VODNI CIKEL - VODA V ATMOSFERI. Voda nastopa v atmosferi v vseh treh agregatnih stanjih:
|
|
- Δίδυμος Ρέντης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 VODNI CIKEL - VODA V ATMOSFERI Voda nastopa atmosferi seh treh agregatnih stanjih: odna para (naječ do 4 olumske procente zraka) tekoča oda (oblačne, meglene in padainske kapljice) led (oblačni ledeni kristali in trdi padainski elementi snežinke, zrna sodre, toče in babjega pšena) Voda narai es čas kroži! Z odo atmosferi je poezana tudi tekoča oda morjih, jezerih in rekah, na poršini tal in tleh; sezonske ali stalne snežne oziroma ledene plasti na kopnem in na poršini tekoče ode. Voda prehaja atmosferi iz enega agregatnega stanja drugo: utekočinjenje oziroma kondenzacija (+ 2,5 MJ/kg) izhlapeanje oziroma eaporacija ( - 2,5 MJ/kg) zmrzoanje (+ 0,3 MJ/kg) taljenje ( - 0,3 MJ/kg) depozicija (+ 2,8 MJ/kg)
2
3 RAZPOREDITEV VODE Rezeroar Volumen (10 6 km 3 ) % celote Ocean Kriosfera(ledene kape in ledeniki) Podtalnica Jezera Tla (prst) Atmosfera Reke Biosfera Skupaj VODNI CIKEL Šteilke oklepajih pomenjo 1000 kubičnih kilometro ode na leto
4 VLAGA V ZRAKU Zrak ni nikoli popolnoma suh edno sebuje nekaj odne pare. Vodno paro zraku ter njene mejne rednosti lahko podajamo na različne načine. ENAČBE ZA PRERAČUNAVANJE PARAMETROV ZA IZRAŽANJE ZRAČNE VLAGE 1. Parni pritisk (e mb) definicija izhaja iz enačbe stanja 2. Nasičeni parni pritisk (E mb) E a 10 Običajno ga določamo iz tabel!! b 1 e ρ R T T o T a 6,1mb b 8,61 (za odo) 3. Relatina laga (f %) f E e 100 % 4. Absolutna laga (ρ gm -3 ) je gostota odne pare zraku ρ e zgornja meja R T ρ, max E R T 5. Specifična laga (q gkg -1 ) je razmerje med maso odne pare in maso lažnega zraka e Rzrak 287 J/kgK q ε ε 0, 622 p R 461 J/kgK 6. Razmerje mešanosti (r gkg -1 ) je razmerje med maso odne pare in maso suhega zraka. H O e r ε p e 7. Temperatura rosišča (T d C) je odisna samo od e T d a 1 c Običajno jo določamo iz tabel!! ( log e b ) ( log e b ) 2 a31,6 C b0,785 c0, Pri meritah zračne lage s psihrometrom uporabljamo pri določanju parnega pritiska psihrometrsko enačbo, kateri nastopa temperatura mokrega termometra (T C) e E p c ε L p i ( T T ) kjer je p c p ε L i 1013 mb 1004 J/kgK 0,622 2,5 10 J/kg 6 mb 0,6 K
5 Pregled mednarodne klasifikacije oblako SKUPINA ROD VIŠINA SESTAVA VISOKI OBLAKI SREDNJI OBLAKI rod: cirrus (Ci) rod: cirrocumulus (Cc) rod: cirrostratus (Cs) rod: altocumulus (Ac) rod: altostratus (As) rod: nimbostratus (Ns) 6 do 11 km ledeni kristali 2 do 6 km ledeni kristali, odne kapljice ali iz mešanice obojega NIZKI OBLAKI rod: stratocumulus (Sc) rod: stratus (St) skoraj od tal do 2 km ečinoma iz odnih kapljic OBLAKI VERTIKALNEGA RAZVOJA rod: cumulus (Cu) rod:cumulonimbus (Cb) spodnja meja 0,5 in 2 km zgornja tudi do 18 km odne kapljice ali iz mešanice ledenih kristalo in odnih kapljic POSEBNI OBLAKI rodo ni biserni oblaki nočni setleči se oblaki sledoi reaktinih letal oblak pri eksplozijah oblaki nad gejzirji, slapoi ter podobno stratosfera troposfera odne kapljice
