KSF 2018 Student, Klasa 11 12

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "KSF 2018 Student, Klasa 11 12"

Transcript

1 Problema me 3 pikë # 1. Figura e e mëposhtme paraqet kalendarin e një muaji të vitit. Për fat të keq, mbi të ka rënë bojë dhe shumica e datave të tij nuk mund të shihen. Cila ditë e javës është data 27 e atij muaji? (A) E hënë (B) E mërkurë (C) E enjte (D) E shtunë (E) E dielë # 2. Cila nga shprehjet e mëposhtme ka vlerë numerike më të madhe? (A) (B) (C) (D) 2 ( ) (E) # 3. Në figurë tregohet plani i shtëpisë së Renatës. Ajo hyri në shtëpi nga veranda dhe kaloi në të gjitha dyert e dhomave vetëm një herë. Në cilën dhomë përfundoi Renata? (A) 1 (B) 2 (C) 3 (D) 4 (E) 5 # 4. Dori ka 7 gurë dhe një çekiç. Sa herë që ai godet një gur me çekiç, guri ndahet ekzaktësisht në 5 gurë më të vegjël. Ai e përsëriti këtë veprim disa herë. Cili nga numrat e mëposhtëm mund të jetë numri i gurëve në përfundim të goditjeve? (A) 17 (B) 20 (C) 21 (D) 23 (E) 25 # 5. Trupi i mëposhtëm është formuar nga 10 kube të ngjitur së bashku. Trupi zhytet në një kovë me bojë që e mbulon tërësisht atë. Sa prej kubave do të ngjyrosen vetëm në katër faqet e tyre? 1

2 (A) 6 (B) 7 (C) 8 (D) 9 (E) 10 # 6. Dy pohimet e mëposhtme janë të vërteta: Pohimi 1: Disa alienë janë jeshilë, të tjerët janë lejla. Pohimi 2: Alienët jeshilë jetojnë vetëm në Mars. Atëherë, logjikisht rrjedh që: (A) Të gjithë alienët jetojnë në Mars. (C) Disa alienë lejla jetojnë në Venus. (E) Në Venus nuk jeton asnjë alien jeshil. (B) Në Mars jetojnë vetëm alienë jeshilë. (D) Të gjithë alienët lejla jetojnë në Venus. # 7. Katër rombe identikë dhe dy katrorë janë vendosur së bashku për të formuar një tetëkëndësh të rregullt (Rombet janë të ngjyrosur me gri). Sa është masa e këndit më të madh të secilit romb? (A) 135 (B) 140 (C) 144 (D) 145 (E) 150 # 8. Në një kuti ndodhen 65 topa, 8 prej të cilëve janë të bardhë dhe të tjerët të zinj. Me një tërheqje, mund të nxjerrim jashtë të shumtën 5 topa. Topat e nxjerrë nuk futen më brenda në kuti. Cili është numri më i vogël i tërheqjeve që duhet të bëjmë për t u siguruar që kemi nxjerrë të paktën një top të bardhë? (A) 11 (B) 12 (C) 13 (D) 14 (E) 15 # 9. Faqet e kuboidit i kanë syprinat A, B dhe C, siç tregohet në figurë. Sa është vëllimi i kuboidit? (A) ABC (B) ABC (C) AB + BC + CA (D) 3 ABC (E) 2(A + B + C) # 10. Në sa mënyra mund të shkruhet numri 1001 si shumë dy numrash të thjeshtë? (A) Asnjë (B) Një (C) Dy (D) Tre (E) Më shumë se tre Problema me 4 pikë # 11. Më poshtë jepen dy kube (1) dhe (2) me vëllime përkatësisht V dhe W. Ata priten me njëri tjetrin, siç paraqitet në figurë. Pjesa e kubit (1) jo e përbashkët me kubin (2) është 90% e vëllimit të tij V, ndërsa pjesa e kubit (2) jo e përbashkët me kubin (1), është 85 % e vëllimit të tij W. Cila është lidhja ndërmjet vëllimeve V dhe W? 2

3 (A) V = 2 3 W (B) V = 3 2W 85 (C) V = 90 W (D) V = W (E) V = W # 12. Një vazo mbushet me ujë me shpejtësi konstante. Grafiku tregon lartësinë h të ujit në funksion të kohës t. Cilën nga format e mëposhtme ka vazoja? (A) (B) (C) (D) (E) # = (A) 10 (B) 2 17 (C) (D) (E) 0 # 14. Në figurën e mëposhtme jepet një tetëfaqësh i brendashkruar në një kub me brinjë me gjatësi 1. Kulmet e tetëfaqëshit janë qendra të secilës faqe të kubit. Sa është vëllimi i tetëfaqëshit? (A) 1 3 (B) 1 4 (C) 1 5 (D) 1 6 (E) 1 8 3

4 # 15. Kulmet e trekëndëshit ABC kanë koordinata A(p, q), B(r, s) dhe C(t, u). Pikat M( 2, 1), N(2, 1) dhe P (3, 2) janë përkatësisht meset e brinjëve AB, BC dhe AC. Sa është vlera e shprehjes: p + q + r + s + t + u? (A) 2 (B) 5 2 (C) 3 (D) 5 (E) asnjë nga këto # 16. Para ndeshjes së futbollit ndërmjet Real Madrid dhe Manchester United u bënë pesë parashikime: 1. Loja nuk do të përfundojë në barazim; 2. Real Madrid do të shënojë; 3. Real Madrid do të fitojë; 4. Real Madrid nuk do të humbasë; 5. Do të shënohen tre gola. Cili ishte rezultati final në ndeshjen Real Madrid - Manchester United nëse vetëm tre nga parashikimet e mësipërme ishin të verteta? (A) 3-0 (B) 2-1 (C) 0-3 (D) 1-2 (E) Nuk është e mundur të përcaktohet # 17. Në një fletë fletoreje shkrimi u pre një pesëkëndësh i rregullt. Pesëkëndëshi rrotullohet disa herë rreth qendrës së tij në drejtim të kundërt të akrepave të orës me 21 deri sa të plotësojë për herë të parë prerjen. Situata pas rrotullimit të parë tregohet në figurën e mëposhtme. Cila është figura që do të shihet kur pesëkëndëshi ndalon së rrotulluari? (A) (B) (C) (D) (E) # 18. Cili nga numrat e mëposhtëm nuk e plotpjesëton ? (A) 8 (B) 18 (C) 28 (D) 38 (E) 48 4

5 # 19. Tre nga pesë letrat e paraqitura më poshtë i janë dhënë Shpresës dhe pjesa tjetër Renisës. Shpresa shumëzon 3 numrat e letrave të saj, ndërsa Renisa shumëzon 2 numrat e letrave të saj. Pas këtij veprimi shuma e prodhimit të Shpresës dhe të Renisës është numër i thjeshtë. Sa është shuma e numrave të letrave të Shpresës? (A) 12 (B) 13 (C) 15 (D) 17 (E) 18 # 20. Dy drejtkëndësha janë vendosur sipas vijës vertikale në kënde 40 dhe 30 siç tregohet në figurë. Sa është masa e këndit θ? (A) 105 (B) 120 (C) 130 (D) 135 (E) Asnjë nga këto Problema me 5 pikë # 21. Prizmi në figurën e mëposhtme është formuar nga dy trekëndësha dhe tre katrorë. Në gjashtë kulmet e prizmit shënohen me nurmat 1 deri në 6 në mënyrë të tillë që shuma e numrave në katër kulmet e çdo katrori të jetë e njëjtë. Numrat 1 dhe 5 janë vendosur tashmë. Cili është numri që shënohet në kulmin e shenjën x. (A) 2 (B) 3 (C) 4 (D) 6 (E) Situata nuk është e mundur 5

