Fluksi i vektorit të intenzitetit të fushës elektrike v. intenzitetin të barabartë me sipërfaqen të cilën e mberthejnë faktorët

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Fluksi i vektorit të intenzitetit të fushës elektrike v. intenzitetin të barabartë me sipërfaqen të cilën e mberthejnë faktorët"

Transcript

1 Ligji I Gauss-it Fluksi i ektorit të intenzitetit të fushës elektrike Prodhimi ektorial është një ektor i cili e ka: drejtimin normal mbi dy faktorët e prodhimit, dhe intenzitetin të barabartë me sipërfaqen të cilën e mberthejnë faktorët Nëse brinjëe të një paralelogrami u c = a b japim karakter ektorial, atëherë b sipërfaqen e tij mund ta paraqesim si prodhimin ektorial, normal mbi këtë sipërfaqe a j c = i madhësi ektoriale mund ta paraqesim edhe cilëndo sipërfaqe, paarësisht nga forma e saj. Vektori I normales së sipër. është, në këtë rast, normal mbi sipërfaqen në fjalë. 1

2 Në suprinen jo të rrafshët mundemi që diferencialin e syprinës ta paraqesim me ektor normal mbi këtë sipërfaqe. Diferenciali d i sipërfaqës së syprinës paraqitet (perzgjedhet)si pafundësisht i ogël. lementi d konsiderohët pjesë e rrafshit paarësisht nga rrezja e lakushmerisë së suprinës. Nëse sipërfaqja është e mbyllur në ete (hapsirore: si psh. sipërfaqja e sferës), atëherë ektorin diferencial N të kësaj sipërfaqeje e orientojmë prej sipëraqës në fjalë jashta. N d

3 Fluksi I fushës homogjene Fluksi I ektorit të fushës elektrike Projekcioni I siper. së syprinës normal mbi kahun e fushës F cos a = = cos a = F a a cos a 3

4 Fluksi i fushës johomogjene nëpër sipërfaqen e lakuar d d F = d fluksi i intenz. të ektorit të fushës elektrike F = d 4

5 Në praktikë kryesisht bëhët fjalë për fushë johomogjene dhe për sipërfaqe të lakuara. Diferenciali I fluksit është i barabartë me prodhimin e diferencialit të ektorit të intenzitetit të fushës dhe sipërfaqës në pikën e ëzhgimit. Fluksi i tërë është integrali i produktit skalar të ektorit të diferencialit të sipërfaqës së syprinës dhe intenzitetit të fushës në syprinë. Njësia matëse për fluksin e ektorit të intenzitetit të fushës elektrike është [ F ] = [ ][ ][ cos a ] = V m 1 = Vm m 5

6 Q Q 1 V UNIVRITTI I PRIHTINË Nxjerrja dhe ëretimi i ligjit të Gauss-it n Q n Q i d = Q i i = 1 e 0 në akuum Fluksi i intenzit. të ektorit të fushës elektrike nëpër sipërfaqen e mbyllur është e barabartë me shumën algjebrike të ngarkesae të përfshira nga ajo sipërfaqe e ndarë me konstanten dielektrike ε0. 6

7 a Rikujtesë: r l a = l r Këndi I rrafshët Këndi i rrafshët i plotë a = = p r r s s = r = r Këndi hapësinor Këndi hapësinor i plotë: ω = 4 p sferës = 4 p r 7

8 d d a o r d d n = r = d = d cos a = r ipër. normale 0 mbi radius ektorin = r d 8

9 0 r d Q Q = r 0 r 4 pe r 0 d F = d V F = d 9

10 Q = r 0 4 pe r 0 0 r d = r d F = d = r d = r d = 4 p Q Q = d = 4 pe 0 e = 0 0 Q = 4 p Q 0 = 4 pe r 4 pe r 0 = 0 0 n Q i Meqë mund ta shfrytëzojmë d = i = 1 parimin e superpo. ligji ertetohët. e Kjo lenë edhe për më shumë 0 ngarkesa 10

11 Zbatimi i Ligjit të Gauss-it Fusha elektrike e ngarkesës punktuale Q 0 r = r r d ditur: Q =? yprina e menduar si sferike me qendër në pikën ku është ngarkesa 11

12 n Q i i = 1 d = e 0 në akuum 4 p r = 1 d = r 0 d 0 0 d = = r r d = d = r 0 Q Q 4 p r = = e 4 p e r 0 0 Me këtë rezultat të ditur që përpara e ertetuam saktësinë e ligjit! 1

13 Fusha elektrike e sferës së zbrazët të ngarkuar Q > 0 a Q s = = konst 4 p a Do të thotë bëhët fjalë për ngarkesë me shperndarje të njëtrajtshme në et syprinen e sferës Meqë hapësira është homogjene fusha jashta sferës është simetrike dhe radiale. 13

14 1 r a Brenda sferës së paramenduar 1 : r < a ngarkesa e mbërthyer është 0 r a Jashta sferës së paramenduar : r > a ngarkesa e mbërthyer është = Q 14

15 d = n Q i = 1 e 0 i Në akuum Q d = d = d = 4π r = e = Q 4 pe r r < a : Q = 0 = 0 Q 0 r > a : Q = Q = 4 pe r 0 15

16 Fusha në sferë: Q s = = m a x 4 pe a e 0 0 a Fusha brenda sferës: r < a = 0 0 a Fusha jashta sferës: Q r > a = 4 pe r r 0 Fusha brenda sferës dhe në sipërfaqe është e barabartë me fushën sikur e tërë ngarkesa Q të jetë në qendër të sferës. 16

17 Fusha elektrike e sferës me shpërndarje të njëtrajtshme të ngarkesës ëllimore V a 4 3 Q = r d V = r a p 3 V Hapësira përreth është homogjene andaj fusha jashta dhe brenda sferës do të jetë e karakterit radial. Pa përlogaritje nuk mund të përfundohët për intenzitetin e fushës brenda as jashta sferës! 17

18 r Brenda sferës së paramenduar 1 : r < a ngarkesa e mbërthyer : a 1 4 Q = r r 3 p r < a 3 r a Jashta sferës së paramenduar : r > a ngarkesa e mbërthyer : 4 Q = r a 3 p = Q r > a 3 18

19 Brenda sferës : r < a d = d = = 4π r = r r p 1 3 e r r = 3e 0 Jashta sferës : r > a Q r a = = 4 pe r 3 e r 0 0 në akuum 3 në akuum 19

20 Fusha në sferë: Q = m a x a 4 pe a 0 V Fusha brenda sferës : r < a = 3e 0 r r r 0 a r dhe fusha jashta sferës : r > a = Q 4 pe r 0 Fusha brenda sferës dhe në sipërfaqe është e barabartë me fushën sikur e tërë ngarkesa Q të jetë në qendër të sferës 0

21 Fusha elektrike e cilindrit pakufi të gjatë të ngarkuar B B 1 r a s h 0 d s = konst =? Do të thotë: bëhët fjalë për ngarkesë me shperndarje të njëtrajtshme në syprinë cilindrike Për arsye të simetrisë fusha do të jetë radiale dhe e njejtë në të gjitha prerjet terthore. 1

22 d = d + d + B 1 B = 0 = 0 + d = d Zbatojmë Ligjin e Gaussit në cilindrin e paramenduar 0 0 = p rh Q p ha s a s = p rh = = = e e e r 0 0 0

23 Fusha në cilindër: = m a x s e 0 a s fusha brenda cilindrit : r < a = 0 fusha jashta cilindrit : r > a o a r a s = e 0 r 3

24 Fusha elektrike e një rrafshi të elektrizuar B s = konst B 1 =? - x s M x = 0 x Do të thotë bëhët fjalë për ngarkesë me shperndarje të njëtrajtshme në një syprinë të rrafshët Fusha do të jetë normale mbi rrafshin e ngarkuar dhe e barabartë në të gjitha pikat e rrafshit 4

25 d = d + d + B B 1 = B B 1 = + d = d M = 0 = Zbatojmë ligjin e Gaussit në cilindrin e imagjinuar Q s s = = = = e e e

26 x s = e 0 0 x Komponenta x e intenzitetit të fushës së rrafshit të ngarkuar 6

27 Fusha e rrafshit të ngarkuar është normal mbi rrafshin dhe me intenzitetin konstant s = e 0 në akuum Fusha nuk arët nga distanca e pikës prej rrafshit! Fusha e ndërron kahun në pikat që zëjnë poziten e rrafshit Kur rrafshi është me elektrizim poziti fusha është e orientuar prej rrafshit, e kur ngarkesa e rrafshit është negatie orientimi është kah rrafshi. 7

28 + s = konst s - s + A B Dy rrafshe paralele të elektrizuara A dhe B me ngarkesa të barabarta e me parashenja të kundërta 8

29 s = = + - e s e 0 0 Fusha në pikat në mes rrafshee: Fusha.jashta rrafshee: s s s = = + = = 0 e e e x s = e 0 0 x x x A B Në rrafshët normal mbi boshtin x x 9

Dielektriku në fushën elektrostatike

Dielektriku në fushën elektrostatike Dielektriku në fushën elektrostatike Polarizimi I dielektrikut Njera nga vetit themelore të dielektrikut është lidhja e fortë e gazit elektronik me molekulat e dielektrikut. Në fushën elektrostatike gazi

Διαβάστε περισσότερα

Q k. E = 4 πε a. Q s = C. = 4 πε a. j s. E + Qk + + k 4 πε a KAPACITETI ELEKTRIK. Kapaciteti i trupit të vetmuar j =

Q k. E = 4 πε a. Q s = C. = 4 πε a. j s. E + Qk + + k 4 πε a KAPACITETI ELEKTRIK. Kapaciteti i trupit të vetmuar j = UNIVERSIEI I PRISHINËS KAPACIEI ELEKRIK Kapaciteti i trupit të vetmuar Kapaciteti i sferës së vetmuar + + + + Q k s 2 E = 4 πε a v 0 fusha në sipërfaqe të sferës E + Qk + + + + j = Q + s + 0 + k 4 πε a

Διαβάστε περισσότερα

Nocionet themelore të elektricitetit

Nocionet themelore të elektricitetit Bazat e elektroteknikës Nocionet themelore të elektricitetit Struktura e materies Materia ndërtohët nga atomet, të cilët kanë berthamën, rreth së cilës rrotullohën elektronet. Atomi më i thjeshtë është

Διαβάστε περισσότερα

Ligji I Ohmit Gjatë rrjedhës së rrymës nëpër përcjellës paraqitet. rezistenca. Georg Simon Ohm ka konstatuar

Ligji I Ohmit Gjatë rrjedhës së rrymës nëpër përcjellës paraqitet. rezistenca. Georg Simon Ohm ka konstatuar Rezistenca elektrike Ligji I Ohmit Gjatë rrjedhës së rrymës nëpër përcjellës paraqitet rezistenca. Georg Simon Ohm ka konstatuar varësinë e ndryshimit të potencialit U në skajët e përcjellësit metalik

Διαβάστε περισσότερα

Indukcioni elektromagnetik

Indukcioni elektromagnetik Shufra pingul mbi ijat e fushës magnetike Indukcioni elektromagnetik Indukcioni elektromagnetik në shufrën përçuese e cila lëizë në fushën magnetike ijat e fushës magnetike homogjene Bazat e elektroteknikës

Διαβάστε περισσότερα

ELEKTROSTATIKA. Fusha elektrostatike eshte rast i vecante i fushes elektromagnetike.

ELEKTROSTATIKA. Fusha elektrostatike eshte rast i vecante i fushes elektromagnetike. ELEKTROSTATIKA Fusha elektrostatike eshte rast i vecante i fushes elektromagnetike. Ajo vihet ne dukje ne hapesiren rrethuese te nje trupi ose te nje sistemi trupash te ngarkuar elektrikisht, te palevizshem

Διαβάστε περισσότερα

INDUTIVITETI DHE MESINDUKTIVITETI. shtjellur linearisht 1. m I 2 Për dredhën e mbyllur të njëfisht

INDUTIVITETI DHE MESINDUKTIVITETI. shtjellur linearisht 1. m I 2 Për dredhën e mbyllur të njëfisht INDUTIVITETI DHE MESINDUKTIVITETI Autoinduksioni + E Ndryshimi I fluksit të mbërthyer indukon tensionin - el = - d Ψ Fluksi I mbërthyer autoinduksionit F është N herë më i madhë për shkak të eksitimit

Διαβάστε περισσότερα

Distanca gjer te yjet, dritësia dhe madhësia absolute e tyre

Distanca gjer te yjet, dritësia dhe madhësia absolute e tyre Distanca gjer te yjet, dritësia dhe madhësia absolute e tyre Mr. Sahudin M. Hysenaj 24 shkurt 2009 Përmbledhje Madhësia e dukshme e yjeve (m) karakterizon ndriçimin që vjen nga yjet mbi sipërfaqen e Tokës.

Διαβάστε περισσότερα

ELEKTROTEKNIKA (Pyetje dhe Pergjigje)

ELEKTROTEKNIKA (Pyetje dhe Pergjigje) Bejtush BEQIRI ELEKTROTEKNIKA (Pyetje dhe Pergjigje) Prishtinë, 206. . Si definohet fusha elektrostatike dhe cila madhesi e karakterizon atë? Fusha elektrike është një formë e veqantë e materies që karakterizohet

Διαβάστε περισσότερα

Detyra për ushtrime PJESA 4

Detyra për ushtrime PJESA 4 0 Detyr për ushtrime të pvrur g lëd ANALIZA MATEMATIKE I VARGJET NUMERIKE Detyr për ushtrime PJESA 4 3 Të jehsohet lim 4 3 ( ) Të tregohet se vrgu + + uk kovergjo 3 Le të jeë,,, k umr relë joegtivë Të

Διαβάστε περισσότερα

Tregu i tët. mirave dhe kurba IS. Kurba ose grafiku IS paraqet kombinimet e normave tët interesit dhe nivelet e produktit tët.

Tregu i tët. mirave dhe kurba IS. Kurba ose grafiku IS paraqet kombinimet e normave tët interesit dhe nivelet e produktit tët. Modeli IS LM Të ardhurat Kështu që, modeli IS LM paraqet raportin në mes pjesës reale dhe monetare të ekonomisë. Tregjet e aktiveve Tregu i mallrave Tregu monetar Tregu i obligacioneve Kërkesa agregate

Διαβάστε περισσότερα

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2013

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2013 KUJDES! MOS DËMTO BARKODIN BARKODI REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2013 LËNDA: FIZIKË BËRTHAMË VARIANTI

Διαβάστε περισσότερα

I. FUSHA ELEKTRIKE. FIZIKA II Rrahim MUSLIU ing.dipl.mek. 1

I. FUSHA ELEKTRIKE. FIZIKA II Rrahim MUSLIU ing.dipl.mek. 1 I.1. Ligji mbi ruajtjen e ngarkesës elektrike Më herët është përmendur se trupat e fërkuar tërheqin trupa tjerë, dhe mund të themi se me fërkimin e trupave ato elektrizohen. Ekzistojnë dy lloje të ngarkesave

Διαβάστε περισσότερα

R = Qarqet magnetike. INS F = Fm. m = m 0 l. l =

R = Qarqet magnetike. INS F = Fm. m = m 0 l. l = E T F UNIVERSIETI I PRISHTINËS F I E K QARQET ELEKTRIKE Qarqet magnetike Qarku magnetik I thjeshtë INS F = Fm m = m m r l Permeabililiteti i materialit N fluksi magnetik në berthamë të berthamës l = m

Διαβάστε περισσότερα

PASQYRIMET (FUNKSIONET)

PASQYRIMET (FUNKSIONET) PASQYRIMET (FUNKSIONET) 1. Përkufizimi i pasqyrimit (funksionit) Përkufizimi 1.1. Le të jenë S, T bashkësi të dhëna. Funksion ose pasqyrim nga S në T quhet rregulla sipas së cilës çdo elementi s S i shoqëronhet

Διαβάστε περισσότερα

II. MEKANIKA. FIZIKA I Rrahim MUSLIU ing.dipl.mek. 1

II. MEKANIKA. FIZIKA I Rrahim MUSLIU ing.dipl.mek. 1 II.1. Lëvizja mekanike Mekanika është pjesë e fizikës e cila i studion format më të thjeshta të lëvizjes së materies, të cilat bazohen në zhvendosjen e thjeshtë ose kalimin e trupave fizikë prej një pozite

Διαβάστε περισσότερα

Materialet në fushën magnetike

Materialet në fushën magnetike Materialet në fushën magnetike Llojet e materialeve magnetike Elektronet gjatë sjelljes të tyre rreth bërthamës krijojnë taq. momentin magnetik orbital. Vet elektronet kanë momentin magnetik vetiak - spin.

Διαβάστε περισσότερα

III. FUSHA MAGNETIKE. FIZIKA II Rrahim MUSLIU ing.dipl.mek. 1

III. FUSHA MAGNETIKE. FIZIKA II Rrahim MUSLIU ing.dipl.mek. 1 III.1. Fusha magnetike e magnetit të përhershëm Nëse në afërsi të magnetit vendosim një trup prej metali, çeliku, kobalti ose nikeli, magneti do ta tërheq trupin dhe ato do të ngjiten njëra me tjetrën.

Διαβάστε περισσότερα

UNIVERSITETI AAB Fakulteti i Shkencave Kompjuterike. LËNDA: Bazat e elektroteknikës Astrit Hulaj

UNIVERSITETI AAB Fakulteti i Shkencave Kompjuterike. LËNDA: Bazat e elektroteknikës Astrit Hulaj UNIVERSITETI AAB Fakulteti i Shkencave Kompjuterike LËNDA: Bazat e elektroteknikës Prishtinë, Ligjëruesi: 2014 Astrit Hulaj 1 KAPITULLI I 1. Hyrje në Bazat e Elektroteknikës 1.1. Principet bazë të inxhinierisë

Διαβάστε περισσότερα

III. FLUIDET. FIZIKA I Rrahim MUSLIU ing.dipl.mek. 1

III. FLUIDET. FIZIKA I Rrahim MUSLIU ing.dipl.mek. 1 III.1. Vetitë e lëngjeve dhe gazeve, përcjellja e forcës në fluide Lëngjet dhe gazet dallohen nga trupat e ngurtë, me atë se ato mund të rrjedhin. Substancat që mund të rrjedhin quhen fluide. Lëngjet dhe

Διαβάστε περισσότερα

Lënda: Mikroekonomia I. Kostoja. Msc. Besart Hajrizi

Lënda: Mikroekonomia I. Kostoja. Msc. Besart Hajrizi Lënda: Mikroekonomia I Kostoja Msc. Besart Hajrizi 1 Nga funksioni i prodhimit në kurbat e kostove Shpenzimet monetare të cilat i bën firma për inputet fikse (makineritë, paisjet, ndërtesat, depot, toka

Διαβάστε περισσότερα

FIZIKË. 4. Në figurë paraqitet grafiku i varësisë së shpejtësisë nga koha për një trup. Sa është zhvendosja e trupit pas 5 sekondash?

FIZIKË. 4. Në figurë paraqitet grafiku i varësisë së shpejtësisë nga koha për një trup. Sa është zhvendosja e trupit pas 5 sekondash? IZIKË. Një sferë hidhet vertikalisht lart. Rezistenca e ajrit nuk meret parasysh. Si kah pozitiv të lëvizjes meret kahu i drejtuar vertikalisht lart. Cili nga grafikët e mëposhtëm paraqet shpejtësinë e

Διαβάστε περισσότερα

paraqesin relacion binar të bashkësisë A në bashkësinë B? Prandaj, meqë X A B dhe Y A B,

paraqesin relacion binar të bashkësisë A në bashkësinë B? Prandaj, meqë X A B dhe Y A B, Përkufizimi. Le të jenë A, B dy bashkësi të çfarëdoshme. Çdo nënbashkësi e bashkësisë A B është relacion binar i bashkësisë A në bashkësinë B. Simbolikisht relacionin do ta shënojmë me. Shembulli. Le të

Διαβάστε περισσότερα

Njësitë e matjes së fushës magnetike T mund të rrjedhin për shembull nga shprehjen e forcës së Lorencit: m. C m

Njësitë e matjes së fushës magnetike T mund të rrjedhin për shembull nga shprehjen e forcës së Lorencit: m. C m PYETJE n.. - PËRGJIGJE B Duke qenë burimi isotrop, për ruajtjen e energjisë, energjia është e shpërndarë në mënyrë uniforme në një sipërfaqe sferike me qendër në burim. Intensiteti i dritës që arrin në

Διαβάστε περισσότερα

Qarqet/ rrjetet elektrike

Qarqet/ rrjetet elektrike Qarqet/ rrjetet elektrike Qarku elektrik I thjeshtë lementet themelore të qarkut elektrik Lidhjet e linjave Linja lidhëse Pika lidhëse Kryqëzimi I linjave lidhëse pa lidhje eletrike galvanike 1 1 lementet

Διαβάστε περισσότερα

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011 LËNDA: FIZIKË

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011 LËNDA: FIZIKË KUJDES! MOS DËMTO BARKODIN BARKODI REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011 LËNDA: FIZIKË VARIANTI A E enjte,

Διαβάστε περισσότερα

Qark Elektrik. Ne inxhinierine elektrike, shpesh jemi te interesuar te transferojme energji nga nje pike ne nje tjeter.

Qark Elektrik. Ne inxhinierine elektrike, shpesh jemi te interesuar te transferojme energji nga nje pike ne nje tjeter. Qark Elektrik Ne inxhinierine elektrike, shpesh jemi te interesuar te transferojme energji nga nje pike ne nje tjeter. Per te bere kete kerkohet nje bashkekomunikim ( nderlidhje) ndermjet pajisjeve elektrike.

Διαβάστε περισσότερα

( ) 4πε. ku ρ eshte ngarkesa specifike (ngarkesa per njesine e vellimit ρ ) dhe j eshte densiteti i rrymes

( ) 4πε. ku ρ eshte ngarkesa specifike (ngarkesa per njesine e vellimit ρ ) dhe j eshte densiteti i rrymes EKUACIONET E MAKSUELLIT Ne kete pjese do te studiojme elektrodinamiken klasike. Fjala klasike perdoret ne fizike, nuk ka rendesi e vjeter ose para shekullit te XX ose jo realiste (mendojne disa studente).

Διαβάστε περισσότερα

Teste matematike 7. Teste matematike. Botimet shkollore Albas

Teste matematike 7. Teste matematike. Botimet shkollore Albas Teste matematike 7 otimet shkollore Albas 1 Kreu I Kuptimi i numrit TEST 1 (pas orës së 8) Grupi A Rretho përgjigjen e saktë. 1. Te numri 3,435 shifra 4 tregon se: a) numri ka 4 të dhjeta; b) numri ka

Διαβάστε περισσότερα

Rikardo dhe modeli standard i tregtisë ndërkombëtare. Fakulteti Ekonomik, Universiteti i Prishtinës

Rikardo dhe modeli standard i tregtisë ndërkombëtare. Fakulteti Ekonomik, Universiteti i Prishtinës Rikardo dhe modeli standard i tregtisë ndërkombëtare Fakulteti Ekonomik, Universiteti i Prishtinës Hyrje Teoritë e tregtisë ndërkombëtare; Modeli i Rikardos; Modeli standard i tregtisë ndërkombëtare. Teoritë

Διαβάστε περισσότερα

Erduan RASHICA Shkelzen BAJRAMI ELEKTROTEKNIKA. Mitrovicë, 2016.

Erduan RASHICA Shkelzen BAJRAMI ELEKTROTEKNIKA. Mitrovicë, 2016. Erduan RASHICA Shkelzen BAJRAMI ELEKTROTEKNIKA Mitrovicë, 2016. PARATHËNIE E L E K T R O T E K N I K A Elektroteknika është një lami e gjerë, në këtë material është përfshi Elektroteknika për fillestar

Διαβάστε περισσότερα

2 Marim në konsiderate ciklet termodinamike të paraqitura në planin V p. Në cilin cikël është më e madhe nxehtësia që shkëmbehet me mjedisin?

2 Marim në konsiderate ciklet termodinamike të paraqitura në planin V p. Në cilin cikël është më e madhe nxehtësia që shkëmbehet me mjedisin? 1 Një automobile me një shpejtësi 58km/h përshpejtohet deri në shpejtësinë 72km/h për 1.9s. Sa do të jetë nxitimi mesatar i automobilit? A 0.11 m s 2 B 0.22 m s 2 C 2.0 m s 2 D 4.9 m s 2 E 9.8 m s 2 2

Διαβάστε περισσότερα

Përpjesa e kundërt e përpjesës a :b është: Mesi gjeometrik x i segmenteve m dhe n është: Për dy figura gjeometrike që kanë krejtësisht formë të njejtë, e madhësi të ndryshme ose të njëjta themi se janë

Διαβάστε περισσότερα

MATEMATIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE VITIT MËSIMOR 2012/2013 UDHËZIM

MATEMATIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE VITIT MËSIMOR 2012/2013 UDHËZIM MATEMATIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE VITIT MËSIMOR 2012/2013 UDHËZIM Mjetet e punës: lapsi grafit dhe goma, lapsi kimik, veglat gjeometrike.

Διαβάστε περισσότερα

QARQET ME DIODA 3.1 DREJTUESI I GJYSMËVALËS. 64 Myzafere Limani, Qamil Kabashi ELEKTRONIKA

QARQET ME DIODA 3.1 DREJTUESI I GJYSMËVALËS. 64 Myzafere Limani, Qamil Kabashi ELEKTRONIKA 64 Myzafere Limani, Qamil Kabashi ELEKTRONKA QARQET ME DODA 3.1 DREJTUES GJYSMËVALËS Analiza e diodës tani do të zgjerohet me funksione të ndryshueshme kohore siç janë forma valore sinusoidale dhe vala

Διαβάστε περισσότερα

FIZIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE

FIZIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE FIZIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE vitit mësimor 2012/2013 U d h ëzi m Mos e hapni testin derisa mos t ju japë leje administruesi i testit se

Διαβάστε περισσότερα

Nyjet, Deget, Konturet

Nyjet, Deget, Konturet Nyjet, Deget, Konturet Meqenese elementet ne nje qark elektrik mund te nderlidhen ne menyra te ndryshme, nevojitet te kuptojme disa koncepte baze te topologjise se rrjetit. Per te diferencuar nje qark

Διαβάστε περισσότερα

BAZAT E INFRASTRUKTURES NË KOMUNIKACION

BAZAT E INFRASTRUKTURES NË KOMUNIKACION MANUALI NË LËNDEN: BAZAT E INFRASTRUKTURES NË KOMUNIKACION Prishtinë,0 DETYRA : Shtrirja e trasesë së rrugës. Llogaritja e shkallës, tangjentës, dhe sekondit: 6 0 0 0.67 6 6. 0 0 0. 067 60 600 60 600 60

Διαβάστε περισσότερα

Shtrohet pyetja. A ekziston formula e përgjithshme për të caktuar numrin e n-të të thjeshtë?

Shtrohet pyetja. A ekziston formula e përgjithshme për të caktuar numrin e n-të të thjeshtë? KAPITULLI II. NUMRAT E THJESHTË Më parë pamë se p.sh. numri 7 plotpjesëtohet me 3 dhe me 9 (uptohet se çdo numër plotpjesëtohet me dhe me vetvetën). Shtrohet pyetja: me cilët numra plotpjesëtohet numri

Διαβάστε περισσότερα

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA QENDRORE E VLERËSIMIT TË ARRITJEVE TË NXËNËSVE PROVIMI I MATURËS SHTETËRORE 2008

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA QENDRORE E VLERËSIMIT TË ARRITJEVE TË NXËNËSVE PROVIMI I MATURËS SHTETËRORE 2008 KUJDES! MOS DËMTO BARKODIN Matematikë Sesioni I BARKODI REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA QENDRORE E VLERËSIMIT TË ARRITJEVE TË NXËNËSVE PROVIMI I MATURËS SHTETËRORE 008

Διαβάστε περισσότερα

MATERIAL MËSIMOR ELEKTROTEKNIK NR. 1

MATERIAL MËSIMOR ELEKTROTEKNIK NR. 1 Agjencia Kombëtare e Arsimit, Formimit Profesional dhe Kualifikimeve MATERIAL MËSIMOR Në mbështetje të mësuesve të drejtimit/profilit mësimor ELEKTROTEKNIK Niveli I NR. 1 Ky material mësimor i referohet:

Διαβάστε περισσότερα

UNIVERSITETI POLITEKNIK TIRANË UNIVERSITETI TEKNOLLOGJIK Ismail QEMALI UNIVERSITETI Eqerem ÇABEJ GJIROKASTER

UNIVERSITETI POLITEKNIK TIRANË UNIVERSITETI TEKNOLLOGJIK Ismail QEMALI UNIVERSITETI Eqerem ÇABEJ GJIROKASTER Prof. Dr. Niko THOMA Prof. As. Dr. Mersin SHENA Dr. Jorgo MANDILI Petrit ALIKO Mentor KUSHO VLOË 004 UNIVESITETI POLITEKNIK TIANË UNIVESITETI TEKNOLLOGJIK Ismail QEMALI UNIVESITETI Eqerem ÇABEJ GJIOKASTE

Διαβάστε περισσότερα

Α ί τ η σ η Δ ή λ ω σ η σ υ μ μ ε τ ο χ ή ς

Α ί τ η σ η Δ ή λ ω σ η σ υ μ μ ε τ ο χ ή ς ΟΡΘΟΔΟΞΟΣ ΑΥΤΟΚΕΦΑΛΟΣ ΕΚΚΛΗΣΙΑ ΑΛΒΑΝΙΑΣ ΙΕΡΑ ΜΗΤΡΟΠΟΛΙΣ ΑΡΓΥΡΟΚΑΣΤΡΟΥ ΚΑΤΑΣΚΗΝΩΣΗ «Μ Ε Τ Α Μ Ο Ρ Φ Ω Σ Η» Γ Λ Υ Κ Ο Μ Ι Λ Ι Δ Ρ Ο Π Ο Λ Η Σ Α ί τ η σ η Δ ή λ ω σ η σ υ μ μ ε τ ο χ ή ς Πόλη ή Χωριό Σας

