S53WW. Meritve anten. RIS 2005 Novo Mesto

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "S53WW. Meritve anten. RIS 2005 Novo Mesto"

Transcript

1 S53WW Meritve anten RIS 2005 Novo Mesto

2 Parametri, s katerimi opišemo anteno: Smernost (D, directivity) Dobitek (G, gain) izkoristek (η=g/d, efficiency) Smerni (sevalni) diagram (radiation pattern) 3dB širina glavnega snopa v obeh polarizacijskih oseh največji nivo stranskih snopov razmerje naprej/nazaj Prilagoditev (RL ali VSWR) Pasovna širina prilagoditve Pasovna širina dobitka, oz. smernega diagrama Polarizacijski parametri slabljenje ortogonalne polarizacije v primeru linearne polarizacije osno razmerje v primeru krožne polarizacije Največja dovedena moč Mehanski/okoljski parametri

3 Smernost in dobitek (ter izkoristek) Smernost definiramo kot razmerje gostote moči v smeri maksimuma smernega diagrama in gostote moči, ki bi jo pri enaki sevani moči v isti točki dajala izotropna antena. S max = D (P/4πR 2 ) S max maksimalna gostota moči na razdalji R P sevana moč 4πR 2 površina krogle s premerom R smernost gostota moči referenčne (izotropne) antene na površini krogle s polmerom R Dobitek antene definiramo podobno kot smernost, le da tu namesto sevane moči izenačimo dovajano moč. S tem poleg smernih lastnosti antene upoštevamo tudi njene ohmske izgube. G = η D

4 Smernost in dobitek (ter izkoristek) Na sprejemu definiramo efektivno površino antene, ki je sorazmerna dobitku. A ef = Gλ 2 /4π D = 4π/Ω A 4π - krogelni prostorski kot v steridianih, oz. radianih 2 (=41253 stopinj 2 ) Ω A - prostorski kot antene D 41000/Θ E Θ H

5 Smerni diagram 3D sevalni diagram

6 Smerni diagram

7 Smerni diagram 3dB širina v H ravnini 3dB širina v E ravnini E ravnina H ravnina

8 Smerni diagram Merilo: logaritemsko, 20dB Merilo: logaritemsko, 40dB Merilo: linearno

9 Smerni diagram

10 Smerni diagram

11 2D-smerni diagram

12 Prostor okoli antene Prostor elektromagnetnega polja okoli antene razdelimo na tri področja: bližnje reaktivno polje R < λ/2π bližnje sevano polje daljno sevano polje R > 2D 2 / λ (napaka faze < π/8) Ploskev enake faze (krogla s središčem v pomožni anteni) D Napaka faze R Pomožna antena

13 Prostor okoli antene Daljno polje: Frekvenca 10GHz 10GHz 1,3GHz 432MHz 432MHz 144MHz 144MHz 50MHz Antena parabola 0,6m parabola 1,2m parabola 1,2m 10λ yagi 19dBi (meritev G) 10λ yagi - (meritev smernega diagrama) 4λ yagi 15dBi (meritev G) 4λ yagi (meritev smernega diagrama) 1λ yagi 10dBi 2D 2 / λ ~25m ~100m ~13m ~11m ~140m ~13m ~64m ~12m yagi antena: (2D 2 /λ) = 2λG/π 2 D = (λ/π) G

14 Meritev dobitka primerjalna metoda P merilnik moči merjena antena G x pomožna antena etalonska antena G r oddajnik etalonska antena merjena antena G x = G r + P proti pomožni anteni Kot merilnik moči lahko uporabimo merilni sprejemnik, nizkonivojski merilnik moči ali kalibrirani slabilnik z relativnim merilnikom moči/nivoja.