6 # 22. Rrënjët e ekuacionit x 2 x 2018 = 0 janë shënuar me m dhe n. Sa është vlera e shprehjes: n 2 + m? (A) 2016 (B) 2017 (C) 2018 (D) 2019 (E) 2020 # 23. Katër vëllezër A, B, C dhe D kanë gjatësi të ndryshme nga njëri tjetri. Ata deklarojnë: - A: Unë nuk jam as më i gjati dhe as më i shkurtri. - B: Unë nuk jam më i shkurtri. - C: Unë jam më i gjati. - D: Unë jam më i shkurtri. Vetëm një prej tyre ka gënjyer. Kush është më i gjatë? (A) A (B) B (C) C (D) D (E) Nuk kemi informacion të mjaftueshëm # 24. Le të jetë f një funksion i tillë që f(x + y) = f(x)f(y) për çdo numër të plotë x dhe y. Në qoftë se f(1) = 1/2, gjeni vlerën e shprehjes f(0) + f(1) + f(2) + f(3). (A) 1/8 (B) 3/2 (C) 5/2 (D) 15/8 (E) 6 # 25. Grafiku i një funksioni kuadratik f(x) = x 2 + px + q pret boshtet koordinativë Ox dhe Oy në tre pika të ndryshme. Rrethi që kalon nga këto 3 pika pret grafikun në një pikë të katërt. Cilat janë koordinatat e pikës së katërt? ) qp q2 (A) (0, q) (B) (p, q) (C) ( p, q) (D) (, p 2 (E) (1, p + q + 1) # 26. Më poshtë jepet një fushë bilardoje në formë drejtkëndore me përmasa 3m 2m. Godasim një nga gurët që ndodhet në një nga brinjët e gjata të drejtkëndëshit, që në figurë është shënuar me M. Ai përplaset në secilën brinjë siç tregohet në figurë. Në çfarë largese nga pika A përplaset përsëri guri në brinjën fillestare nëse BM = 1, 2 m dhe BN = 0, 8 m? D C N A M B (A) 1, 2m (B) 1, 5m (C) 2m (D) 2, 8m (E) 1, 8m # 27. Sa zgjidhje reale ka ekuacioni 4 x 3 2 = 1? (A) 2 (B) 3 (C) 4 (D) 5 (E) 6 # 28. ABCDEF është një gjashtëkëndësh i rregullt. Pika G është mesi i segmentit AB, ndërsa H dhe I janë përkatësisht pikat e prerjes së segmenteve GD dhe GE me F C. Sa është raporti i syprinës së trekëndëshit GIF dhe trapezit IHDE? 6

7 (A) 1 2 (B) 1 3 (C) 1 4 (D) 3 3 (E) 3 4 # 29. Një klasë ka 40 % më shumë vajza se djem. Sa nxënës janë në këtë klasë nëse probabiliteti që një çift nxënesish i zgjedhur rastësisht në klasë të përbëhet nga një vajzë dhe një djalë është i barabartë me 1 2? (A) 20 (B) 24 (C) 36 (D) 38 (E) Nuk ka mundësi. # 30. Arkimedi llogariti 15!. Rezultati është shënuar më poshtë. Shifra e dytë dhe shifra e dhjetë e këtij numri nuk mund të shihen. Cilët janë këta numra? (A) 2 dhe 0 (B) 4 dhe 8 (C) 7 dhe 4 (D) 9 dhe 2 (E) 3 dhe 8 7

KSF 2018 Cadet, Klasa 7 8 (A) 18 (B) 19 (C) 20 (D) 34 (E) 36

KSF 2018 Cadet, Klasa 7 8 (A) 18 (B) 19 (C) 20 (D) 34 (E) 36 Problema me 3 pië # 1. Sa është vlera e shprehjes (20 + 18) : (20 18)? (A) 18 (B) 19 (C) 20 (D) 34 (E) 36 # 2. Në qoftë se shkronjat e fjalës MAMA i shkruajmë verikalisht njëra mbi tjetrën fjala ka një

Διαβάστε περισσότερα

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA QENDRORE E VLERËSIMIT TË ARRITJEVE TË NXËNËSVE PROVIMI I MATURËS SHTETËRORE 2008

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA QENDRORE E VLERËSIMIT TË ARRITJEVE TË NXËNËSVE PROVIMI I MATURËS SHTETËRORE 2008 KUJDES! MOS DËMTO BARKODIN Matematikë Sesioni I BARKODI REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA QENDRORE E VLERËSIMIT TË ARRITJEVE TË NXËNËSVE PROVIMI I MATURËS SHTETËRORE 008

Διαβάστε περισσότερα

Ligji I Ohmit Gjatë rrjedhës së rrymës nëpër përcjellës paraqitet. rezistenca. Georg Simon Ohm ka konstatuar

Ligji I Ohmit Gjatë rrjedhës së rrymës nëpër përcjellës paraqitet. rezistenca. Georg Simon Ohm ka konstatuar Rezistenca elektrike Ligji I Ohmit Gjatë rrjedhës së rrymës nëpër përcjellës paraqitet rezistenca. Georg Simon Ohm ka konstatuar varësinë e ndryshimit të potencialit U në skajët e përcjellësit metalik

Διαβάστε περισσότερα

Teste matematike 6. Teste matematike. Botimet shkollore Albas

Teste matematike 6. Teste matematike. Botimet shkollore Albas Teste matematike 6 Botimet shkollore Albas 1 2 Teste matematike 6 Hyrje Në materiali e paraqitur janë dhënë dy lloj testesh për lëndën e Matematikës për klasën VI: 1. teste me alternativa, 2. teste të

Διαβάστε περισσότερα

Përpjesa e kundërt e përpjesës a :b është: Mesi gjeometrik x i segmenteve m dhe n është: Për dy figura gjeometrike që kanë krejtësisht formë të njejtë, e madhësi të ndryshme ose të njëjta themi se janë

Διαβάστε περισσότερα

PASQYRIMET (FUNKSIONET)

PASQYRIMET (FUNKSIONET) PASQYRIMET (FUNKSIONET) 1. Përkufizimi i pasqyrimit (funksionit) Përkufizimi 1.1. Le të jenë S, T bashkësi të dhëna. Funksion ose pasqyrim nga S në T quhet rregulla sipas së cilës çdo elementi s S i shoqëronhet

Διαβάστε περισσότερα

Teste matematike 7. Teste matematike. Botimet shkollore Albas

Teste matematike 7. Teste matematike. Botimet shkollore Albas Teste matematike 7 otimet shkollore Albas 1 Kreu I Kuptimi i numrit TEST 1 (pas orës së 8) Grupi A Rretho përgjigjen e saktë. 1. Te numri 3,435 shifra 4 tregon se: a) numri ka 4 të dhjeta; b) numri ka

Διαβάστε περισσότερα

Klasa 2 dhe 3 KENGUR 2014

Klasa 2 dhe 3 KENGUR 2014 Gara ndërkombëtare Kengur viti 014 Klasa dhe 3 KENGUR 014 Çdo detyrë me numër rendor nga 1 deri në 10 vlerësohet me 10 pikë Koha në disponim për zgjidhje është 1h e 15 min Për përgjigje të gabuar të një

Διαβάστε περισσότερα

Teste matematike. Teste matematike. Miranda Mete. Botime shkollore Albas

Teste matematike. Teste matematike. Miranda Mete. Botime shkollore Albas Teste matematike Miranda Mete 9 Botime shkollore Albas Test përmbledhës Kapitulli I - Kuptimi i numrit Mësimet: - 8 Grupi A. Shkruaj si thyesa numrat dhjetorë të mëposhtëm. ( + + pikë) a) 0,5 = ---------

Διαβάστε περισσότερα

PËRMBLEDHJE DETYRASH PËR PËRGATITJE PËR OLIMPIADA TË MATEMATIKËS

PËRMBLEDHJE DETYRASH PËR PËRGATITJE PËR OLIMPIADA TË MATEMATIKËS SHOQATA E MATEMATIKANËVE TË KOSOVËS PËRMBLEDHJE DETYRASH PËR PËRGATITJE PËR OLIMPIADA TË MATEMATIKËS Kls 9 Armend Sh Shbni Prishtinë, 009 Bshkësitë numerike Të vërtetohet se numri 004 005 006 007 + është

Διαβάστε περισσότερα

paraqesin relacion binar të bashkësisë A në bashkësinë B? Prandaj, meqë X A B dhe Y A B,

paraqesin relacion binar të bashkësisë A në bashkësinë B? Prandaj, meqë X A B dhe Y A B, Përkufizimi. Le të jenë A, B dy bashkësi të çfarëdoshme. Çdo nënbashkësi e bashkësisë A B është relacion binar i bashkësisë A në bashkësinë B. Simbolikisht relacionin do ta shënojmë me. Shembulli. Le të

Διαβάστε περισσότερα

Fluksi i vektorit të intenzitetit të fushës elektrike v. intenzitetin të barabartë me sipërfaqen të cilën e mberthejnë faktorët

Fluksi i vektorit të intenzitetit të fushës elektrike v. intenzitetin të barabartë me sipërfaqen të cilën e mberthejnë faktorët Ligji I Gauss-it Fluksi i ektorit të intenzitetit të fushës elektrike Prodhimi ektorial është një ektor i cili e ka: drejtimin normal mbi dy faktorët e prodhimit, dhe intenzitetin të barabartë me sipërfaqen

Διαβάστε περισσότερα

Q k. E = 4 πε a. Q s = C. = 4 πε a. j s. E + Qk + + k 4 πε a KAPACITETI ELEKTRIK. Kapaciteti i trupit të vetmuar j =

Q k. E = 4 πε a. Q s = C. = 4 πε a. j s. E + Qk + + k 4 πε a KAPACITETI ELEKTRIK. Kapaciteti i trupit të vetmuar j = UNIVERSIEI I PRISHINËS KAPACIEI ELEKRIK Kapaciteti i trupit të vetmuar Kapaciteti i sferës së vetmuar + + + + Q k s 2 E = 4 πε a v 0 fusha në sipërfaqe të sferës E + Qk + + + + j = Q + s + 0 + k 4 πε a

Διαβάστε περισσότερα

Tregu i tët. mirave dhe kurba IS. Kurba ose grafiku IS paraqet kombinimet e normave tët interesit dhe nivelet e produktit tët.

Tregu i tët. mirave dhe kurba IS. Kurba ose grafiku IS paraqet kombinimet e normave tët interesit dhe nivelet e produktit tët. Modeli IS LM Të ardhurat Kështu që, modeli IS LM paraqet raportin në mes pjesës reale dhe monetare të ekonomisë. Tregjet e aktiveve Tregu i mallrave Tregu monetar Tregu i obligacioneve Kërkesa agregate

Διαβάστε περισσότερα

MATEMATIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE

MATEMATIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE MATEMATIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE QERSHOR, VITIT MËSIMOR 2015/2016 UDHËZIM KOHA PËR ZGJIDHJEN E TESTIT: 70 MINUTA Mjetet e punës: lapsi grafit

Διαβάστε περισσότερα

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011 KUJDES! MOS DËMTO BARKODIN BARKODI REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011 S E S I O N I II LËNDA: KIMI VARIANTI

Διαβάστε περισσότερα

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011 KUJDES! MOS DËMTO BARKODIN BARKODI REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011 S E S I O N I II LËNDA: KIMI VARIANTI

Διαβάστε περισσότερα

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI I MATURËS SHTETËRORE 2012 I DETYRUAR

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI I MATURËS SHTETËRORE 2012 I DETYRUAR KUJDES! MOS DËMTO BARKODIN BARKODI REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI I MATURËS SHTETËRORE 01 I DETYRUAR VARIANTI A E shtunë, 16 qershor 01

Διαβάστε περισσότερα

AISHE HAJREDINI (KARAJ), KRISTAQ LULA. Kimia Inorganike. TESTE TË ZGJIDHURA Të maturës shtetërore

AISHE HAJREDINI (KARAJ), KRISTAQ LULA. Kimia Inorganike. TESTE TË ZGJIDHURA Të maturës shtetërore AISHE HAJREDINI (KARAJ), KRISTAQ LULA Kimia Inorganike TESTE TË ZGJIDHURA Të maturës shtetërore AISHE HAJREDINI (KARAJ), KRISTAQ LULA TESTE TË MATURËS SHTETËRORE Kimia inorganike S H T Ë P I A B O T U

Διαβάστε περισσότερα

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2013

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2013 KUJDES! MOS DËMTO BARKODIN BARKODI REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2013 LËNDA: FIZIKË BËRTHAMË VARIANTI

Διαβάστε περισσότερα

Teste EDLIRA ÇUPI SERVETE CENALLA

Teste EDLIRA ÇUPI SERVETE CENALLA Teste EDLIRA ÇUPI SERVETE CENALLA Matematika gjithmonë me ju 1 Botimet shkollore Albas 1 Test përmbledhës për kapitullin I 1. Lidh me vijë fi gurën me ngjyrën. Ngjyros. (6 pikë) E VERDHË E KUQE E KALTËR

Διαβάστε περισσότερα

Α ί τ η σ η Δ ή λ ω σ η σ υ μ μ ε τ ο χ ή ς

Α ί τ η σ η Δ ή λ ω σ η σ υ μ μ ε τ ο χ ή ς ΟΡΘΟΔΟΞΟΣ ΑΥΤΟΚΕΦΑΛΟΣ ΕΚΚΛΗΣΙΑ ΑΛΒΑΝΙΑΣ ΙΕΡΑ ΜΗΤΡΟΠΟΛΙΣ ΑΡΓΥΡΟΚΑΣΤΡΟΥ ΚΑΤΑΣΚΗΝΩΣΗ «Μ Ε Τ Α Μ Ο Ρ Φ Ω Σ Η» Γ Λ Υ Κ Ο Μ Ι Λ Ι Δ Ρ Ο Π Ο Λ Η Σ Α ί τ η σ η Δ ή λ ω σ η σ υ μ μ ε τ ο χ ή ς Πόλη ή Χωριό Σας

Διαβάστε περισσότερα

Shtrohet pyetja. A ekziston formula e përgjithshme për të caktuar numrin e n-të të thjeshtë?

Shtrohet pyetja. A ekziston formula e përgjithshme për të caktuar numrin e n-të të thjeshtë? KAPITULLI II. NUMRAT E THJESHTË Më parë pamë se p.sh. numri 7 plotpjesëtohet me 3 dhe me 9 (uptohet se çdo numër plotpjesëtohet me dhe me vetvetën). Shtrohet pyetja: me cilët numra plotpjesëtohet numri

Διαβάστε περισσότερα

REPUBLIKA E KOSOVËS REPUBLIKA KOSOVO REPUBLIC OF KOSOVA QEVERIA E KOSOVËS - VLADA KOSOVA - GOVERNMENT OF KOSOVA

REPUBLIKA E KOSOVËS REPUBLIKA KOSOVO REPUBLIC OF KOSOVA QEVERIA E KOSOVËS - VLADA KOSOVA - GOVERNMENT OF KOSOVA REPUBLIK E KOSOVËS REPUBLIK KOSOVO REPUBLIC OF KOSOV QEVERI E KOSOVËS - VLD KOSOV - GOVERNMENT OF KOSOV MINISTRI E RSIMIT E MINISTRSTVO OBRZOVNJ MINISTRY OF EDUCTION SHKENCËS DHE E TEKNOLOGJISË NUKE I

Διαβάστε περισσότερα

Olimpiada italiane kombëtare e fizikës, faza e pare Dhjetor 2017

Olimpiada italiane kombëtare e fizikës, faza e pare Dhjetor 2017 Olimpiada italiane kombëtare e fizikës, faza e pare Dhjetor 2017 UDHËZIME: 1. Ju prezantoheni me një pyetësor i përbërë nga 40 pyetje; për secilën pyetje Sugjerohen 5 përgjigje, të shënuara me shkronjat

Διαβάστε περισσότερα

Analiza e regresionit të thjeshtë linear

Analiza e regresionit të thjeshtë linear Analiza e regresionit të thjeshtë linear 11-1 Kapitulli 11 Analiza e regresionit të thjeshtë linear 11- Regresioni i thjeshtë linear 11-3 11.1 Modeli i regresionit të thjeshtë linear 11. Vlerësimet pikësore

Διαβάστε περισσότερα

MATEMATIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE VITIT MËSIMOR 2012/2013 UDHËZIM

MATEMATIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE VITIT MËSIMOR 2012/2013 UDHËZIM MATEMATIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE VITIT MËSIMOR 2012/2013 UDHËZIM Mjetet e punës: lapsi grafit dhe goma, lapsi kimik, veglat gjeometrike.