Διαβάστε περισσότερα

5.1 CIKLI IDEAL TE MOTORI OTO KATËRKOHESH

5.1 CIKLI IDEAL TE MOTORI OTO KATËRKOHESH 5 CIKLE E PUNËS Dlloen ilet iele e rele të unës. e morët termie zilloen ilet e unës të ilt rqesin semën e nërrimee susesie të gjenjes të mteries unuese. Cili iel i morit rse uste iele më të ilët zilloet

Διαβάστε περισσότερα

PËRMBLEDHJE DETYRASH PËR PËRGATITJE PËR OLIMPIADA TË MATEMATIKËS

PËRMBLEDHJE DETYRASH PËR PËRGATITJE PËR OLIMPIADA TË MATEMATIKËS SHOQATA E MATEMATIKANËVE TË KOSOVËS PËRMBLEDHJE DETYRASH PËR PËRGATITJE PËR OLIMPIADA TË MATEMATIKËS Kls 9 Armend Sh Shbni Prishtinë, 009 Bshkësitë numerike Të vërtetohet se numri 004 005 006 007 + është

Διαβάστε περισσότερα

KAPITULLI4. Puna dhe energjia, ligji i ruajtjes se energjise

KAPITULLI4. Puna dhe energjia, ligji i ruajtjes se energjise Kapitui 4 Pua de eerjia KPIULLI4 Pua de eerjia, iji i ruajtjes se eerjise.ratori tereq e je rrue e au je tru e spejtesi 8/. Me care spejtesie do te tereqi tratori truu e je rrue te pastruar ur uqia e otorit

Διαβάστε περισσότερα

I. VALËT. λ = v T... (1), ose λ = v

I. VALËT. λ = v T... (1), ose λ = v I.1. Dukuritë valore, valët transfersale dhe longitudinale Me nocionin valë jemi njohur që më herët, si p.sh: valët e zërit, valët e detit, valët e dritës, etj. Për të kuptuar procesin valor, do të rikujtohemi

Διαβάστε περισσότερα

08:30 ΟΓΚΟΛΟΓΙΑ ONKOLOGJIA Νέα Εποχή Një epokë στην Αντιμετώπιση e Re në trajtimin του Καρκίνου e tumoreve

08:30 ΟΓΚΟΛΟΓΙΑ ONKOLOGJIA Νέα Εποχή Një epokë στην Αντιμετώπιση e Re në trajtimin του Καρκίνου e tumoreve E shtunë 20 Nëntor 2010 Σαββάτο 20 Νοεμβρίου 2010 Ώρα Έναρξης 08:30 Ora 1o ΕΠΙΣΤΗΜΟΝΙΚΟ ΣΕΜΙΝΑΡΙΟ ΝΟΣΟΚΟΜΕΙΟΥ ΥΓΕΙΑ ΤΙΡΑΝΩΝ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ:: ΟΓΚΟΛΟΓΙΑ Νέα Εποχή στην Αντιμετώπιση του Καρκίνου SEMINARI

Διαβάστε περισσότερα

Olimpiada italiane kombëtare e fizikës, faza e pare Dhjetor 2017

Olimpiada italiane kombëtare e fizikës, faza e pare Dhjetor 2017 Olimpiada italiane kombëtare e fizikës, faza e pare Dhjetor 2017 UDHËZIME: 1. Ju prezantoheni me një pyetësor i përbërë nga 40 pyetje; për secilën pyetje Sugjerohen 5 përgjigje, të shënuara me shkronjat

Διαβάστε περισσότερα

Algoritmet dhe struktura e të dhënave

Algoritmet dhe struktura e të dhënave Universiteti i Prishtinës Fakulteti i Inxhinierisë Elektrike dhe Kompjuterike Algoritmet dhe struktura e të dhënave Vehbi Neziri FIEK, Prishtinë 2015/2016 Java 5 vehbineziri.com 2 Algoritmet Hyrje Klasifikimi

Διαβάστε περισσότερα

UNIVERSITETI SHTETËROR I TETOVËS FAKULTETI I SHKENCAVE HUMANE DHE ARTEVE DEPARTAMENTI I GJEOGRAFISË. DETYRË Nr.1 nga lënda H A R T O G R A F I

UNIVERSITETI SHTETËROR I TETOVËS FAKULTETI I SHKENCAVE HUMANE DHE ARTEVE DEPARTAMENTI I GJEOGRAFISË. DETYRË Nr.1 nga lënda H A R T O G R A F I UNIVERSITETI SHTETËROR I TETOVËS FAKULTETI I SHKENCAVE HUMANE DHE ARTEVE DEPARTAMENTI I GJEOGRAFISË DETYRË Nr. nga lënda H A R T O G R A F I Punoi: Emri MBIEMRI Mentor: Asist.Mr.sc. Bashkim IDRIZI Tetovë,

Διαβάστε περισσότερα

NDËRTIMI DHE PËRMBAJTJA E PUNIMIT

NDËRTIMI DHE PËRMBAJTJA E PUNIMIT NDËRTIMI DHE PËRMBAJTJA E PUNIMIT Punimi monografik Vështrim morfo sintaksor i parafjalëve të gjuhës së re greke në krahasim me parafjalët e gjuhës shqipe është konceptuar në shtatë kapituj, të paraprirë

Διαβάστε περισσότερα

ANALIZA E DIFUZIONIT JOSTACIONAR TË LAGËSHTIRËS NË MURET E LOKALIT TË MODELUAR

ANALIZA E DIFUZIONIT JOSTACIONAR TË LAGËSHTIRËS NË MURET E LOKALIT TË MODELUAR `UNIVERSITETI I PRISHTINËS FAKULTETI I INXHINIERISË MEKANIKE PRISHTINË Mr. sc. Rexhep Selimaj ANALIZA E DIFUZIONIT JOSTACIONAR TË LAGËSHTIRËS NË MURET E LOKALIT TË MODELUAR PUNIM I DOKTORATURËS Prishtinë,

Διαβάστε περισσότερα

Analiza e regresionit të thjeshtë linear

Analiza e regresionit të thjeshtë linear Analiza e regresionit të thjeshtë linear 11-1 Kapitulli 11 Analiza e regresionit të thjeshtë linear 11- Regresioni i thjeshtë linear 11-3 11.1 Modeli i regresionit të thjeshtë linear 11. Vlerësimet pikësore

Διαβάστε περισσότερα

Teste matematike 6. Teste matematike. Botimet shkollore Albas

Teste matematike 6. Teste matematike. Botimet shkollore Albas Teste matematike 6 Botimet shkollore Albas 1 2 Teste matematike 6 Hyrje Në materiali e paraqitur janë dhënë dy lloj testesh për lëndën e Matematikës për klasën VI: 1. teste me alternativa, 2. teste të

Διαβάστε περισσότερα

Universiteti i Prishtinës Fakulteti i Inxhinierisë Elektrike dhe Kompjuterike. Agni H. Dika

Universiteti i Prishtinës Fakulteti i Inxhinierisë Elektrike dhe Kompjuterike. Agni H. Dika Universiteti i Prishtinës Fakulteti i Inxhinierisë Elektrike dhe Kompjuterike Agni H. Dika Prishtinë 007 Libri të cilin e keni në dorë së pari u dedikohet studentëve të Fakultetit të Inxhinierisë Elektrike

Διαβάστε περισσότερα

Analiza e qarqeve duke përdorur ligjet Kirchhoff ka avantazhin e madh se ne mund të analizojme një qark pa ngacmuar konfigurimin e tij origjinal.

Analiza e qarqeve duke përdorur ligjet Kirchhoff ka avantazhin e madh se ne mund të analizojme një qark pa ngacmuar konfigurimin e tij origjinal. Analiza e qarqeve duke përdorur ligjet Kirchhoff ka avantazhin e madh se ne mund të analizojme një qark pa ngacmuar konfigurimin e tij origjinal. Disavantazh i kësaj metode është se llogaritja është e

Διαβάστε περισσότερα

Libër. mësuesi. Fizika. Aida Rëmbeci. Bazë dhe me zgjedhje të detyruar S H T Ë P I A B O T U E S E. Për klasën e njëmbëdhjetë, gjimnaz.

Libër. mësuesi. Fizika. Aida Rëmbeci. Bazë dhe me zgjedhje të detyruar S H T Ë P I A B O T U E S E. Për klasën e njëmbëdhjetë, gjimnaz. Për klasën e njëmbëdhjetë, gjimnaz S H T Ë P I A B O T U E S E Libër mësuesi Aida Rëmbeci Fizika Bazë dhe me zgjedhje të detyruar 11 Aida Rëmbeci Margarita Ifti Maksim Rëmbeci Me zgjedhje të detyruar Për

Διαβάστε περισσότερα

AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2014 SESIONI I. E mërkurë, 18 qershor 2014 Ora 10.00

AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2014 SESIONI I. E mërkurë, 18 qershor 2014 Ora 10.00 KUJDES! MOS DËMTO BARKODIN BARKODI AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2014 SESIONI I VARIANTI A E mërkurë, 18 qershor 2014 Ora 10.00 Lënda: Teknologji bërthamë Udhëzime

Διαβάστε περισσότερα

KSF 2018 Student, Klasa 11 12

KSF 2018 Student, Klasa 11 12 Problema me 3 pikë # 1. Figura e e mëposhtme paraqet kalendarin e një muaji të vitit. Për fat të keq, mbi të ka rënë bojë dhe shumica e datave të tij nuk mund të shihen. Cila ditë e javës është data 27

Διαβάστε περισσότερα

VENDIM Nr.803, date PER MIRATIMIN E NORMAVE TE CILESISE SE AJRIT

VENDIM Nr.803, date PER MIRATIMIN E NORMAVE TE CILESISE SE AJRIT VENDIM Nr.803, date 4.12.2003 PER MIRATIMIN E NORMAVE TE CILESISE SE AJRIT Ne mbështetje te nenit 100 te Kushtetutës dhe te nenit 5 te ligjit nr.8897, date 16.5.2002 "Për mbrojtjen e ajrit nga ndotja",

Διαβάστε περισσότερα

KSF 2018 Cadet, Klasa 7 8 (A) 18 (B) 19 (C) 20 (D) 34 (E) 36

KSF 2018 Cadet, Klasa 7 8 (A) 18 (B) 19 (C) 20 (D) 34 (E) 36 Problema me 3 pië # 1. Sa është vlera e shprehjes (20 + 18) : (20 18)? (A) 18 (B) 19 (C) 20 (D) 34 (E) 36 # 2. Në qoftë se shkronjat e fjalës MAMA i shkruajmë verikalisht njëra mbi tjetrën fjala ka një

Διαβάστε περισσότερα

BAZAT E ELEKTROTEKNIKËS NË EKSPERIMENTE DHE USHTRIME PRAKTIKE LITERATURË PLOTËSUESE

BAZAT E ELEKTROTEKNIKËS NË EKSPERIMENTE DHE USHTRIME PRAKTIKE LITERATURË PLOTËSUESE BAZAT E ELEKTROTEKNIKËS NË EKSPERIMENTE DHE USHTRIME PRAKTIKE LITERATURË PLOTËSUESE 1 FAKULTETI I INXHINIERISË ELEKTRIKE DHE KOMPJUTERIKE BAZAT E ELEKTROTEKNIKËS SEMESTRI I PARË TË GJITHA DREJTIMET Prof.

Διαβάστε περισσότερα

Yjet e ndryshueshëm dhe jo stacionar

Yjet e ndryshueshëm dhe jo stacionar Yjet e ndryshueshëm dhe jo stacionar Sahudin M. HYSENAJ Pjesa më e madhe e yjeve ndriçojnë pa e ndryshuar shkëlqimin e tyre. Por ka yje të cilat edhe e ndryshojnë këtë. Në një pjesë të rasteve ndryshimi

Διαβάστε περισσότερα

Kapitulli 1 Hyrje në Analizën Matematike 1

Kapitulli 1 Hyrje në Analizën Matematike 1 Përmbajtja Parathënie iii Kapitulli 1 Hyrje në Analizën Matematike 1 1.1. Përsëritje të njohurive nga shkolla e mesme për bashkësitë, numrat reale dhe funksionet 1 1.1.1 Bashkësitë 1 1.1.2 Simbole të logjikës

Διαβάστε περισσότερα

Republika e Serbisë MINISTRIA E ARSIMIT, SHKENCËS DHE E ZHVILLIMIT TEKNOLOGJIK ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT

Republika e Serbisë MINISTRIA E ARSIMIT, SHKENCËS DHE E ZHVILLIMIT TEKNOLOGJIK ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT Republika e Serbisë MINISTRIA E ARSIMIT, SHKENCËS DHE E ZHVILLIMIT TEKNOLOGJIK ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT PROVIMI PËRFUNDIMTAR PROVUES Viti shkollor 2016/2017 TESTI MATEMATIKË

Διαβάστε περισσότερα

II. RRYMA ELEKTRIKE. FIZIKA II Rrahim MUSLIU ing.dipl.mek. 1

II. RRYMA ELEKTRIKE. FIZIKA II Rrahim MUSLIU ing.dipl.mek. 1 II.1. Kuptimet themelore për rrymën elektrike Fizika moderne sqaron se në cilën mënyrë përcjellësit e ngurtë (metalet) e përcjellin rrymën elektrike. Atomet në metale janë të rradhitur në mënyrë të rregullt

Διαβάστε περισσότερα

Teoria e kërkesës për punë

Teoria e kërkesës për punë L07 (Master) Teoria e kërkesës për punë Prof.as. Avdullah Hoti 1 Literatura: Literatura 1. George Borjas (2002): Labor Economics, 2nd Ed., McGraw-Hill, 2002, Chapter 4 2. Stefan Qirici (2005): Ekonomiksi

Διαβάστε περισσότερα

Definimi dhe testimi i hipotezave

Definimi dhe testimi i hipotezave (Master) Ligjerata 2 Metodologjia hulumtuese Definimi dhe testimi i hipotezave Prof.asc. Avdullah Hoti 1 1 Përmbajtja dhe literatura Përmbajtja 1. Definimi i hipotezave 2. Testimi i hipotezave përmes shembujve

Διαβάστε περισσότερα

6.6 PROCESI I DJEGIES Paraqet procesin bazë dhe më të ndërlikuar të ciklit punues të motorët me djegie të brendshme. Te procesi i djegies vjen deri

6.6 PROCESI I DJEGIES Paraqet procesin bazë dhe më të ndërlikuar të ciklit punues të motorët me djegie të brendshme. Te procesi i djegies vjen deri 6.6 PROCESI I DJEGIES Paraqet procesin bazë dhe më të ndërlikuar të ciklit punues të motorët me djegie të brendshme. Te procesi i djegies vjen deri te transformimi i energjisë kimike të lëndës djegëse

Διαβάστε περισσότερα

DELEGATET DHE ZBATIMI I TYRE NE KOMPONETE

DELEGATET DHE ZBATIMI I TYRE NE KOMPONETE DELEGATET DHE ZBATIMI I TYRE NE KOMPONETE KAPITULLI 5 Prof. Ass. Dr. Isak Shabani 1 Delegatët Delegati është tip me referencë i cili përdorë metoda si të dhëna. Përdorimi i zakonshëm i delegatëve është

Διαβάστε περισσότερα

Udhëzues për mësuesin. Fizika 10 11

Udhëzues për mësuesin. Fizika 10 11 Udhëzues për mësuesin Fizika 10 11 (pjesa e parë) Përpiloi: Dr. Valbona Nathanaili 1 Shtypur në Shtypshkronjën Guttenberg Tiranë, 2016 Shtëpia botuese DUDAJ Adresa: Rruga Ibrahim Rugova", Pall. 28, Ap.

