Θέμα: Εφαρμογές των πεπερασμένων στοιχείων στην επίλυση προβλημάτων, με την χρήση του προγράμματος ANSYS.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θέμα: Εφαρμογές των πεπερασμένων στοιχείων στην επίλυση προβλημάτων, με την χρήση του προγράμματος ANSYS."

Transcript

1 ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ Θέμα: Εφαρμογές των πεπερασμένων στοιχείων στην επίλυση προβλημάτων, με την χρήση του προγράμματος ANSYS. Σπουδαστής: ημήτριος Α. Κομνηνός Καθηγητής: Πασχάλης Κ. Γκότσης ΑΠΡΙΛΙΟΣ 2008

2

3 Σκοπός της παρούσης πτυχιακής εργασίας Σκοπός της παρούσης πτυχιακής εργασίας είναι η κατανόηση της θεωρίας των πεπερασμένων στοιχείων, καθώς και η εφαρμογή του προγράμματος ANSYS. Έγινε προσομοίωση με την χρήση των πεπερασμένων στοιχείων και του προγράμματος ANSYS για τα παρακάτω προβλήματα: 1. Μελέτη ποδηλάτου υποκείμενου σε στατικό φορτίο 2. Μελέτη καμινάδας, υπολογισμός της κατανομής των θερμοκρασιών 3. Ελεύθερη ταλάντωση πτερυγίου αεροπλάνου Η αναφορά έγινε από Ελληνική αλλά και Ξένη βιβλιογραφία. Θα ήθελα τέλος, να ευχαριστώ τον Δρ. Πασχάλη Κ. Γκότση, καθηγητή του τμήματος μηχανολογίας του Α.Τ.Ε.Ι Σερρών, για την πολύτιμη συμβολή του στην ολοκλήρωση της εργασίας.

4 ΠΕΡΙΕΧΟΜΕΝΑ 1. Γενικά περί των Πεπερασμένων Στοιχείων και του ANSYS 1.1 Εισαγωγή Η ιστορία των πεπερασμένων στοιχείων και του προγράμματος ANSYS Εφαρμογή φορέων στο χώρο, αποτελούμενων από δοκούς 2.1 Εισαγωγή Δυναμική ενέργεια της δοκού Παραδείγματα Π2.1 Μελέτη ποδηλάτου υποκείμενου σε στατικό φορτίο Εφαρμογή Μετάδοσης Θερμότητας 3.1 Μεταφορά θερμότητας στο επίπεδο X,Y. Η εξίσωση της θερμικής διάχυσης 17 Παραδείγματα Π3.1 Μετάδοση θερμότητας Ελεύθερη ταλάντωση πτερυγίου αεροπλάνου 4.1 Εισαγωγή Ελεύθερη ταλάντωση Ιδιότητες των ιδιοδιανυσμάτων. 28 Παραδείγματα Π4.1 Ελεύθερη ταλάντωση πτερυγίου αεροπλάνου

5 1 ο ΚΕΦΑΛΑΙΟ Γενικά περί των Πεπερασμένων Στοιχείων και του ANSYS 1.1 ΕΙΣΑΓΩΓΗ Ο τρόπος επιλύσεως προβλημάτων με χρήση των πεπερασμένων στοιχείων είναι σχεδόν ο ίδιος σε όλες τις περιοχές που εφαρμόζεται. Για παράδειγμα για την επίλυση μιας κατασκευής σχεδιάζουμε πρώτα την κατασκευή κατόπιν την χωρίζουμε σε μικρά γεωμετρικά σχήματα π.χ. τρίγωνα ή τετράπλευρα, τα οποία λέγονται πεπερασμένα στοιχεία. Οι ιδιότητες του υλικού και οι εξισώσεις που χαρακτηρίζουν το υλικό εξετάζονται στα πεπερασμένα στοιχεία σαν συνάρτηση των αγνώστων μετατοπίσεων στις κορυφές του πεπερασμένου στοιχείου (μέθοδος των μετατοπίσεων). Λαμβάνοντας υπ όψιν τις οριακές συνθήκες καθώς και τα φορτία (μηχανικά και θερμικά) καταλήγουμε στις εξισώσεις ισορροπίας της κατασκευής. Η λύση του συστήματος των εξισώσεων ως προς τους αγνώστους, οι οποίοι είναι οι κομβικές μετατοπίσεις είναι η ζητούμενη προσεγγιστική λύση. Γνωστών των κομβικών μετατοπίσεων υπολογίζονται στα διάφορα σημεία της κατασκευής οι τάσεις (σ), οι παραμορφώσεις (ε) και οι αντιδράσεις (R) των στηρίξεων. Λόγοι ανάπτυξης της μεθόδου Προβλήματα που δεν μπορούσαν να τα αγγίξουν οι επιστήμονες έως τώρα και τα θεωρούσαν άλυτα, με την χρήση του ηλεκτρονικού υπολογιστή και των υπολογιστικών μεθόδων όπως των πεπερασμένων στοιχείων τα λύνουν σε μικρό χρόνο. Η ανάγκη της βιομηχανίας και των προβλημάτων της πράξης, οδήγησε στην ανάπτυξη γραφικών προγραμμάτων, τα οποία συνοδεύουν την ανάλυση-υπολογισμό που παρέχουν τα πεπερασμένα στοιχεία. Ο συνδυασμός των γραφικών με την ανάλυση-υπολογισμό των πεπερασμένων στοιχείων υψώνουν την επιστήμη, την απλοποιούν, την κάνουν προσιτή και δημιουργική. Γιατί πρέπει να γνωρίζουμε τα πεπερασμένα στοιχεία; Η θεωρητική γνώση των πεπερασμένων στοιχείων βοηθά να αναπτύξει ο φοιτητής, ο ερευνητής ή ο μηχανικός της πράξης την αυτοπεποίθηση και την ικανότητα να λύνει, να λειτουργεί και να ερμηνεύει σωστά τα αποτελέσματα που λαμβάνει από ένα πρόγραμμα, και αν χρειασθεί να γράψει το δικό του πρόγραμμα. 4

6 1.2 Η ΙΣΤΟΡΙΑ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Το 1909 ο Γερμανός μαθηματικός Ritz ανέπτυξε τις αρχές της μεθόδου των πεπερασμένων στοιχείων. Το 1915 ο Ρώσος μαθηματικός Galerkin ανέπτυξε σε βάθος την θεωρία των πεπερασμένων στοιχείων. Η απουσία του ηλεκτρονικού υπολογιστή καθυστέρησε την διάδοση και περαιτέρω ανάπτυξη της μεθόδου και παρέμεινε στάσιμη μέχρι της ανακαλύψεως του υπολογιστή. Με τον ηλεκτρονικό υπολογιστή η μέθοδος έγινε γνωστή και διαδόθηκε στους ερευνητές. Η ιδέα της ανάπτυξης της μεθόδου των πεπερασμένων «γεννήθηκε» στην αεροναυπηγική από την ανάγκη της εύρεσης λύσης στα δύσκολα προβλήματα που αντιμετώπιζαν στην κατασκευή των αεροσκαφών. Το 1941 ο Hrenikoff εισήγαγε την καλούμενη framework method (μέθοδο του πλαισίου) με την οποία ένα επίπεδο ελαστικό μέσο μπορούσε να αντικατασταθεί με ένα ισοδύναμο σύστημα ράβδων και δοκών. Το 1943 ο Γερμανός μαθηματικός Courant έλυσε το πρόβλημα της στρέψης χρησιμοποιώντας τριγωνικά στοιχεία με την αρχή της ελάχιστης δυναμικής ενέργειας και την ονόμασε Rayleigh-Ritz μέθοδο. Επειδή τότε δεν υπήρχε ο υπολογιστής, η θεωρία του Courant δεν μπορούσε να εφαρμοσθεί και ξεχάστηκε μέχρι που ανακαλύφθηκε ο υπολογιστής και οι επιστήμονες ξανά θεμελίωσαν την μέθοδο. Το 1955 ο Έλληνας Ι. Αργύρης έγραψε ένα βιβλίο με θέμα Ενεργειακά θεωρήματα και η μέθοδος των μητρώων και εισήγαγε τις αρχές των πεπερασμένων στοιχείων. Το 1956 οι Αμερικανοί Turner, Clough, Martin και Top υπολόγισαν το μητρώο δυσκαμψίας της ράβδου και άλλων στοιχείων. Το 1960 ο Ι. Αργύρης και ο Kelsey δημοσίευσαν την εργασία τους η οποία βασιζόταν στις αρχές των πεπερασμένων στοιχείων. Το 1960 ο Clough καθηγητής πανεπιστημίου University of California, Berkeley της Αμερικής, χρησιμοποίησε για πρώτη φορά το όνομα Πεπερασμένα στοιχεία (Finite elements) στην εργασία του και από τότε όλοι χρησιμοποιούσαν την παρακάνω ονομασία. Το 1967 οι Zienkiewicz και Chung έγραψαν το πρώτο βιβλίο των πεπερασμένων στοιχείων. Από τότε ένας μεγάλος αριθμός δημοσιεύσεων και βιβλίων ακολούθησε με αντικείμενο την εφαρμογή των πεπερασμένων στοιχείων στην μηχανική, στα ρευστά, τη θερμότητα, την ακουστική, την κατεργασία των μετάλλων, τον ηλεκτρισμό και ηλεκτρομαγνητισμό και σε πολλές άλλες επιστήμες 5

7 Γενικά περί του προγράμματος ANSYS Το ANSYS είναι ένα κατανοητό και γενικής χρήσης πρόγραμμα υπολογιστή που στηρίζεται στην θεωρία των πεπερασμένων στοιχείων. Το ANSYS είναι ικανό να εκτελέσει στατικές και δυναμικές αναλύσεις ή αναλύσεις μεταφοράς θερμότητας, ροής υγρού καθώς και ηλεκτρομαγνητισμού. Το ANSYS υπήρξε ένα πρωτοποριακό FEA πρόγραμμα. Η τρέχουσα έκδοση του ANSYS έχει μια εντελώς νέα μορφή, με πολλαπλά υπολογιστικά συστήματα (παράθυρα) που ενσωματώνουν το Γραφικό Περιβάλλον του Χρήστη (GUI), ανοιγόμενα μενού, κουτιά διαλόγου και μια οριζόντια μπάρα με τα εργαλεία. Σήμερα θα βρούμε να χρησιμοποιείται το ANSYS σε πολλούς τομείς, όπως: Της μηχανικής Της αεροναυπηγικής Της ναυπηγικής Του ηλεκτρομαγνητισμού Της θερμότητας Της βιομηχανίας αυτοκινήτων Για να χρησιμοποιήσει κανείς σωστά το ANSYS ή οποιοδήποτε άλλο FEA πρόγραμμα υπολογιστή, θα πρέπει αρχικά να έχει κατανοήσει την θεωρία των πεπερασμένων στοιχείων. 6

8 2 ο ΚΕΦΑΛΑΙΟ Εφαρμογή φορέων στο χώρο, αποτελούμενων από δοκούς 2.1 ΕΙΣΑΓΩΓΗ Στο κεφάλαιο αυτό θα κάνουμε τις παρακάτω παραδοχές: I. Η διατομή της δοκού έχει ένα άξονα συμμετρίας που περιέχεται στο επίπεδο της φόρτισης, II. Όλα τα φορτία ενεργούν κάθετα στον άξονα της δοκού και βρίσκονται μέσα στο επίπεδο φόρτισης στο οποίον περιέχεται ο άξονας συμμετρίας της δοκού, III. Κάθε διατομή επίπεδη και κάθετη στον άξονα της δοκού πριν την παραμόρφωση παραμένει επίπεδη και κάθετη μετά την παραμόρφωση, IV. Οι αναπτυσσόμενες τάσεις είναι μικρότερος από το όριο αναλογίας του υλικού και V. Οι παραμορφώσεις είναι μικρές. Μία οριζόντια δοκός με διάφορα φορτία φαίνεται στο σχήμα 2.1 α. Από την θεωρία της δοκού για ισότροπο υλικό, ισχύουν οι σχέσεις: (2.1.1) y (2.1.2) 2 du 2 dx M EI Εξίσωση της ελαστικής γραμμής (2.1.3) Όπου: u είναι το βέλος ή η κατακόρυφη μετατόπιση ενός σημείου της ελαστικής γραμμής σχήμα 2.1 β. Ο δεύτερος άξονας περνά από το κέντρο βάρους της διατομής, σχήμα 2.1 γ. 7

9 α) β) γ) Σχήμα 2.1 α) Φορτία δοκού β) Ελαστική γραμμή u(χ). γ) Διανομή των τάσεων, σ=μy/ι 8

10 Όπου, Μ είναι η καμπτική ροπή, Ε είναι το μέτρο ελαστικότητας Ι=Ιz είναι η ροπή αδράνειας της διατομής ως προς τον άξονα Z που είναι και ουδέτερη γραμμή, σχήμα 2.1γ. σ y ε είναι η ορθή τάση, σχήμα 2.1γ. είναι η απόσταση από την ουδέτερη γραμμή είναι η παραμόρφωση Στο σχήμα 2.1δ. φαίνεται μια δοκός πριν και μετά την παραμόρφωση με το βέλος u και την κλίση ή στροφή du/dx. Θα πρέπει να λάβουμε υπ όψιν ότι μεταξύ δυο γειτονικών στοιχείων της δοκού πρέπει να υπάρχει συνέχεια στις μετατοπίσεις και αυτό εξασφαλίζεται, όταν στην κοινή περιοχή των δυο στοιχείων υπάρχει συνέχεια στο βέλος u και την κλίση du/dx, σχήμα 2.1ε. δ) Παραμόρφωση της διατομής ε) Συνθήκη συνέχειας δοκού μεταξύ δυο στοιχείων Σχήμα 2.1 και δ) Διατομή της δοκού πριν και μετά την φόρτιση ε)συνθήκη συνέχειας μεταξύ δύο στοιχείων 9

11 2.2 ΔΥΝΑΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΗΣ ΔΟΚΟΥ Η ενέργεια παραμόρφωση U, μήκους dx της δοκού είναι: 1 1 du dadx dadx 2 2 A A Από την εξίσωση (2.1.2), η παραπάνω σχέση γίνεται: du 2 2 M 2 2 M d 2 u EI 2 EI 2 A dx 1 y da dx 1 dx 1 EI dx (2.2.1) Όπου Ι είναι η ροπή αδράνειας της διατομής της δοκού: I y2da A Η ολική ενέργεια της δοκού μήκους L είναι L 2 2 L du 2 0 dx 0 1 EI dx qudx P u M q 2 (2.2.2) N N N K K K 10

12 Παράδειγμα 2.1: Μελέτη ποδηλάτου υποκείμενου σε στατικό φορτίο. Δίνεται η κατασκευή ποδηλάτου στο χώρο (Σχήμα 1 Π2.1). Να γίνει μοντελοποίηση με χρήση των πεπερασμένων στοιχείων και να υπολογιστούν τα παρακάτω: 1. Οι κομβικές μετατοπίσεις (mm), 2. Οι ροπές (Nmm) και 3. Οι τάσεις (N/mm 2 ) Σχήμα 1 Π2.1 11

13 3 ο ΚΕΦΑΛΑΙΟ Εφαρμογή Μετάδοσης Θερμότητας 3.1 ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΣΤΟ ΕΠΙΠΕΔΟ X,Y Η ΕΞΙΣΩΣΗ ΤΗΣ ΘΕΡΜΙΚΗΣ ΔΙΑΧΥΣΗΣ Θα εξετασθεί η μετάδοση θερμότητας σε δύο διαστάσεις. Εξετάζουμε την ισορροπία της θερμικής ροής στο εσωτερικό του σώματος. Εξετάζουμε τον διαφορικό όγκο dxdyt (dz=t), όπου t είναι το πάχος του σώματος και είναι σταθερό. Η εισερχόμενη θερμική ροή είναι ίση με την εξερχόμενη θερμική ροή, σχήμα 3.1: ( qx qy qd x yt qydxt Qdxdyt qx dx) dyt ( qy dy) dxt x y και απλοποιώντας την παραπάνω σχέση έχουμε Σχήμα 3.1 Διαφορικός όγκος dxdyt, για την μεταφορά θερμότητας. Θεωρούμε ότι dz=t σταθερό. q x x q y y Q 0 (3.1.1) Ισχύει T και q T y k y qx k x και η παραπάνω σχέση (3.1.1) γίνεται 17

14 k T k T Q 0 x x y y (3.1.2) όπου κ ο συντελεστής μετάδοσης θερμότητας ή συντελεστής θερμικής αγωγιμότητας. Q (W/m 3 ) η ισχύς που απορροφάται ή παράγεται στην μονάδα του όγκου Η εξίσωση (3.1.2) είναι η εξίσωση της θερμικής διάχυσης. Οι οριακές συνθήκες είναι τριών ειδών, σχήμα 3.2: Σχήμα 3.2 Οριακές συνθήκες για προβλήματα θερμότητας στο επίπεδο X,Y Η τιμή της θερμοκρασίας Τ είναι καθορισμένη και ίση με Τ ο στο σύνορο S T : T = Τ ο σύνορο S T. Η ροή με αγωγιμότητα είναι καθορισμένη και ίση με q o στο σύνορο S q : q n = q o στο σύνορο S q. Η q n είναι κάθετη στο σύνορο S q. Όταν υπάρχει μόνωση στην περιοχή S q είναι q o =0. Η ροή με συναγωγή (ή με ρεύματα) είναι καθορισμένη στο σύνορο S c q n = h(t-t ) στο σύνορο S c. 18

15 όπου h ο συντελεστής μεταφοράς θερμότητας Τ η θερμοκρασία του σώματος στο σύνορο S c T η θερμοκρασία του ρευστού. Η q n είναι κάθετη στο σύνορο Sc. Το σύνορο S είναι: S= S T + S q + S c. 19

16 Παράδειγμα 3.1: Μετάδοση θερμότητας Καμινάδα μεγάλου μήκους (Σχήμα 1 Π3.1) από σκυρόδεμα έχει συντελεστή θερμικής αγωγιμότητας k= 1.4 W mc. Η εσωτερική θερμοκρασία είναι T in = 100 o C. Στο περιβάλλον, δηλαδή, στο εξωτερικό της καμινάδας υπάρχει μεταφορά θερμότητας με ρεύματα (συναγωγή), με συντελεστή συναγωγής h= 20 είναι T out = 30 o C W mc 2. Η εξωτερική θερμοκρασία στον αέρα Σχήμα 1 Π3.1 Κάτοψη Καμινάδας Να υπολογιστεί η διανομή της θερμοκρασίας στο τοίχωμα της καμινάδας με χρήση των πεπερασμένων στοιχείων. 20

17 21

18 α) Πλάγια όψη Καμινάδας β) Τομή Α-Α Σχήμα 2 Π3.1 21

19 4 ο ΚΕΦΑΛΑΙΟ Ελεύθερη ταλάντωση πτερυγίου αεροπλάνου 4.1 ΕΙΣΑΓΩΓΗ Σε μία κατασκευή που υπόκειται σε εξωτερικά φορτία, αν η συχνότητα διέγερσης είναι μικρότερη από το 1/3 της χαμηλότερης ιδιοσυχνότητας που προκύπτει από την ελεύθερη ταλάντωση της κατασκευής, τότε η επιρροή της αδράνειας μπορεί να αγνοηθεί και έχουμε στατικό πρόβλημα. Οι εξισώσεις ισορροπίας του στατικού προβλήματος είναι KD = R.Θεωρούμε ότι τα εξωτερικά φορτία R που ασκούνται στο σώμα εφαρμόζονται αργά. Τα φορτία R και οι μετατοπίσεις D μπορεί να μεταβάλλονται αργά με το χρόνο. Στην στατική ανάλυση οι αναπτυσσόμενες δυνάμεις αδράνειας αγνοούνται. Η δύναμη της αδράνειας λαμβάνεται υπ όψιν στην ανάλυση κατασκευής στις παρακάτω περιπτώσεις: Όταν η κατασκευή υπόκειται σε ελεύθερη ταλάντωση, ή Όταν η συχνότητα διέγερσης λόγω των εξωτερικών φορτίων είναι μεγαλύτερη από το 1/3 της χαμηλότερης ιδιοσυχνότητας λόγω ελεύθερης ταλάντωσης της κατασκευής. Η αδράνεια εκφράζεται με το μητρώο μάζας και συμβολίζεται με: m για το πεπερασμένο στοιχειό και με Μ για όλη τη κατασκευή. Αν η απόσβεση είναι σημαντική χρησιμοποιείται το μητρώο απόσβεσης και συμβολίζεται με: c για το πεπερασμένο στοιχείο και με C για όλη τη κατασκευή. Τα φορτία της αδράνειας δημιουργούνται από: Τις δυνάμεις βαρύτητας και Τις φυγοκεντρικές δυνάμεις. Οι φυγοκεντρικές δυνάμεις, είναι οι δυνάμεις οι οποίες με τον χρόνο δεν μεταβάλλουν το μέγεθος και διεύθυνση τους. Οι δυνάμεις αυτές υπολογίζονται με τη ολοκλήρωση της md όπου t=χρόνος και d το διάνυσμα των κομβικών μετατοπίσεων της κατασκευής. 25

