Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,"

Transcript

1 PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm, 0 cm i 00 mm. Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 00, jer smo zaključili da 1 m ima 00 mm: = m = 2500 mm 1 / 31

2 cm = dm Pretvaramo iz manje u veću mjernu jedinicu. 1 dm ima cm. Pošto pretvaramo iz manje u veću mjernu jedinicu broj 0.43 dijelimo s jer smo zaključili da 1 dm ima cm: 0.43 : = cm = dm nm = Gm Pretvaramo iz manje u veću mjernu jedinicu. 1 Gm ima 18 nm (pogledamo u tablicu PREFIKSA (ISPOD) i vidimo po potencijama kolika je razlika između mjernih jedinica) Pošto pretvaramo iz manje u veću mjernu jedinicu broj 2500 dijelimo s 18 : 2500 : 18 = / 31

3 2500 nm = Gm m 2 = km 2 Pretvaramo iz manje u veću mjernu jedinicu. 1 km ima 00 metara, a 1 km m 2. Pošto pretvaramo iz manje u veću mjernu jedinicu broj 753 dijelimo s 6 : 753 : 6 = m 2 = km dm 3 = cm 3 Pretvaramo iz veće u manju mjernu jedinicu. 3 / 31

4 1 dm ima cm, a 1 dm 3 ima cm 3 (00 cm 3 ) (jer je na treću potenciju) Pošto pretvaramo iz veće u manju mjernu jedinicu broj množimo s 3 (00) =12450 ili = dm 3 = cm L = m 3 1 L (litra) je isto što i 1 dm 3. To znači da pretvaramo 13 dm 3 u m 3. Pretvaramo iz manje u veću mjernu jedinicu. 1 m ima dm, a 1 m 3 ima dm 3 što je 00 dm 3 ili 3 dm 3. Pošto pretvaramo iz manje u veću mjernu jedinicu 13 dijelimo s 3. 13: 3 = 13:00 = L = m 3 4 / 31

5 pm = km Pretvaramo iz manje u veću mjernu jedinicu (k - kilo, p - piko); kilo ima višu potenciju od piko - dijelimo!! Razlika u potncijama između piko i kilo je 15 [3-(-12) = 15] : 15 = = (po pravilu za dijeljenje potencija) pm = km m 120 dm = cm Pretvroimo prvo 14 m u cm --> 14 m = 14 0 = 1400 cm Potom pretvaramo 120 dm u cm --> 120 dm = 120 = 1200 cm Na kraju zbrojimo: 1400 cm cm = 2600 cm 5 / 31

6 14 m 120 dm = 2600 cm g = kg Pretvaramo iz manje mjerne jedinice u veću. 1 kg ima 00 grama.pošto idemo iz manje u veću 1200 dijelimo s 00: 1200: 00 = g = 1.2 kg. 685 dag = t Ponovo pretvaramo iz manje mjerne jedinice u veću pa ćemo dijeliti. 1 t (tona) ima 00 kg, a 1 kg ima 0 dag, što znaći da 1 t ima 00 0 dag --> 1t = 0000 dag ili 1 t = 5 kg 6 / 31

7 685: 5 = ili 685:0000= dag = t OSNOVNE PRETVROBE ZA DULJINU: 1 km = 00 m 1 m = dm 1 m = 0 cm 1 m = 00 mm OSNOVNE PRETVORBE ZA MASU: 1 t = 00 kg 7 / 31

8 1 kg = 0 dag 1 kg = 00 g VOLUMEN 1L = 1dm OSTALO (kako koristiti prefikse za druge mjerne jedinice) 1 kn = 00 N (prefiks k je kilo i označava 3 tj. 00) --> (njutn) 1 kj = 00 J --> (đul) 1 kpa = 00 Pa --> (pascal) 1 kg = 00 g 8 / 31

9 1 MN = N (prefiks M je mega i označava 6 ili 00000) 1 MJ = J analogno i za druge prefikse... 1 mn = N (prefiks m je mili i označava -3 tj ) 1 mj = J 1 mpa = Pa 1 mm = m POTENCIJE I ZNANSTVENI ZAPIS: 9 / 31

10 MNOŽENJE: 2 5 = 7 --> BAZA se prepiše, a EKSPONENTI ZBROJE (2+5=7) DIJELJENJE: 7 : 4 = 3 --> BAZA se prepiše, a EKSPONENTI ODUZMU (7-4=3) 4 : -7 = 11 --> PAZI --> 4 - (-7) = 11 ZNANSTVENI ZAPIS: = > BROJ ISPRED DECIMALNE TOČKE MORA BITI MANJI OD = > DECIMALNU TOČKU SMO POMAKLI 2 MJESTA U DESNO ( -2 ) = > DECIMALNU TOČKU SMO POMAKLI 9 MJESTA U LIJEVO ( 9 ) PREFIKSI Predmetak / 31

11 Znak Vrijednost jota Y / 31

12 zeta Z 21 eksa 12 / 31

13 E 18 peta P / 31

14 tera T 12 giga 14 / 31

15 G 9 mega M 6 15 / 31

16 kilo k 3 hekto 16 / 31

17 h 2 deka da 17 / 31

18 deci d 1 centi 18 / 31

19 c 2 mili m 3 19 / 31

20 mikro µ 6 nano 20 / 31

21 n 9 piko p / 31

22 femto f 15 ato 22 / 31

23 a 18 zepto z / 31

24 jokto y ZADACI ZA VJEŽBU 24 / 31

25 dm = mm cm = m m = km km = dm mm = cm cm 2 = m m 2 = km mm 2 = dm dm 2 = cm km 2 = mm m 3 = mm cm 3 = dm km 3 = m mm 3 = cm dm 3 = km nm 2 = am m = fm Tm 2 = μm 2 25 / 31

26 Gm 3 = m pm 3 = Tm ODGOVORI 26 / 31

27 dm = = = mm cm = 0.9 : 0 = 0.009=9-3 m m = 800 : 00 = 0.8=8-1 km km = = 680=6.8 2 dm mm = 1250 : = 125= cm cm 2 = 0.5 : 0 : 0 = 0.5 : 000 = = 5-5 m m 2 = 20 : 00 : 00 = 20 : 6 = = km mm 2 = 0.92 : 0 : 0 = 0.92 : 000 = =9.2-5 dm dm 2 = 45 =4500=4.5 3 cm km 2 = = =1.2 mm m 3 = = mm cm 3 = 62.4 : : : = = dm km 3 = = =7 6 m mm 3 = 99.9:::=0.0999= cm dm 3 = 5.34 : 000 : 000 : 000 = km nm 2 = = am 2 (tablica: nano u ato --> veća u manju) 27 / 31

28 m = fm = (tablica: razlika od 0 do -15 ) Tm 2 = = μm Gm 3 = = m pm 3 = : 24 = -29 Tm 3 PRETVARANJE MASE - riješeni primjeri kg = g 28 / 31

29 t = 3500 kg kg = 1200 dag g = 46.5 dag g = 1.25 kg dag = mg 29 / 31

30 kg = 0.3 t μg = g Konverter svih mjernih jedinica: / 31

31 31 / 31

Φυσικές και χημικές ιδιότητες

Φυσικές και χημικές ιδιότητες Φυσικές και χημικές ιδιότητες Φυσικές ιδιότητες Οι ιδιότητες που προσδιορίζονται χωρίς αλλοίωση της χημικής σύστασης της ουσίας (π.χ. σ. τήξεως, σ. ζέσεως, πυκνότητα, χρώμα, γεύση, σκληρότητα). Χημικές

Διαβάστε περισσότερα

Εισαγωγή Σε Βασικές Έννοιες Της Φυσικής

Εισαγωγή Σε Βασικές Έννοιες Της Φυσικής Εισαγωγή Σε Βασικές Έννοιες Της Φυσικής Φυσικά Μεγέθη Φυσικά μεγέθη είναι έννοιες που μπορούν να μετρηθούν και χρησιμοποιούνται για την περιγραφή των φαινομένων. Διεθνές σύστημα μονάδων S. I Το διεθνές

Διαβάστε περισσότερα

Μετρήσεις. Μέτρηση: η σύγκριση μιας φυσικής ποσότητας με μια μονάδα μέτρησης. Μονάδα μέτρησης: ένα καθορισμένο πρότυπο μέτρησης Ατσάλινη ράβδος

Μετρήσεις. Μέτρηση: η σύγκριση μιας φυσικής ποσότητας με μια μονάδα μέτρησης. Μονάδα μέτρησης: ένα καθορισμένο πρότυπο μέτρησης Ατσάλινη ράβδος Μετρήσεις Μέτρηση: η σύγκριση μιας φυσικής ποσότητας με μια μονάδα μέτρησης Μονάδα μέτρησης: ένα καθορισμένο πρότυπο μέτρησης Ατσάλινη ράβδος εκατοστόμετρα Αποτέλεσμα μέτρησης: Μήκος ράβδου: 9,12 cm, 9,11

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΧΗΜΙΚΗ ΜΗΧΑΝΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΧΗΜΙΚΗ ΜΗΧΑΝΙΚΗ . ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΧΗΜΙΚΗ ΜΗΧΑΝΙΚΗ ΣΩΤΗΡΗΣ ΤΣΙΒΙΛΗΣ, Καθ. ΕΜΠ Παραδόσεις μαθήματος, Ακ. Έτος 2018-19 1 ΒΑΣΙΚΕΣ ΔΙΑΣΤΑΣΕΙΣ ΜΟΝΑΔΕΣ ΜΕΤΡΗΣΗΣ Διάσταση Μήκος

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

1.5 Γνωριμία με το εργαστήριο Μετρήσεις

1.5 Γνωριμία με το εργαστήριο Μετρήσεις 1.5 Γνωριμία με το εργαστήριο Μετρήσεις 1. Το μήκος, ο χρόνος, η μάζα, η θερμοκρασία κτλ. είναι ποσότητες που τις χρησιμοποιούμε για να περιγράφουμε τα φαινόμενα. Οι ποσότητες αυτές ονομάζονται φυσικά

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Φυσικές Μετρήσεις ΣΚΟΠΟΣ

Φυσικές Μετρήσεις ΣΚΟΠΟΣ Φυσικές Μετρήσεις ΣΚΟΠΟΣ Σκοπός αυτής της ενότητας είναι να γνωρίσουμε: 1. το πώς γίνονται οι μετρήσεις των διαφόρων φυσικών ποσοτήτων, 2. τις μονάδες μετρήσεως αυτών και 3. τη διαστατική ανάλυση. 1 Προσδοκώμενα

Διαβάστε περισσότερα

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου 1 ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΚΑΙ ΠΡΟΤΕΡΑΙΟΤΗΤΑ ΠΡΑΞΕΩΝ 1.1 Προτεραιότητα Πράξεων Η προτεραιότητα των πράξεων είναι: (Από τις πράξεις που πρέπει να γίνονται πρώτες,

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Σχήμα 2 Παραγόμενη Μονάδες S.I. όνομα σύμβολο Εμβαδό Τετραγωνικό μέτρο m 2 Όγκος Κυβικό μέτρο m 3 Ταχύτητα Μέτρο ανά δευτερόλεπτο m/s Επιτάχυνση Μέτρο ανά δευτ/το στο τετράγωνο m/s 2 Γωνία Ακτίνιο

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,

Διαβάστε περισσότερα

VOLUMEN ILI OBUJAM TIJELA

VOLUMEN ILI OBUJAM TIJELA VOLUMEN ILI OBUJAM TIJELA Veličina prostora kojeg tijelo zauzima Izvedena fizikalna veličina Oznaka: V Osnovna mjerna jedinica: kubni metar m 3 Obujam kocke s bridom duljine 1 m jest V = a a a = a 3, V

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΧΗΜΙΚΗ ΜΗΧΑΝΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΧΗΜΙΚΗ ΜΗΧΑΝΙΚΗ . ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΧΗΜΙΚΗ ΜΗΧΑΝΙΚΗ ΣΩΤΗΡΗΣ ΤΣΙΒΙΛΗΣ, Καθ. ΕΜΠ Παραδόσεις μαθήματος, Ακ. Έτος 2019-20 1 ΒΑΣΙΚΕΣ ΔΙΑΣΤΑΣΕΙΣ - ΜΟΝΑΔΕΣ ΜΕΤΡΗΣΗΣ Διάσταση Μήκος

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ Οδηγός Συγγραφής Εργαστηριακών Αναφορών Εξώφυλλο Στην πρώτη σελίδα περιέχονται: το όνομα του εργαστηρίου, ο τίτλος της εργαστηριακής άσκησης, το ονοματεπώνυμο του σπουδαστή

Διαβάστε περισσότερα

Fizika 1. Ivica Sorić. Auditorne vježbe 1 Uvod. Procjena reda veličine. Vektori.

Fizika 1. Ivica Sorić. Auditorne vježbe 1 Uvod. Procjena reda veličine. Vektori. Fakultet elektotehnike, stojastva i bodogadnje Studij ačunastva Školska godina 2008/2009 Fizika 1 Auditone vježbe 1 Uvod. Pocjena eda veličine. Vektoi. 14. studenoga 2008. Ivica Soić (Ivica.Soić@fesb.h)

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Θεωρία Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας

Θεωρία Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας Θεωρία Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας Εισαγωγικό μάθημα Συστήματα μέτρησης, μετατροπές δυνάμεων, μονάδων και σφάλματα μέτρησης Εισαγωγή Η Φυσική είναι μια επιστήμη

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Α. ΚΑΝΑΠΙΤΣΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΕΙ ΛΑΜΙΑΣ ΛΑΜΙΑ, 2006

Α. ΚΑΝΑΠΙΤΣΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΕΙ ΛΑΜΙΑΣ ΛΑΜΙΑ, 2006 ιαλέξεις στη ΦΥΣΙΚΗ Α. ΚΑΝΑΠΙΤΣΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΕΙ ΛΑΜΙΑΣ ΛΑΜΙΑ, 2006 Σηµειώσεις εποπτικό υλικό για το µάθηµα ΦΥΣΙΚΗ. Τα παρακάτω είναι βασισµένα στις διαλέξεις του διδάσκοντα. Το υλικό αποτελεί

Διαβάστε περισσότερα

Εισαγωγή ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. 2- εισαγωγή. Φ. Καραντώνη, Δρ. Πολ. Μηχανικός Επίκουρος Καθηγήτρια 4/10/2016

Εισαγωγή ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. 2- εισαγωγή. Φ. Καραντώνη, Δρ. Πολ. Μηχανικός Επίκουρος Καθηγήτρια 4/10/2016 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ 2- εισαγωγή Φ. Καραντώνη, Δρ. Πολ. Μηχανικός Επίκουρος Καθηγήτρια 1 Εισαγωγή 1 Γιατί πολιτικός μηχανικός; Γιατί λέγεται πολιτικός μηχανικός

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ. Επιμέλεια Σημειώσεων : Ελένη Κασούτσα ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ-ΜΑΘΗΜΑΤΙΚΟ ΒΟΗΘΗΜΑ

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ. Επιμέλεια Σημειώσεων : Ελένη Κασούτσα ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ-ΜΑΘΗΜΑΤΙΚΟ ΒΟΗΘΗΜΑ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Επιμέλεια Σημειώσεων : Ελένη Κασούτσα ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ-ΜΑΘΗΜΑΤΙΚΟ ΒΟΗΘΗΜΑ Περιεχόμενα Μαθηματικό Βοήθημα... 3 Μονόμετρα και Διανυσματικά Μεγέθη... 7 Το Διεθνές Σύστημα Μονάδων (S.I.)...

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Θεωρία. 1. 2 Γνωρίσματα της ύλης (μάζα, όγκος, πυκνότητα). Μετρήσεις και μονάδες.

Θεωρία. 1. 2 Γνωρίσματα της ύλης (μάζα, όγκος, πυκνότητα). Μετρήσεις και μονάδες. Θεωρία 1. 2 Γνωρίσματα της ύλης (μάζα, όγκος, πυκνότητα). Μετρήσεις και μονάδες. 2.1. Τι είναι φυσικό μέγεθος; Τα φυσικά μεγέθη είναι ποσότητες που προσδιορίζουν τις διαστάσεις ενός σώματος ή ενός φυσικού

Διαβάστε περισσότερα

ΔΙΑΣΤΑΣΕΙΣ ΚΑΙ ΜΟΝΑΔΕΣ

ΔΙΑΣΤΑΣΕΙΣ ΚΑΙ ΜΟΝΑΔΕΣ Σχολή Χημικών Μηχανικών, 2 ο εξάμηνο ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΔΙΑΣΤΑΣΕΙΣ ΚΑΙ ΜΟΝΑΔΕΣ Γιώργος Μαυρωτάς, Επ. Καθηγητής Εργαστήριο Βιομηχανικής & Ενεργειακής Οικονομίας, Σχολή ΧΜ, ΕΜΠ Εισαγωγή

Διαβάστε περισσότερα

Παράρτημα 1: Μονάδες, Διαστάσεις και Μετατροπές (Units, Dimensions, and Conversions) 1 Υδρολογικές Ποσότητες

Παράρτημα 1: Μονάδες, Διαστάσεις και Μετατροπές (Units, Dimensions, and Conversions) 1 Υδρολογικές Ποσότητες Παράρτημα 1: Μονάδες, Διαστάσεις και Μετατροπές (Units, Dimensions, and Conversions) 1 Υδρολογικές Ποσότητες Μπορούμε να ξεχωρίσουμε τις ποσότητες που συναντάμε στην Υδρολογία σε δύο κατηγορίες. Η πρώτη

Διαβάστε περισσότερα

ΔΙΕΘΝΕΣ ΣΥΣΤΗΜΑ ΜΟΝΑΔΩΝ (S.I.)

ΔΙΕΘΝΕΣ ΣΥΣΤΗΜΑ ΜΟΝΑΔΩΝ (S.I.) ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΙΕΘΝΕΣ ΣΥΣΤΗΜΑ ΜΟΝΑΔΩΝ (S.I.) Το 1960 καθορίστηκε μετά από διεθνή συμφωνία το Διεθνές Σύστημα Μονάδων S.I. (από τα αρχικά των γαλλικών λέξεων Système International d Unités). Το σύστημα

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Fizika. Doc. dr Nikola Cvetanović. Većina tehničkih problema su u suštini fizički

Fizika. Doc. dr Nikola Cvetanović. Većina tehničkih problema su u suštini fizički Fizika Doc. dr Nikola Cvetanović kabinet 011 Važnost fizike za tehniku Φυσιζ fizis Grčki, priroda Većina tehničkih problema su u suštini fizički Fizika vas uči veštinama potrebnim za inžinjere: kako se

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

2 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

2 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ A. Παρασκευή Υδατικών Διαλυμάτων & μονάδες μέτρησης Για τη παρασκευή υδατικών διαλυμάτων στο εργαστήριο Βιοχημείας, χρησιμοποιείται ύδωρ τριών κατηγοριών. 1. Απιονισμένο (παραλαμβάνεται

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Άσκηση 2: Εργαστηριακα σκεύ η χημει ας. Μετρη σεις ό γκων και μαζων 1

Άσκηση 2: Εργαστηριακα σκεύ η χημει ας. Μετρη σεις ό γκων και μαζων 1 Σκόπός της άσκησης: Άσκηση : Εργαστηριακα σκεύ η χημει ας. Μετρη σεις ό γκων και μαζων Να εξοικειωθούν οι φοιτητές με τα συνήθη σκεύη της Χημείας και την ορθή ανάγνωση όγκων και μαζών από αντίστοιχα κατάλληλα

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΑΖΑΣ & ΟΓΚΟΥ ΥΠΟΛΟΓΙΣΜΟΣ ΠΥΚΝΟΤΗΤΑΣ

ΜΕΤΡΗΣΗ ΜΑΖΑΣ & ΟΓΚΟΥ ΥΠΟΛΟΓΙΣΜΟΣ ΠΥΚΝΟΤΗΤΑΣ Γυμνάσιο Βουλιαγμένης Σχολικό Έτος 2016-2017 ΧΗΜΕΙΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΗ ΜΑΖΑΣ & ΟΓΚΟΥ ΥΠΟΛΟΓΙΣΜΟΣ ΠΥΚΝΟΤΗΤΑΣ Έννοιες και φυσικά μεγέθη Όγκος, Μάζα & Πυκνότητα Στερεών & Υγρών Στόχοι Να χειρίζεσαι

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26

Διαβάστε περισσότερα

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA.   Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije a + b + c je parabola. Najpre ćemo naučiti kako izgleda

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

FERROLI SFL 3 22KW 19.000Kcal/h ΧΥΤΟΣΙΔΗΡΟΣ ΛΕΒΗΤΑΣ PELLET ΣΤΕΡΕΩΝ ΚΑΥΣΙΜΩΝ

FERROLI SFL 3 22KW 19.000Kcal/h ΧΥΤΟΣΙΔΗΡΟΣ ΛΕΒΗΤΑΣ PELLET ΣΤΕΡΕΩΝ ΚΑΥΣΙΜΩΝ FERROLI SFL 3 22KW 19.000Kcal/h FERROLI SFL 3 22KW 19.000Kcal/h ΛΕΒΗΤΑΣ PELLET ΠΕΛΕΤ ΧΥΤΟΣΙΔΗΡΟΣ ΜΑΝΤΕΜΙ ΜΕ ΚΑΥΣΤΗΡΑ PELLET FERROLI + ΔΕΞΑΜΕΝΗPELLET ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ ΚΟΜΠΛΕ Θερμική παροχή: Ξύλο/Ανθρακας/Pellet

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

FERROLI SFL 3 19KW 16.500Kcal/h ΧΥΤΟΣΙΔΗΡΟΣ ΛΕΒΗΤΑΣ ΣΤΕΡΕΩΝ ΚΑΥΣΙΜΩΝ

FERROLI SFL 3 19KW 16.500Kcal/h ΧΥΤΟΣΙΔΗΡΟΣ ΛΕΒΗΤΑΣ ΣΤΕΡΕΩΝ ΚΑΥΣΙΜΩΝ FERROLI SFL 3 19KW 16.500Kcal/h ΧΥΤΟΣΙΔΗΡΟΣ ΛΕΒΗΤΑΣ ΣΤΕΡΕΩΝ ΚΑΥΣΙΜΩΝ FERROLI SFL 3 19KW 16.500Kcal/h ΛΕΒΗΤΑΣ ΧΥΤΟΣΙΔΗΡΟΣ ΣΤΕΡΕΩΝ ΚΑΥΣΙΜΩΝ Θερμική παροχή: Ξύλο/Ανθρακας/Pellet (Kw) 19/22,5/22 Συμβατότητα

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Επαναληπτικά μαθήματα φυσικής 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΤΡΕΙΔΗΣ ΓΙΩΡΓΟΣ ΘΕΣΣΑΛΟΝΙΚΗ 2015 16 2 Φροντιστήρια δυαδικό Επαναληπτικά μαθήματα φυσικής 3 ΜΑΘΗΜΑ 1 Μεγέθη Μονάδες Γραφικές παραστάσεις

Διαβάστε περισσότερα

Cenovnik spiro kanala i opreme - FON Inžinjering D.O.O.

Cenovnik spiro kanala i opreme - FON Inžinjering D.O.O. Cenovnik spiro kanala i opreme - *Cenovnik ažuriran 09.02.2018. Spiro kolena: Prečnik - Φ (mm) Spiro kanal ( /m) 90 45 30 Muf/nipli: Cevna obujmica: Brza diht spojnica: Elastična konekcija: /kom: Ø100

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

ΤΕΙ Δυτικής Μακεδονίας Σχολή Τεχνολογικών Εφαρμογών (ΣΤΕΦ) Τμήμα Μηχανικών Περιβάλλοντος & Μηχανικών Αντιρρύπανσης Τ.Ε.

ΤΕΙ Δυτικής Μακεδονίας Σχολή Τεχνολογικών Εφαρμογών (ΣΤΕΦ) Τμήμα Μηχανικών Περιβάλλοντος & Μηχανικών Αντιρρύπανσης Τ.Ε. «Φυσική» Υπ. Μαθήματος: Καθ. Αθαν. Γ. Τριανταφύλλου www.airlab.edu.gr ΤΕΙ Δυτικής Μακεδονίας Σχολή Τεχνολογικών Εφαρμογών (ΣΤΕΦ) Τμήμα Μηχανικών Περιβάλλοντος & Μηχανικών Αντιρρύπανσης Τ.Ε. Ιστορία και

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Μετρήσεις. Η διαδικασία να μπορούμε να ποσοτικοποιήσουμε εκείνο για το οποίο μιλάμε και να το εκφράσουμε με αριθμούς ονομάζεται μέτρηση.

Μετρήσεις. Η διαδικασία να μπορούμε να ποσοτικοποιήσουμε εκείνο για το οποίο μιλάμε και να το εκφράσουμε με αριθμούς ονομάζεται μέτρηση. Μετρήσεις Η διαδικασία να μπορούμε να ποσοτικοποιήσουμε εκείνο για το οποίο μιλάμε και να το εκφράσουμε με αριθμούς ονομάζεται μέτρηση. 1 Οι ποσότητες που μετράμε ονομάζονται Φυσικές Ποσότητες και είναι

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

1. Skup kompleksnih brojeva

1. Skup kompleksnih brojeva 1. Skup kompleksnih brojeva 1. Skupovibrojeva... 2 2. Skup kompleksnih brojeva................................. 5 3. Zbrajanje i množenje kompleksnih brojeva..................... 8 4. Kompleksno konjugirani

Διαβάστε περισσότερα

TEHNOLOGIJA MATERIJALA U RUDARSTVU

TEHNOLOGIJA MATERIJALA U RUDARSTVU V E Ž B E TEHNOLOGIJA MATERIJALA U RUDARSTVU Rade Tokalić Suzana Lutovac ISPITIVANJE METALA I LEGURA I ispitivanja sa razaranjem uzoraka II ispitivanja bez razaranja uzoraka III - ispitivanja strukture

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

ΜΕΡΟΣ Α ΒΙΒΛΙΟ ΕΡΓΑΣΙΩΝ ΟΝΟΜΑ.. ΤΑΞΗ...

ΜΕΡΟΣ Α ΒΙΒΛΙΟ ΕΡΓΑΣΙΩΝ ΟΝΟΜΑ.. ΤΑΞΗ... 941205 ΜΕΡΟΣ Α ΒΙΒΛΙΟ ΕΡΓΑΣΙΩΝ ΟΝΟΜΑ.. ΤΑΞΗ... 2 ΔΙΕΡΕΥΝΗΤΙΚΗ ΜΑΘΗΣΗ ΦΥΛΛΑ ΕΡΓΑΣΙΩΝ ΓΙΑ ΜΑΘΗΤΕΣ ΕΡΕΥΝΩΝΤΑΣ ΤΗΝ ΜΕΤΡΗΣΗ ΠΕΡΙΕΧΟΜΕΝΑ Έρευνα Σελίδα Φύλλο πληροφοριών Το μετρικό σύστημα 2 1. Μετρώντας το μήκος

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Με την ολοκλήρωση αυτής της άσκησης ο σπουδαστής θα πρέπει:

Με την ολοκλήρωση αυτής της άσκησης ο σπουδαστής θα πρέπει: ΑΣΚΗΣΗ 1 η ΕΚΦΡΑΣΗ ΤΩΝ ΑΝΑΛΥΤΙΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Ι. Αριθμητική (Επιστημονική γραφή των αριθμών, μετρήσεις, σφάλματα, ακρίβεια μετρήσεων, σημαντικοί αριθμοί) II. Μονάδες Σκοπός της άσκησης Με την ολοκλήρωση

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Μάθημα: Γενική Χημεία

Μάθημα: Γενική Χημεία Μάθημα: Γενική Χημεία Διδάσκων: Καθηγητής Νικόλαος Κλούρας Πληροφορίες για Ωρολόγιο Πρόγραμμα, Αίθουσες Διδασκαλίας, Συγγράμματα, Διδακτέα ύλη, Εξετάσεις, Αποτελέσματα Εξετάσεων και πολλές πολλές άλλες

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Κλίμακα των δυνάμεων του 10.

Κλίμακα των δυνάμεων του 10. Κλίμακα των δυνάμεων του 10. Πρόθεμα (Prefix) Σύμβολο 1000 m 10 n Αριθμητική αναπαράσταση Αμερικανική απόδοση του όρου (short scale) yotta Y 1000 8 10 24 1000000000000000000000000 septillion 1991 zetta

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Γενική Φυσική. Μεγέθη & μονάδες. Φυσικά φαινόμενα. Μεγέθη και μονάδες 24/9/2014. Κωνσταντίνος Χ. Παύλου 1

Γενική Φυσική. Μεγέθη & μονάδες. Φυσικά φαινόμενα. Μεγέθη και μονάδες 24/9/2014. Κωνσταντίνος Χ. Παύλου 1 Γενική Φυσική Κωνσταντίνος Χ. Παύλου Φυσικός Ραδιοηλεκτρολόγος (MSc) Καστοριά, Σεπτέμβριος 14 Μεγέθη & μονάδες 1. Φυσικό μέγεθος κατηγορίες μεγεθών 2. Αριθμητική τιμή σύστημα μονάδων 3. Το ιεθνές Σύστημα

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΤΥΠΟΛΟΓΙΟ ΚΑΙ ΠΙΝΑΚΕΣ ΓΙΑ ΤΑ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι

Τ.Ε.Ι. ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΤΥΠΟΛΟΓΙΟ ΚΑΙ ΠΙΝΑΚΕΣ ΓΙΑ ΤΑ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι Τ.Ε.Ι. ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΤΥΠΟΛΟΓΙΟ ΚΑΙ ΠΙΝΑΚΕΣ ΓΙΑ ΤΑ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι Διδάσκων: Ν. Μοσχίδης ΣΕΡΡΕΣ, Φεβρουάριος 2007 ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο Σελίδα Πιν. 1 Ευρετήριο φυσικών μεγεθών 3 Πιν. 2 Ευρετήριο

Διαβάστε περισσότερα

Ασκήσεις Προβλήματα. Μετρήσεις Μονάδες Γνωρίσματα της Ύλης

Ασκήσεις Προβλήματα. Μετρήσεις Μονάδες Γνωρίσματα της Ύλης Ασκήσεις Προβλήματα Μετρήσεις Μονάδες Γνωρίσματα της Ύλης 19. Ποιες μονάδες χρησιμοποιούν συνήθως οι χημικοί για την πυκνότητα των: α) στερεού, β) υγρού και γ) αερίου σώματος; Να εξηγήσετε τη διαφορά.

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΟΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ ΜΕΡΟΣ Α ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ

ΕΦΑΡΜΟΣΜΕΝΟΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ ΜΕΡΟΣ Α ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Σχολή Τεχνολογικών Εφαρμογών Τμήμα Ηλεκτρονικών Μηχανικών ΤΕ ΕΦΑΡΜΟΣΜΕΝΟΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ ΜΕΡΟΣ Α ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ Δρ.

Διαβάστε περισσότερα