15 Meritev dobitka absolutna metoda antena 1 antena 2, 3 R G 1 G 2 G 3 oddajnik - P tx merilnik moči - P rx P rx [dbm] = P tx [dbm] + G 1 [db] + G 2 [db] 20log(4πR/λ)

16 Meritev prilagoditve - vektorski analizator vezij - skalarni analizator vezij (spektralni analizator s sledilnim izvorom) - SWR meter -mostični merilniki, Z-metri ipd. Prilagoditev ponavadi podajamo kot: - prilagoditveno slabljenje (RL = Return loss) - odnos stojnih valov (SWR = Standing Wave Ratio) RL = 20log( s 11 ) = 20log( ρ ) SWR = (1+ ρ )/(1- ρ ) SWR = 2 ρ = 1/3 RL = -9,5dB

17 Meritev smernega diagrama - meritev v bližnjem polju

18 Meritev smernega diagrama - kompaktno merilno mesto Merjena antena Območje planega vala Kolimacijsko zrcalo Mikrovalovni absorber oddajnik

19 Meritev smernega diagrama - nema soba

20 Meritev smernega diagrama - dvignjeno merilno mesto

21 Meritev smernega diagrama - dvignjeno merilno mesto na FE v Ljubljani

22 Meritev smernega diagrama - merilno mesto z odbojem od tal h 1 = λr/4h tx D < h 1 /3,3

23 Meritev smernega diagrama Nekaj praktičnih pravil za meritve smernih diagramov in dobitkov. Dvignjeno merilno mesto: Merilno mesto z odbojem od tal: H> 5D m zaradi odboja od tal H rx 3,3D m - H tx = λr/4h rx Primer: - meritev dobitka (diagrama?) 15dBi yagi (4λ) antene za 144MHz R > 13m D m = 3,6m H > 18m - meritev SBFA za 1,3GHz R > 2,2m D m = 0,5m H > 2,5m Primer: - meritev 15dBi yagi antene za 144MHz R = 30m D m = 3,6m H rx = 12m - H tx = 1,25m - meritev SBFA za 1,3GHz D m = 0,5m H rx = 1,65m za H tx = 1,65m R = 47m za H tx = 1,0m R = 28m D tx λr/4d m - zaradi konstantne amplitude

24 Meritev polarizacijskih parametrov E levokrožna polarizacija (val se širi ven iz zaslona) a b horizontalna os AR=a/b osno razmerje vertikalna os AR (0...3dB) krožno polariziran val AR (3...10dB) eliptično polariziran val AR (10... db) linearno polariziran val

25 Meritev polarizacijskih parametrov

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Svetlobni merilniki odbojnosti

Svetlobni merilniki odbojnosti 13. Seminar Optične Komunikacije Laboratorij za Sevanje in Optiko Fakulteta za Elektrotehniko Ljubljana, 1. - 3. februar 2006 Svetlobni merilniki odbojnosti Matjaž Vidmar Seznam prosojnic: Slika 1 Meritev

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja: Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos

Διαβάστε περισσότερα

Pripravil: Bruno Lubec, S51M ANTENE. Osnovni pojmi in vrste anten Predavanja za tečaj radioamaterjev, 20 ur

Pripravil: Bruno Lubec, S51M ANTENE. Osnovni pojmi in vrste anten Predavanja za tečaj radioamaterjev, 20 ur Pripravil: Bruno Lubec, S51M ANTENE Osnovni pojmi in vrste anten Predavanja za tečaj radioamaterjev, 20 ur Valovanje 1. Mehansko: zvok, valovanje vode, valovanje nihala. Širi se počasneje od radijskih

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

ŠOLSKI CENTER ZA POŠTO, EKONOMIJO IN TELEKOMUNIKACIJE Celjska 16, 1000 Ljubljana SEMINARSKA NALOGA. ANTENE za začetnike. (kako se odločiti za anteno)

ŠOLSKI CENTER ZA POŠTO, EKONOMIJO IN TELEKOMUNIKACIJE Celjska 16, 1000 Ljubljana SEMINARSKA NALOGA. ANTENE za začetnike. (kako se odločiti za anteno) ŠOLSKI CENTER ZA POŠTO, EKONOMIJO IN TELEKOMUNIKACIJE Celjska 16, 1000 Ljubljana SEMINARSKA NALOGA ANTENE za začetnike (kako se odločiti za anteno) Mentor: univ. dipl. Inž. el. Stanko PERPAR Avtor: Peter

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,

Διαβάστε περισσότερα

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q

Διαβάστε περισσότερα

UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji

UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji Katedra za energetsko strojništo VETRNICA A A A Katedra za energetsko strojništo Katedra za energetsko strojništo VETRNICA A A A Δ Δp p p Δ Katedra za energetsko strojništo Teoretična moč etrnice Določite

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Meritve v optičnih komunikacijah