20 Τα δυναμικά προβλήματα διαιρούνται σε δύο κατηγορίες: a) Στην μετάδοση (ή διάδοση) του κύματος. Το φορτίο εφαρμόζεται απότομα όπως στον σεισμό ή σε έκρηξη. Η διέγερση του σώματος παρέχει υψηλές συχνότητες. Το κύριο ενδιαφέρον στα προβλήματα αυτά είναι η επίδραση του κύματος τάσεως. Συνήθως η διάδοση του κύματος τάσεως μέσα στο σώμα είναι μακράς διαρκείας και λόγω αυτού οι αναπτυσσόμενες δυνάμεις αδράνειας είναι ασθενικές. b) Στην δυναμική των κατασκευών, η αδράνεια παίζει σπουδαίο ρόλο και λαμβάνεται υπ όψιν στην ανάλυση. Στην κατηγορία αυτή, συνήθως οι συχνότητες της διέγερσης κατασκευής λόγω φορτίων, είναι της ίδιας τάξεως με τις χαμηλότερες ιδιοσυχνότητες λόγω ελεύθερης ταλάντωσης. Τα προβλήματα της δυναμικής των κατασκευών χωρίζονται σε δύο κατηγορίες. Στη πρώτη κατηγορία υπολογίζονται οι ιδιοσυχνότητες και οι ιδιομορφές που παίρνει το σώμα, όταν υπόκειται σε ελεύθερη ταλάντωση. Συνήθως οι ιδιοσυχνότητες χρησιμοποιούνται σαν μέτρο σύγκρισης με τις συχνότητες που αναπτύσσονται στο διεγερμένο σώμα λόγω των δυναμικών φορτίων. Στη δεύτερη κατηγορία υπολογίζεται η μετατόπιση της κατασκευής σαν συνάρτηση του χρόνου, λόγω φορτίου ή δυνάμεων ωθήσεως ή επιτάχυνση του εδάφους. Η ανάλυση που γίνεται ονομάζεται χρόνοιστορία ανάλυση. Για την χρόνο-ιστορία ανάλυση δύο δημοφιλείς υπολογιστικοί μέθοδοι είναι: η Modal ανάλυσης και η η μέθοδος της απ ευθείας ολοκλήρωσης. Η δυναμική των κατασκευών έχει μεγάλη βιβλιογραφία που αναλύουν τις παραπάνω υπολογιστικές μεθόδους καθώς και άλλες τεχνικές. 26

21 4.2 ΕΛΕΥΘΕΡΗ ΤΑΛΑΝΤΩΣΗ Η εξίσωση ελεύθερης ταλάντωσης του σώματος είναι:.. M D KD 0 (4.2.1) Το σώμα στην ελεύθερη ταλάντωση εκτελεί αρμονική κίνηση. Το διάνυσμα των κομβικών μετατοπίσεων D είναι της μορφής: D Usin t (4.2.2) Όπου U είναι το διάνυσμα του εύρους της ταλάντωσης ω είναι η γωνιακή συχνότητα rad sec Από την φυσική ισχύουν οι σχέσεις: f 2 είναι η κυκλική συχνότητα σε μονάδες Hertz 1 Και είναι η ιδιοπερίοδος (ή περίοδος) σε μονάδες χρόνου f (seconds). Παραγωγίζουμε την (4.2.1) δυο φορές ως προς το χρόνο t και έχουμε:.. D 2Usin t (4.2.3) Αντικαθιστούμε τις εξισώσεις (4.2.2) και (4.2.3) στην (4.2.1) και έχουμε U 0 όπου λ=ω 2 (4.2.4) Η εξίσωση (4.2.4) αντιπροσωπεύει το λεγόμενο ιδιοπρόβλημα. Στην εξίσωση (4.2.4), όταν το U=0 έχουμε την μηδενική λύση και όταν U 0 έχουμε μη μηδενική λύση. Συνθήκη για να έχουμε μη μηδενική λύση είναι να ισχύει η σχέση 0 ή det 0 (4.2.5) 27

22 Το ανάπτυγμα της ορίζουσας της εξίσωσης (4.2.5), λέγεται χαρακτηριστική εξίσωση ή χαρακτηριστικό πολυώνυμο ως προς το λ, και είναι n βαθμού, όπου n είναι οι βαθμοί ελευθερίας του συστήματος. Από την λύση της χαρακτηριστικής εξίσωσης (4.2.5) ως προς το λ, υπολογίζονται οι n το πλήθος τιμές λ i,i=1,2,3,,n οι οποίες λέγονται ιδιοτιμές ή ιδιοσυχνότητες. Η μικρότερη λ i λέγεται θεμελιώδη ισιοσυχνότητα. Για κάθε τιμή του λ i από την εξίσωση (4.2.4) υπολογίζεται το αντίστοιχο διάνυσμα U i το οποίο ονομάζεται ιδιοδιάνυσμα ή ιδιομοορφή, διαστάσεων n ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΙΔΙΟΔΙΑΝΥΣΜΑΤΩΝ Η εξίσωση (4.2.4) γράφεται ως εξής: KU = λ MU (4.2.6) Το Κ είναι μητρώο συμμετρικό και θετικά ορισμένο. Για ένα συμμετρικό και θετικά ορισμένο μητρώο δυσκαμψίας Κ, διαστάσεων n n, υπάρχουν n το πλήθος θετικές πραγματικές ιδιοτιμές με τα αντίστοιχα ιδιοδιανύσματα που ικανοποιούν την (4.2.6). Οι ιδιοτιμές με αύξουσα τάξη είναι: 0 λ 1 λ 2 λ n Αν U 1, U 2,, U n είναι τα αντίστοιχα ιδιοδιανύσματα τότε είναι: KU i = λ i MU i (4.2.7) Τα ιδιοδιανύσματα U i και U j για i j είναι ορθογωνικά ως προς τα συμμετρικά μητρώα δυσκαμψίας και μάζας και είναι: U KU UTMU 0 (4.2.8) T i j i j 28

23 Υπάρχουν διάφοροι μέθοδοι κανονικοποίησης του μεγέθους των ιδιοσυστημάτων που χρησιμοποιούνται στα προγράμματα των πεπερασμένων στοιχείων. Ο συνήθης τρόπος είναι να γίνει κανονικοποίηση ως προς το μητρώο μάζας: U MU T i i 1 για i=j (4.2.9) Από την εξίσωση (4.2.9) και (4.2.7) προκύπτει η σχέση: U KU i T i i για i=j όπου i = 2 (4.2.10) i 29

24 Παράδειγμα 4.1: Ελεύθερη ταλάντωση πτερυγίου αεροπλάνου Δίνεται η κατασκευή πτερύγιου αεροπλάνου στο χώρο(σχήμα 1 Π4.1). Να μελετηθεί η ελεύθερη ταλάντωσή του με χρήση των πεπερασμένων στοιχείων. Σχήμα 1 Π4.1 Εξετασθήκαν διάφορα υλικά με Ε=38000 N/mm 2, 2Ε=76000 N/mm 2, 1,5Ε=57000 N/mm 2, 0,5Ε=19000 N/mm 2 και 0,2Ε=7600 N/mm 2. Και ν=0,33 (Λόγος του Poison) 30

25 Ελεύθερη ταλάντωση πτερυγίου με μέτρο ελαστικότητας Ε=38000 N / mm 2 Πίνακας 4.1 Ιδιομορφή Συχνότητα Hz I II III IV V

26 Ροή της θερμότητας στην καμινάδα Σχήμα 4 Π3.1 (W / m 2 )

27 Σχήμα 3 Π3.1 Μοντέλο της καμινάδας με πεπερασμένα στοιχεία

28 Διανομή των θερμοκρασιών στην καμινάδα Σχήμα 5 Π3.1 ( ο C )

29 Σχήμα 3 Π4.1 Για συχνότητα Hz και ιδιομορφή Ι

30 Σχήμα 4 Π4.1 Για συχνότητα Hz και ιδιομορφή ΙΙ

31 Σχήμα 5 Π4.1 Για συχνότητα Hz και ιδιομορφή ΙΙΙ

32 Σχήμα 6 Π4.1 Για συχνότητα Hz και ιδιομορφή IV

33 Σχήμα 7 Π4.1 Για συχνότητα Hz και ιδιομορφή V

34 Σχήμα 2 Π4.1 Μοντέλο πτερυγίου με πεπερασμένα στοιχεία

35 Σχήμα 2 Π2.1 Μοντέλο ποδηλάτου με πεπερασμένα στοιχεία

36 Ροπές Σχήμα 5 Π2.1 (N mm)

37 Τάσεις Σχήμα 6 Π2.1 (N / mm 2 )

38 Τιμές των κομβικών μετατοπίσεων Σχήμα 4 Π2.1 (mm)

39 Αρχική και τελική παραμόρφωση Αρχικό σχήμα Σχήμα μετά την παραμόρφωση Σχήμα 3 Π2.1

40 ΒΙΒΛΙΟΓΡΑΦΙΑ Ansys Manual, version 10. Πασχάλης, Κ. Γκότσης., Πεπερασμένα Στοιχεία, Εκδόσεις Ζήτη, Θεσσαλονίκη, Κωνσταντίνος Δαυίδ, Κωνσταντίνος Ανθυμίδης., Σχεδίαση με Η/Υ: το AutoCAD στην πράξη, Εκδόσεις Ίων, Αθήνα, Ιωάννης Οσσανλής., Μετάδοση Θερμότητας, Σημειώσεις.

Θέμα: ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΑΓΩΓΟΥ ΜΕΓΑΛΟΥ ΜΗΚΟΥΣ ΜΕ ΕΣΩΤΕΡΙΚΗ ΠΙΕΣΗ ΜΕ ΤΗΝ ΧΡΗΣΗ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ.

Θέμα: ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΑΓΩΓΟΥ ΜΕΓΑΛΟΥ ΜΗΚΟΥΣ ΜΕ ΕΣΩΤΕΡΙΚΗ ΠΙΕΣΗ ΜΕ ΤΗΝ ΧΡΗΣΗ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ. ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ Θέμα: ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΑΓΩΓΟΥ ΜΕΓΑΛΟΥ ΜΗΚΟΥΣ ΜΕ ΕΣΩΤΕΡΙΚΗ ΠΙΕΣΗ ΜΕ ΤΗΝ ΧΡΗΣΗ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ. Φοιτητές

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ

ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ Εισαγωγή στη μέθοδο των πεπερασμένων στοιχείων Α. Θεοδουλίδης Η Μεθοδος των Πεπερασμένων στοιχείων Η Μέθοδος των ΠΣ είναι μια

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι

ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι Δυναμική Μηχανών Ι Ακαδημαϊκό έτος: 015-016 ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 1.1- Δυναμική Μηχανών Ι Ακαδημαϊκό έτος: 015-016 Copyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο Δυναμικής και Κατασκευών - 015.

Διαβάστε περισσότερα

Γενικευμένα Mονοβάθμια Συστήματα

Γενικευμένα Mονοβάθμια Συστήματα Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Γενικευμένα Mονοβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Δυναμική Ανάλυση Ραβδωτών Φορέων 1 1. Είδη γενικευμένων μονοβαθμίων συστημάτων xu

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή Διδάσκων: Γιάννης Χουλιάρας Επίλυση υπερστατικών φορέων Για την επίλυση των ισοστατικών φορέων (εύρεση αντιδράσεων και μεγεθών έντασης) αρκούν

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ

ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ έκδοση DΥΝI-DCMB_2016b Copyright

Διαβάστε περισσότερα

Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια)

Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια) Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια) Εξίσωση Κίνησης Μονοβάθμιου Συστήματος: Επιρροή Μόνιμου Φορτίου Βαρύτητας Δ03-2 Μέχρι τώρα στη διατύπωση της εξίσωσης κίνησης δεν έχει ληφθεί υπόψη το

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Διδάσκων: Κολιόπουλος Παναγιώτης

Διδάσκων: Κολιόπουλος Παναγιώτης ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 10: ΣΥΣΤΗΜΑΤΑ ΔΥΟ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ (-ΒΕ) Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55

ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55 ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55 ΚΕΦΑΛΑΙΟ 3 ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 3.. Εισαγωγή Αναφέρθηκε ήδη στο ο κεφάλαιο ότι η αναπαράσταση της ταλαντωτικής

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΤΡΙΤΗ 18 ΑΠΡΙΛΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΤΡΙΤΗ 18 ΑΠΡΙΛΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΤΡΙΤΗ 8 ΑΠΡΙΛΙΟΥ 07 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ A Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό κάθε

Διαβάστε περισσότερα

Ενότητα: Υπολογισμός διατμητικών τάσεων

Ενότητα: Υπολογισμός διατμητικών τάσεων ΔΙΑΜΗΚΗΣ ΑΝΤΟΧΗ ΠΛΟΙΟΥ Ενότητα: Υπολογισμός διατμητικών τάσεων Α. Θεοδουλίδης Υπολογισμός διατμητικών τάσεων Η ύπαρξη διατμητικών τάσεων οφείλεται στην διατμητική δύναμη Q(x): Κατανομή διατμητικών τάσεων

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Πολυβάθμια Συστήματα. Ε.Ι. Σαπουντζάκης. Καθηγητής ΕΜΠ. Δυναμική Ανάλυση Ραβδωτών Φορέων

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Πολυβάθμια Συστήματα. Ε.Ι. Σαπουντζάκης. Καθηγητής ΕΜΠ. Δυναμική Ανάλυση Ραβδωτών Φορέων Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Πολυβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Συστήματα με Κατανεμημένη Μάζα και Δυσκαμψία 1. Εξίσωση Κίνησης χωρίς Απόσβεση: Επιβαλλόμενες

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος

Διαβάστε περισσότερα

Φυσική Ο.Π. Γ Λυκείου

Φυσική Ο.Π. Γ Λυκείου Φυσική Ο.Π. Γ Λυκείου ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις (Α-Α) και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α) Δύο σώματα συγκρούονται κεντρικά

Διαβάστε περισσότερα

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Δ03-2 Οι ενεργειακές μέθοδοι αποτελούν τη βάση για υπολογισμό των μετακινήσεων, καθώς η μετακίνηση εισέρχεται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου A A N A B P Y A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου Στερεό σώμα με κυλινδρική συμμετρία (κύλινδρος, σφαίρα, σφαιρικό κέλυφος, κυκλική στεφάνη κλπ) μπορεί να

Διαβάστε περισσότερα

Κεφάλαιο 14: Στατική μη-γραμμική Ανάλυση (Pushover Analysis) Πολυωρόφων

Κεφάλαιο 14: Στατική μη-γραμμική Ανάλυση (Pushover Analysis) Πολυωρόφων Κεφάλαιο : Στατική μη-γραμμική Ανάλυση (Pshover Analyss) Πολυωρόφων Επίπεδων Πλαισίων Μαθηματική Διατύπωση Ως προοίμιο για τη μαθηματική διατύπωση της στατικής μη-γραμμικής (υπερωθητικής) ανάλυσης (pshover

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π Γ ΛΥΚΕΙΟΥ 22 / 04 / 2018

ΦΥΣΙΚΗ Ο.Π Γ ΛΥΚΕΙΟΥ 22 / 04 / 2018 Γ ΛΥΚΕΙΟΥ 22 / 04 / 2018 ΦΥΣΙΚΗ Ο.Π ΘΕΜΑ Α Α1. Μία ηχητική πηγή που εκπέμπει ήχο συχνότητας κινείται με σταθερή ταχύτητα πλησιάζοντας ακίνητο παρατηρητή, ενώ απομακρύνεται από άλλο ακίνητο παρατηρητή.

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 20. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 20. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 2 Χειμερινό Εξάμηνο 213 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/214, 12. Απαιτείται αποδεικτικό ταυτότητας Απαγορεύεται η παρουσία & χρήση κινητού!

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 14/4/2019

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 14/4/2019 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 14/4/2019 ΘΕΜΑ A Στις ερωτήσεις 1-4 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

Περιπτώσεις συνοριακών συνθηκών σε προβλήματα γεωτεχνικής μηχανικής

Περιπτώσεις συνοριακών συνθηκών σε προβλήματα γεωτεχνικής μηχανικής Κεφάλαιο 5 Περιπτώσεις συνοριακών συνθηκών σε προβλήματα γεωτεχνικής μηχανικής Στο παρόν κεφάλαιο παρουσιάζονται οι περιπτώσεις συνοριακών συνθηκών οι οποίες συναντώνται σε προβλήματα γεωτεχνικής μηχανικής.

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 23/04/2017 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ο.Π ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Δυναμικά Μοντέλα Συνεχούς Μέσου

Δυναμική Μηχανών I. Δυναμικά Μοντέλα Συνεχούς Μέσου Δυναμική Μηχανών I 8 1 Δυναμικά Μοντέλα Συνεχούς Μέσου 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Μοντελοποίηση

Διαβάστε περισσότερα

2.1 Παραμορφώσεις ανομοιόμορφων ράβδων

2.1 Παραμορφώσεις ανομοιόμορφων ράβδων ΑΞΟΝΙΚΗ ΦΟΡΤΙΣΗ 9 Αξονική φόρτιση. Παραμορφώσεις ανομοιόμορφων ράβδων. Ελαστική ράβδος ΑΒ μήκους, Γ B μέτρου ελαστικότητας Ε και / συντελεστή θερμικής διαστολής α, είναι πακτωμένη στα σημεία Α και Β και

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m 0.25 Kg κινείται στο επίπεδο xy, με τις εξισώσεις κίνησης

Διαβάστε περισσότερα

ΣΥΜΜΕΤΟΧΗ Ι ΙΟΜΟΡΦΩΝ ΣΤΗ ΜΕΘΟ Ο ΕΠΑΛΛΗΛΙΑΣ

ΣΥΜΜΕΤΟΧΗ Ι ΙΟΜΟΡΦΩΝ ΣΤΗ ΜΕΘΟ Ο ΕΠΑΛΛΗΛΙΑΣ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών ΣΥΜΜΕΤΟΧΗ Ι ΙΟΜΟΡΦΩΝ ΣΤΗ ΜΕΘΟ Ο ΕΠΑΛΛΗΛΙΑΣ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ υναμική Ανάλυση Ραβδωτών Φορέων Μετακινήσεις στη μέθοδο επαλληλίας των ιδιομορφών,

Διαβάστε περισσότερα

Πολυβάθμια Συστήματα. (συνέχεια)

Πολυβάθμια Συστήματα. (συνέχεια) Πολυβάθμια Συστήματα (συνέχεια) Ελεύθερη Ταλάντωση Xωρίς Απόσβεση Πολυβάθμια Συστήματα: Δ0- Για ένα πολυβάθμιο σύστημα που ταλαντώνεται ελεύθερα χωρίς απόσβεση, λόγω μόνο επιβαλλόμενων αρχικών μετατοπίσεων

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A. 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A. 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3 1.1 Κατασκευές και δομοστατική 3 1.2 Διαδικασία σχεδίασης κατασκευών 4 1.3 Βασικά δομικά στοιχεία 6 1.4 Είδη κατασκευών 8 1.4.1 Δικτυώματα 8

Διαβάστε περισσότερα

Ελαστικά με σταθερά ελαστικότητας k, σε πλευρικές φορτίσεις και άκαμπτα σε κάθετες φορτίσεις. Δυναμικό πρόβλημα..

Ελαστικά με σταθερά ελαστικότητας k, σε πλευρικές φορτίσεις και άκαμπτα σε κάθετες φορτίσεις. Δυναμικό πρόβλημα.. Φάσματα Απόκρισης Κεφ.20 Θ. Σώκος Εργαστήριο Σεισμολογίας Τμήμα Γεωλογίας Δυναμική των κατασκευών Φάσματα Απόκρισης Το πρόβλημα της αλληλεπίδρασης σεισμού με τις κατασκευές είναι δυναμικό πρόβλημα του

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Εξαιτίας της συνιστώσας F X αναπτύσσεται εντός του υλικού η ορθή τάση σ: N σ = A N 2 [ / ] Εξαιτίας της συνιστώσας F Υ αναπτύσσεται εντός του υλικού η διατμητική τάση τ: τ = mm Q 2 [ N / mm ] A

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ Πορεία επίλυσης. Ευρίσκεται

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι

Διαβάστε περισσότερα

Γ.Κονδύλη 1 & Όθωνος-Μ αρούσι Τ ηλ. Κέντρο: , /

Γ.Κονδύλη 1 & Όθωνος-Μ αρούσι Τ ηλ. Κέντρο: ,  / Γ.Κονδύλη & Όθωνος-Μ αρούσι Τ ηλ. Κέντρο:20-6.24.000, http:/ / www.akadimos.gr ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ 204 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επιμέλεια Θεμάτων: Παπαδόπουλος Πασχάλης ΘΕΜΑ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΥΠΟΛΟΓΙΣΜΟΣ ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ TREYLOR ΜΕΓΙΣΤΗΣ ΙΚΑΝΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑΣ ΦΟΡΤΙΟΥ 500Kp ΣΠΟΥΔΑΣΤΕΣ

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΙΟΣ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΝΕΑ (6)

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΙΟΣ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΝΕΑ (6) ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΙΟΣ 019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΝΕΑ (6) ΘΕΜΑ Α. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού εκκρεμούς.

Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού εκκρεμούς. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 22.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 22. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι -. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 Cprigh ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 0. Με επιφύλαξη παντός

Διαβάστε περισσότερα

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 1. Εισαγωγικές έννοιες στην μηχανική των υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενο μαθήματος Μηχανική των Υλικών: τμήμα των θετικών επιστημών που

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 A2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr A2. Δικτυώματα/ Μηχανική Υλικών 1 Τι είναι ένα δικτύωμα Είναι ένα σύστημα λεπτών,

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας 2 Kg με αρχική ταχύτητα υ 0 8i κινείται με σταθερή επιτάχυνση

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. 22 Μαΐου 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. 22 Μαΐου 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Μαΐου 018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Σεµινάριο Αυτοµάτου Ελέγχου

Σεµινάριο Αυτοµάτου Ελέγχου ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Αυτοµατισµού Σεµινάριο Αυτοµάτου Ελέγχου Ειδικά θέµατα Ανάλυσης συστηµάτων Σύνθεσης συστηµάτων ελέγχου Μελέτης στοχαστικών συστηµάτων. Καλλιγερόπουλος Σεµινάριο Αυτοµάτου Ελέγχου Ανάλυση

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 Εισαγωγή στο Μάθημα Μηχανική των Υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Εισαγωγή/ Μηχανική Υλικών 1 Χρονοδιάγραμμα 2017 Φεβρουάριος

Διαβάστε περισσότερα

β. F = 2ρΑυ 2 γ. F = 1 2 ραυ 2 δ. F = 1 3 ραυ 2

β. F = 2ρΑυ 2 γ. F = 1 2 ραυ 2 δ. F = 1 3 ραυ 2 Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα σύστημα ελατηρίου - μάζας εκτελεί απλή αρμονική ταλάντωση πλάτους Α. Αν τετραπλασιάσουμε την ολική ενέργεια της ταλάντωσης αυτού του συστήματος

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Θέμα Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθμό της

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 015 3. Δοκοί (φορτία NQM) Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 3. Δοκοί (φορτία NQΜ)/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής με τα διάφορα είδη φορτίων.

Διαβάστε περισσότερα

2. Κατά την ανελαστική κρούση δύο σωμάτων διατηρείται:

2. Κατά την ανελαστική κρούση δύο σωμάτων διατηρείται: Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα πραγματικό ρευστό ρέει σε οριζόντιο σωλήνα σταθερής διατομής με σταθερή ταχύτητα. Η πίεση κατά μήκος του σωλήνα στην κατεύθυνση της ροής μπορεί

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 Β5. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : MAIOΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : MAIOΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο: ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : MAIOΣ 018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β

ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ Ο : ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ : ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β Ερώτηση Ένα σώμα εκτελεί απλή

Διαβάστε περισσότερα

Σεισμική Απόκριση Μονοβάθμιου Συστήματος

Σεισμική Απόκριση Μονοβάθμιου Συστήματος Σεισμική Απόκριση Μονοβάθμιου Συστήματος Εισαγωγή Σεισμική Απόκριση Μονοβάθμιου Συστήματος: Δ16-2 Η κίνηση των στηρίξεων προκαλεί δυναμική καταπόνηση στην κατασκευή, έστω και αν δεν επενεργούν εξωτερικά

Διαβάστε περισσότερα

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια)

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια) Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια) ο Θεώρημα Castigliano Δ06- Το ο ΘεώρημαCastigliano αποτελεί μια μέθοδο υπολογισμού της μετακίνησης (μετάθεσης ή στροφής) ενός σημείου του φορέα είτε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Κανάρη 6, Δάφνη Τηλ. 10 97194 & 10 976976 ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑ Α Ι. Στις ερωτήσεις A1-A4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ

1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ 1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Θέμα 1: Α. Στις ερωτήσεις 1-3 να σημειώσετε το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα σώμα μάζας m

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016 A2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr A2. Δικτυώματα/ Μηχανική Υλικών 1 Τι είναι ένα δικτύωμα Είναι ένα σύστημα λεπτών,

Διαβάστε περισσότερα

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση 1.

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Προσέγγιση Galerkin

Δυναμική Μηχανών I. Προσέγγιση Galerkin Δυναμική Μηχανών I 8 2 Προσέγγιση Galerkin Χειμερινό Εξάμηνο 214 Τμήμα Μηχανολόγων Μηχανικών, ΕΜΠ Δημήτριος Τζεράνης, Ph.D. 215 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 21. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 21. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 21 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/2014, 12.00 Απαιτείται αποδεικτικό ταυτότητας (Α.Τ., Διαβατήριο, Διπλ. Οδ.) Απαγορεύεται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΘΕΜΑ Α Ι. Α1.Β Α2.Γ Α3. Α Α4. Α ΙΙ. 1.Σ 2.Σ 3.Λ 4.Σ 5. Λ

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΘΕΜΑ Α Ι. Α1.Β Α2.Γ Α3. Α Α4. Α ΙΙ. 1.Σ 2.Σ 3.Λ 4.Σ 5. Λ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Ι. Α1.Β Α2.Γ Α3. Α Α4. Α ΙΙ. 1.Σ 2.Σ 3.Λ 4.Σ 5. Λ ΘΕΜΑ Β Β1. Σωστή η β) Έστω Σ το υλικό σημείο που απέχει d από το άκρο Α. Στο σχήμα

Διαβάστε περισσότερα

7. Δυναμική Ανάλυση ΠΒΣ

7. Δυναμική Ανάλυση ΠΒΣ ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ 7. Δυναμική Ανάλυση ΠΒΣ Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή στα πολυβάθμια συστήματα

Διαβάστε περισσότερα

Πρόλογος... 15. Οι συγγραφείς... 18

Πρόλογος... 15. Οι συγγραφείς... 18 Περιεχόμενα Πρόλογος... 15 Οι συγγραφείς... 18 1 Θεμελιώδεις έννοιες... 19 1.1 ΕΙΣΑΓΩΓΗ... 19 1.2 ΙΣΤΟΡΙΚΟ... 19 1.3 ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΠΑΡΟΥΣΙΑΣΗΣ... 20 1.4 ΤΑΣΕΙΣ ΚΑΙ ΙΣΟΡΡΟΠΙΑ... 20 1.5 ΣΥΝΟΡΙΑΚΕΣ ΣΥΝΘΗΚΕΣ...

Διαβάστε περισσότερα

ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών

ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών Ασκήσεις για λύση Η ράβδος του σχήματος είναι ομοιόμορφα μεταβαλλόμενης κυκλικής 1 διατομής εφελκύεται αξονικά με δύναμη Ρ. Αν D d είναι οι διάμετροι των ακραίων

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα

Διαβάστε περισσότερα

ή/και με απόσβεση), και να υπολογίσουν αναλυτικά την απόκριση τους σε ελεύθερη ταλάντωση.

ή/και με απόσβεση), και να υπολογίσουν αναλυτικά την απόκριση τους σε ελεύθερη ταλάντωση. Τίτλος μαθήματος: Δυναμική Κατασκευών Ι Κωδικός μαθήματος: CE08_S02 Πιστωτικές μονάδες: 5 Φόρτος εργασίας (ώρες): 153 Επίπεδο μαθήματος: Προπτυχιακό Μεταπτυχιακό Τύπος μαθήματος: Υποχρεωτικό Επιλογής Κατηγορία

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π. Αν η κρούση της σφαίρας με τον κατακόρυφο τοίχο είναι ελαστική, τότε ισχύει:. = και =.. < και =. γ. < και <. δ. = και <.

ΦΥΣΙΚΗ Ο.Π. Αν η κρούση της σφαίρας με τον κατακόρυφο τοίχο είναι ελαστική, τότε ισχύει:. = και =.. < και =. γ. < και <. δ. = και <. Γ ΛΥΚΕΙΟΥ 22 / 04 / 2018 ΦΥΣΙΚΗ Ο.Π ΘΕΜΑ Α Α1. Μία ηχητική πηγή που εκπέμπει ήχο συχνότητας κινείται με σταθερή ταχύτητα πλησιάζοντας ακίνητο παρατηρητή, ενώ απομακρύνεται από άλλο ακίνητο παρατηρητή.

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Οδηγίες: ) Το δοκίμιο αποτελείται από έξι (6) θέματα. ) Να απαντήσετε σε όλα τα θέματα. ) Επιτρέπεται

Διαβάστε περισσότερα

Δυναμική Ανάλυση Κατασκευών - Πειράματα Μονοβαθμίων Συστημάτων (ΜΒΣ) σε Σεισμική Τράπεζα

Δυναμική Ανάλυση Κατασκευών - Πειράματα Μονοβαθμίων Συστημάτων (ΜΒΣ) σε Σεισμική Τράπεζα ΠΠΜ 5: Ανάλυση Κατασκευών με Η/Υ, Πειράματα ΜΒΣ σε Σεισμική Τράπεζα Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 5: Ανάλυση Κατασκευών με Η/Υ Δυναμική

Διαβάστε περισσότερα

Αγωγιμότητα στα μέταλλα

Αγωγιμότητα στα μέταλλα Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Εισαγωγή Παραμορφώσεις Ισοστατικών Δοκών και Πλαισίων: Δ22-2 Οι κατασκευές, όταν υπόκεινται σε εξωτερική φόρτιση, αναπτύσσουν

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

Προτεινόμενα θέματα για τις εξετάσεις 2011

Προτεινόμενα θέματα για τις εξετάσεις 2011 Προτεινόμενα θέματα για τις εξετάσεις 011 Τάξη: Γ Γενικού Λυκείου Μάθημα: Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΘΕΜΑ Α Α1-A4 Να επιλέξετε τη σωστή από τις απαντήσεις Α1. Ένα σώμα μάζας είναι στερεωμένο

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 6 Ιανουαρίου, Προτεινόμενες Λύσεις Πρόβλημα - ( μονάδες) Ένα όχημα, μαζί με ένα κανόνι που είναι ακλόνητο πάνω σε αυτό,

Διαβάστε περισσότερα

Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων

Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/ E-mail: gloudos@teiath.gr ΚΑΤΑΝΕΜΗΜΕΝΕΣ ΔΥΝΑΜΕΙΣ Κέντρο βάρους μάζας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 12. Ένας οριζόντιος ομογενής δίσκος ακτίνας μπορεί να περιστρέφεται χωρίς τριβές, γύρω από κατακόρυφο

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (ΑΠΟΦΟΙΤΟΙ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΔΕΚΑΠΕΝΤΕ (15) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας

Διαβάστε περισσότερα

Σημειώσεις του μαθήματος Μητρωϊκή Στατική

Σημειώσεις του μαθήματος Μητρωϊκή Στατική ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σημειώσεις του μαθήματος Μητρωϊκή Στατική Π. Γ. Αστερής Αθήνα, Μάρτιος 017 Περιεχόμενα Κεφάλαιο 1 Ελατήρια σε σειρά... 1.1 Επιλογή μονάδων και καθολικού

Διαβάστε περισσότερα

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής κ. Σ. Νατσιάβας Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων Στοιχεία Φοιτητή Ονοματεπώνυμο: Νατσάκης Αναστάσιος Αριθμός Ειδικού Μητρώου:

Διαβάστε περισσότερα

Αγωγιμότητα στα μέταλλα

Αγωγιμότητα στα μέταλλα Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 1 Ονοματεπώνυμο.. Υπεύθυνος Καθηγητής: Γκαραγκουνούλης Ιωάννης Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ > Κυριακή 20-3-2011 2 ΘΕΜΑ 1ο Να γράψετε στο

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 19/11/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 19/11/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 19/11/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω

Διαβάστε περισσότερα

ΕΛΑΣΤΙΚΟΣ ΛΥΓΙΣΜΟΣ ΥΠΟΣΤΥΛΩΜΑΤΩΝ

ΕΛΑΣΤΙΚΟΣ ΛΥΓΙΣΜΟΣ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΙΚΗΣ ΕΛΑΣΤΙΚΟΣ ΛΥΓΙΣΜΟΣ ΥΠΟΣΤΥΛΩΜΑΤΩΝ Λυγισμός - Ευστάθεια Κρίσιμο φορτίο λυγισμού Δρ. Σ. Π. Φιλόπουλος Εισαγωγή Μέχρι στιγμής στην ανάλυση των κατασκευών επικεντρώσαμε

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΝ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ασκήσεις προηγούμενων

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Κανάρη 36, Δάφνη Τηλ. 10 9713934 & 10 9769376 ΘΕΜΑ Α ΘΕΜΑ Α ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος

Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος Εισαγωγή Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος: Δ05-2 Μία κατασκευή λέγεται ότι εκτελεί ελεύθερη ταλάντωση όταν μετακινηθεί από τη θέση στατικής ισορροπίας

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 016 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ 1 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ 1 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ.. Οι βασικές έννοιες Η ταλαντωτική κίνηση είναι κίνηση που επαναλαμβάνεται στον χρόνο. Οι ταλαντώσεις ενός η περισσοτέρων μερών μιας μηχανής η ενός μηχανισμού

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΜΑΘΗΜΑ ΤΑΞΗ Γ ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ ΚΑΘ/ΤΕΣ ΓΙΑΡΕΝΟΠΟΥΛΟΣ Λ. ΚΟΥΣΟΥΛΗΣ Δ.

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΜΑΘΗΜΑ ΤΑΞΗ Γ ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ ΚΑΘ/ΤΕΣ ΓΙΑΡΕΝΟΠΟΥΛΟΣ Λ. ΚΟΥΣΟΥΛΗΣ Δ. ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΤΑΞΗ Γ ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ 15-1-017 ΚΑΘ/ΤΕΣ ΓΙΑΡΕΝΟΠΟΥΛΟΣ Λ. ΚΟΥΣΟΥΛΗΣ Δ. ΒΑΘΜΟΣ: /100, /0 Θέμα 1ο 1. Αν η εξίσωση ενός αρμονικού κύματος είναι y =10ημ(6πt

Διαβάστε περισσότερα

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης 4o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα

Διαβάστε περισσότερα

Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : , 12:00-15:00 ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ

Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : , 12:00-15:00 ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : --, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΑΡ. ΜΗΤΡ :.......

Διαβάστε περισσότερα

Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα.

Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΕΡΕΟΎ ΣΏΜΑΤΟΣ Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα. Ένα υλικό σημείο μπορεί να κάνει μόνο μεταφορική

Διαβάστε περισσότερα

Απαντήσεις. Α5. α. (Λ) β. (Λ) γ. (Σ) δ. (Σ) ε. (Λ) ΘΕΜΑ Β Β1. Σε κάθε θέση η ενέργειά της ταλάντωσης παραμένει σταθερή. Έτσι για τις θέσεις με

Απαντήσεις. Α5. α. (Λ) β. (Λ) γ. (Σ) δ. (Σ) ε. (Λ) ΘΕΜΑ Β Β1. Σε κάθε θέση η ενέργειά της ταλάντωσης παραμένει σταθερή. Έτσι για τις θέσεις με ΘΕΜΑ Α Α. (γ) Α. (α) Α3. (δ) Α4. (β) Απαντήσεις Α5. α. (Λ) β. (Λ) γ. (Σ) δ. (Σ) ε. (Λ) ΘΕΜΑ Β Β. Σε κάθε θέση η ενέργειά της ταλάντωσης παραμένει σταθερή. Έτσι για τις θέσεις με απομακρύνσεις και θα έχουμε

Διαβάστε περισσότερα