6 PADAVINE VRSTE PADAVIN PADAVINE SLABEGA VREMENA PADAVINE LEPEGA VREMENA MERITVE KOLIČINE PADAVIN enota [mm][l/m 2 ] OMBROMETER (OMBROGRAF) TOTALIZATOR ČASOVNA PORAZDELITEV KOLIČINE PADAVIN letni hod padain na različnih območjih ariabilnost med posameznimi leti KRAJEVNA PORAZDELITEV KOLIČINE PADAVIN loga reliefa padainska karta Sloenije NEVIHTE IN NALIVI poprečno šteilo neiht Sloeniji najišje možne 24-urne količine padain Sloeniji poplae SNEŽNA ODEJA krajena in časona ariabilnost Časona porazdelite količine padain Letne količine padain Ljubljani. Časona porazdelite padainskih maksimumo in minimumo na različnih območjih Sloeniji maximum minimum pli SV Sloenija junij januar oz. februar Panonska nižina Osrednja in Z oktober oz. marec sredozemski cikloni Sloenija noember gorski set junij januar oz. februar orografija - neihte J Sloenija oktober oz. noember julij oz. agust Sredozemlje in cikloni
7 NEVIHTE NEVIHTA je izrazit padainski poja, nali z močnim dežjem, snegom, sodro, točo,... ZNAČILNOSTI lažno labilno ozračje konektini oblak - CUMULUNIMBUS močan eter, bliskanje in grmenje - sproščanje elikih energij trajanje naječ nekaj ur VRSTE TERMIČNE (pomladi in poleti, konekcija) FRONTALNE (ezane na hladno fronto) Vertikalni prerez kumulonimbusa V poprečju je Sloeniji približno 40 neihtnih dni na leto. Poprečno šteilo neiht Sloeniji in delu Astrije in poprečni letni hod šteila dni z neihtami
8 Delež območja in prebialsta Sloenije nearnosti pred poplaami OBMOČJE arno pred poplaami 83% poplaa sako leto 1% poplaa sakih 10 let 1% možne poplae 15% PREBIVALSTVO arno pred poplaami 51% možne poplae 16% poplaa sako leto 7% poplaa sakih 10 let 26%
9 VODA V TLEH Tla so sestaljena iz različnih snoi : trdnem stanju (mineralni in organski delci); plinastem stanju (zrak tleh); tekočem stanju (talna raztopina oda tleh ter njej raztopljene mineralne snoi in plini). Pore olumen por olumen med skupki (agregati) oziroma posameznimi minerali in organskimi delci olumen por zapolnjuje zrak in talna raztopina dosegljii olumen por zrak in oda ga lahko zapolnita blokiran olumen por z odo ga lahko zapolnimo ali ga izsušimo le tako, da pri tem uničimo agregate, ki tla sestaljajo Brigs loči odo tleh glede na to, kako močno je ezana na talne delce: higroskopna oda odni hlapi tleh so adsorbirani na poršini talnih delce kot posledica prilačnih sil na poršini teh delce; kapilarna oda oda, ki se zaradi poršinske napetosti nabira kot preleka