Meritve v optičnih komunikacijah 17. Seminar Optične Komunikacije Laboratorij za Sevanje in Optiko Fakulteta za Elektrotehniko Ljubljana, 27.-29. januar 2010 Meritve v optičnih komunikacijah Matjaž Vidmar ... Seznam prosojnic:... Slika

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Koordinatni sistemi v geodeziji

Koordinatni sistemi v geodeziji Koordinatni sistemi v geodeziji 14-1 Koordinatni sistemi v geodeziji Koordinatni sistemi v geodeziji 2 Vrste koordinatnih sistemov Vzpostavitev koordinatnega sistema je potrebna zaradi pridobitve primernega

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

ΤΗΛ412 Ανάλυση & Σχεδίαση (Σύνθεση) Τηλεπικοινωνιακών Διατάξεων. Διαλέξεις 9-10

ΤΗΛ412 Ανάλυση & Σχεδίαση (Σύνθεση) Τηλεπικοινωνιακών Διατάξεων. Διαλέξεις 9-10 ΤΗΛ41 Ανάλυση & Σχεδίαση (Σύνθεση) Τηλεπικοινωνιακών Διατάξεων Διαλέξεις 9-1 Άγγελος Μπλέτσας ΗΜΜΥ Πολυτεχνείου Κρήτης, Χειµερινό Εξάµηνο 16-17 1 Διαλέξεις 9-1 Κεραίες (Από την οπτική γωνία του µηχανικού!)

Διαβάστε περισσότερα

1. Osnovne lastnosti radijske zveze

1. Osnovne lastnosti radijske zveze 1. Osnovne lastnosti radijske zveze stran 1.1 1. Osnovne lastnosti radijske zveze 1.1. Radijska zveza v praznem prostoru Radijska zveza je vrsta zveze s pomočjo elektromagnetnega valovanja, kjer se valovanje

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ

1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ TVORBA AORISTA: Grški aorist (dovršnik) izraža dovršno dejanje; v indikativu izraža poleg dovršnosti tudi preteklost. Za razliko od prezenta ima aorist posebne aktivne, medialne in pasivne oblike. Pri

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

Polarizacija laserske svetlobe

Polarizacija laserske svetlobe Polarizacija laserske svetlobe Optični izolator izvedba z uporabo λ/4 retardacijske ploščice Odboj polarizirane svetlobe na meji zrak-steklo; Brewster-ov kot Definicija naloge predstavitev teoretičnega

Διαβάστε περισσότερα

S53WW. SDR in aplikacije na VHF&up. RIS 2011 Ljubljana

S53WW. SDR in aplikacije na VHF&up. RIS 2011 Ljubljana S53WW SDR in aplikacije na VHF&up RIS 2011 Ljubljana 22.01.2011 Avtomatske meritve radijskih svetilnikov in analiza razširjanja radijskih valov v realnem času Beacon monitoring projekti 1a NCDXF - International

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

Bluetooth / WLAN / WiFi Ceramic Chip Antenna Ground cleared under antenna, clearance area 4.00 x 4.25/6.25 mm. Pulse Part Number W3008, W3008C

Bluetooth / WLAN / WiFi Ceramic Chip Antenna Ground cleared under antenna, clearance area 4.00 x 4.25/6.25 mm. Pulse Part Number W3008, W3008C W8 Datasheet version.7. ceramic antenna. (/) Ground cleared under antenna, clearance area 4. x 4.5/6.5 mm. Pulse Part Number W8, W8C Features - Omni directional radiation - Low profile - Compact size W

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Fizikalne osnove svetlobe in fotometrija

Fizikalne osnove svetlobe in fotometrija Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo 2. letnik Aplikativna elektrotehnika - 64627 Električne inštalacije in razsvetljava Fizikalne osnove svetlobe

Διαβάστε περισσότερα

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

Gauss, Stokes, Maxwell. Vektorski identiteti ( ), Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

Characterization Report

Characterization Report Characterization Report RF Coaxial Cable Assemblies Raw Cable Type: Temp-Flex 047-2801 RF047-11SP9-11SP9-0305 Test Date: 10 Dec. 2014 RF047-11RP9-11RP9-0305 Test Date: 13 Oct. 2014 RF047-01SP1-01SP1-0305

Διαβάστε περισσότερα

1.575 GHz GPS Ceramic Chip Antenna Ground cleared under antenna, clearance area 4.00 x 4.25 mm / 6.25 mm. Pulse Part Number: W3011 / W3011A