Διαβάστε περισσότερα

BAZAT E INFRASTRUKTURES NË KOMUNIKACION

BAZAT E INFRASTRUKTURES NË KOMUNIKACION MANUALI NË LËNDEN: BAZAT E INFRASTRUKTURES NË KOMUNIKACION Prishtinë,0 DETYRA : Shtrirja e trasesë së rrugës. Llogaritja e shkallës, tangjentës, dhe sekondit: 6 0 0 0.67 6 6. 0 0 0. 067 60 600 60 600 60

Διαβάστε περισσότερα

Algoritmet dhe struktura e të dhënave

Algoritmet dhe struktura e të dhënave Universiteti i Prishtinës Fakulteti i Inxhinierisë Elektrike dhe Kompjuterike Algoritmet dhe struktura e të dhënave Vehbi Neziri FIEK, Prishtinë 2015/2016 Java 5 vehbineziri.com 2 Algoritmet Hyrje Klasifikimi

Διαβάστε περισσότερα

Libër mësuesi Matematika

Libër mësuesi Matematika Libër mësuesi Nikolla Perdhiku Libër mësuesi Matematika 7 Për klasën e 7 -të të shkollës 9-vjeçare Botime shkollore Albas 1 Libër mësuesi për tekstin Matematika 7 Botues: Latif AJRULLAI Rita PETRO Redaktore

Διαβάστε περισσότερα

Teori Grafesh. E zëmë se na është dhënë një bashkësi segmentesh mbi drejtëzën reale që po e shënojmë:

Teori Grafesh. E zëmë se na është dhënë një bashkësi segmentesh mbi drejtëzën reale që po e shënojmë: Teori Grafesh Teori grafesh bitbit.uni.cc 1.1 Koncepti i grafit dhe disa nocione shoqeruese Shpeshherë për të lehtësuar veten ne shtrimin dhe analizën e mjaft problemeve që dalin në veprimtarinë tonë,

Διαβάστε περισσότερα

Algoritmika dhe Programimi i Avancuar KAPITULLI I HYRJE Algoritmat nje problem renditjeje Hyrja: a1, a2,, an> Dalja: <a 1, a 2,, a n> a 1 a 2 a n.

Algoritmika dhe Programimi i Avancuar KAPITULLI I HYRJE Algoritmat nje problem renditjeje Hyrja: a1, a2,, an> Dalja: <a 1, a 2,, a n> a 1 a 2 a n. KAPITULLI I HYRJE Algoritmat Ne menyre informale do te perkufizonim nje algoritem si nje procedure perllogaritese cfaredo qe merr disa vlera ose nje bashkesi vlerash ne hyrje dhe prodhon disa vlera ose

Διαβάστε περισσότερα

Detyra për ushtrime PJESA 4

Detyra për ushtrime PJESA 4 0 Detyr për ushtrime të pvrur g lëd ANALIZA MATEMATIKE I VARGJET NUMERIKE Detyr për ushtrime PJESA 4 3 Të jehsohet lim 4 3 ( ) Të tregohet se vrgu + + uk kovergjo 3 Le të jeë,,, k umr relë joegtivë Të

Διαβάστε περισσότερα

MATEMATIKA. Manuali për arsimtarët. Podgoricë, Enti i Teksteve dhe i Mjeteve Mësimore PODGORICË

MATEMATIKA. Manuali për arsimtarët. Podgoricë, Enti i Teksteve dhe i Mjeteve Mësimore PODGORICË Izedin Kërniq Marko Jokiq Mirjana Boshkoviq MATEMATIKA Manuali për arsimtarët Enti i Teksteve dhe i Mjeteve Mësimore PODGORICË Podgoricë, 009. Izedin Kërniq Marko Jokiq Mirjana Boshkoviq MATEMATIKA Manuali

Διαβάστε περισσότερα

II. MEKANIKA. FIZIKA I Rrahim MUSLIU ing.dipl.mek. 1

II. MEKANIKA. FIZIKA I Rrahim MUSLIU ing.dipl.mek. 1 II.1. Lëvizja mekanike Mekanika është pjesë e fizikës e cila i studion format më të thjeshta të lëvizjes së materies, të cilat bazohen në zhvendosjen e thjeshtë ose kalimin e trupave fizikë prej një pozite

Διαβάστε περισσότερα

Nyjet, Deget, Konturet

Nyjet, Deget, Konturet Nyjet, Deget, Konturet Meqenese elementet ne nje qark elektrik mund te nderlidhen ne menyra te ndryshme, nevojitet te kuptojme disa koncepte baze te topologjise se rrjetit. Per te diferencuar nje qark

Διαβάστε περισσότερα

Republika e Serbisë MINISTRIA E ARSIMIT DHE E SHKENCËS ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT

Republika e Serbisë MINISTRIA E ARSIMIT DHE E SHKENCËS ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT Republika e Serbisë MINISTRIA E ARSIMIT DHE E SHKENCËS ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT PROVIMI PËRFUNDIMTAR NË FUND TË ARSIMIT DHE TË EDUKIMIT FILLOR viti shkollor 2010/2011.

Διαβάστε περισσότερα

2 Marim në konsiderate ciklet termodinamike të paraqitura në planin V p. Në cilin cikël është më e madhe nxehtësia që shkëmbehet me mjedisin?

2 Marim në konsiderate ciklet termodinamike të paraqitura në planin V p. Në cilin cikël është më e madhe nxehtësia që shkëmbehet me mjedisin? 1 Një automobile me një shpejtësi 58km/h përshpejtohet deri në shpejtësinë 72km/h për 1.9s. Sa do të jetë nxitimi mesatar i automobilit? A 0.11 m s 2 B 0.22 m s 2 C 2.0 m s 2 D 4.9 m s 2 E 9.8 m s 2 2

Διαβάστε περισσότερα

Njësitë e matjes së fushës magnetike T mund të rrjedhin për shembull nga shprehjen e forcës së Lorencit: m. C m

Njësitë e matjes së fushës magnetike T mund të rrjedhin për shembull nga shprehjen e forcës së Lorencit: m. C m PYETJE n.. - PËRGJIGJE B Duke qenë burimi isotrop, për ruajtjen e energjisë, energjia është e shpërndarë në mënyrë uniforme në një sipërfaqe sferike me qendër në burim. Intensiteti i dritës që arrin në

Διαβάστε περισσότερα

ELEKTROSTATIKA. Fusha elektrostatike eshte rast i vecante i fushes elektromagnetike.

ELEKTROSTATIKA. Fusha elektrostatike eshte rast i vecante i fushes elektromagnetike. ELEKTROSTATIKA Fusha elektrostatike eshte rast i vecante i fushes elektromagnetike. Ajo vihet ne dukje ne hapesiren rrethuese te nje trupi ose te nje sistemi trupash te ngarkuar elektrikisht, te palevizshem

Διαβάστε περισσότερα

III. FUSHA MAGNETIKE. FIZIKA II Rrahim MUSLIU ing.dipl.mek. 1

III. FUSHA MAGNETIKE. FIZIKA II Rrahim MUSLIU ing.dipl.mek. 1 III.1. Fusha magnetike e magnetit të përhershëm Nëse në afërsi të magnetit vendosim një trup prej metali, çeliku, kobalti ose nikeli, magneti do ta tërheq trupin dhe ato do të ngjiten njëra me tjetrën.

Διαβάστε περισσότερα

Universiteti i Prishtinës Fakulteti i Inxhinierisë Elektrike dhe Kompjuterike. Agni H. Dika

Universiteti i Prishtinës Fakulteti i Inxhinierisë Elektrike dhe Kompjuterike. Agni H. Dika Universiteti i Prishtinës Fakulteti i Inxhinierisë Elektrike dhe Kompjuterike Agni H. Dika Prishtinë 007 Libri të cilin e keni në dorë së pari u dedikohet studentëve të Fakultetit të Inxhinierisë Elektrike

Διαβάστε περισσότερα

(a) Në planin koordinativ xoy të përcaktohet bashkësia e pikave M(x,y), koordinatat e të cilave vërtetojnë mosbarazimin

(a) Në planin koordinativ xoy të përcaktohet bashkësia e pikave M(x,y), koordinatat e të cilave vërtetojnë mosbarazimin PAATHËNIE Kur në vitin 975 u organizua për herë të parë në vendin tonë Olimpiada Kombëtare e Matematikës, ndonëse kishim bindjen dhe uronim që ajo të institucionalizohej si veprimtari e rëndësishme, nuk

Διαβάστε περισσότερα

PËRMBLEDHJA E DETYRAVE NGA MATEMATIKA

PËRMBLEDHJA E DETYRAVE NGA MATEMATIKA Republika e Serbisë MINISTRIA E ARSIMIT ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT PËRMBLEDHJA E DETYRAVE NGA MATEMATIKA PËR PROVIMIN E FUNDIT NË ARSIMIN DHE EDUKIMIN FILLOR PËR VITIN SHKOLLOR

Διαβάστε περισσότερα

PYETJE PRAKTIKE PËR TESTIN EKSTERN

PYETJE PRAKTIKE PËR TESTIN EKSTERN BUJAR MAMUDI LËNDA : MATEMATIKË KLASA : VIII TEMA : I NGJASHMËRIA PYETJE PRAKTIKE PËR TESTIN EKSTERN [i] Raporti ndërmjet dy segmenteve. 1. Kush është antari i parë për raportin e dhënë 16 Zgjidhje : 16

Διαβάστε περισσότερα

NDËRTIMI DHE PËRMBAJTJA E PUNIMIT

NDËRTIMI DHE PËRMBAJTJA E PUNIMIT NDËRTIMI DHE PËRMBAJTJA E PUNIMIT Punimi monografik Vështrim morfo sintaksor i parafjalëve të gjuhës së re greke në krahasim me parafjalët e gjuhës shqipe është konceptuar në shtatë kapituj, të paraprirë

Διαβάστε περισσότερα

Matematika. Libër për mësuesin. Tony Cotton. Caroline Clissold Linda Glithro Cherri Moseley Janet Rees. Konsulentë gjuhësorë: John McMahon Liz McMahon

Matematika. Libër për mësuesin. Tony Cotton. Caroline Clissold Linda Glithro Cherri Moseley Janet Rees. Konsulentë gjuhësorë: John McMahon Liz McMahon Matematika Libër për mësuesin Tony Cotton Caroline Clissold Linda Glithro Cherri Moseley Janet Rees Konsulentë gjuhësorë: John McMahon Liz McMahon Përmbajtje iv vii Dhjetëshe dhe njëshe A Numërojmë me

Διαβάστε περισσότερα

Republika e Serbisë MINISTRIA E ARSIMIT, SHKENCËS DHE E ZHVILLIMIT TEKNOLOGJIK ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT

Republika e Serbisë MINISTRIA E ARSIMIT, SHKENCËS DHE E ZHVILLIMIT TEKNOLOGJIK ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT Republika e Serbisë MINISTRIA E ARSIMIT, SHKENCËS DHE E ZHVILLIMIT TEKNOLOGJIK ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT PROVIMI PËRFUNDIMTAR PROVUES Viti shkollor 2016/2017 TESTI MATEMATIKË

Διαβάστε περισσότερα

Indukcioni elektromagnetik

Indukcioni elektromagnetik Shufra pingul mbi ijat e fushës magnetike Indukcioni elektromagnetik Indukcioni elektromagnetik në shufrën përçuese e cila lëizë në fushën magnetike ijat e fushës magnetike homogjene Bazat e elektroteknikës

Διαβάστε περισσότερα

Distanca gjer te yjet, dritësia dhe madhësia absolute e tyre

Distanca gjer te yjet, dritësia dhe madhësia absolute e tyre Distanca gjer te yjet, dritësia dhe madhësia absolute e tyre Mr. Sahudin M. Hysenaj 24 shkurt 2009 Përmbledhje Madhësia e dukshme e yjeve (m) karakterizon ndriçimin që vjen nga yjet mbi sipërfaqen e Tokës.

Διαβάστε περισσότερα

4 VIJAT E FUQISE TË DYTË

4 VIJAT E FUQISE TË DYTË 4 VIJAT E FUQISE TË DYTË Trjt e pergjthshme e ekucionit lgjebrik te fuqise të dytë me dy ndryshore x, y është: Ax +Bxy+Cy +Dx+Ey+F=0, (*) Ku të pktën njëri prej koeficentëve A, B dhe C është i ndryshëm

Διαβάστε περισσότερα

ALGJEBËR II Q. R. GASHI

ALGJEBËR II Q. R. GASHI ALGJEBËR II Q. R. GASHI Shënim: Këto ligjërata janë të paredaktuara, të palekturuara dhe vetëm një verzion fillestar i (ndoshta) një teksti të mëvonshëm. Ato nuk e reflektojnë detyrimisht materien që e

Διαβάστε περισσότερα

2015: International Year of Light.

2015: International Year of Light. AIF Olimpiadi di Fisica 2015 Gara di 1 Livello 11 Dicembre 2014 1 2015: International Year of Light. Më 20 dhjetor 2013, Asambleja e Përgjithshme e Kombeve të Bashkuara e ka shpallur vitin 2015 si vitin

Διαβάστε περισσότερα

QARQET ME DIODA 3.1 DREJTUESI I GJYSMËVALËS. 64 Myzafere Limani, Qamil Kabashi ELEKTRONIKA

QARQET ME DIODA 3.1 DREJTUESI I GJYSMËVALËS. 64 Myzafere Limani, Qamil Kabashi ELEKTRONIKA 64 Myzafere Limani, Qamil Kabashi ELEKTRONKA QARQET ME DODA 3.1 DREJTUES GJYSMËVALËS Analiza e diodës tani do të zgjerohet me funksione të ndryshueshme kohore siç janë forma valore sinusoidale dhe vala

Διαβάστε περισσότερα

FIZIKË. 4. Në figurë paraqitet grafiku i varësisë së shpejtësisë nga koha për një trup. Sa është zhvendosja e trupit pas 5 sekondash?

FIZIKË. 4. Në figurë paraqitet grafiku i varësisë së shpejtësisë nga koha për një trup. Sa është zhvendosja e trupit pas 5 sekondash? IZIKË. Një sferë hidhet vertikalisht lart. Rezistenca e ajrit nuk meret parasysh. Si kah pozitiv të lëvizjes meret kahu i drejtuar vertikalisht lart. Cili nga grafikët e mëposhtëm paraqet shpejtësinë e

Διαβάστε περισσότερα

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011 LËNDA: FIZIKË

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011 LËNDA: FIZIKË KUJDES! MOS DËMTO BARKODIN BARKODI REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011 LËNDA: FIZIKË VARIANTI A E enjte,

Διαβάστε περισσότερα

Udhëzues për mësuesin për tekstin shkollor. Matematika 12. Botime shkollore Albas

Udhëzues për mësuesin për tekstin shkollor. Matematika 12. Botime shkollore Albas Udhëzues për mësuesin për tekstin shkollor Matematika Botime shkollore Albas Shënim. K Udhëzues do të plotësohet me modele mësimi për çdo temë mësimore; për projekte dhe veprimtari praktike. Këtë material

Διαβάστε περισσότερα

Rikardo dhe modeli standard i tregtisë ndërkombëtare. Fakulteti Ekonomik, Universiteti i Prishtinës

Rikardo dhe modeli standard i tregtisë ndërkombëtare. Fakulteti Ekonomik, Universiteti i Prishtinës Rikardo dhe modeli standard i tregtisë ndërkombëtare Fakulteti Ekonomik, Universiteti i Prishtinës Hyrje Teoritë e tregtisë ndërkombëtare; Modeli i Rikardos; Modeli standard i tregtisë ndërkombëtare. Teoritë

Διαβάστε περισσότερα

Kapitulli 1 Hyrje në Analizën Matematike 1

Kapitulli 1 Hyrje në Analizën Matematike 1 Përmbajtja Parathënie iii Kapitulli 1 Hyrje në Analizën Matematike 1 1.1. Përsëritje të njohurive nga shkolla e mesme për bashkësitë, numrat reale dhe funksionet 1 1.1.1 Bashkësitë 1 1.1.2 Simbole të logjikës

Διαβάστε περισσότερα

R = Qarqet magnetike. INS F = Fm. m = m 0 l. l =

R = Qarqet magnetike. INS F = Fm. m = m 0 l. l = E T F UNIVERSIETI I PRISHTINËS F I E K QARQET ELEKTRIKE Qarqet magnetike Qarku magnetik I thjeshtë INS F = Fm m = m m r l Permeabililiteti i materialit N fluksi magnetik në berthamë të berthamës l = m

Διαβάστε περισσότερα

Σύντοµη Γραµµατική της Αλβανικής για Παιδιά

Σύντοµη Γραµµατική της Αλβανικής για Παιδιά Σύντοµη Γραµµατική της Αλβανικής για Παιδιά (Επίπεδο Α1-Β1) Συγγραφέας Αµαλία Ρόντου-Γκόρου Παιδαγωγική Επιµέλεια Μαρία Σουκαλοπούλου Επιστηµονική Επιµέλεια Ανθή Ρεβυθιάδου Θεσσαλονίκη 2014 Gramatikë e

Διαβάστε περισσότερα

Libër për mësuesin Matematika 9

Libër për mësuesin Matematika 9 Libër për mësuesin Matematika 9 Përgatitur nga: Shefik Sefa Botime shkollore lbas Miratuar nga Ministria e rsimit dhe Shkencës Botues: Latif JRULLI Rita PETRO Redaktore: Sevi LMI Redaktore letrare: Vasilika

Διαβάστε περισσότερα

10 Probabilitet Orë të lira 20 Shuma 140

10 Probabilitet Orë të lira 20 Shuma 140 HYRJE Libri që keni në dorë është botim i Shtëpisë botuese UEGEN për t i ardhur në ndihmë mësuesve që japin lëndën e matematikës në klasat e teta. Këtu do të gjeni planin mësimor të matematikës së klasës

Διαβάστε περισσότερα

Qarqet/ rrjetet elektrike

Qarqet/ rrjetet elektrike Qarqet/ rrjetet elektrike Qarku elektrik I thjeshtë lementet themelore të qarkut elektrik Lidhjet e linjave Linja lidhëse Pika lidhëse Kryqëzimi I linjave lidhëse pa lidhje eletrike galvanike 1 1 lementet

Διαβάστε περισσότερα

III. FLUIDET. FIZIKA I Rrahim MUSLIU ing.dipl.mek. 1

III. FLUIDET. FIZIKA I Rrahim MUSLIU ing.dipl.mek. 1 III.1. Vetitë e lëngjeve dhe gazeve, përcjellja e forcës në fluide Lëngjet dhe gazet dallohen nga trupat e ngurtë, me atë se ato mund të rrjedhin. Substancat që mund të rrjedhin quhen fluide. Lëngjet dhe

Διαβάστε περισσότερα

Testimi i hipotezave/kontrollimi i hipotezave Mostra e madhe

Testimi i hipotezave/kontrollimi i hipotezave Mostra e madhe Testimi i hipotezave/kontrollimi i hipotezave Mostra e madhe Ligjërata e tetë 1 Testimi i hipotezave/mostra e madhe Qëllimet Pas orës së mësimit ju duhet ë jeni në gjendje që të: Definoni termet: hipotezë

Διαβάστε περισσότερα

SOFTWARE-T APLIKATIVE LËNDË ZGJEDHORE: FAKULTETI I INXHINIERISË MEKANIKE VITI I PARË, SEMESTRI I PARË

SOFTWARE-T APLIKATIVE LËNDË ZGJEDHORE: FAKULTETI I INXHINIERISË MEKANIKE VITI I PARË, SEMESTRI I PARË Dr. sc. Ahmet SHALA SOFTWARE-T APLIKATIVE LËNDË ZGJEDHORE: FAKULTETI I INXHINIERISË MEKANIKE VITI I PARË, SEMESTRI I PARË PRISHTINË, 2004-2010 Dr. sc. Ahmet SHALA PARATHËNIE Programe që mund të i shfrytëzojmë

Διαβάστε περισσότερα

Metodat e Analizes se Qarqeve

Metodat e Analizes se Qarqeve Metodat e Analizes se Qarqeve Der tani kemi shqyrtuar metoda për analizën e qarqeve të thjeshta, të cilat mund të përshkruhen tërësisht me anën e një ekuacioni të vetëm. Analiza e qarqeve më të përgjithshëm

Διαβάστε περισσότερα

Definimi i funksionit . Thirrja e funksionit

Definimi i funksionit . Thirrja e funksionit Definimi i funksionit Funksioni ngërthen ne vete një grup te urdhrave te cilat i ekzekuton me rastin e thirrjes se tij nga një pjese e caktuar e programit. Forma e përgjithshme e funksionit është: tipi

Διαβάστε περισσότερα

UNIVERSITETI POLITEKNIK TIRANË UNIVERSITETI TEKNOLLOGJIK Ismail QEMALI UNIVERSITETI Eqerem ÇABEJ GJIROKASTER

UNIVERSITETI POLITEKNIK TIRANË UNIVERSITETI TEKNOLLOGJIK Ismail QEMALI UNIVERSITETI Eqerem ÇABEJ GJIROKASTER Prof. Dr. Niko THOMA Prof. As. Dr. Mersin SHENA Dr. Jorgo MANDILI Petrit ALIKO Mentor KUSHO VLOË 004 UNIVESITETI POLITEKNIK TIANË UNIVESITETI TEKNOLLOGJIK Ismail QEMALI UNIVESITETI Eqerem ÇABEJ GJIOKASTE

Διαβάστε περισσότερα

DELEGATET DHE ZBATIMI I TYRE NE KOMPONETE

DELEGATET DHE ZBATIMI I TYRE NE KOMPONETE DELEGATET DHE ZBATIMI I TYRE NE KOMPONETE KAPITULLI 5 Prof. Ass. Dr. Isak Shabani 1 Delegatët Delegati është tip me referencë i cili përdorë metoda si të dhëna. Përdorimi i zakonshëm i delegatëve është

Διαβάστε περισσότερα

UNIVERSITETI I GJAKOVËS FEHMI AGANI FAKULTETI I EDUKIMIT PROGRAMI PARASHKOLLOR PUNIM DIPLOME

UNIVERSITETI I GJAKOVËS FEHMI AGANI FAKULTETI I EDUKIMIT PROGRAMI PARASHKOLLOR PUNIM DIPLOME UNIVERSITETI I GJAKOVËS FEHMI AGANI FAKULTETI I EDUKIMIT PROGRAMI PARASHKOLLOR PUNIM DIPLOME ZHVILLIMI DHE FORMIMI I NJOHURIVE FILLESTARE TEK FËMIJËT E MOSHËS PARASHKOLLORE MBI BASHKËSITË Mentori: Prof.

Διαβάστε περισσότερα

Γιατί η νέα γενιά Αλβανών μεταναστών στην Ελλάδα χάνει στη γλώσσα της; Νίκος Γογωνάς

Γιατί η νέα γενιά Αλβανών μεταναστών στην Ελλάδα χάνει στη γλώσσα της; Νίκος Γογωνάς Γιατί η νέα γενιά Αλβανών μεταναστών στην Ελλάδα χάνει στη γλώσσα της; Νίκος Γογωνάς Από τις αρχές της δεκαετίας του 90 και μετά, ένας μεγάλος αριθμός Αλβανών μεταναστών ήρθε στην Ελλάδα κυρίως εξαιτίας

Διαβάστε περισσότερα

9 KARAKTERISTIKAT E MOTORIT ME DJEGIE TË BRENDSHME DEFINICIONET THEMELORE Për përdorim të rregullt të motorit me djegie të brendshme duhet të dihen

9 KARAKTERISTIKAT E MOTORIT ME DJEGIE TË BRENDSHME DEFINICIONET THEMELORE Për përdorim të rregullt të motorit me djegie të brendshme duhet të dihen 9 KARAKTERISTIKAT E MOTORIT ME DJEGIE TË BRENDSHME DEFINICIONET THEMELORE Për përdorim të rregullt të motorit me djegie të brendshme duhet të dihen ndryshimet e treguesve të tij themelor - fuqisë efektive

Διαβάστε περισσότερα

16. SHTOJCA. Evokimi: Sistemoni copëzat e letrave në mënyrë që shumat të jenë të sakta: = = = =

16. SHTOJCA. Evokimi: Sistemoni copëzat e letrave në mënyrë që shumat të jenë të sakta: = = = = 16. SHTOJCA 16.1 MODELET E PLANEVE DITORE 16. 1. 1. MODEL MËSIMI Lënda: Matematikë Klasa: I Njësia mësimore: Mbledhja e numrave duke plotësuar numrin 10 Mjetet mësimore: Objekte konkrete, objekte të vizatuara,

Διαβάστε περισσότερα

VENDIM Nr.803, date PER MIRATIMIN E NORMAVE TE CILESISE SE AJRIT

VENDIM Nr.803, date PER MIRATIMIN E NORMAVE TE CILESISE SE AJRIT VENDIM Nr.803, date 4.12.2003 PER MIRATIMIN E NORMAVE TE CILESISE SE AJRIT Ne mbështetje te nenit 100 te Kushtetutës dhe te nenit 5 te ligjit nr.8897, date 16.5.2002 "Për mbrojtjen e ajrit nga ndotja",

Διαβάστε περισσότερα

FIZIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE

FIZIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE FIZIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE vitit mësimor 2012/2013 U d h ëzi m Mos e hapni testin derisa mos t ju japë leje administruesi i testit se

Διαβάστε περισσότερα

Ministria e Arsimit, Shkencës dhe Teknologjisë Ministarstvo Obrazovanja, Nauke i Tehnologije Ministry of Education, Science and Technology

Ministria e Arsimit, Shkencës dhe Teknologjisë Ministarstvo Obrazovanja, Nauke i Tehnologije Ministry of Education, Science and Technology Ministria e Arsimit, Shkencës dhe Teknologjisë Ministarstvo Obrazovanja, Nauke i Tehnologije Ministry of Education, Science and Technology Autor: Dr.sc. Qamil Haxhibeqiri, Mr.sc. Melinda Mula, Mr.sc. Ramadan

Διαβάστε περισσότερα

Kolegji - Universiteti për Biznes dhe Teknologji Fakultetit i Shkencave Kompjuterike dhe Inxhinierisë. Lënda: Bazat Teknike të informatikës - BTI

Kolegji - Universiteti për Biznes dhe Teknologji Fakultetit i Shkencave Kompjuterike dhe Inxhinierisë. Lënda: Bazat Teknike të informatikës - BTI Kolegji - Universiteti për Biznes dhe Teknologji Fakultetit i Shkencave Kompjuterike dhe Inxhinierisë Lënda: Bazat Teknike të informatikës - BTI Dispensë Ligjërues: Selman Haxhijaha Luan Gashi Viti Akademik

Διαβάστε περισσότερα

REPUBLIKA E KOSOVËS REPUBLIKA KOSOVO REPUBLIC OF KOSOVA QEVERIA E KOSOVËS - VLADA KOSOVA - GOVERNMENT OF KOSOVA

REPUBLIKA E KOSOVËS REPUBLIKA KOSOVO REPUBLIC OF KOSOVA QEVERIA E KOSOVËS - VLADA KOSOVA - GOVERNMENT OF KOSOVA REPUBLIK E KOSOVËS REPUBLIK KOSOVO REPUBLIC OF KOSOV QEVERI E KOSOVËS - VLD KOSOV - GOVERNMENT OF KOSOV MINISTRI E RSIMIT E MINISTRSTVO OBRZOVNJ MINISTRY OF EDUCTION SHKENCËS DHE E TEKNOLOGJISË NUKE I

Διαβάστε περισσότερα

08:30 ΟΓΚΟΛΟΓΙΑ ONKOLOGJIA Νέα Εποχή Një epokë στην Αντιμετώπιση e Re në trajtimin του Καρκίνου e tumoreve

08:30 ΟΓΚΟΛΟΓΙΑ ONKOLOGJIA Νέα Εποχή Një epokë στην Αντιμετώπιση e Re në trajtimin του Καρκίνου e tumoreve E shtunë 20 Nëntor 2010 Σαββάτο 20 Νοεμβρίου 2010 Ώρα Έναρξης 08:30 Ora 1o ΕΠΙΣΤΗΜΟΝΙΚΟ ΣΕΜΙΝΑΡΙΟ ΝΟΣΟΚΟΜΕΙΟΥ ΥΓΕΙΑ ΤΙΡΑΝΩΝ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ:: ΟΓΚΟΛΟΓΙΑ Νέα Εποχή στην Αντιμετώπιση του Καρκίνου SEMINARI

Διαβάστε περισσότερα

SI TË BËHENI NËNSHTETAS GREK? (Udhëzime të thjeshtuara rreth marrjes së nënshtetësisë greke)*

SI TË BËHENI NËNSHTETAS GREK? (Udhëzime të thjeshtuara rreth marrjes së nënshtetësisë greke)* SI TË BËHENI NËNSHTETAS GREK? (Udhëzime të thjeshtuara rreth marrjes së nënshtetësisë e)* KUSH NUK MUND TË Për shtetasit e vendeve jashtë BEsë Ata që nuk kanë leje qëndrimi ose kanë vetëm leje të përkohshme

Διαβάστε περισσότερα

Mbledhja: Rregullat e mbledhjes binare pёrmblidhen nё tabelёn 1:

Mbledhja: Rregullat e mbledhjes binare pёrmblidhen nё tabelёn 1: 1. Sistemet Numerike Sistem numerik ёshtё ai sistem ku informacioni paraqitet me anё tё njё madhёsie fizike qё mund tё marrё vetёm vlera diskrete. Secila nga kёto vlera mund tё konsiderohet si njё numёr

Διαβάστε περισσότερα

UNIVERSITETI AAB Fakulteti i Shkencave Kompjuterike. LËNDA: Bazat e elektroteknikës Astrit Hulaj

UNIVERSITETI AAB Fakulteti i Shkencave Kompjuterike. LËNDA: Bazat e elektroteknikës Astrit Hulaj UNIVERSITETI AAB Fakulteti i Shkencave Kompjuterike LËNDA: Bazat e elektroteknikës Prishtinë, Ligjëruesi: 2014 Astrit Hulaj 1 KAPITULLI I 1. Hyrje në Bazat e Elektroteknikës 1.1. Principet bazë të inxhinierisë

Διαβάστε περισσότερα

KAPITULLI4. Puna dhe energjia, ligji i ruajtjes se energjise

KAPITULLI4. Puna dhe energjia, ligji i ruajtjes se energjise Kapitui 4 Pua de eerjia KPIULLI4 Pua de eerjia, iji i ruajtjes se eerjise.ratori tereq e je rrue e au je tru e spejtesi 8/. Me care spejtesie do te tereqi tratori truu e je rrue te pastruar ur uqia e otorit

Διαβάστε περισσότερα

ELEKTROTEKNIKA (Pyetje dhe Pergjigje)

ELEKTROTEKNIKA (Pyetje dhe Pergjigje) Bejtush BEQIRI ELEKTROTEKNIKA (Pyetje dhe Pergjigje) Prishtinë, 206. . Si definohet fusha elektrostatike dhe cila madhesi e karakterizon atë? Fusha elektrike është një formë e veqantë e materies që karakterizohet

Διαβάστε περισσότερα

Qark Elektrik. Ne inxhinierine elektrike, shpesh jemi te interesuar te transferojme energji nga nje pike ne nje tjeter.

Qark Elektrik. Ne inxhinierine elektrike, shpesh jemi te interesuar te transferojme energji nga nje pike ne nje tjeter. Qark Elektrik Ne inxhinierine elektrike, shpesh jemi te interesuar te transferojme energji nga nje pike ne nje tjeter. Per te bere kete kerkohet nje bashkekomunikim ( nderlidhje) ndermjet pajisjeve elektrike.

Διαβάστε περισσότερα

Republika e Serbisë. MINISTRIA E ARSIMIT, shkencës DHE ZHVILLIMIT TEKNOLOGJIK ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT

Republika e Serbisë. MINISTRIA E ARSIMIT, shkencës DHE ZHVILLIMIT TEKNOLOGJIK ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT Republika e Serbisë MINISTRIA E ARSIMIT, shkencës DHE ZHVILLIMIT TEKNOLOGJIK ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT PROVIMI PËRFUNDIMTAR NË FUND TË ARSIMIT DHE TË EDUKIMIT FILLOR Viti

Διαβάστε περισσότερα

Edmond Lulja Neritan Babamusta LIBËR PËR MËSUESIN MATEMATIKA 7 BOTIME

Edmond Lulja Neritan Babamusta LIBËR PËR MËSUESIN MATEMATIKA 7 BOTIME Edmond Lulja Neritan Babamusta LIBËR PËR MËSUESIN MATEMATIKA 7 BOTIME BOTIME Të gjitha të drejtat janë të rezervuara Pegi 2012 Të gjitha të drejtat lidhur me këtë botim janë ekskluzivisht të zotëruara

Διαβάστε περισσότερα

Gërmimi i dataset-ave masivë. përmbledhje informative

Gërmimi i dataset-ave masivë. përmbledhje informative Gërmimi i dataset-ave masivë përmbledhje informative zgjodhi dhe përktheu Ridvan Bunjaku Mars 2017 Përmbajtja Parathënie... 3 1. Data mining... 4 2. MapReduce... 6 3. Gjetja e elementeve të ngjashme...

Διαβάστε περισσότερα

I. FUSHA ELEKTRIKE. FIZIKA II Rrahim MUSLIU ing.dipl.mek. 1

I. FUSHA ELEKTRIKE. FIZIKA II Rrahim MUSLIU ing.dipl.mek. 1 I.1. Ligji mbi ruajtjen e ngarkesës elektrike Më herët është përmendur se trupat e fërkuar tërheqin trupa tjerë, dhe mund të themi se me fërkimin e trupave ato elektrizohen. Ekzistojnë dy lloje të ngarkesave

Διαβάστε περισσότερα

Lënda: Mikroekonomia I. Kostoja. Msc. Besart Hajrizi

Lënda: Mikroekonomia I. Kostoja. Msc. Besart Hajrizi Lënda: Mikroekonomia I Kostoja Msc. Besart Hajrizi 1 Nga funksioni i prodhimit në kurbat e kostove Shpenzimet monetare të cilat i bën firma për inputet fikse (makineritë, paisjet, ndërtesat, depot, toka

Διαβάστε περισσότερα

INSTITUTI I ZHVILLIMIT TË ARSIMIT. PROGRAM ORIENTUES PËR MATURËN SHTETËRORE (Provim me zgjedhje) LËNDA: MATEMATIKA E THELLUAR

INSTITUTI I ZHVILLIMIT TË ARSIMIT. PROGRAM ORIENTUES PËR MATURËN SHTETËRORE (Provim me zgjedhje) LËNDA: MATEMATIKA E THELLUAR INSTITUTI I ZHVILLIMIT TË ARSIMIT PROGRAM ORIENTUES PËR MATURËN SHTETËRORE (Provim me zgjedhje) LËNDA: MATEMATIKA E THELLUAR Koordinatore: Dorina Rapti Viti shkollor 2017-2018 1. UDHËZIME TË PËRGJITHSHME

Διαβάστε περισσότερα

INDUTIVITETI DHE MESINDUKTIVITETI. shtjellur linearisht 1. m I 2 Për dredhën e mbyllur të njëfisht

INDUTIVITETI DHE MESINDUKTIVITETI. shtjellur linearisht 1. m I 2 Për dredhën e mbyllur të njëfisht INDUTIVITETI DHE MESINDUKTIVITETI Autoinduksioni + E Ndryshimi I fluksit të mbërthyer indukon tensionin - el = - d Ψ Fluksi I mbërthyer autoinduksionit F është N herë më i madhë për shkak të eksitimit

Διαβάστε περισσότερα

Qëllimet: Në fund të orës së mësimit ju duhet të jeni në gjendje që të:

Qëllimet: Në fund të orës së mësimit ju duhet të jeni në gjendje që të: Analiza statistikore Metodat e zgjedhjes së mostrës 1 Metodat e zgjedhjes së mostrës Qëllimet: Në fund të orës së mësimit ju duhet të jeni në gjendje që të: Kuptoni pse në shumicën e rasteve vrojtimi me

Διαβάστε περισσότερα

Udhëzues për mësuesin. Fizika 10 11

Udhëzues për mësuesin. Fizika 10 11 Udhëzues për mësuesin Fizika 10 11 (pjesa e parë) Përpiloi: Dr. Valbona Nathanaili 1 Shtypur në Shtypshkronjën Guttenberg Tiranë, 2016 Shtëpia botuese DUDAJ Adresa: Rruga Ibrahim Rugova", Pall. 28, Ap.

Διαβάστε περισσότερα

II. RRYMA ELEKTRIKE. FIZIKA II Rrahim MUSLIU ing.dipl.mek. 1

II. RRYMA ELEKTRIKE. FIZIKA II Rrahim MUSLIU ing.dipl.mek. 1 II.1. Kuptimet themelore për rrymën elektrike Fizika moderne sqaron se në cilën mënyrë përcjellësit e ngurtë (metalet) e përcjellin rrymën elektrike. Atomet në metale janë të rradhitur në mënyrë të rregullt

Διαβάστε περισσότερα

saj, pafundësinë, qartësinë dhe elegancën e prezantimit të tyre.

saj, pafundësinë, qartësinë dhe elegancën e prezantimit të tyre. Pershendetje nga presidenti i shkolles Bota e Diturise, Z. Bujar Lulaj Si ne çdo fund viti ne mesuesit dhe prinderit presim dhe shperndajme dhurata per te gezuar per vitin e rradhes qe vjen. Edhe per mua

Διαβάστε περισσότερα

Ngjeshmëria e dherave

Ngjeshmëria e dherave Ngjeshmëria e dherave Hyrje Në ndërtimin e objekteve inxhinierike me mbushje dheu, si për shembull diga, argjinatura rrugore etj, kriteret projektuese përcaktojnë një shkallë të caktuar ngjeshmërie të

Διαβάστε περισσότερα

MATERIAL MËSIMOR ELEKTROTEKNIK NR. 1

MATERIAL MËSIMOR ELEKTROTEKNIK NR. 1 Agjencia Kombëtare e Arsimit, Formimit Profesional dhe Kualifikimeve MATERIAL MËSIMOR Në mbështetje të mësuesve të drejtimit/profilit mësimor ELEKTROTEKNIK Niveli I NR. 1 Ky material mësimor i referohet:

Διαβάστε περισσότερα