του διαστηµοπλοίου, µέχρις ότου εξαντληθούν τα καύσιµά του. Ένα διαστηµόπλοιο αιωρείται στον αέρα σε στα θερό ύψος από την επιφάνεια της Γης, εκτοξεύοντας καυσαέρια µε σταθερή ταχύτητα v. Η αρχική µάζα του διαστηµόπλοιου µαζί µε τα καύσιµά του είναι m, η δε µάζα

Διαβάστε περισσότερα

µε φορά προς το κυρτό µέρος του σύρµατος (σχήµα α) η οποία µαζί µε την ακτινική συνιστώσα w!

µε φορά προς το κυρτό µέρος του σύρµατος (σχήµα α) η οποία µαζί µε την ακτινική συνιστώσα w! Το κυκλικό σύρµα του σχήµατος έχει µάζα m/ και είναι κρεµασµένο από κατακόρυφο σπάγκο αµελητέας µάζας αλλά επαρκούς αντοχής. Δύο όµοιες σηµειακές χάντρες, καθε µιά µε µάζα m, αφήνονται ταυτόχρονα από την

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ Στο κεφάλαιο αυτό θα ασχοληθούµε αρχικά µε ένα µεµονωµένο σύστηµα δύο σωµάτων στα οποία ασκούνται µόνο οι µεταξύ τους κεντρικές δυνάµεις, επιτρέποντας ωστόσο και την

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

i) Nα βρείτε την ταχύτητα του κέντρου της στεφάνης αµέσως µετά την κρού ση, η οποία θεωρείται βραχείας διάρκειας.

i) Nα βρείτε την ταχύτητα του κέντρου της στεφάνης αµέσως µετά την κρού ση, η οποία θεωρείται βραχείας διάρκειας. Mια κυκλική στεφάνη ακτίνας R, της οποίας η µάζα θεωρείται συγκεντρωµένη στην περιφέρεια της, κυλίεται ισοταχώς πάνω σε οριζόντιο επίπεδο το δε κέντρο της έχει ταχύτητα v. Kάποια στιγµή η στε φάνη προσκρούει

Διαβάστε περισσότερα

i) την ενέργεια που πρέπει να προσφερθεί στο σφαιρίδιο,

i) την ενέργεια που πρέπει να προσφερθεί στο σφαιρίδιο, Tο σφαιρίδιο του σχήµατος ισορροπεί πάνω στο λείο οριζόντιο δαπεδο, ενώ τα οριζόντια ελατήρια είναι τεντωµένα. H απόσταση των σηµείων στήριξης των δύο ελατηρίων είναι 3α, ενώ τα ελατήρια έχουν το ίδιο

Διαβάστε περισσότερα

Δίνεται η ροπή αδράνειας I=mL 2 /3 της ράβδου ως προς τον άξονα περιστροφής της, η επιτάχυνση! g της βαρύτητας και ότι π 2!10.

Δίνεται η ροπή αδράνειας I=mL 2 /3 της ράβδου ως προς τον άξονα περιστροφής της, η επιτάχυνση! g της βαρύτητας και ότι π 2!10. Oµογενής ράβδος σταθερής διατοµής, µάζας m και µήκους L, µπορεί να στρέφεται περί οριζόντιο άξονα που διέρχεται από το ένα άκρο της. Όταν η ράβδος βρίσκεται στην θέση ευσταθούς ισορροπίας της εφαρµόζεται

Διαβάστε περισσότερα

ii) Nα υπολογιστεί η κινητική ενέργεια του συστήµατος σε συνάρτηση µε τον χρόνο. Δίνεται η επιτάχυνση! g της βαρύτητας.

ii) Nα υπολογιστεί η κινητική ενέργεια του συστήµατος σε συνάρτηση µε τον χρόνο. Δίνεται η επιτάχυνση! g της βαρύτητας. Στην διάταξη του σχήµατος () η ράβδος ΑΒ είναι οµογενής, έχει µήκος L και µπορεί να στρέφεται περί οριζόντιο άξο να, που διέρχεται από σηµείο Ο ευρισκόµενο σε απόσταση 3L/4 από το άκρο της Α. Η τροχαλία

Διαβάστε περισσότερα

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και Δύο αβαρή και µη εκτατά νήµατα του ίδιου µή κους είναι στερεωµένα στο ίδιο σηµείο Ο, ενώ στις ελεύθερες άκρες των νηµάτων είναι δεµένα δύο σφαιρίδια, µε µάζες 1 και. Eκτρέ πουµε τα σφαιρίδια από την θέση

Διαβάστε περισσότερα

# $ + L " = ml " ml! = ML " $ + ml " $ L " = ML/2(M + m) # $ (1) Eξάλλου, εάν L' α, L' σ είναι οι τελικές αποστάσεις του κέντρου µάζας C του

# $ + L  = ml  ml! = ML  $ + ml  $ L  = ML/2(M + m) # $ (1) Eξάλλου, εάν L' α, L' σ είναι οι τελικές αποστάσεις του κέντρου µάζας C του Mία σανίδα, µήκους L καί µάζας M, βρίσκεται πάνω σε λείο οριζόντιο επίπεδο. Στο ένα άκρο της σανίδας πατάει άνθ ρωπος µάζας m και αρχίζει να κινείται προς το άλλο άκρο της. Kατά πόσο θα µετατοπιστεί η

Διαβάστε περισσότερα

i) Nα δείξετε ότι η κυµατοσυνάρτηση που περιγράφει το κύµα έχει την µορφή: ) µε t! t + T x - x0 ( )

i) Nα δείξετε ότι η κυµατοσυνάρτηση που περιγράφει το κύµα έχει την µορφή: ) µε t! t + T x - x0 ( ) Ένα µονοδιάστατο εγκάρσιο αρµονικό κύµα, πλάτους Α, περιόδου Τ και µήκους κύµατος λ, διαδίδεται κατά µήκος του άξονα x x. Στο σχήµα 1 απεικονίζεται ένα στιγµιότυπο του κύµατος την χρονική στιγµή t=t, όπου

Διαβάστε περισσότερα

την αρχή Ο του ΟΧY, που είναι ένα αδρανειακό σύστηµα αναφοράς. Εάν

την αρχή Ο του ΟΧY, που είναι ένα αδρανειακό σύστηµα αναφοράς. Εάν Ένα στερεό σώµα εκτελεί επίπεδη κίνηση, όταν οι αποστάσεις των υλικών του σηµείων από ένα ορισµένο επίπεδο αναφοράς (ε, παραµένουν αµετάβλητες µε τον χρόνο. Για την µελέτη της επίπεδης κίνησης στερεού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2003

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2003 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 3 Θέµα 1 (5 µονάδες) Απαντήστε στις ακόλουθες ερωτήσεις µε συντοµία και σαφήνεια Τµήµα Π Ιωάννου & Θ Αποστολάτου (α) Η ταχύτητα ενός

Διαβάστε περισσότερα

) ω ω. L λίγο πριν. . Nα βρεθούν:

) ω ω. L λίγο πριν. . Nα βρεθούν: Δύο σφαιρίδια A, B µάζας m το καθένα συνδέονται µεταξύ τους µε αβαρές και µη εκτατό νήµα µήκους L, ηρεµούν δε πάνω σε οριζόντιο τραπέζι ευρισκόµενα σε απόσταση α

Διαβάστε περισσότερα

Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v!

Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v! Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v C. Σε σηµείο της περιφέρειας του τροχου έχει αρθρωθεί το ένα άκρο Β µιας λεπτής

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1 ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 00 ΘΕΜΑ : (α) Ταχύτητα ΚΜ: u KM = mu + mu m = u + u Εποµένως u = u u + u = u u, u = u u + u = u u (β) Διατήρηση ορµής στο ΚΜ: mu + mu = mv + mv u + u = V + V = 0 V = V

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ 2013 ΘΕΜΑΤΑ και ΛΥΣΕΙΣ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ 2013 ΘΕΜΑΤΑ και ΛΥΣΕΙΣ ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ 13 ΘΕΜΑΤΑ και ΛΥΣΕΙΣ ΘΕΜΑ Α1 Έστω ότι η κίνηση δύο ατόµων ενός µορίου µπορεί να περιγραφεί προσεγγιστικά από ένα δυναµικό της µορφής V a a 4 8 = +, a >, όπου > η σχετική

Διαβάστε περισσότερα

των Α και Β αντιστοίχως είναι παράλληλες (σχ. 12) που σηµαί Σχήµα 11 Σχήµα 12

των Α και Β αντιστοίχως είναι παράλληλες (σχ. 12) που σηµαί Σχήµα 11 Σχήµα 12 Δύο ακριβώς όµοιες λεπτές ράβδοι OA και AB µήκους L και µάζας m, αρθρώνονται στο σηµείο Α το δε άκρο Ο της ΟΑ αρθρώνεται σε σταθερό υποστήριγµα, ενώ το άκρο Β της ΑΒ µπο ρεί να ολισθαίνει πάνω σε λείο

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 008 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Συστήµατα Υλικών Σηµείων

ΚΕΦΑΛΑΙΟ 7. Συστήµατα Υλικών Σηµείων ΚΕΦΑΛΑΙΟ 7. Συστήµατα Υλικών Σηµείων 1. Να βρεθεί το δυναµικό που οφείλεται σε δύο ακίνητα ελκτικά κέντρα µε µάζες 1 και. Γράψτε την εξίσωση της κίνησης ενός υλικού σηµείου µάζας στο παραπάνω δυναµικό.

Διαβάστε περισσότερα

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/6 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

ΕΥΤΕΡΑ 28 ΙΟΥΝΙΟΥ 1999 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΥΤΕΡΑ 28 ΙΟΥΝΙΟΥ 1999 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΥΤΕΡΑ 28 ΙΟΥΝΙΟΥ 1999 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1-5, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Μάζα που κινείται

Διαβάστε περισσότερα

v = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2

v = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2 ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΉΣ Ι ΤΜΗΜΑ ΧΗΜΕΙΑΣ, 9 ΙΑΝΟΥΑΡΙΟΥ 019 ΚΏΣΤΑΣ ΒΕΛΛΙΔΗΣ, cvellid@phys.uoa.r, 10 77 6895 ΘΕΜΑ 1: Σώµα κινείται µε σταθερή ταχύτητα u κατά µήκος οριζόντιας ράβδου που περιστρέφεται

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 2ο set - μέρος Α - Απαντήσεις ΘΕΜΑ Β

ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 2ο set - μέρος Α - Απαντήσεις ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ Ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ.: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ο set - μέρος Α - Απαντήσεις ΘΕΜΑ Β Ερώτηση. Ένα σώμα εκτελεί

Διαβάστε περισσότερα

Ποια μπορεί να είναι η κίνηση μετά την κρούση;

Ποια μπορεί να είναι η κίνηση μετά την κρούση; Ποια μπορεί να είναι η κίνηση μετά την κρούση; ή Η επιτάχυνση και ο ρυθµός µεταβολής του µέτρου της ταχύτητας. Ένα σώµα Σ ηρεµεί, δεµένο στο άκρο ενός ελατηρίου. Σε µια στιγµή συγκρούεται µε ένα άλλο κινούµενο

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά

Διαβάστε περισσότερα

η αντίστοιχη ταχύτητα του οχήµατος, θα ισχύει η σχέση:! 0 = m! v + M! V! md! v /dt = -Md!

η αντίστοιχη ταχύτητα του οχήµατος, θα ισχύει η σχέση:! 0 = m! v + M! V! md! v /dt = -Md! Tο νήµα µαθηµατικού εκκρεµούς µήκους L, είναι στερεωµένο στην οροφή µικρού οχήµατος µάζας M, το οποίο µπορεί να ολισθαίνει χωρίς τριβή πάνω σε οριζόντιο επίπεδο (σχήµα 1). i) Eάν το σφαιρίδιο του εκκρεµούς

Διαβάστε περισσότερα

( ) ω ( ) = 0. Aπό τις σχέσεις (2) προκύπτει ή ότι το διάνυσµα v K. είναι κάθετο στα διανύσµα τα r A

( ) ω ( ) = 0. Aπό τις σχέσεις (2) προκύπτει ή ότι το διάνυσµα v K. είναι κάθετο στα διανύσµα τα r A Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση και έστω (S) η κύρια* τοµή του στερεού κατά µια τυχαία χρονική στιγµή t. Να δείξετε ότι το αντίστοιχο προς την κύρια

Διαβάστε περισσότερα

Οµογενής σφαίρα µάζας m και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση!!

Οµογενής σφαίρα µάζας m και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση!! Οµογενής σφαίρα µάζας και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση βραχείας διάρκειας, της οποίας ο φορέας βρίσκε ται άνωθεν του κέντρου της

Διαβάστε περισσότερα

Q του νήµατος που το συγκρατεί, συµφωνα δε µε τον δεύτερο νό µο κίνησης του Νεύτωνα θα ισχύει η σχέση: της τάσεως!

Q του νήµατος που το συγκρατεί, συµφωνα δε µε τον δεύτερο νό µο κίνησης του Νεύτωνα θα ισχύει η σχέση: της τάσεως! Αβαρής ράβδος αποτελείται από δύο συνεχόµενα τµήµατα ΟΑ και ΑΒ που είναι ορθογώνια µεταξύ τους. Το άκρο Ο της ράβδου είναι αρθρωµένο σε οριζόντιο έδαφος το δε τµήµα της ΟΑ είναι κατακόρυφο και εφάπτεται

Διαβάστε περισσότερα

i) Nα βρείτε την επιτάχυνση του κέντρου της τροχαλίας τ 1.

i) Nα βρείτε την επιτάχυνση του κέντρου της τροχαλίας τ 1. Στην διάταξη του σχήµατος 1) οι τροχαλίες τ 1 και τ έχουν την ίδια µάζα Μ που θεωρείται συγκεντρωµένη στην περι φέρειά τους και την ίδια ακτίνα R. Στο αυλάκι της σταθερής τροχα λίας τ έχει περιτυλιχθεί

Διαβάστε περισσότερα

F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται

F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται 6-04-011 1. Όχημα μάζας m ξεκινά από την αρχή του άξονα x χωρίς αρχική ταχύτητα και κινείται στον άξονα x υπό την επίδραση της δυνάμεως t F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται επίσης αντίσταση

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ Α! του σώ µατος ισχύει η σχέση: η επιβατική ακτίνα ως προς το σηµείο P του τυχαίου υλικού σηµείου του στερεού µάζας m i και v!

ΘΕΩΡΗΜΑ Α! του σώ µατος ισχύει η σχέση: η επιβατική ακτίνα ως προς το σηµείο P του τυχαίου υλικού σηµείου του στερεού µάζας m i και v! ΘΕΩΡΗΜΑ Α Ο ρυθµός µεταβολής της στροφορµής στερεού σώµατος, θεωρούµενης περί ένα σηµείο του ή της επεκτάσεώς του και αναφερόµενης σε κάποιο αδρανειακό σύστηµα, είναι κάθε στιγµή ίσος µε την συνολική ροπή

Διαβάστε περισσότερα

) z ) r 3. sin cos θ,

) z ) r 3. sin cos θ, Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 4-5 Ν. Βλαχάκης. Σώμα μάζας m κινείται στο πεδίο δύναμης της πρώτης άσκησης της τέταρτης εργασίας με λ, αλλά επιπλέον είναι υποχρεωμένο να κινείται μόνο στην ευθεία

Διαβάστε περισσότερα

ΦΥΕ14-5 η Εργασία Παράδοση

ΦΥΕ14-5 η Εργασία Παράδοση ΦΥΕ4-5 η Εργασία Παράδοση.5.9 Πρόβληµα. Συµπαγής οµογενής κύλινδρος µάζας τυλιγµένος µε λεπτό νήµα αφήνεται να κυλίσει από την κορυφή κεκλιµένου επιπέδου µήκους l και γωνίας φ (ϐλέπε σχήµα). Το ένα άκρο

Διαβάστε περισσότερα

Κρούσεις. 1 ο ΘΕΜΑ.

Κρούσεις. 1 ο ΘΕΜΑ. ο ΘΕΜΑ Κρούσεις Α. Ερωτήσεις πολλαπλής επιλογής Στην παρακάτω ερώτηση να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε κάθε κρούση ισχύει

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β

ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ Ο : ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ : ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β Ερώτηση Ένα σώμα εκτελεί απλή

Διαβάστε περισσότερα

Θέµατα Φυσικής Θετικής Κατεύθυνσης Β Λυκείου 1999 ΕΚΦΩΝΗΣΕΙΣ

Θέµατα Φυσικής Θετικής Κατεύθυνσης Β Λυκείου 1999 ΕΚΦΩΝΗΣΕΙΣ Θέµατα Φυσικής Θετικής Κατεύθυνσης Β Λυκείου 999 Ζήτηµα ο ΕΚΦΩΝΗΣΕΙΣ. Μάζα που κινείται οριζόντια µε ορµή µέτρου 0 Kg m/s προσπίπτει σε κατακόρυφο τοίχο και ανακλάται οριζόντια µε ορµή ίδιου µέτρου. Το

Διαβάστε περισσότερα

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση 2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,

Διαβάστε περισσότερα

5ο ιαγώνισµα - Επαναληπτικό ΙΙ. Θέµα Α

5ο ιαγώνισµα - Επαναληπτικό ΙΙ. Θέµα Α 5ο ιαγώνισµα - Επαναληπτικό ΙΙ Ηµεροµηνία : 8 Μάη 2013 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Οµάδα Α Θέµα Α Στις ερωτήσεις Α.1 Α.4 επιλέξτε την σωστή απάντηση [4 5 = 20 µονάδες] Α.1. Από ύψος h

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα

Διαβάστε περισσότερα

της οποίας ο φορέας σχηµατί ζει γωνία φ=π/6 µε την κατακόρυφη διεύθυνση και ανακλάται µε αντίστοιχη γωνία φ=π/4.

της οποίας ο φορέας σχηµατί ζει γωνία φ=π/6 µε την κατακόρυφη διεύθυνση και ανακλάται µε αντίστοιχη γωνία φ=π/4. Οριζόντιος δίσκος µάζας Μ ισορροπεί στηριζόµε νος στο πάνω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k, του οποίου το άλλο άκρο στηρίζεται στο έδαφος (σχήµα 1). Ένα µικρό σφαιρίδιο µάζας m, προσκρούει

Διαβάστε περισσότερα

GMm. 1 2GM ) 2 + L2 2 + R L=4.5 L=4 L=3.7 L= 1 2 =3.46 L= V (r) = L 2 /2r 2 - L 2 /r 3-1/r

GMm. 1 2GM ) 2 + L2 2 + R L=4.5 L=4 L=3.7 L= 1 2 =3.46 L= V (r) = L 2 /2r 2 - L 2 /r 3-1/r Ονοματεπώνυμο: Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ Τσίγκανου & Ν Βλαχάκη, Σεπτεμβρίου 05 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία = bonus ερωτήματα),

Διαβάστε περισσότερα

διέρχεται από το σηµείο Ο της ράβδου, υπό την επίδραση των βαρών m 1 από τον άξονα περιστροφής, που αναλύεται στην οριζόντια συνιστώσα!

διέρχεται από το σηµείο Ο της ράβδου, υπό την επίδραση των βαρών m 1 από τον άξονα περιστροφής, που αναλύεται στην οριζόντια συνιστώσα! Θεωρήστε οριζόντια ράβδο αµελητέας µάζας, η οποία µπορεί να περιστρέφεται περί σταθερό οριζόντιο άξονα κάθετο στη ράβδο. Στα άκρα της υπάρχουν δυο διαφορετικές σηµειακές µάζες m, m, που οι αντίστοιχες

Διαβάστε περισσότερα

Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 007 Α ΛΥΚΕΙΟΥ Θέµα ο ΦΥΣΙΚΗ Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε ένα σώµα

Διαβάστε περισσότερα

από τον κατακόρυφο τοίχο, της οποίας ο φορέας είναι οριζόντιος και την δύναµη επα φής N!

από τον κατακόρυφο τοίχο, της οποίας ο φορέας είναι οριζόντιος και την δύναµη επα φής N! Οµογενής συµπαγής κύβος ακµής α και µάζας m, ισορροπεί ακουµπώντας µε µια ακµή του σε κατακόρυφο τοίχο και µε µια του έδρα σε κεκλιµένο επίπεδο γωνίας κλίσεως φ ως προς τον ορίζοντα, όπως φαίνεται στο

Διαβάστε περισσότερα

τα µοναδιαία διανύσµατα των αξόνων Οx, Oy, Oz αντιστοί χως. Η αντίστοιχη στροφορµή L!

τα µοναδιαία διανύσµατα των αξόνων Οx, Oy, Oz αντιστοί χως. Η αντίστοιχη στροφορµή L! Στο ένα άκρο ράβδου µήκους L και αµελητέας µά ζας, έχει στερεωθεί σφαιρίδιο µάζας m. Η ράβδος είναι ακίνητη πάνω σε λείο οριζόντιο επίπεδο Οxy, µε το σφαιρίδιο στο σηµείο, και το άλλο της άκρο στο σηµείο

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

ακτινικής διεύθυνσης και στην οριακή τριβή T!"

ακτινικής διεύθυνσης και στην οριακή τριβή T! Λεπτή κυκλική στεφάνη ακτίνας R και µάζας m, ισορρο πεί εφαπτόµενη σε δύο υποστηρίγµατα A και Γ, όπως φαίνεται στο σχήµα (1. Eάν ο συντελεστής οριακής τριβής µεταξύ της στεφάνης και των υποστη ριγµάτων

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ 2013 ΘΕΜΑΤΑ και ΛΥΣΕΙΣ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ 2013 ΘΕΜΑΤΑ και ΛΥΣΕΙΣ ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ 13 ΘΕΜΑΤΑ και ΛΥΣΕΙΣ ΘΕΜΑ B1 Η κίνηση δύο ατόµων ενός µορίου µπορεί να περιγραφεί προσεγγιστικά από ένα a 1 x ax δυναµικό της µορφής V = +, a >, όπου x> η σχετική απόσταση

Διαβάστε περισσότερα

όπου Α το πλάτος της ταλάντωσης, φ η αρχική της φάση και ω η γωνιακή της συχνότητα. Οι σχέσεις (2) εφαρµοζόµενες τη χρονική στιγµή t=0 δίνουν:

όπου Α το πλάτος της ταλάντωσης, φ η αρχική της φάση και ω η γωνιακή της συχνότητα. Οι σχέσεις (2) εφαρµοζόµενες τη χρονική στιγµή t=0 δίνουν: Tο ένα άκρο κατακόρυφου ιδανικού ελατηρίου είναι στερεωµένο στο οριζόντιο έδαφος, ενώ το άλλο του άκρο είναι ελεύθερο. Mικρό σφαιρίδιο, µάζας m, αφήνεται σε ύψος h από το άκρο Β. Το σφαιρίδιο πέφτοντας

Διαβάστε περισσότερα

Kινηµατική άποψη της επίπεδης κίνησης

Kινηµατική άποψη της επίπεδης κίνησης Kινηµατική άποψη της επίπεδης κίνησης Θα λέµε ότι ένα στερεό σώµα εκτελεί επίπεδη κίνηση, όταν οι αποστάσεις των υλικών του σηµείων από ένα ορισµένο επίπεδο αναφοράς (ε), παραµέ νουν αµετάβλητες µε το

Διαβάστε περισσότερα

. Εάν η σφαίρα κυλίεται πάνω στο δοκάρι να βρείτε: i) την επιτάχυνση του δοκαριού και του κέντρου της σφαίρας, στο σύστηµα αναφοράς του δαπέδου και

. Εάν η σφαίρα κυλίεται πάνω στο δοκάρι να βρείτε: i) την επιτάχυνση του δοκαριού και του κέντρου της σφαίρας, στο σύστηµα αναφοράς του δαπέδου και Οµογενής σφαίρα µάζας m και ακτίνας R είναι ακίνητη πάνω σε οριζόντιο δοκάρι µάζας Μ και µήκους L, που µπορεί να ολισθαίνει χωρίς τριβή επί οριζοντίου δαπέδου. Η σφαίρα εφάπτεται στο δεξιό άκρο Β του δοκαριού

Διαβάστε περισσότερα

Κρούσεις. 5. Σε μια ελαστική κρούση δεν διατηρείται α. η ολική κινητική ενέργεια του συστήματος. β. η ορμή του συστήματος.

Κρούσεις. 5. Σε μια ελαστική κρούση δεν διατηρείται α. η ολική κινητική ενέργεια του συστήματος. β. η ορμή του συστήματος. ο ΘΕΜΑ Κρούσεις Α Ερωτήσεις πολλαπλής επιλογής Στην παρακάτω ερώτηση να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Σε κάθε κρούση ισχύει α η

Διαβάστε περισσότερα

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι.

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι. ΚΕΦΑΛΑΙΟ 1 ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 6α. Σφαίρα μάζας ισορροπεί δεμένη στο πάνω άκρο κατακόρυφου

Διαβάστε περισσότερα

και όταν φθάσει στο σηµείο Γ αρχίζει να κινείται στο κυκλικό του τµήµα που έχει την µορφή λείου τεταρτο κυκλίου ακτίνας R.

και όταν φθάσει στο σηµείο Γ αρχίζει να κινείται στο κυκλικό του τµήµα που έχει την µορφή λείου τεταρτο κυκλίου ακτίνας R. Το σώµα Σ του σχήµατος (α) έχει µάζα και µπορεί να ολισθαίνει πάνω σε λείο οριζόντιο έδαφος. Ένα µικρό σφαιρίδιο µάζας m κινείται αρχικά πάνω στο οριζόντιο τµήµα του σώµατος µε ταχύτητα v 0 και όταν φθάσει

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα

Διαβάστε περισσότερα

Φυσική Γ Λυκείου. Ορμή. Ορμή συστήματος σωμάτων Τ Υ Π Ο Λ Ο Γ Ι Ο Κ Ρ Ο Υ Σ Ε Ω Ν. Θετικού προσανατολισμού

Φυσική Γ Λυκείου. Ορμή. Ορμή συστήματος σωμάτων Τ Υ Π Ο Λ Ο Γ Ι Ο Κ Ρ Ο Υ Σ Ε Ω Ν. Θετικού προσανατολισμού Τ Υ Π Ο Λ Ο Γ Ι Ο Κ Ρ Ο Υ Σ Ε Ω Ν Φυσική Γ Λυκείου Θετικού προσανατολισμού Ορμή Ορμή Ρ ενός σώματος ονομάζουμε το διανυσματικό μέγεθος που έχει μέτρο το γινόμενο της μάζας m του σώματος επί την ταχύτητά

Διαβάστε περισσότερα

, σταθερής κατεύθυνσης, της οποίας το µέτρο µεταβάλλεται µε τον χρόνο t, σύµφωνα µε την σχέση:

, σταθερής κατεύθυνσης, της οποίας το µέτρο µεταβάλλεται µε τον χρόνο t, σύµφωνα µε την σχέση: Σώµα µάζας m σχήµατος ορθογώνιου κιβωτίου, ισορροπεί πάνω σε τραχύ οριζόντιο επίπεδο και στην άνω επιφάνειά του έχει τοποθετηθεί σώµα µάζας m/. Κάποια στιγµή που λαµβάνε ται ως αρχή µέτρησης του χρόνου

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.. Κατά την πλαστική κρούση δύο σωµάτων ισχύει ότι : (δ) η ορµή του συστήµατος των δύο σωµάτων παραµένει

Διαβάστε περισσότερα

Τηλ./Fax: , Τηλ: Λεωφόρος Μαραθώνος &Χρυσοστόµου Σµύρνης 3, 1

Τηλ./Fax: , Τηλ: Λεωφόρος Μαραθώνος &Χρυσοστόµου Σµύρνης 3, 1 . 1. Η απλή αρµονική ταλάντωση είναι κίνηση: α. ευθύγραµµη οµαλή β. ευθύγραµµη οµαλά µεταβαλλόµενη γ. οµαλή κυκλική δ. ευθύγραµµη περιοδική. Η φάση της αποµάκρυνσης στην απλή αρµονική ταλάντωση: α. αυξάνεται

Διαβάστε περισσότερα

Σ Α Β Β Α Ϊ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η

Σ Α Β Β Α Ϊ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η 43 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Σ Α Β Β Α Ϊ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η ΠΑΓΚΡΑΤΙ : Χρ. Σµύρνης 3, Πλ. Νέου Παγκρατίου h:0/76.0.470 0/76.00.79 ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ (ΚΑΤΕΥΘΥΝΣΗΣ) Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α) Για ένα ηλεκτρικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 17 Φεβρουαρίου 2015

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 17 Φεβρουαρίου 2015 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 17 Φεβρουαρίου 2015 Τμήμα Θ. Αποστολάτου & Π. Ιωάννου Απαντήστε και στα 4 προβλήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις στα ερωτήματα εκτιμώνται

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 6//0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ Σωματίδιο μάζας m = Kg κινείται ευθύγραμμα και ομαλά στον

Διαβάστε περισσότερα

Κίνηση σε κεντρικό δυναμικό

Κίνηση σε κεντρικό δυναμικό Κίνηση σε κεντρικό δυναμικό ΦΥΣ 211 - Διαλ.13 1 q Έστω ένα σωματίδιο κάτω από την επίδραση μιας κεντρικής δύναμης Ø Δύναμη παράλληλη στο 0 F q Υποθέτουμε ότι η δύναμη είναι συντηρητική: F = V( ) m Ø V

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.1. Η απλή αρµονική ταλάντωση είναι κίνηση : (δ) ευθύγραµµη περιοδική Α.2. Σώµα εκτελεί απλή αρµονική

Διαβάστε περισσότερα

! =A'B=C!! C! = R" (1)

! =A'B=C!! C! = R (1) Οµογενής κύβος ακµής α ισορροπεί επί ακλό νητης σφαιρικής επιφάνειας ακτίνας R, µε το κέντρο µάζας του ακριβώς πάνω από την κορυφή Α της επιφάνειας. Εάν µεταξύ του κύβου και της σφαιρικής επιφάνειας υπάρχει

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος ΘΕΜΑ α) Υλικό σημείο μάζας κινείται στον άξονα Ο υπό την επίδραση του δυναμικού V=V() Αν για t=t βρίσκεται στη θέση = με ενέργεια Ε δείξτε ότι η κίνησή του δίνεται από

Διαβάστε περισσότερα