1.575 GHz GPS Ceramic Chip Antenna Ground cleared under antenna, clearance area 4.00 x 4.25 mm / 6.25 mm. Pulse Part Number: W3011 / W3011A W0 Datasheet version. ceramic antenna. (09/08).575 GHz Ceramic Chip Antenna Ground cleared under antenna, clearance area x 4.5 mm / 6.5 mm. Pulse Part Number: W0 / W0A Features - Omni directional radiation

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Stikalni pretvorniki. Seminar: Načrtovanje elektronike za EMC Boštjan Glažar

Stikalni pretvorniki. Seminar: Načrtovanje elektronike za EMC Boštjan Glažar Stikalni pretvorniki Seminar: Načrtovanje elektronike za EMC 9. 3. 2016 Boštjan Glažar niverza v Ljubljani Fakulteta za elektrotehniko Tržaška cesta 25, SI-1000 Ljubljana Vsebina Prednosti stikalnih pretvornikov

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

Fotometrija mersko vrednotenje svetlobe

Fotometrija mersko vrednotenje svetlobe EDC Kranj - višja strokovna šola Kumunala Javna razsvetljava Fotometrija mersko vrednotenje svetlobe 4. poglavje predavatelj doc. dr. Grega Bizjak, u.d.i.e. Javna razsvetljava: Fotometrija 2 Svetloba kot

Διαβάστε περισσότερα

ISM 868 MHz Ceramic Antenna Ground cleared under antenna, clearance area mm x 8.25 mm. Pulse Part Number: W3013

ISM 868 MHz Ceramic Antenna Ground cleared under antenna, clearance area mm x 8.25 mm. Pulse Part Number: W3013 W0 Datasheet version.. Ceramic Antenna. (0/08). Ceramic Antenna Ground cleared under antenna, clearance area 0.80 mm x 8.5 mm. Pulse Part Number: W0 Features - Omni directional radiation - Low profile

Διαβάστε περισσότερα

ISM 900 MHz Ceramic Antenna Ground cleared under antenna, clearance area mm x 8.25 mm. Pulse Part Number: W3012

ISM 900 MHz Ceramic Antenna Ground cleared under antenna, clearance area mm x 8.25 mm. Pulse Part Number: W3012 W0 Datasheet version.. Ceramic Antenna. (0/08). Ceramic Antenna Ground cleared under antenna, clearance area 0.80 mm x 8.5 mm. Pulse Part Number: W0 Features - Omni directional radiation - Low profile

Διαβάστε περισσότερα

Radioteleskop za vodikovo črto 21 cm

Radioteleskop za vodikovo črto 21 cm Univerza v Ljubljani Fakulteta za elektrotehniko Tadeja Saje Radioteleskop za vodikovo črto 21 cm MAGISTRSKO DELO ŠTUDIJSKI PROGRAM DRUGE STOPNJE ELEKTROTEHNIKA Mentor: prof. dr. Matjaž Vidmar 2016 Zahvaljujem

Διαβάστε περισσότερα

Fotometrija. Področja svetlobe. Mimogrede

Fotometrija. Področja svetlobe. Mimogrede Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo Izbirni predmet - 10142 Svetlobna tehnika Fotometrija predavatelj prof. dr. Grega Bizjak, u.d.i.e. Mimogrede

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

! : ;, - "9 <5 =*<

! : ;, - 9 <5 =*< ITU-R M.473- (00/0)! (TDMA/FDMA) ""# $ %!& ' " ( ) 34 --./ 0, (MSS) * * )! +, 56 78 89 : ;, - "9

Διαβάστε περισσότερα

Fotometrija mersko vrednotenje svetlobe

Fotometrija mersko vrednotenje svetlobe Fotometrija mersko vrednotenje svetlobe Svetloba kot del EM spektra Pri fotometriji svetlobo obravnavamo kot del elektromagnetnega spektra, ki se nahaja med mikrovalovi in rentgenskimi žarki. Ima pa tudi

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

ITU-R SM (2011/01)

ITU-R SM (2011/01) (2011/01) SM ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) ( ) ( ) BO BR BS BT F M P RA RS S SA SF SM SNG TF V 2011 :.ITU-R 1 ITU

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje)

Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje) Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje) V./4. Deska, ki je dolga 4 m, je podprta na sredi. Na koncu deske stoji mož s težo 700

Διαβάστε περισσότερα

Προκειμένου να δώσουμε τον ορισμό των μεγεθών που μας ζητούνται θεωρούμε έστω ισχύ P σε Watt ή mwatt και τάση V σε Volt ή mvolt:

Προκειμένου να δώσουμε τον ορισμό των μεγεθών που μας ζητούνται θεωρούμε έστω ισχύ P σε Watt ή mwatt και τάση V σε Volt ή mvolt: 1 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Άσκηση 1 Δώστε τον ορισμό των dbw,dbm,dbμv. Υπολογίστε την τιμή του σήματος στην έξοδο αθροιστή, όταν στην είσοδο έχουμε: Α) W + W Β) dbw + W Γ) dbw + dbw Δ) dbw + dbm Προκειμένου να

Διαβάστε περισσότερα

ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος

ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΥΨΗΛΩΝ ΣΥΧΝΟΤΗΤΩΝ (Θ) Ενότητα 10: Μικροκυματική Τεχνολογία ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

Gradniki TK sistemov

Gradniki TK sistemov Gradniki TK sistemov renos signalov v višji rekvenčni legi Vsebina Modulacija in demodulacija Vrste analognih modulacij AM M FM rimerjava spektrov analognih moduliranih signalov Mešalniki Kdaj uporabimo

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Antenna 5in1 MA.750 Screw-Mount (Permanent Mount) 2G/3G/4G (MIMO) GPS-GLONASS 2.4/5GHz (MIMO)

Antenna 5in1 MA.750 Screw-Mount (Permanent Mount) 2G/3G/4G (MIMO) GPS-GLONASS 2.4/5GHz (MIMO) Pantheon MA7.A.ABICG.3 Specification Part No. Product Name Feature MA7.A.ABICG.3 Pantheon Antenna in1 MA.7 Screw-Mount (Permanent Mount) 2G/3G/4G (MIMO) GPS-GLONASS 2.4/GHz (MIMO) 2 x Cellular (2G/3G/4G)

Διαβάστε περισσότερα

ITU-R BT (11/2008) ( ) * & +, '

ITU-R BT (11/2008) ( ) * & +, ' 1 ITU-R BT.35- (11/8) "#$ %&! ( ) * & +, ' ( ) BT ITU-R BT.35- ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rep/en ) () () BO BR BS BT F

Διαβάστε περισσότερα

FIZIKA NAVODILA ZA OCENJEVANJE

FIZIKA NAVODILA ZA OCENJEVANJE Dr`avni izpitni center *M0441113* JESENSKI ROK FIZIKA NAVODILA ZA OCENJEVANJE Torek, 31. avgust 004 SPLO[NA MATURA C RIC 004 M04-411-1-3 Rešitve: POLA 1 VPRAŠANJA IZBIRNEGA TIPA REŠITVE 1. C 1. D. B. A

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

PRENOS SIGNALOV

PRENOS SIGNALOV PRENOS SIGNALOV 14. 6. 1999 1. Televizijski signal s pasovno širino 6 MHz prenašamo s koaksialnim kablom na razdalji 4 km. Dušenje kabla pri f = 1 MHz je,425 db/1 m. Koliko ojačevalnikov z ojačenjem 24

Διαβάστε περισσότερα

Visokofrekvenčno stikalo s PIN diodo

Visokofrekvenčno stikalo s PIN diodo Visokofrekvenčno stikalo s PIN diodo Eden od izumiteljev tranzistorja, teoretik Shockley, je predvidel gradnjo visokonapetostnih usmernikov za nizke frekvence v obliki strukture PIN, kjer dodatna malo

Διαβάστε περισσότερα

Tabele termodinamskih lastnosti vode in vodne pare

Tabele termodinamskih lastnosti vode in vodne pare Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

ITU-R RS.095 (007) 4 5 5 6 7 7 7 9 5 7 0 0 4 6 6 7 ITU-R RS.095 ( ) (EESS) GHz 37-36...... ( )........... 3.......(FS).3... (MS).3.......4....4... 3.4...3 4.4....4.4....4.4...4 5.4... 6.4... ( ).6.4...