Διαβάστε περισσότερα

SI TË BËHENI NËNSHTETAS GREK? (Udhëzime të thjeshtuara rreth marrjes së nënshtetësisë greke)*

SI TË BËHENI NËNSHTETAS GREK? (Udhëzime të thjeshtuara rreth marrjes së nënshtetësisë greke)* SI TË BËHENI NËNSHTETAS GREK? (Udhëzime të thjeshtuara rreth marrjes së nënshtetësisë e)* KUSH NUK MUND TË Për shtetasit e vendeve jashtë BEsë Ata që nuk kanë leje qëndrimi ose kanë vetëm leje të përkohshme

Διαβάστε περισσότερα

2.1 Kontrolli i vazhdueshëm (Kv)

2.1 Kontrolli i vazhdueshëm (Kv) Aneks Nr 2 e rregullores 1 Vlerësimi i cilësisë së dijeve te studentët dhe standardet përkatëse 1 Sistemi i diferencuar i vlerësimit të cilësisë së dijeve të studentëve 1.1. Për kontrollin dhe vlerësimin

Διαβάστε περισσότερα

2015: International Year of Light.

2015: International Year of Light. AIF Olimpiadi di Fisica 2015 Gara di 1 Livello 11 Dicembre 2014 1 2015: International Year of Light. Më 20 dhjetor 2013, Asambleja e Përgjithshme e Kombeve të Bashkuara e ka shpallur vitin 2015 si vitin

Διαβάστε περισσότερα

MENAXHIMI I OPERACIONEVE. Çfarë kuptohet me planifikimin e sistemimit? Çështjet kryesore SISTEMIMI I PROÇESIT LIGJËRATA 10

MENAXHIMI I OPERACIONEVE. Çfarë kuptohet me planifikimin e sistemimit? Çështjet kryesore SISTEMIMI I PROÇESIT LIGJËRATA 10 MENAXHIMI I OPERACIONEVE Çështjet kryesore SISTEMIMI I PROÇESIT LIGJËRATA 10 E 12 sek A B C D F H I 10 sek 50 sek 5 sek 25 sek 15 sek 18 sek 15 sek G 15 sek Çfarë kuptohet me planifikimin e sistemimit?

Διαβάστε περισσότερα

ALGJEBËR II Q. R. GASHI

ALGJEBËR II Q. R. GASHI ALGJEBËR II Q. R. GASHI Shënim: Këto ligjërata janë të paredaktuara, të palekturuara dhe vetëm një verzion fillestar i (ndoshta) një teksti të mëvonshëm. Ato nuk e reflektojnë detyrimisht materien që e

Διαβάστε περισσότερα

Kërkesat teknike për Listën e Materialeve dhe Pajisjeve të Pranueshme LEME lista - Sektori Banesor dhe i Ndërtesave

Kërkesat teknike për Listën e Materialeve dhe Pajisjeve të Pranueshme LEME lista - Sektori Banesor dhe i Ndërtesave Kërkesat teknike për Listën e Materialeve dhe Pajisjeve të Pranueshme LEME lista - Sektori Banesor dhe i Ndërtesave Kriteret e pranushmërisë së Materialeve dhe Pajisjeve Materiali/Pajisja /Mjeti Dritare

Διαβάστε περισσότερα

KOMUNA E PRISHTINËS DREJTORIA E PLANIFIKIMIT STRATEGJIK DHE ZHVILLIMIT TË QËNDRUESHEM

KOMUNA E PRISHTINËS DREJTORIA E PLANIFIKIMIT STRATEGJIK DHE ZHVILLIMIT TË QËNDRUESHEM KOMUNA E PRISHTINËS DREJTORIA E PLANIFIKIMIT STRATEGJIK DHE ZHVILLIMIT TË QËNDRUESHEM PLANI RREGULLUES I HOLLËSISHËM PËR TËRËSINË URBANE B TË LAGJES PRISHTINA E RE ZONA LINDJE NË PRISHTINË 2017-2025 PRISHTINË

Διαβάστε περισσότερα

2. DIODA GJYSMËPËRÇUESE

2. DIODA GJYSMËPËRÇUESE 28 Myzafere Limani, Qamil Kabashi ELEKTONIKA 2. IOA GJYSMËPËÇUESE 2.1 IOA IEALE ioda është komponenti më i thjeshtë gjysmëpërçues, por luan rol shumë vital në sistemet elektronike. Karakteristikat e diodës

Διαβάστε περισσότερα

PYETJE PRAKTIKE PËR TESTIN EKSTERN

PYETJE PRAKTIKE PËR TESTIN EKSTERN BUJAR MAMUDI LËNDA : MATEMATIKË KLASA : VIII TEMA : I NGJASHMËRIA PYETJE PRAKTIKE PËR TESTIN EKSTERN [i] Raporti ndërmjet dy segmenteve. 1. Kush është antari i parë për raportin e dhënë 16 Zgjidhje : 16

Διαβάστε περισσότερα

Testimi i hipotezave/kontrollimi i hipotezave Mostra e madhe

Testimi i hipotezave/kontrollimi i hipotezave Mostra e madhe Testimi i hipotezave/kontrollimi i hipotezave Mostra e madhe Ligjërata e tetë 1 Testimi i hipotezave/mostra e madhe Qëllimet Pas orës së mësimit ju duhet ë jeni në gjendje që të: Definoni termet: hipotezë

Διαβάστε περισσότερα

(a) Në planin koordinativ xoy të përcaktohet bashkësia e pikave M(x,y), koordinatat e të cilave vërtetojnë mosbarazimin

(a) Në planin koordinativ xoy të përcaktohet bashkësia e pikave M(x,y), koordinatat e të cilave vërtetojnë mosbarazimin PAATHËNIE Kur në vitin 975 u organizua për herë të parë në vendin tonë Olimpiada Kombëtare e Matematikës, ndonëse kishim bindjen dhe uronim që ajo të institucionalizohej si veprimtari e rëndësishme, nuk

Διαβάστε περισσότερα

VIZATIM Teknik Pjesa 1 MEKANIKË. Libri i teorisë

VIZATIM Teknik Pjesa 1 MEKANIKË. Libri i teorisë VIZATIM Teknik Pjesa 1 MEKANIKË Libri i teorisë 2 Përmbajtje Parafjalë... 5 1. Njohuri bazë... 6 1.1 Mjete vizatimi, Vija... 6 1.3 Diagramat në sistemin koordinativ... 10 2. Paraqitja e trupave... 12 2.1

Διαβάστε περισσότερα

9 KARAKTERISTIKAT E MOTORIT ME DJEGIE TË BRENDSHME DEFINICIONET THEMELORE Për përdorim të rregullt të motorit me djegie të brendshme duhet të dihen

9 KARAKTERISTIKAT E MOTORIT ME DJEGIE TË BRENDSHME DEFINICIONET THEMELORE Për përdorim të rregullt të motorit me djegie të brendshme duhet të dihen 9 KARAKTERISTIKAT E MOTORIT ME DJEGIE TË BRENDSHME DEFINICIONET THEMELORE Për përdorim të rregullt të motorit me djegie të brendshme duhet të dihen ndryshimet e treguesve të tij themelor - fuqisë efektive

Διαβάστε περισσότερα

KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE KATALOGU I PROVIMIT - FIZIKË

KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE KATALOGU I PROVIMIT - FIZIKË 1 Katalogun e provimit e përgatitën: Gordana Qetkoviq, SHF Oktoih, Podgoricë Radovan Sredanoviq, SHF Maksim Gorki, Podgoricë Ana Vujaçiq, Gimnazija Stojan Ceroviq, Nikshiq Tatijana Çarapiq, Qendra e Provimeve

Διαβάστε περισσότερα

Ushtrime Fizike

Ushtrime Fizike Ushtrime Fizike 18.11 2012 1. Shpejtësia e rrjedhjes së lëngut nëpër seksionin me sipërfaqe 70 cm² e ka vlerën 3 m/s. Përcaktoni shpejtësinë e rrjedhjes së lëngut nëpër seksionin me sipërfaqe 14 cm². Duke

Διαβάστε περισσότερα

MATEMATIKA. Manuali për arsimtarët. Podgoricë, Enti i Teksteve dhe i Mjeteve Mësimore PODGORICË

MATEMATIKA. Manuali për arsimtarët. Podgoricë, Enti i Teksteve dhe i Mjeteve Mësimore PODGORICË Izedin Kërniq Marko Jokiq Mirjana Boshkoviq MATEMATIKA Manuali për arsimtarët Enti i Teksteve dhe i Mjeteve Mësimore PODGORICË Podgoricë, 009. Izedin Kërniq Marko Jokiq Mirjana Boshkoviq MATEMATIKA Manuali

Διαβάστε περισσότερα

Teste matematike. Teste matematike. Miranda Mete. Botime shkollore Albas

Teste matematike. Teste matematike. Miranda Mete. Botime shkollore Albas Teste matematike Miranda Mete 9 Botime shkollore Albas Test përmbledhës Kapitulli I - Kuptimi i numrit Mësimet: - 8 Grupi A. Shkruaj si thyesa numrat dhjetorë të mëposhtëm. ( + + pikë) a) 0,5 = ---------

Διαβάστε περισσότερα

Ngjeshmëria e dherave

Ngjeshmëria e dherave Ngjeshmëria e dherave Hyrje Në ndërtimin e objekteve inxhinierike me mbushje dheu, si për shembull diga, argjinatura rrugore etj, kriteret projektuese përcaktojnë një shkallë të caktuar ngjeshmërie të

Διαβάστε περισσότερα

saj, pafundësinë, qartësinë dhe elegancën e prezantimit të tyre.

saj, pafundësinë, qartësinë dhe elegancën e prezantimit të tyre. Pershendetje nga presidenti i shkolles Bota e Diturise, Z. Bujar Lulaj Si ne çdo fund viti ne mesuesit dhe prinderit presim dhe shperndajme dhurata per te gezuar per vitin e rradhes qe vjen. Edhe per mua

Διαβάστε περισσότερα

PROBLEMA PËR MASTERIN E NIVELIT TË PARË MNP

PROBLEMA PËR MASTERIN E NIVELIT TË PARË MNP PROBLEMA PËR MASTERIN E NIVELIT TË PARË MNP FIZIKË MEKANIKA 1: Një ciklist është 30m larg një njeriu që vrapon me shpejtësi 4m/s. Shpejtësia e ciklistit është 12m/s. Pas sa kohe ciklisti arrin njeriun?

Διαβάστε περισσότερα

Të dhënat e klasifikimit. : Shikoni tabelën specifikuese në bateri 2. Tensioni nominal: 2,0 V x nr. i qelive 3. Rryma e shkarkimit: C 5

Të dhënat e klasifikimit. : Shikoni tabelën specifikuese në bateri 2. Tensioni nominal: 2,0 V x nr. i qelive 3. Rryma e shkarkimit: C 5 Udhëzimet e përdorimit të IRONCLAD ALBANIAN Të dhënat e klasifikimit 1. Kapaciteti nominal C 5 : Shikoni tabelën specifikuese në bateri 2. Tensioni nominal: 2,0 V x nr. i qelive 3. Rryma e shkarkimit:

Διαβάστε περισσότερα

2. Përpunimi digjital i sinjaleve

2. Përpunimi digjital i sinjaleve 2. Përpunimi digjital i sinjaleve Procesimi i sinjalit është i nevojshëm për të bartur informatat nga një skaj i rrjetit në tjetrin. Pasi që sinjalet në brezin themelor nuk mund të shkojnë larg, për transmetim,

Διαβάστε περισσότερα

Propozim për strukturën e re tarifore

Propozim për strukturën e re tarifore Propozim për strukturën e re tarifore (Tarifat e energjisë elektrike me pakicë) DEKLARATË Ky dokument është përgatitur nga ZRRE me qëllim të informimit të palëve të interesuara. Propozimet në këtë raport

Διαβάστε περισσότερα

8 BILANCI TERMIK I MOTORIT ME DJEGIE TË BRENDSHME

8 BILANCI TERMIK I MOTORIT ME DJEGIE TË BRENDSHME 8 BILANCI TERMIK I MOTORIT ME DJEGIE TË BRENDSHME Me termin bilanci termik te motorët nënktohet shërndarja e nxehtësisë të djegies së lëndës djegëse të ftr në motor. Siç është e njohr, vetëm një jesë e

Διαβάστε περισσότερα

1. Një linjë (linja tek). 2. Dy linjë (linja çift), ku secila linjë ka një drejtim të caktuar të lëvizjes. 3. Shumë linjë (tre dhe katër).

1. Një linjë (linja tek). 2. Dy linjë (linja çift), ku secila linjë ka një drejtim të caktuar të lëvizjes. 3. Shumë linjë (tre dhe katër). KEU II. LINJA HEKUUDHOE.1. ëndësia dhe kategorizimi i linjave hekurudhore.1.1. Linja hekurudhore është udha e transportit hekurudhor, baza mbi të cilën zhvillohet veprimtaria e tij, është shtrati dhe udhëzuesi,

Διαβάστε περισσότερα

Merkantilizmi, Smithi dhe përparësitë absolute

Merkantilizmi, Smithi dhe përparësitë absolute Merkantilizmi, Smithi dhe përparësitë absolute Ekonomiks i Tregtisë Ndërkombëtare Fakulteti Ekonomik, UP Hyrje Teoritë e Tregtisë Ndërkombëtare (TTN); Merkantilistët; Teoria e Përparësive Absolute dhe

Διαβάστε περισσότερα

Shqyrtimi i Feed-in Tarifës për Hidrocentralet e Vogla RAPORT KONSULTATIV

Shqyrtimi i Feed-in Tarifës për Hidrocentralet e Vogla RAPORT KONSULTATIV ZYRA E RREGULLATORIT PËR ENERGJI ENERGY REGULATORY OFFICE REGULATORNI URED ZA ENERGIJU Shqyrtimi i Feed-in Tarifës për Hidrocentralet e Vogla RAPORT KONSULTATIV DEKLARATË Ky raport konsultativ është përgatitur

Διαβάστε περισσότερα

SUPERIORITETI DIELLOR ME TEKNOLOGJINË

SUPERIORITETI DIELLOR ME TEKNOLOGJINË SUPERIORITETI DIELLOR ME TEKNOLOGJINË E TË ARTHMES...Panele diellore te teknollogjisë Glass & Inox Si vend me mbi 45 ditë diellore me intesitet rrezatimi, 450 keh/m vit. Shqipëria garanton përdorimin me

Διαβάστε περισσότερα