okoli talnih delce, se zadržuje med njimi in se nabira kapilarah; graitacijska oda oda, ki odteče pod pliom teže podtalnico in se zgornjih plasteh tal zadržuje le začasno. Količina ode tleh Utežni procent: Volumski procent: razmerje med maso ode in maso suhih tal V m m VODA SUHATLA 100% (celo do 55 %) razmerje med olumnom, ki ga zasede oda tleh in olumnom, ki ga zasedejo suha tla V V ol ol V V VODA SUHATLA ρ V ρ SUHATLA VODA 100%
10 IZHLAPEVANJE (EVAPORACIJA) IN TRANSPIRACIJA IZHLAPEVANJE TRANSPIRACIJA definicija prehajanje ode z tok ode obliki zemeljske ali odne odne pare skozi poršine obliki odne listne reže pare atmosfero atmosfero enota milimeter (mm) milimeter (mm) določanje merite eaporimetri merite lizimetri indirektne metode indirektne metode EVAPOTRANSPIRACIJA EVAPORACIJA + TRANSPIRACIJA EVAPORACIJA je odisna od: temperature zraka; relatine lage; temperature poršine od koder oda izhlapea; etronih razmer; sončnega obseanja; razpoložljie ode. TRANSPIRACIJA pa je odisna tudi od: lastnosti rastlin (zapiranje in odpiranje rež). Indirektne metode določanja eapotranspiracije so računski postopki, kjer na podlagi rednosti različnih meteoroloških parametro ocenimo njene rednosti. IZPARILNA TOPLOTA VODE Za izpareanje ode moramo doesti energijo toploto. m Q i L i Q m i L i - masa ode, ki jo izparimo - toplota, ki jo moramo doesti odi, da jo izparimo - izparilna toplota ode Izparilna toplota ode splošnem ni konstantna temeč je odisna od temperature ode. L i ( T ) 2,5 MJ/kg 0,00235 MJ/kg T f C Pri tem temperaturo ode našamo C. T ( C) L i (MJ/kg) 0 2, , ,26
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
1. RAZDELITEV METEOROLOGIJE
1. RAZDELITEV METEOROLOGIJE Teoretična Dinamična Eksperimentalna Sinoptična Klimatologija Aplikativna meteorologija 2. KAKO DELIMO TROPOSFERO Prizemna plast zraka Spiralna plast Prosta atmosfera 3. ZNAČILNOSTI
Zemlja in njeno ozračje
Zemlja in njeno ozračje Pojavi v ozračju se dogajajo na zelo različnih časovnih in prostorskih skalah Prostorska skala Pojav 1 cm Turbulenca, sunki vetra 1 m 1 km 10 km 100 km 1000 in več km Tornadi Poplave,
Termodinamika vlažnega zraka. stanja in spremembe
Termodinamika vlažnega zraka stanja in spremembe Termodinamika vlažnega zraka Najpogostejši medij v sušilnih procesih konvektivnega sušenja je VLAŽEN ZRAK Obravnavamo ga kot dvokomponentno zmes Suhi zrak
Zemlja in njeno ozračje
Zemlja in njeno ozračje Pojavi v ozračju se dogajajo na zelo različnih časovnih in prostorskih skalah Prostorska skala Pojav 1 cm Turbulenca, sunki vetra 1 m 1 km 10 km 100 km 1000 in več km Tornadi Poplave,
Νέφος λέγεται κάθε ορατό σύνολο από υδροσταγονίδια ή παγοκρυστάλλια ή από υδροσταγονίδια και παγοκρυστάλλια που αιωρείται στην ατµόσφαιρα.
Νέφη Νέφος λέγεται κάθε ορατό σύνολο από υδροσταγονίδια ή παγοκρυστάλλια ή από υδροσταγονίδια και παγοκρυστάλλια που αιωρείται στην ατµόσφαιρα. Το µέγιστό τους ύψος δεν ξεπερνά τα 15 km Η βάση για τη διεθνή
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Tabele termodinamskih lastnosti vode in vodne pare
Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net
Kazalo Termodinamika atmosfere
Kazalo 1 Termodinamika atmosfere 5 1.1 Temperaturno polje v ozračju.................. 5 1.1.1 Horizontalno polje temperature............. 6 1.1.2 Advekcijske spremembe temperature.......... 7 1.1.3 Individualne
p 1 ENTROPIJSKI ZAKON
ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:
ΝΕΦΗ. ΣΗΜΕΙΑ ΤΗΣ ΦΥΣΗΣ ΓΙΑ ΤΟΝ ΕΠΕΡΧΟΜΕΝΟ ΚΑΙΡΟ
ΝΕΦΗ. ΣΗΜΕΙΑ ΤΗΣ ΦΥΣΗΣ ΓΙΑ ΤΟΝ ΕΠΕΡΧΟΜΕΝΟ ΚΑΙΡΟ Είναι γεγονός ότι η παρατήρηση των μετεωρολογικών φαινομένων ενισχύει την επαφή μας με το περιβάλλον. Πραγματοποιήσαμε παρατηρήσεις νεφών σε καθημερινή βάση
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled
Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q
Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2014/2015
Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2014/2015 1 Temperatura zraka 1. Kako velik (v mm) bi bil razdelek za 1 C na živosrebrnem termometru, ki vsebuje
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
ΦΥΣΙΚΗ ΤΗΣ ΑΤΜΟΣΦΑΙΡΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΓΕΩΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΕΩΡΟΛΟΓΙΑΣ Ν. ΧΑΤΖΗΑΝΑΣΤΑΣΙΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΓΕΩΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΕΩΡΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΤΗΣ ΑΤΜΟΣΦΑΙΡΑΣ Ν. ΧΑΤΖΗΑΝΑΣΤΑΣΙΟΥ Φυσική της Ατμόσφαιρας (Β. Δ. Κατσούλης Ν. Χατζηαναστασίου) Ηλεκτρονικές Σημειώσεις
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Νέφη. Κατηγοροποίηση και Ονοματολογία
Κεφ. 4 Νέφη. Κατηγοροποίηση και Ονοματολογία 3 κύριες κατηγορίες 1) Cirrus. Νέφη κρυσταλλων πάγου, λεπτής υφής, μεγάλου ύψους 2) Stratus. Νέφη σταγόνων ύδατος στρωματικής δομής κατ ύψος 3) Cumulus. Λευκά
UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji
Katedra za energetsko strojništo VETRNICA A A A Katedra za energetsko strojništo Katedra za energetsko strojništo VETRNICA A A A Δ Δp p p Δ Katedra za energetsko strojništo Teoretična moč etrnice Določite
Univerza v Novi Gorici Fakulteta za znanosti o okolju; Okolje (I. stopnja) Fakulteta za naravoslovje; Fizika (I. stopnja) Meteorologija 2016/2017
Univerza v Novi Gorici Fakulteta za znanosti o okolju; Okolje (I. stopnja) Fakulteta za naravoslovje; Fizika (I. stopnja) Meteorologija 2016/2017 1 Temperatura zraka 1. Kako velik (v mm) bi bil razdelek
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
- Geodetske točke in geodetske mreže
- Geodetske točke in geodetske mreže 15 Geodetske točke in geodetske mreže Materializacija koordinatnih sistemov 2 Geodetske točke Geodetska točka je točka, označena na fizični površini Zemlje z izbrano
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
RANKINOV KROŽNI PROCES Seminar za predmet JTE
RANKINOV KROŽNI PROCES Seminar za predmet JTE Rok Krpan 16.12.2010 Mentor: izr. prof. Iztok Tiselj Carnotov krožni proces Iz štirih sprememb: dveh izotermnih in dveh izentropnih (reverzibilnih adiabatnih)
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Αγρομετεωρολογία - Κλιματολογία
Αγρομετεωρολογία - Κλιματολογία 4 ο Μάθημα 3.1 Νέφη Κάθε ορατό σμήνος (σύνολο) από υδροσταγονίδια ή παγοκρυστάλλους ή από σταγονίδια και παγοκρυστάλλους που αιωρείται στην ατμόσφαιρα λέγεται νέφος (Φλόκας
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013
WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Υδρομετεωρολογία. Κατακρημνίσεις. Νίκος Μαμάσης και Δημήτρης Κουτσογιάννης. Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα 2002