Διαβάστε περισσότερα

NEC Silicon RFIC Amplifiers Low Power, Wideband & SiGe/SiGeC

NEC Silicon RFIC Amplifiers Low Power, Wideband & SiGe/SiGeC NEC Silicon RFIC Amplifiers Low Power, Wideband & SiGe/SiGeC Low Power Amplifiers ELECTRICAL CHARACTERISTICS (TA = 25 C) Range VCC ICC NF Gain RLIN RLOUT PdB ISOL @ 3dB (V) (ma) (dbm) Part down Package

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013 WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.

Διαβάστε περισσότερα

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70 KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih

Διαβάστε περισσότερα

ČHE AVČE. Konzorcij RUDIS MITSUBISHI ELECTRIC SUMITOMO

ČHE AVČE. Konzorcij RUDIS MITSUBISHI ELECTRIC SUMITOMO ČHE AVČE Konzorcij RUDIS MITSUBISHI ELECTRIC SUMITOMO MONTAŽA IN DOBAVA AGREGATA ČRPALKA / TURBINA MOTOR / GENERATOR S POMOŽNO OPREMO Anton Hribar d.i.s OSNOVNI TEHNIČNI PODATKI ČRPALNE HIDROELEKTRARNE

Διαβάστε περισσότερα

slika: 2D pravokotni k.s. v ravnini

slika: 2D pravokotni k.s. v ravnini Koordinatni sistemi Dejstvo je, da živimo v tridimenzionalnem Evklidskem prostoru. To je aksiom, ki ga ni potrebno dokazovati. Da bi podali geometrijski položaj točke v prostoru je primerno sredstvo za

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa

Διαβάστε περισσότερα

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

ITU-R BT ITU-R BT ( ) ITU-T J.61 ( ITU-R BT.439- ITU-R BT.439- (26-2). ( ( ( ITU-T J.6 ( ITU-T J.6 ( ( 2 2 2 3 ITU-R BT.439-2 4 3 4 K : 5. ITU-R BT.24 :. ITU-T J.6. : T u ( ) () (S + L = M) :A :B :C : D :E :F :G :H :J :K :L :M :S :Tsy :Tlb

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

ARHITEKTURA DETAJL 1, 1:10

ARHITEKTURA DETAJL 1, 1:10 0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

3.letnik - geometrijska telesa

3.letnik - geometrijska telesa .letnik - geometrijska telesa Prizme, Valj P = S 0 + S pl S 0 Piramide, Stožec P = S 0 + S pl S0 Pravilna -strana prizma P = a a + av 1 Pravilna -strana prizma P = a + a a Pravilna 6-strana prizma P =

Διαβάστε περισσότερα

ΤΗΛ412 Ανάλυση & Σχεδίαση (Σύνθεση) Τηλεπικοινωνιακών Διατάξεων. Διαλέξεις 8-9. Άγγελος Μπλέτσας ΗΜΜΥ Πολυτεχνείου Κρήτης, Φθινόπωρο 2014

ΤΗΛ412 Ανάλυση & Σχεδίαση (Σύνθεση) Τηλεπικοινωνιακών Διατάξεων. Διαλέξεις 8-9. Άγγελος Μπλέτσας ΗΜΜΥ Πολυτεχνείου Κρήτης, Φθινόπωρο 2014 ΤΗΛ412 Ανάλυση & Σχεδίαση (Σύνθεση) Τηλεπικοινωνιακών Διατάξεων Διαλέξεις 8-9 Άγγελος Μπλέτσας ΗΜΜΥ Πολυτεχνείου Κρήτης, Φθινόπωρο 2014 1 Διαλέξεις 8-9 Κεραίες (Από την οπτική γωνία του µηχανικού!) Εξισώσεις

Διαβάστε περισσότερα

Μέρος 1 ΜΟΝΤΕΛΑ ΔΙΑΔΟΣΗΣ

Μέρος 1 ΜΟΝΤΕΛΑ ΔΙΑΔΟΣΗΣ Μέρος 1 ΜΟΝΤΕΛΑ ΔΙΑΔΟΣΗΣ Μοντέλα Διάδοσης Βασικές αρχές. Στόχος: Υπολογισμός Εμβέλεια ζεύξης Τρόπος: Προϋπολογισμός ζεύξης (link budget) Μοντέλα Διάδοσης Η ζεύξη ως σύστημα P T = Ισχύς πομπού, L T = Απώλεια

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα