Teste EDLIRA ÇUPI SERVETE CENALLA
|
|
- Οφιούχος Παπαδάκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Teste EDLIRA ÇUPI SERVETE CENALLA Matematika gjithmonë me ju 1 Botimet shkollore Albas 1
2 Test përmbledhës për kapitullin I 1. Lidh me vijë fi gurën me ngjyrën. Ngjyros. (6 pikë) E VERDHË E KUQE E KALTËR GRI E GJELBËR 2. Vizato si modeli. (8 pikë) 3. Lidh fi gurat me fjalët. (10 pikë) TREKËNDËSH DREJTKËNDËSH RRETH TRAPEZ KATROR 2
3 4. Vizato elemente sipas fi gurës. (2 pikë) 5. Vizato rrathë AQ SA fl utura. (2 pikë) 6. Vizato. (4 pikë) AQ SA MË SHUMË 7. Shëno me X bashkësinë që ka më pak elemente. (1 pikë) 8. Vizato Δ më pak se O. (2 pikë) Vlerësimi Dobët Mjaftueshëm Mirë Shumë mirë Pikët
4 Test përmbledhës për kapitujt II V 1. Vizato elemente aq sa tregon etiketa Vizato. MË SHUMË 5 MË PAK 7 AQ SA 6 3. Vendos numrat e njëpasnjëshëm në shtyllë dhe në rresht
5 4. Lidh me shigjetë përgjigjen e saktë Qarko mosbarazimin e saktë. a. 5 < 5 b. 8 > 6 c. 7 > 4 ç. 3 < 9 d. 5 < 7 dh. 10 < 6 6. Krahaso. Plotëso. 6 > 3 < 7. Vazhdo vargun numerik. 1, 3,,,,, 8. Plotëso. 4,, 6,, 7,, 9, 8, 7,,, 4,, 2, 1, 9. Mira bleu 6 fl etore. Ada bleu 4 fl etore më shumë. Sa fl etore bleu Ada? Shënim. Mësuesi/ja përzgjedh ushtrimet dhe vendos vetë pikët dhe vlerësimet. 5
6 Test përmbledhës për kapitujt I - VI 1. Plotëso vargun me numrin e duhur. (2 pikë) Qarko mosbarazimin e saktë. (8 pikë) 5 < 7 5 < 5 9 > > > 4 10 > 4 4 < < Plotëso bashkësitë me elemente sipas etiketës. (5 pikë) rreth trapez trekëndësh drejtkëndësh katror 4. Plotëso katrorët me numra më të vegjël se numri i dhënë. (3 pikë)
7 7 Teste matematike 1 5. Plotëso barazimet. (9 pikë) 6 2 = = = = = = = = = 6 6. Plotëso etiketën me numrin që duhet. (2 pikë) 7. Lidh me shigjetë. 2 më shumë 3 më pak (4 pikë) Zgjidh problemën me skemë. (2 pikë) Ani bleu 3 libra, ndërsa Beni 4 libra. Sa libra blenë fëmijët? Ani Beni Përgjigje: Vlerësimi Dobët Mjaftueshëm Mirë Shumë mirë Pikët
8 Test përmbledhës për kapitujt VI VII 1. Plotëso. (5 pikë) 20 = dhjetëshe = 8 dhjetëshe 40 = dhjetëshe = 3 dhjetëshe 60 = dhjetëshe 2. Plotëso kutizat që shuma të jetë 7, 9, 6, 8. (4 pikë) Vendos në kutiza numra më të vegjël se numri i dhënë. (3 pikë) Vendos shenjat >, < =. (3 pikë) Lidh me shigjetë. (8 pikë) Plotëso. 9 = = = = = = + (6 pikë) 8
9 7. Lexo problemën. Vëzhgo fi gurën dhe kryej veprimet. (3 pikë) Në liqen kanë mbetur 5 rosa. Më parë ishin 7 rosa. Sa rosa mungojnë?... = Përgjigje : 8. Shëno me V nëse është i vërtetë dhe me G nëse është i gabuar (3 pikë) barazimin ose mosbarazimi < < Vlerësimi Dobët Mjaftueshëm Mirë Shumë mirë Pikët
10 Test përmbledhës për kapitullin VIII 1. Plotëso vargun (1 pikë) Plotëso për të formuar numrat. (5 pikë) Vendos veprimin që duhet (+; -). 5 3 = = = = = = = = Qarko variantin e duhur. (1 pikë) A = 10 B = 10 10
11 5. Zbulo rregullën dhe plotëso: (4 pikë) 0; 2; 4; ; ; ; ; 1; 3; 5; ; ; ; ; 10; 8; 6; ; ; ; ; 10; 7; ; ; ; ; 6. Shkruaj numrin e shkronjave të secilës fjalë. Gjej shumën dhe krahaso. (3 pikë) LIBRI NDRIÇON MENDJEN MENDJA NDRIÇON BOTËN Mblidh dhe zbrit në shtyllë. (4 pikë) Bora vizatoi disa petëza. (2 pikë) Sa petëza vizatoi Bora gjithsej? 9. Plotëso tabelat me zbritje. (4 pikë) Plotëso: + < = = - 5 > = = (6 pikë) Vlerësimi Dobët Mjaftueshëm Mirë Shumë mirë Pikët
12 Test përmbledhës për kapitullin IX 1. Me laps të kuq kalo mbi vijat e mbyllura. Me laps të verdhë kalo mbi vijat e hapura. (2 pikë) 2. Vizato pjesën tjetër të figurës. (3 pikë) 3. Vrojto dhe vizato simetriken e këtyre fi gurave. (6 pikë) 4. Mat lapsat me (gozhdë të vogël). (4 pikë) afërsisht... afërsisht... afërsisht... afërsisht... 12
13 5. Emërto figurat dhe trego numrin e tyre. (2 pikë) 8 trekëndorë 6. Trego me kë ngjasojnë objektet. (3 pikë) GËZUAR 7. Ngjyros enët që nxënë më shumë ujë. (3 pikë) 8. Goni e mati librin e matematikës me fi je shkrepëseje. (2 pikë) Ai numëroi fi je shkrepëseje. Matematika e ka perimetrin fi je shkrepëseje. Matematika 9. Formulo zgjidh problemën sipas skemës. (5 pikë) Vlerësimi Dobët Mjaftueshëm Mirë Shumë mirë Pikët
14 Test përmbledhës për kapitullin X 1. Shkruaj tre mbledhorë, shuma e të cilëve të jetë 16. (3 pikë) Shkruaj katër mbledhorë, shuma e të cilëve të jetë 16. Shkruaj pesë mbledhorë, shuma e të cilëve të jetë Gjej shumat sipas modelit të dhënë. (5 pikë) = 8 + (2 + 2) = = = (8 + 2) + 2 = = = = = = 12 = = = = = = = = = = = 3. Formo shumat me mbledhorët përkatës. (4 pikë) Gjej shumat dhe ndryshesat. (4 pikë) = = = = = = = = = 14
15 5. Plotëso. (6 pikë) Para Numri Pas 6. Zbulo rregullën dhe plotëso. (2 pikë) Krahaso (>; <; =) (3 pikë) 8. Mblidh duke plotësuar 5. Mblidh duke veçuar 5. (4 pikë) = = Mblidh duke plotësuar 10. Mblidh duke veçuar = = 9. Realizo mbledhjen në boshtin numerik. (2 pikë) = = 10. Rimi është 9 vjeç. Vëllai i tij, Olsi, është 6 vjet më i madh se Rimi. (2 pikë) Sa vjeç është Olsi? + Vlerësimi Dobët Mjaftueshëm Mirë Shumë mirë Pikët
16 Test përmbledhës për kapitullin XI 1. Shoqëro si modeli dhe plotëso. (8 pikë) Zbulo operatorin dhe plotëso vargun e numrave. (4 pikë) Vargu Operatori 3. Lidh gjethet me numrat në pemë. (3 pikë) Shkruaj katër mbledhorë të barabartë me shumë 12. (4 pikë) Shkruaj katër mbledhorë të barabartë me shumë 16. Shkruaj tre mbledhorë të barabartë me shumë 15. Shkruaj tre mbledhorë të barabartë me shumë
17 5. Plotëso. (2 pikë) Plotëso tabelat. (6 pikë) Gjej operatorin e kundërt. (2 pikë) Plotëso. (2 pikë) Gjej çfarë mungon. Vizatoje në kuti. (2 pikë) + = + = + = + = 10. Arbri lexoi 14 faqe të një libri. Blendi lexoi 5 faqe më shumë se Arbri. (2 pikë) A mund të gjejmë sa faqe lexoi Blendi? = faqe Përgjigje: Vlerësimi Dobët Mjaftueshëm Mirë Shumë mirë Pikët
18 Test përmbledhës për kapitullin XII 1. Çfarë kanë të përbashkët objektet e secilit grup? Shkruaj emrin e duhur: fruta, petëza, drurë. (3 pikë) 2. Ngjyros përgjigjen e saktë. (4 pikë) - Macja ka katër këmbë. - Nesër do të bjerë shi. e sigurt e mundur e pamundur e sigurt e mundur e pamundur - Në lojën me zare Enos i ra shtata. - Në hënë ka jetë. e sigurt e mundur e pamundur e sigurt e mundur e pamundur 3. Vëzhgo dhe përgjigju: = 1 frut (3 pikë) - Cila frutë është me numër më të vogël? - Cilat fruta janë me numër të barabartë? - Cilat fruta kanë numër më të madh? 18
19 4. Për përgjigjen e saktë shëno: M e mundur, P e pamundur dhe S e sigurt. (3 pikë) Hidhet leku dhe bie kokë. Hidhet leku dhe qëndron në ajër. Hidhet leku dhe bie në tokë. 5. Ngjyros nga një kuti për çdo lloj objekti. (4 pikë) Cilat sende janë më shumë në kuti? Cilat sende janë më pak në kuti? A ka objekte me numër të barabartë? 6. Në klasën e parë u zhvillua një test kontrolli dhe u arritën këto vlerësime. 12 nxënës - shumë mirë 8 nxënës - mirë 3 nxënës - mjaftueshëm 2 nxënës - dobët Vendosi të dhënat në grafi k. = 1 nxënës. Shumë mirë Mirë Mjaftueshëm Dobët (4 pikë) 7. Vendo X në përgjigjen e saktë. (4 pikë) Në diell ka jetë. Pas ditës së diel vjen dita e hënë. Noeli udhëton me qilim fl uturues. Nesër do të bjer shi. E sigurt E mundur E pamundur Ngjyros pohimin e saktë.
20 8. Rretho përgjigjen e saktë (S - sigurt, M e mundur, P e pamundur). Në një vazo të mbyllur janë 5 gogla të verdha dhe 3 gogla të kuqe. (2 pikë) - A mund të nxjerrim një gogël të kuqe? S M P - A mund të nxjerrim një gogël të zezë? S M P - A mund të nxjerrim një gogël? S M P 9. Shëno me V pohimin e saktë dhe me G pohimin e gabuar. (6 pikë) = = = = = = Qarko përgjigjen që mendon se është e vërtetë. (2 pikë) - Numri i pjesëtarëve të një familje është: më i madh se 20 vetë më i vogël se 20 vetë - Numri i nxënësve të një klase është : më i madh se 50 nxënës më i vogël se 50 nxënës Vlerësimi Dobët Mjaftueshëm Mirë Shumë mirë Pikët
Teste matematike. Teste matematike. Miranda Mete. Botime shkollore Albas
Teste matematike Miranda Mete 9 Botime shkollore Albas Test përmbledhës Kapitulli I - Kuptimi i numrit Mësimet: - 8 Grupi A. Shkruaj si thyesa numrat dhjetorë të mëposhtëm. ( + + pikë) a) 0,5 = ---------
Διαβάστε περισσότεραKSF 2018 Cadet, Klasa 7 8 (A) 18 (B) 19 (C) 20 (D) 34 (E) 36
Problema me 3 pië # 1. Sa është vlera e shprehjes (20 + 18) : (20 18)? (A) 18 (B) 19 (C) 20 (D) 34 (E) 36 # 2. Në qoftë se shkronjat e fjalës MAMA i shkruajmë verikalisht njëra mbi tjetrën fjala ka një
Διαβάστε περισσότεραTeste matematike 6. Teste matematike. Botimet shkollore Albas
Teste matematike 6 Botimet shkollore Albas 1 2 Teste matematike 6 Hyrje Në materiali e paraqitur janë dhënë dy lloj testesh për lëndën e Matematikës për klasën VI: 1. teste me alternativa, 2. teste të
Διαβάστε περισσότεραTeste matematike 7. Teste matematike. Botimet shkollore Albas
Teste matematike 7 otimet shkollore Albas 1 Kreu I Kuptimi i numrit TEST 1 (pas orës së 8) Grupi A Rretho përgjigjen e saktë. 1. Te numri 3,435 shifra 4 tregon se: a) numri ka 4 të dhjeta; b) numri ka
Διαβάστε περισσότεραMatematika. Libër për mësuesin. Tony Cotton. Caroline Clissold Linda Glithro Cherri Moseley Janet Rees. Konsulentë gjuhësorë: John McMahon Liz McMahon
Matematika Libër për mësuesin Tony Cotton Caroline Clissold Linda Glithro Cherri Moseley Janet Rees Konsulentë gjuhësorë: John McMahon Liz McMahon Përmbajtje iv vii Dhjetëshe dhe njëshe A Numërojmë me
Διαβάστε περισσότεραREPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA QENDRORE E VLERËSIMIT TË ARRITJEVE TË NXËNËSVE PROVIMI I MATURËS SHTETËRORE 2008
KUJDES! MOS DËMTO BARKODIN Matematikë Sesioni I BARKODI REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA QENDRORE E VLERËSIMIT TË ARRITJEVE TË NXËNËSVE PROVIMI I MATURËS SHTETËRORE 008
Διαβάστε περισσότεραRepublika e Serbisë MINISTRIA E ARSIMIT DHE E SHKENCËS ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT
Republika e Serbisë MINISTRIA E ARSIMIT DHE E SHKENCËS ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT PROVIMI PËRFUNDIMTAR NË FUND TË ARSIMIT DHE TË EDUKIMIT FILLOR viti shkollor 2010/2011.
Διαβάστε περισσότεραREPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011
KUJDES! MOS DËMTO BARKODIN BARKODI REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011 S E S I O N I II LËNDA: KIMI VARIANTI
Διαβάστε περισσότεραREPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011
KUJDES! MOS DËMTO BARKODIN BARKODI REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011 S E S I O N I II LËNDA: KIMI VARIANTI
Διαβάστε περισσότεραRepublika e Serbisë MINISTRIA E ARSIMIT, SHKENCËS DHE E ZHVILLIMIT TEKNOLOGJIK ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT
Republika e Serbisë MINISTRIA E ARSIMIT, SHKENCËS DHE E ZHVILLIMIT TEKNOLOGJIK ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT PROVIMI PËRFUNDIMTAR PROVUES Viti shkollor 2016/2017 TESTI MATEMATIKË
Διαβάστε περισσότεραΑ ί τ η σ η Δ ή λ ω σ η σ υ μ μ ε τ ο χ ή ς
ΟΡΘΟΔΟΞΟΣ ΑΥΤΟΚΕΦΑΛΟΣ ΕΚΚΛΗΣΙΑ ΑΛΒΑΝΙΑΣ ΙΕΡΑ ΜΗΤΡΟΠΟΛΙΣ ΑΡΓΥΡΟΚΑΣΤΡΟΥ ΚΑΤΑΣΚΗΝΩΣΗ «Μ Ε Τ Α Μ Ο Ρ Φ Ω Σ Η» Γ Λ Υ Κ Ο Μ Ι Λ Ι Δ Ρ Ο Π Ο Λ Η Σ Α ί τ η σ η Δ ή λ ω σ η σ υ μ μ ε τ ο χ ή ς Πόλη ή Χωριό Σας
Διαβάστε περισσότεραparaqesin relacion binar të bashkësisë A në bashkësinë B? Prandaj, meqë X A B dhe Y A B,
Përkufizimi. Le të jenë A, B dy bashkësi të çfarëdoshme. Çdo nënbashkësi e bashkësisë A B është relacion binar i bashkësisë A në bashkësinë B. Simbolikisht relacionin do ta shënojmë me. Shembulli. Le të
Διαβάστε περισσότεραLibër mësuesi Matematika
Libër mësuesi Nikolla Perdhiku Libër mësuesi Matematika 7 Për klasën e 7 -të të shkollës 9-vjeçare Botime shkollore Albas 1 Libër mësuesi për tekstin Matematika 7 Botues: Latif AJRULLAI Rita PETRO Redaktore
Διαβάστε περισσότεραKSF 2018 Student, Klasa 11 12
Problema me 3 pikë # 1. Figura e e mëposhtme paraqet kalendarin e një muaji të vitit. Për fat të keq, mbi të ka rënë bojë dhe shumica e datave të tij nuk mund të shihen. Cila ditë e javës është data 27
Διαβάστε περισσότεραDetyra për ushtrime PJESA 4
0 Detyr për ushtrime të pvrur g lëd ANALIZA MATEMATIKE I VARGJET NUMERIKE Detyr për ushtrime PJESA 4 3 Të jehsohet lim 4 3 ( ) Të tregohet se vrgu + + uk kovergjo 3 Le të jeë,,, k umr relë joegtivë Të
Διαβάστε περισσότεραPërpjesa e kundërt e përpjesës a :b është: Mesi gjeometrik x i segmenteve m dhe n është: Për dy figura gjeometrike që kanë krejtësisht formë të njejtë, e madhësi të ndryshme ose të njëjta themi se janë
Διαβάστε περισσότεραKlasa 2 dhe 3 KENGUR 2014
Gara ndërkombëtare Kengur viti 014 Klasa dhe 3 KENGUR 014 Çdo detyrë me numër rendor nga 1 deri në 10 vlerësohet me 10 pikë Koha në disponim për zgjidhje është 1h e 15 min Për përgjigje të gabuar të një
Διαβάστε περισσότεραPËRMBLEDHJA E DETYRAVE NGA MATEMATIKA
Republika e Serbisë MINISTRIA E ARSIMIT ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT PËRMBLEDHJA E DETYRAVE NGA MATEMATIKA PËR PROVIMIN E FUNDIT NË ARSIMIN DHE EDUKIMIN FILLOR PËR VITIN SHKOLLOR
Διαβάστε περισσότεραLigji I Ohmit Gjatë rrjedhës së rrymës nëpër përcjellës paraqitet. rezistenca. Georg Simon Ohm ka konstatuar
Rezistenca elektrike Ligji I Ohmit Gjatë rrjedhës së rrymës nëpër përcjellës paraqitet rezistenca. Georg Simon Ohm ka konstatuar varësinë e ndryshimit të potencialit U në skajët e përcjellësit metalik
Διαβάστε περισσότεραShtrohet pyetja. A ekziston formula e përgjithshme për të caktuar numrin e n-të të thjeshtë?
KAPITULLI II. NUMRAT E THJESHTË Më parë pamë se p.sh. numri 7 plotpjesëtohet me 3 dhe me 9 (uptohet se çdo numër plotpjesëtohet me dhe me vetvetën). Shtrohet pyetja: me cilët numra plotpjesëtohet numri
Διαβάστε περισσότεραREPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI I MATURËS SHTETËRORE 2012 I DETYRUAR
KUJDES! MOS DËMTO BARKODIN BARKODI REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI I MATURËS SHTETËRORE 01 I DETYRUAR VARIANTI A E shtunë, 16 qershor 01
Διαβάστε περισσότεραDistanca gjer te yjet, dritësia dhe madhësia absolute e tyre
Distanca gjer te yjet, dritësia dhe madhësia absolute e tyre Mr. Sahudin M. Hysenaj 24 shkurt 2009 Përmbledhje Madhësia e dukshme e yjeve (m) karakterizon ndriçimin që vjen nga yjet mbi sipërfaqen e Tokës.
Διαβάστε περισσότεραPASQYRIMET (FUNKSIONET)
PASQYRIMET (FUNKSIONET) 1. Përkufizimi i pasqyrimit (funksionit) Përkufizimi 1.1. Le të jenë S, T bashkësi të dhëna. Funksion ose pasqyrim nga S në T quhet rregulla sipas së cilës çdo elementi s S i shoqëronhet
Διαβάστε περισσότεραPROVIMI ME ZGJEDHJE REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA QENDRORE E VLERËSIMIT TË ARRITJEVE TË NXËNËSVE
KUJDES! Lënda: MOS Kimi DËMTO BARKODIN BARKODI REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA QENDRORE E VLERËSIMIT TË ARRITJEVE TË NXËNËSVE I MATURËS SHTETËRORE 2009 LËNDA: KIMI VARIANTI
Διαβάστε περισσότεραMATEMATIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE VITIT MËSIMOR 2012/2013 UDHËZIM
MATEMATIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE VITIT MËSIMOR 2012/2013 UDHËZIM Mjetet e punës: lapsi grafit dhe goma, lapsi kimik, veglat gjeometrike.
Διαβάστε περισσότεραAlgoritmet dhe struktura e të dhënave
Universiteti i Prishtinës Fakulteti i Inxhinierisë Elektrike dhe Kompjuterike Algoritmet dhe struktura e të dhënave Vehbi Neziri FIEK, Prishtinë 2015/2016 Java 5 vehbineziri.com 2 Algoritmet Hyrje Klasifikimi
Διαβάστε περισσότεραLibër për mësuesin Matematika 9
Libër për mësuesin Matematika 9 Përgatitur nga: Shefik Sefa Botime shkollore lbas Miratuar nga Ministria e rsimit dhe Shkencës Botues: Latif JRULLI Rita PETRO Redaktore: Sevi LMI Redaktore letrare: Vasilika
Διαβάστε περισσότεραAISHE HAJREDINI (KARAJ), KRISTAQ LULA. Kimia Inorganike. TESTE TË ZGJIDHURA Të maturës shtetërore
AISHE HAJREDINI (KARAJ), KRISTAQ LULA Kimia Inorganike TESTE TË ZGJIDHURA Të maturës shtetërore AISHE HAJREDINI (KARAJ), KRISTAQ LULA TESTE TË MATURËS SHTETËRORE Kimia inorganike S H T Ë P I A B O T U
Διαβάστε περισσότεραREPUBLIKA E KOSOVËS REPUBLIKA KOSOVO REPUBLIC OF KOSOVA QEVERIA E KOSOVËS - VLADA KOSOVA - GOVERNMENT OF KOSOVA
REPUBLIK E KOSOVËS REPUBLIK KOSOVO REPUBLIC OF KOSOV QEVERI E KOSOVËS - VLD KOSOV - GOVERNMENT OF KOSOV MINISTRI E RSIMIT E MINISTRSTVO OBRZOVNJ MINISTRY OF EDUCTION SHKENCËS DHE E TEKNOLOGJISË NUKE I
Διαβάστε περισσότεραAGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2014 SESIONI I. E mërkurë, 18 qershor 2014 Ora 10.00
KUJDES! MOS DËMTO BARKODIN BARKODI AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2014 SESIONI I VARIANTI A E mërkurë, 18 qershor 2014 Ora 10.00 Lënda: Teknologji bërthamë Udhëzime
Διαβάστε περισσότεραFlas dhe Shkruaj Shqip
Flas dhe Shkruaj Shqip Emri Mbiemri Klasa. Shkolla Provim Hyrës Për Shkollën Fillore 1 ΓΔΝΙΚΔ ΟΓΗΓΙΔ Σο ηεζη ασηό αποηειεί κία θαηαηαθηήρηα δοθηκαζία γηα ηελ αιβαληθή γιώζζα. Αποηειείηαη από πέληε ελόηεηες:
Διαβάστε περισσότεραBAZAT E INFRASTRUKTURES NË KOMUNIKACION
MANUALI NË LËNDEN: BAZAT E INFRASTRUKTURES NË KOMUNIKACION Prishtinë,0 DETYRA : Shtrirja e trasesë së rrugës. Llogaritja e shkallës, tangjentës, dhe sekondit: 6 0 0 0.67 6 6. 0 0 0. 067 60 600 60 600 60
Διαβάστε περισσότεραRepublika e Serbisë. MINISTRIA E ARSIMIT, shkencës DHE ZHVILLIMIT TEKNOLOGJIK ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT
Republika e Serbisë MINISTRIA E ARSIMIT, shkencës DHE ZHVILLIMIT TEKNOLOGJIK ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT PROVIMI PËRFUNDIMTAR NË FUND TË ARSIMIT DHE TË EDUKIMIT FILLOR Viti
Διαβάστε περισσότεραMATEMATIKË HYRJE. (5 orë në javë, 185 orë në vit)
MATEMATIKË (5 orë në javë, 185 orë në vit) HYRJE Në shekullin XXI matematika gjithnjë e më tepër po zë vend qendror, jo vetëm në studimin e fenomeneve natyrore dhe teknike, por me ndërtimin e saj të argumentuar
Διαβάστε περισσότεραDefinimi dhe testimi i hipotezave
(Master) Ligjerata 2 Metodologjia hulumtuese Definimi dhe testimi i hipotezave Prof.asc. Avdullah Hoti 1 1 Përmbajtja dhe literatura Përmbajtja 1. Definimi i hipotezave 2. Testimi i hipotezave përmes shembujve
Διαβάστε περισσότεραFluksi i vektorit të intenzitetit të fushës elektrike v. intenzitetin të barabartë me sipërfaqen të cilën e mberthejnë faktorët
Ligji I Gauss-it Fluksi i ektorit të intenzitetit të fushës elektrike Prodhimi ektorial është një ektor i cili e ka: drejtimin normal mbi dy faktorët e prodhimit, dhe intenzitetin të barabartë me sipërfaqen
Διαβάστε περισσότεραAnaliza e regresionit të thjeshtë linear
Analiza e regresionit të thjeshtë linear 11-1 Kapitulli 11 Analiza e regresionit të thjeshtë linear 11- Regresioni i thjeshtë linear 11-3 11.1 Modeli i regresionit të thjeshtë linear 11. Vlerësimet pikësore
Διαβάστε περισσότεραTregu i tët. mirave dhe kurba IS. Kurba ose grafiku IS paraqet kombinimet e normave tët interesit dhe nivelet e produktit tët.
Modeli IS LM Të ardhurat Kështu që, modeli IS LM paraqet raportin në mes pjesës reale dhe monetare të ekonomisë. Tregjet e aktiveve Tregu i mallrave Tregu monetar Tregu i obligacioneve Kërkesa agregate
Διαβάστε περισσότεραIndukcioni elektromagnetik
Shufra pingul mbi ijat e fushës magnetike Indukcioni elektromagnetik Indukcioni elektromagnetik në shufrën përçuese e cila lëizë në fushën magnetike ijat e fushës magnetike homogjene Bazat e elektroteknikës
Διαβάστε περισσότεραOlimpiada italiane kombëtare e fizikës, faza e pare Dhjetor 2017
Olimpiada italiane kombëtare e fizikës, faza e pare Dhjetor 2017 UDHËZIME: 1. Ju prezantoheni me një pyetësor i përbërë nga 40 pyetje; për secilën pyetje Sugjerohen 5 përgjigje, të shënuara me shkronjat
Διαβάστε περισσότεραUNIVERSITETI I GJAKOVËS FEHMI AGANI FAKULTETI I EDUKIMIT PROGRAMI PARASHKOLLOR PUNIM DIPLOME
UNIVERSITETI I GJAKOVËS FEHMI AGANI FAKULTETI I EDUKIMIT PROGRAMI PARASHKOLLOR PUNIM DIPLOME ZHVILLIMI DHE FORMIMI I NJOHURIVE FILLESTARE TEK FËMIJËT E MOSHËS PARASHKOLLORE MBI BASHKËSITË Mentori: Prof.
Διαβάστε περισσότεραQ k. E = 4 πε a. Q s = C. = 4 πε a. j s. E + Qk + + k 4 πε a KAPACITETI ELEKTRIK. Kapaciteti i trupit të vetmuar j =
UNIVERSIEI I PRISHINËS KAPACIEI ELEKRIK Kapaciteti i trupit të vetmuar Kapaciteti i sferës së vetmuar + + + + Q k s 2 E = 4 πε a v 0 fusha në sipërfaqe të sferës E + Qk + + + + j = Q + s + 0 + k 4 πε a
Διαβάστε περισσότεραGrup autorësh LIBËR PËR MËSUESIN. Matematika 11
Grup autorësh LIBËR PËR MËSUESIN Matematika 11 Përmbajtje HYRJE 5 Planifikimi i kurrikulës për klasën e XI 7 Planifikimi 3 mujor (shtator dhjetor) 10 Planifikimi 3 mujor (janar mars) 14 Planifikimi 3 mujor
Διαβάστε περισσότεραVENDIM Nr.803, date PER MIRATIMIN E NORMAVE TE CILESISE SE AJRIT
VENDIM Nr.803, date 4.12.2003 PER MIRATIMIN E NORMAVE TE CILESISE SE AJRIT Ne mbështetje te nenit 100 te Kushtetutës dhe te nenit 5 te ligjit nr.8897, date 16.5.2002 "Për mbrojtjen e ajrit nga ndotja",
Διαβάστε περισσότεραREPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2013
KUJDES! MOS DËMTO BARKODIN BARKODI REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2013 LËNDA: FIZIKË BËRTHAMË VARIANTI
Διαβάστε περισσότερα10 Probabilitet Orë të lira 20 Shuma 140
HYRJE Libri që keni në dorë është botim i Shtëpisë botuese UEGEN për t i ardhur në ndihmë mësuesve që japin lëndën e matematikës në klasat e teta. Këtu do të gjeni planin mësimor të matematikës së klasës
Διαβάστε περισσότεραUniversiteti i Prishtinës Fakulteti i Inxhinierisë Elektrike dhe Kompjuterike. Agni H. Dika
Universiteti i Prishtinës Fakulteti i Inxhinierisë Elektrike dhe Kompjuterike Agni H. Dika Prishtinë 007 Libri të cilin e keni në dorë së pari u dedikohet studentëve të Fakultetit të Inxhinierisë Elektrike
Διαβάστε περισσότεραPYETJE PRAKTIKE PËR TESTIN EKSTERN
BUJAR MAMUDI LËNDA : MATEMATIKË KLASA : VIII TEMA : I NGJASHMËRIA PYETJE PRAKTIKE PËR TESTIN EKSTERN [i] Raporti ndërmjet dy segmenteve. 1. Kush është antari i parë për raportin e dhënë 16 Zgjidhje : 16
Διαβάστε περισσότεραPËRMBLEDHJE DETYRASH PËR PËRGATITJE PËR OLIMPIADA TË MATEMATIKËS
SHOQATA E MATEMATIKANËVE TË KOSOVËS PËRMBLEDHJE DETYRASH PËR PËRGATITJE PËR OLIMPIADA TË MATEMATIKËS Kls 9 Armend Sh Shbni Prishtinë, 009 Bshkësitë numerike Të vërtetohet se numri 004 005 006 007 + është
Διαβάστε περισσότεραRikardo dhe modeli standard i tregtisë ndërkombëtare. Fakulteti Ekonomik, Universiteti i Prishtinës
Rikardo dhe modeli standard i tregtisë ndërkombëtare Fakulteti Ekonomik, Universiteti i Prishtinës Hyrje Teoritë e tregtisë ndërkombëtare; Modeli i Rikardos; Modeli standard i tregtisë ndërkombëtare. Teoritë
Διαβάστε περισσότεραI}$E SF$RTIT MATURA SHTETIIRORE, MIN{ISTRIA E ARSIIITIT. liinua.: GJUHE GREKE (Niveli 82) PROGRAMET ORIEI{TUESE IKOLLA MIRATO
HT PUELIK"*. E S}IQIPENI SE MIN{ISTRIA E ARSIIITIT I}$E SF$RTIT MIRATO IKOLLA MATURA SHTETIIRORE, PROGRAMET ORIEI{TUESE (Provim me zgiedhje) liinua.: GJUHE GREKE (Niveli 82) Koordinator: LUDMILLA STEFANI,
Διαβάστε περισσότεραSI TË BËHENI NËNSHTETAS GREK? (Udhëzime të thjeshtuara rreth marrjes së nënshtetësisë greke)*
SI TË BËHENI NËNSHTETAS GREK? (Udhëzime të thjeshtuara rreth marrjes së nënshtetësisë e)* KUSH NUK MUND TË Për shtetasit e vendeve jashtë BEsë Ata që nuk kanë leje qëndrimi ose kanë vetëm leje të përkohshme
Διαβάστε περισσότεραNyjet, Deget, Konturet
Nyjet, Deget, Konturet Meqenese elementet ne nje qark elektrik mund te nderlidhen ne menyra te ndryshme, nevojitet te kuptojme disa koncepte baze te topologjise se rrjetit. Per te diferencuar nje qark
Διαβάστε περισσότεραMATEMATIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE
MATEMATIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE QERSHOR, VITIT MËSIMOR 2015/2016 UDHËZIM KOHA PËR ZGJIDHJEN E TESTIT: 70 MINUTA Mjetet e punës: lapsi grafit
Διαβάστε περισσότεραFlas dhe Shkruaj Shqip
Flas dhe Shkruaj Shqip Emri Mbiemri. Klasa. Shkolla Shqip Flas Shkruaj Provim Hyrës Për Shkollën 9-vjeçare 1 ΓΔΝΙΚΔΣ ΟΓΗΓΙΔΣ Το ηεζη ασηό αποηελεί μία καηαηακηήρια δοκιμαζία για ηην αλβανική γλώζζα. Αποηελείηαι
Διαβάστε περισσότεραMinistria e Arsimit, Shkencës dhe Teknologjisë Ministarstvo Obrazovanja, Nauke i Tehnologije Ministry of Education, Science and Technology
Ministria e Arsimit, Shkencës dhe Teknologjisë Ministarstvo Obrazovanja, Nauke i Tehnologije Ministry of Education, Science and Technology Autor: Dr.sc. Qamil Haxhibeqiri, Mr.sc. Melinda Mula, Mr.sc. Ramadan
Διαβάστε περισσότεραMATEMATIKA. Manuali për arsimtarët. Podgoricë, Enti i Teksteve dhe i Mjeteve Mësimore PODGORICË
Izedin Kërniq Marko Jokiq Mirjana Boshkoviq MATEMATIKA Manuali për arsimtarët Enti i Teksteve dhe i Mjeteve Mësimore PODGORICË Podgoricë, 009. Izedin Kërniq Marko Jokiq Mirjana Boshkoviq MATEMATIKA Manuali
Διαβάστε περισσότεραEλληνικά για σας A0 ανάγνωση - γραφή - προφορά - τονισμός. Gjuha greke për ju A0 lëxim - shkrim - shqiptim - theksim
intro_alb_final 5/18/12 7:56 PM Page 3 Eλληνικά για σας A0 ανάγνωση - γραφή - προφορά - τονισμός Gjuha greke për ju A0 lëxim - shkrim - shqiptim - theksim ΒΙΒΛΙΟ Α0 τελείως αρχάριοι Δίγλωσση έκδοση ελληνικά
Διαβάστε περισσότεραNDËRTIMI DHE PËRMBAJTJA E PUNIMIT
NDËRTIMI DHE PËRMBAJTJA E PUNIMIT Punimi monografik Vështrim morfo sintaksor i parafjalëve të gjuhës së re greke në krahasim me parafjalët e gjuhës shqipe është konceptuar në shtatë kapituj, të paraprirë
Διαβάστε περισσότεραΓιατί η νέα γενιά Αλβανών μεταναστών στην Ελλάδα χάνει στη γλώσσα της; Νίκος Γογωνάς
Γιατί η νέα γενιά Αλβανών μεταναστών στην Ελλάδα χάνει στη γλώσσα της; Νίκος Γογωνάς Από τις αρχές της δεκαετίας του 90 και μετά, ένας μεγάλος αριθμός Αλβανών μεταναστών ήρθε στην Ελλάδα κυρίως εξαιτίας
Διαβάστε περισσότεραNjësitë e matjes së fushës magnetike T mund të rrjedhin për shembull nga shprehjen e forcës së Lorencit: m. C m
PYETJE n.. - PËRGJIGJE B Duke qenë burimi isotrop, për ruajtjen e energjisë, energjia është e shpërndarë në mënyrë uniforme në një sipërfaqe sferike me qendër në burim. Intensiteti i dritës që arrin në
Διαβάστε περισσότεραTeori Grafesh. E zëmë se na është dhënë një bashkësi segmentesh mbi drejtëzën reale që po e shënojmë:
Teori Grafesh Teori grafesh bitbit.uni.cc 1.1 Koncepti i grafit dhe disa nocione shoqeruese Shpeshherë për të lehtësuar veten ne shtrimin dhe analizën e mjaft problemeve që dalin në veprimtarinë tonë,
Διαβάστε περισσότεραIII. FUSHA MAGNETIKE. FIZIKA II Rrahim MUSLIU ing.dipl.mek. 1
III.1. Fusha magnetike e magnetit të përhershëm Nëse në afërsi të magnetit vendosim një trup prej metali, çeliku, kobalti ose nikeli, magneti do ta tërheq trupin dhe ato do të ngjiten njëra me tjetrën.
Διαβάστε περισσότεραKAPITULLI4. Puna dhe energjia, ligji i ruajtjes se energjise
Kapitui 4 Pua de eerjia KPIULLI4 Pua de eerjia, iji i ruajtjes se eerjise.ratori tereq e je rrue e au je tru e spejtesi 8/. Me care spejtesie do te tereqi tratori truu e je rrue te pastruar ur uqia e otorit
Διαβάστε περισσότεραINSTITUTI I ZHVILLIMIT TË ARSIMIT. PROGRAM ORIENTUES PËR MATURËN SHTETËRORE (Provim me zgjedhje) LËNDA: MATEMATIKA E THELLUAR
INSTITUTI I ZHVILLIMIT TË ARSIMIT PROGRAM ORIENTUES PËR MATURËN SHTETËRORE (Provim me zgjedhje) LËNDA: MATEMATIKA E THELLUAR Koordinatore: Dorina Rapti Viti shkollor 2017-2018 1. UDHËZIME TË PËRGJITHSHME
Διαβάστε περισσότεραREPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE SHKENCËS INSTITUTI I ZHVILLIMIT TË ARSIMIT PROGRAM ORIENTUES PËR PËRGATITJEN E PROVIMIT KOMBËTAR
REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE SHKENCËS INSTITUTI I ZHVILLIMIT TË ARSIMIT PROGRAM ORIENTUES PËR PËRGATITJEN E PROVIMIT KOMBËTAR TË MATURËS SHTETËRORE NË LËNDËN Gjuhë Greke (gjuhë e huaj
Διαβάστε περισσότεραFIZIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE
FIZIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE vitit mësimor 2012/2013 U d h ëzi m Mos e hapni testin derisa mos t ju japë leje administruesi i testit se
Διαβάστε περισσότερα16. SHTOJCA. Evokimi: Sistemoni copëzat e letrave në mënyrë që shumat të jenë të sakta: = = = =
16. SHTOJCA 16.1 MODELET E PLANEVE DITORE 16. 1. 1. MODEL MËSIMI Lënda: Matematikë Klasa: I Njësia mësimore: Mbledhja e numrave duke plotësuar numrin 10 Mjetet mësimore: Objekte konkrete, objekte të vizatuara,
Διαβάστε περισσότεραΕΛΤΙΟ ΤΥΠΟΥ. ΕΙΚΤΗΣ ΤΙΜΩΝ ΥΛΙΚΩΝ ΚΑΤΑΣΚΕΥΗΣ ΝΕΩΝ ΚΤΙΡΙΩΝ ΚΑΤΟΙΚΙΩΝ: εκέµβριος 2015 (2010=100,0)
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ Πειραιάς, 22 Ιανουαρίου 2016 ΕΛΤΙΟ ΤΥΠΟΥ ΕΙΚΤΗΣ ΤΙΜΩΝ ΥΛΙΚΩΝ ΚΑΤΑΣΚΕΥΗΣ ΝΕΩΝ ΚΤΙΡΙΩΝ ΚΑΤΟΙΚΙΩΝ: εκέµβριος 2015 (2010=100,0) Ο Γενικός είκτης Τιµών Υλικών Κατασκευής
Διαβάστε περισσότεραKapitulli 1 Hyrje në Analizën Matematike 1
Përmbajtja Parathënie iii Kapitulli 1 Hyrje në Analizën Matematike 1 1.1. Përsëritje të njohurive nga shkolla e mesme për bashkësitë, numrat reale dhe funksionet 1 1.1.1 Bashkësitë 1 1.1.2 Simbole të logjikës
Διαβάστε περισσότεραAlgoritmika dhe Programimi i Avancuar KAPITULLI I HYRJE Algoritmat nje problem renditjeje Hyrja: a1, a2,, an> Dalja: <a 1, a 2,, a n> a 1 a 2 a n.
KAPITULLI I HYRJE Algoritmat Ne menyre informale do te perkufizonim nje algoritem si nje procedure perllogaritese cfaredo qe merr disa vlera ose nje bashkesi vlerash ne hyrje dhe prodhon disa vlera ose
Διαβάστε περισσότερα2742/ 207/ /07.10.1999 «&»
2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,
Διαβάστε περισσότεραREPUBLIKA E KOSOVËS REPUBLIKA KOSOVO REPUBLIC OF KOSOVA QEVERIA E KOSOVËS - VLADA KOSOVA - GOVERNMENT OF KOSOVA
REPUBLIK E KOSOVËS REPUBLIK KOSOVO REPUBLIC OF KOSOV QEVERI E KOSOVËS - VLD KOSOV - GOVERNMENT OF KOSOV MINISTRI E RSIMIT E MINISTRSTVO OBRZOVNJ MINISTRY OF EDUCTION SHKENCËS DHE E TEKNOLOGJISË NUKE I
Διαβάστε περισσότερα(a) Në planin koordinativ xoy të përcaktohet bashkësia e pikave M(x,y), koordinatat e të cilave vërtetojnë mosbarazimin
PAATHËNIE Kur në vitin 975 u organizua për herë të parë në vendin tonë Olimpiada Kombëtare e Matematikës, ndonëse kishim bindjen dhe uronim që ajo të institucionalizohej si veprimtari e rëndësishme, nuk
Διαβάστε περισσότεραREPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE SHKENCËS INSTITUTI I ZHVILLIMIT TË ARSIMIT
REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE SHKENCËS INSTITUTI I ZHVILLIMIT TË ARSIMIT PROGRAM ORIENTUES PËR PËRGATITJEN E PROVIMIT KOMBËTAR TË MATURËS SHTETËRORE LËNDA: GJUHA GREKE (gjuhë e huaj e
Διαβάστε περισσότερα2.1 Kontrolli i vazhdueshëm (Kv)
Aneks Nr 2 e rregullores 1 Vlerësimi i cilësisë së dijeve te studentët dhe standardet përkatëse 1 Sistemi i diferencuar i vlerësimit të cilësisë së dijeve të studentëve 1.1. Për kontrollin dhe vlerësimin
Διαβάστε περισσότεραKALKULIMI TERMIK I MOTORIT DIESEL. 1. Sasia teorike e nevojshme për djegien e 1 kg lëndës djegëse: kmol ajër / kg LD.
A KALKULII TERIK I OTORIT DIESEL. Sasa terke e nevjshme ër djegen e kg lëndës djegëse: 8 L C 8H O 0.3 3 C H O 0. 4 3 kml ajër / kg LD kg ajër / kg LD. Sasja e vërtetë e ajrt ër djegen e kg lëndë djegëse:
Διαβάστε περισσότεραKolegji - Universiteti për Biznes dhe Teknologji Fakultetit i Shkencave Kompjuterike dhe Inxhinierisë. Lënda: Bazat Teknike të informatikës - BTI
Kolegji - Universiteti për Biznes dhe Teknologji Fakultetit i Shkencave Kompjuterike dhe Inxhinierisë Lënda: Bazat Teknike të informatikës - BTI Dispensë Ligjërues: Selman Haxhijaha Luan Gashi Viti Akademik
Διαβάστε περισσότεραLënda: Mikroekonomia I. Kostoja. Msc. Besart Hajrizi
Lënda: Mikroekonomia I Kostoja Msc. Besart Hajrizi 1 Nga funksioni i prodhimit në kurbat e kostove Shpenzimet monetare të cilat i bën firma për inputet fikse (makineritë, paisjet, ndërtesat, depot, toka
Διαβάστε περισσότεραLibër mësuesi për klasën e katërt
Libër mësuesi për klasën e katërt Brisida Çekrezi Ilda Alushaj Artan Xhaferaj Tatjana Nebiaj Anila Londo Emira Lako Libër mësuesi për tekstin Gjuha shqipe 4 Botimet shkollore Albas 1 Libër mësuesi për
Διαβάστε περισσότεραELEKTROSTATIKA. Fusha elektrostatike eshte rast i vecante i fushes elektromagnetike.
ELEKTROSTATIKA Fusha elektrostatike eshte rast i vecante i fushes elektromagnetike. Ajo vihet ne dukje ne hapesiren rrethuese te nje trupi ose te nje sistemi trupash te ngarkuar elektrikisht, te palevizshem
Διαβάστε περισσότεραLlukan PUKA, Dituri MALAJ, Afërdita HYSA, Petrit OSMANI. Matematika. (Me zgjedhje të detyruar) A O M
Llukn PUK, Dituri MLJ, fërdit HYS, Petrit OSMNI Mtemtik (Me zgjedhje të detyrur) 11 K O M Mirtur ng Ministri e rsimit dhe Shkencës, qershor 21 Titulli: utorë: Mtemtik 11, me zgjedhje të detyrur Prof. Llukn
Διαβάστε περισσότεραLibër mësuesi për tekstin Gjuha amtare 6
Libër mësuesi Ma. Aida Fekollari Hyrë Rexha Kreuza Bardhi Libër mësuesi për tekstin Gjuha amtare 6 1 Botime shkollore Albas Libër mësuesi për tekstin Gjuha shqipe 6 si Ky libër u hartua nën drejtimin e
Διαβάστε περισσότεραQëllimet: Në fund të orës së mësimit ju duhet të jeni në gjendje që të:
Analiza statistikore Metodat e zgjedhjes së mostrës 1 Metodat e zgjedhjes së mostrës Qëllimet: Në fund të orës së mësimit ju duhet të jeni në gjendje që të: Kuptoni pse në shumicën e rasteve vrojtimi me
Διαβάστε περισσότεραΚΑΝΟΝΙΣΜΟΣ (EE) 2019/1238 ΤΟΥ ΕΥΡΩΠΑΪΚΟΥ ΚΟΙΝΟΒΟΥΛΙΟΥ ΚΑΙ ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ
198/1 L I ( (EE) 2019/1238 20 2019 (PEPP) ( ), 114,,, ( 1 ), ( 2 ), : (1),.. (2),., 25, :. (3),,.,,,. ( 1 ) C 81 2.3.2018,. 139. ( 2 ) 4 2019 ( ) 14 2019. EL L 198/2 25.7.2019 (4).,,. H,, ( ). (5) 2015,
Διαβάστε περισσότεραDELEGATET DHE ZBATIMI I TYRE NE KOMPONETE
DELEGATET DHE ZBATIMI I TYRE NE KOMPONETE KAPITULLI 5 Prof. Ass. Dr. Isak Shabani 1 Delegatët Delegati është tip me referencë i cili përdorë metoda si të dhëna. Përdorimi i zakonshëm i delegatëve është
Διαβάστε περισσότεραINSTITUTI I ZHVILLIMIT TË ARSIMIT PROGRAM ORIENTUES PËR MATURËN SHTETËRORE. (Provim me zgjedhje) LËNDA: GJUHË GREKE
INSTITUTI I ZHVILLIMIT TË ARSIMIT PROGRAM ORIENTUES PËR MATURËN SHTETËRORE (Provim me zgjedhje) LËNDA: GJUHË GREKE Koordinatore: Erifili Hashorva Viti shkollor: 2013-2014 TIRANË JANAR, 2014 1 1. UDHËZUES
Διαβάστε περισσότεραALGJEBËR II Q. R. GASHI
ALGJEBËR II Q. R. GASHI Shënim: Këto ligjërata janë të paredaktuara, të palekturuara dhe vetëm një verzion fillestar i (ndoshta) një teksti të mëvonshëm. Ato nuk e reflektojnë detyrimisht materien që e
Διαβάστε περισσότεραUNIVERSITETI I GJAKOVËS FEHMI AGANI FAKULTETI I EDUKIMIT PROGRAMI FILLOR PUNIM DIPLOME
UNIVERSITETI I GJAKOVËS FEHMI AGANI FAKULTETI I EDUKIMIT PROGRAMI FILLOR PUNIM DIPLOME Tema: Ndërlidhja në mes Fonetikës dhe Matematikës nga numri 1 deri në 5 Kandidatja: Albulenë Mazreku Mentorja: Prof.
Διαβάστε περισσότεραΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΤΡΟΦΙΜΩΝ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΚΟΙΝΟΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΥΠΟΔΟΜΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΕΦΑΡΜΟΓΗΣ ΠΑΑ ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ ΕΥΡΩΠΑΪΚΟ ΓΕΩΡΓΙΚΟ ΤΑΜΕΙΟ
Διαβάστε περισσότεραEmërtimi i lëndës Teoria e Avancuar e Grupeve MAT 651. Kredite (ECTS) Auditor (orë) Studim (orë) Leksione Ushtrime Gjithsej
Emërtimi i lëndës Teoria e Avancuar e Grupeve MAT 651 Disiplina të formimit të përgjithshëm Trajtimi i njohurive bazë të algjebrës abstrakte. Njohuri mbi bashkësitë dhe klasat. Pohimi logjik dhe Predikati.
Διαβάστε περισσότεραMatematika 2. Planifikimi vjetor dhe modele ditaresh
Matematika 2 Planifikimi vjetor dhe modele ditaresh Përmbajtje Plani mësimor vjetor 5 Planifikimi 3-mujor Shtator - Dhjetor 33 Planifikimi 3-mujor Janar - Mars 49 Planifikimi 3-mujor Prill - Qershor 64
Διαβάστε περισσότερα11. TEKNIKA E STRATEGJI TË ZHVILLIMIT TË MENDIMIT KRITIK NË MËSIMIN E MATEMATIKËS
Prof. Bedri Jaka 11. TEKNIKA E STRATEGJI TË ZHVILLIMIT TË MENDIMIT KRITIK NË MËSIMIN E MATEMATIKËS Proceset dinamike të zhvillimit në shoqëri, shkencë, kulturë dhe teknologji, ndikuan drejtpërdrejt në
Διαβάστε περισσότεραEdmond Lulja Neritan Babamusta LIBËR PËR MËSUESIN MATEMATIKA 7 BOTIME
Edmond Lulja Neritan Babamusta LIBËR PËR MËSUESIN MATEMATIKA 7 BOTIME BOTIME Të gjitha të drejtat janë të rezervuara Pegi 2012 Të gjitha të drejtat lidhur me këtë botim janë ekskluzivisht të zotëruara
Διαβάστε περισσότεραDefinimi i funksionit . Thirrja e funksionit
Definimi i funksionit Funksioni ngërthen ne vete një grup te urdhrave te cilat i ekzekuton me rastin e thirrjes se tij nga një pjese e caktuar e programit. Forma e përgjithshme e funksionit është: tipi
Διαβάστε περισσότεραKLASA 1 - CERTIFIKATA E ARRITJEVE NË GJUHË SHQIPE - OBJEKTIVAT E ARRRITJEVE
KLASA 1 - CERTIFIKATA E ARRITJEVE NË GJUHË SHQIPE - OBJEKTIVAT E ARRRITJEVE TEZA DO TË KETË 30 PYETJE me nga 5 alternativa, që do të zhvillohen për jo më shumë se 60 minuta. Në fund të ORËS (60 MINUTA),
Διαβάστε περισσότεραI.26. I.12. I.13 Vendi Ngarkimit - Τόπος Φόρτωσης -Place of loading I.14 Data dhe Ora e nisjes - Ημερομηνία και ώρα αναχώρησης -Date of departure
Pjesa I: Te dhena te ngarkeses qe dergohet - Μέρος I: Στοιχεία της παρτίδας που αποστέλλεται Part I : Details of dispatched consignment Certifikate Veterinarie per eksport - Veterinary certificate for
Διαβάστε περισσότεραII. MEKANIKA. FIZIKA I Rrahim MUSLIU ing.dipl.mek. 1
II.1. Lëvizja mekanike Mekanika është pjesë e fizikës e cila i studion format më të thjeshta të lëvizjes së materies, të cilat bazohen në zhvendosjen e thjeshtë ose kalimin e trupave fizikë prej një pozite
Διαβάστε περισσότεραUdhëzimet e përdorimit të Fiamm Motive Power Energy Plus
Udhëzimet e përdorimit të Fiamm Motive Power Energy Plus Albanian Bateri traksionare, me pllaka tubulare pozitive, tipi PzS/PzB Të dhënat e klasifikimit 1. Kapaciteti nominal C 5 : Shikoni tabelën specifikuese
Διαβάστε περισσότεραPROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2014
KUJDES! MOS DËMTO BARKODIN BARKODI AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2014 SESIONI I VARIANTI B E mërkurë, 18 qershor 2014 Ora 10.00 Lënda: Gjuhë Greke Udhëzime për
Διαβάστε περισσότερα