Υδρομετεωρολογία Κατακρημνίσεις Νίκος Μαμάσης και Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα 2002 ΔΙΑΡΘΡΩΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ: Κατακρημνίσεις ΦΥΣΙΚΟ ΠΛΑΙΣΙΟ ΜΕΤΕΩΡΟΛΟΓΙΚΟ
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Υδρομετεωρολογία. Κατακρημνίσεις. Νίκος Μαμάσης και Δημήτρης Κουτσογιάννης. Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα 2002
Υδρομετεωρολογία Κατακρημνίσεις Νίκος Μαμάσης και Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα 2002 ΔΙΑΡΘΡΩΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ: Κατακρημνίσεις ΦΥΣΙΚΟ ΠΛΑΙΣΙΟ ΜΕΤΕΩΡΟΛΟΓΙΚΟ
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
METAR. Πώς να το διαβάσετε!!! Σελ.1 από 11
METAR Πώς να το διαβάσετε!!! Σελ.1 από 11 METAR Αυτό το εγχειρίδιο περιγράφει τον τρόπο που διαβάζεται το METAR από τους πιλότους όταν θα πετάξουν VFR ή IFR και τους ελεγκτές εναέριας κυκλοφορίας. Μια
МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE)
Zada~i za program 2 po predmetot МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE) Предметен наставник: Проф. д-р Методија Мирчевски Асистент: Виктор Илиев (rok za predavawe na programot - 07. i 08. maj 2010) (во термини
Meteorologija ustni izpit
Meteorologija ustni izpit 1. Sestava zraka. Stratifikacija ozračja.... 2 2. Značilne plasti ozračja.... 2 3. Hidrostatični približek in njegova uporaba.... 4 4. Posebni primeri hidrostatičnih ozračij....
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
S53WW. Meritve anten. RIS 2005 Novo Mesto
S53WW Meritve anten RIS 2005 Novo Mesto 15.01.2005 Parametri, s katerimi opišemo anteno: Smernost (D, directivity) Dobitek (G, gain) izkoristek (η=g/d, efficiency) Smerni (sevalni) diagram (radiation pattern)
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Voda i njezine pretvorbe. Dr. sc. Melita Zec Vojinović
Voda i njezine pretvorbe Dr. sc. Melita Zec Vojinović melita.zec-vojinovic@veleri.hr Vlažnost zraka. Kruženje vode u prirodi. Sadržaj vodene pare u zraku. Značenje vlažnosti zraka u poljoprivrednoj proizvodnji.
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25
1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή
H ψύξη της υγρής αέριας μάζας μπορεί να γίνει μέσω τεσσάρων μηχανισμών: α. Μίξη της με ψυχρότερη ακόρεστη αέρια μάζα
8 Νέφη - Υετός 8.1 Εισαγωγή Όταν ο αέρας είναι κορεσμένος οι υδρατμοί συμπυκνώνονται σε υδροσταγονίδια ή αν οι θερμοκρασίες είναι πολύ χαμηλές παγιοποιούνται σε παγοκρυστάλλους. Για τη δημιουργία υδροσταγονιδίων
Ν έφη ονοµάζονται οι αιωρούµενοι ατµοσφαιρικοί σχηµατισµοί οι οποίοι αποτελούνται από υδροσταγόνες, παγοκρυστάλλους ή και από συνδυασµό υδροσταγόνων και παγοκρυστάλλων. Ουσιαστικά πρόκειται για το αποτέλεσµα
MATEMATIČNI IZRAZI V MAFIRA WIKIJU
I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH
10 Ατμοσφαιρικές διαταράξεις
10 Ατμοσφαιρικές διαταράξεις 10.1 Αέριες μάζες (air masses) είναι τεράστιες μάζες ατμοσφαιρικού αέρα της τάξης 1000 1000 km, οι οποίες είναι ομοιογενείς, από την άποψη οριζόντιας, κατά κύριο λόγο, κατανομής
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
PROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči
ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ
GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
3. OSNOVNI POKAZATELJI TLA
MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα: Μετεωρολογία-Κλιματολογία. Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου
7. ΤΟ ΝΕΡΟ ΤΗΣ ΑΤΜΟΣΦΑΙΡΑΣ ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα: Μετεωρολογία-Κλιματολογία. Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου 1 7. ΤΟ ΝΕΡΟ ΤΗΣ ΑΤΜΟΣΦΑΙΡΑΣ
1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...
ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων
Slika 6.1. Smer električne poljske jakosti v okolici pozitivnega (levo) in negativnega (desno) točkastega naboja.
6. ONOVE ELEKTROMAGNETIZMA Nosilci naboja so: elektroni, protoni, ioni Osnoni naboj: e 0 = 1,6.10-19 As, naboj elektrona je -e 0, naboj protona e 0, naboj iona je (pozitini ali negatini) ečkratnik osnonega
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ
TVORBA AORISTA: Grški aorist (dovršnik) izraža dovršno dejanje; v indikativu izraža poleg dovršnosti tudi preteklost. Za razliko od prezenta ima aorist posebne aktivne, medialne in pasivne oblike. Pri
0,00275 cm3 = = 0,35 cm = 3,5 mm.
1. Za koliko se bo dvignil alkohol v cevki termometra s premerom 1 mm, če se segreje za 5 stopinj? Prostorninski temperaturni razteznostni koeficient alkohola je 11 10 4 K 1. Volumen alkohola v termometru
The Thermal Comfort Properties of Reusable and Disposable Surgical Gown Fabrics Original Scientific Paper
24 The Thermal Comfort Properties of Surgical Gown Fabrics 1 1 2 1 2 Termofiziološke lastnosti udobnosti kirurških oblačil za enkratno in večkratno uporabo december 2008 marec 2009 Izvleček Kirurška oblačila
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE
NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,
13. poglavje: Energija
13. poglavje: Energija 1. (Naloga 3) Koliko kilovatna je peč za hišno centralno kurjavo, ki daje 126 MJ toplote na uro? Podatki: Q = 126 MJ, t = 3600 s; P =? Če peč z močjo P enakomerno oddaja toploto,
1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26
2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30
UPOR NA PADANJE SONDE V ZRAKU
UPOR NA PADANJE SONDE V ZRAKU 1. Hitrost in opravljena pot sonde pri padanju v zraku Za padanje v zraku je odgovorna sila teže. Poleg sile teže na padajoče telo deluje tudi sila vzgona, ki je enaka teži
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
Oblaci i oborine. Agroklimatologija s osnovama fizike Vježbe dr. sc. Bojana Brozović
Oblaci i oborine Agroklimatologija s osnovama fizike Vježbe dr. sc. Bojana Brozović volumen zraka u slobodnoj atmosferi - oblak sublimacija sloj zraka gubi prozirnost, a obasjan odozgo ili sa strane postaje
SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov
Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W
CO2 + H2O sladkor + O2
VAJA 5 FOTOSINTEZA CO2 + H2O sladkor + O2 Meritve fotosinteze CO 2 + H 2 O sladkor + O 2 Fiziologija rastlin laboratorijske vaje SVETLOBNE REAKCIJE (tilakoidna membrana) TEMOTNE REAKCIJE (stroma kloroplasta)
Zakonitosti hitrosti reakcije in konstante hitrosti (Rate laws)
Zakonioi hiroi reakcije in konane hiroi (Rae law) Merjena hiro reakcije je odvina od koncenracije reakanov na neko poenco. v k [A] [B] k konana hiroi reakcije (neodvina od koncenracije) (odvina od T) Ekperimenalno
+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70
KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih
MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9
.cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti
4. HIDROMEHANIKA trdno, kapljevinsko in plinsko tekočine Hidrostatika Tlak v mirujočih tekočinah - pascal
4. HIDROMEHANIKA V grobem ločimo tri glana agregatna stanja snoi: trdno, kapljeinsko in plinsko. V trdni snoi so atomi blizu drug drugemu in trdno poezani med seboj ter ne spreminjajo sojega relatinega
Osnovne stehiometrijske veličine
Osnovne stehiometrijske veličine Stehiometrija (grško: stoiheion snov, metron merilo) obravnava količinske odnose pri kemijskih reakcijah. Fizikalne veličine, s katerimi kemik najpogosteje izraža količino
PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)
PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni
Program testirati pomoću podataka iz sledeće tabele:
Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n
Fazni diagram binarne tekočine
Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,
ΥΔΡΟΜΕΤΕΩΡΟΛΟΓΙΑ ΚΑΤΑΚΡΗΜΝΙΣΕΙΣ
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων ΥΔΡΟΜΕΤΕΩΡΟΛΟΓΙΑ ΚΑΤΑΚΡΗΜΝΙΣΕΙΣ Νίκος Μαμάσης, Επίκουρος Καθηγητής ΕΜΠ Δημήτρης Κουτσογιάννης, Αναπληρωτής Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών, Αθήνα
TOPNOST, HITROST RAZTAPLJANJA
OPNOS, HIOS AZAPLJANJA Denja: onos (oz. nasčena razona) redsavlja sanje, ko je oljene (rdn, ekoč, lnas) v ravnoežju z razono (oljenem, razoljenm v olu). - kvanavn zraz - r določen - homogena molekularna
Transformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
L-400 TEHNIČNI KATALOG. Talni konvektorji
30 50 30-00 TEHIČI KATAOG 300 Talni konvektorji TAI KOVEKTORJI Talni konvektorji z naravno konvekcijo TK Talni konvektorji s prisilno konvekcijo TKV, H=105 mm, 10 mm Talni konvektorji s prisilno konvekcijo
Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na
. Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija
Meteorološki seminar 1 Analiza aplikacij izračuna energijske bilance tal
Fakulteta za matematiko in fiziko Meteorološki seminar 1 Analiza aplikacij izračuna energijske bilance tal Andrej Ceglar, vp.številka 28010548, smer meteorologija 23. november 2005 Kazalo 1 Uvod 2 2 Energijska
KONSTRUKTORSKA GRADBENA FIZIKA. Analiza ios aplikacije Condensation in primerjava z analitično dobljenimi rezultati
KONSTRUKTORSKA GRADBENA FIZIKA Analiza ios aplikacije Condensation in primerjava z analitično dobljenimi rezultati Timotej Čižek štud. leto 2013/2014 Condensation je preprosta aplikacija, ki deluje na
Zakaj proučevati tla?
Zakaj proučevati tla? medij za rast rastlin in pridelkov produkcija in absorbcija plinov medij za rast mikroorganizmov habitat za živali veliki integrator vseh delov terestričnega ekosistema vir za proučevanje
ΓΕΝΙΚΗ ΚΑΙ ΥΝΑΜΙΚΗ ΜΕΤΕΩΡΟΛΟΓΙΑ
ΓΕΝΙΚΗ ΚΑΙ ΥΝΑΜΙΚΗ ΜΕΤΕΩΡΟΛΟΓΙΑ Κεφ. 4: Υ ΡΟΣΥΜΠΥΚΝΩΣΕΙΣ - ΝΕΦΗ ρ. Ιωάννης Πυθαρούλης Θερµές ευχαριστίες στους: Επ. Καθ. Π. Ζάνη Μεταπτ. Φοιτητή Χ. Ντόγρα Μεταπτ. Φοιτητή Σ. Κέππα Τοµέαςοµέας Μετεωρολογίας