X Άπειρες ευθείες, X Μία µόνο ευθεία, X ύο µόνο ευθείες.
|
|
- Ἀρτεμίδωρος Κουταλιανός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 1. Συµπλήρωσε τα παρακάτω κενά: α. Το µήκος του ευθύγραµµου τµήµατος ΑΒ, που ενώνει δύο σηµεία Α και Β λέγεται απόσταση των σηµείων. β. Μέσο ενός ευθυγράµµου τµήµατος ΑΒ ονοµάζουµε το σηµείο του Μ που απέχει εξίσου από τα άκρα του. 2. Τοποθετήστε ένα «x» στη θέση που αντιστοιχεί στη σωστή απάντηση: Από δύο σηµεία µπορεί να περάσουν: X Άπειρες ευθείες, X Μία µόνο ευθεία, X ύο µόνο ευθείες. 3. Ένα τόπι είναι 65m. Πουλήθηκαν κοµµάτια µε µήκη: 3,5m, 25cm, 7,95m και 3,74m. Πόσα µέτρα ύφασµα έµειναν στο τόπι; Πρέπει να τρέψουµε όλα τα κοµµάτια που πουλήθηκαν σε µέτρα (m). Οπότε 25cm = 0,25m. Τα κοµµάτια που πουλήθηκαν έχουν συνολικό µήκος 3,5 + 0,25 + 7,95 + 3,74 = 15,44 m. Άρα έµειναν στο τόπι 65 15,44 = 49,56 m. 4. Το εµπορικό τρίγωνο της Αθήνας περικλείεται από τις οδούς Ιπποκράτους, µήκους 619m, Κλεισθένους, µήκους 271m και Περικλέους, µήκους 205m. Πόσα βήµατα θα κάνει ένας πεζός που κινείται περιµετρικά στο εµπορικό τρίγωνο, αν το κάθε βήµα του είναι 75cm; 374
2 Το εµπορικό τρίγωνο περιµετρικά είναι συνολικά = 1095 m Είναι 75cm = 0,75m οπότε τα βήµατα που θα κάνει ένας πεζός για να το περπατήσει περιµετρικά είναι 1095 : 0,75 = 1460 βήµατα. 5. Ένας αγρότης θέλει να περιφράξει έναν αγρό σχήµατος τετραγώνου πλευράς 15,3m. ιαθέτει συρµατόπλεγµα, µήκους 60m 3dm 18cm. Να βρεθεί αν θα του φτάσει το συρµατόπλεγµα ή αν πρέπει να αγοράσει κι άλλο. Η περίµετρος του αγρού είναι 415,3 = 61,2m. Επειδή 3dm = 0,3m και 18cm = 0,18m, το συρµατόπλεγµα που διαθέτη ο αγρότης έχει µήκος ,3 + 0,18 = 60,48. Εποµένως θα πρέπει να αγοράσει κι άλλο συρµατόπλεγµα. ηλαδή 61,2 60,48 = 0,72 m ή 72cm συρµατόπλεγµα. 6. Ο παρακάτω πίνακας δείχνει την ακτίνα σε m και σε Km τεσσάρων πλανητών. Να συµπληρωθούν τα κενά: Ακτίνα σε m σε Km ΑΦΡΟ ΙΤΗ ΓΗ ΑΡΗΣ ΙΑΣ Οι αριθµοί που εµφανίζονται στον παρακάτω πίνακα είναι τα µήκη των πέντε πλευρών του πολυγώνου ΑΒΓ Ε, εκφρασµένα µε διαφορετικές µονάδες. Να συµπληρωθεί ο πίνακας και να υπολογιστεί η περίµετρος του πολυγώνου σε cm, dm και m. AB BΓ Γ Ε ΕΑ Περίµετρος cm dm 51,7 42 8, ,6 234,7 m 5,17 4,2 0,84 12,5 0,76 23,47 375
3 8. Πάρε ένα σηµείο Α. Να βρεις τρία σηµεία που το καθένα να απέχει 2,7cm από το Α. 2,7cm 2,7cm 2,7cm 9. Σχεδίασε δύο αντικείµενες ηµιευθείες Αx και Αx. Να βρεις πάνω στην ηµιευθεία Αx δύο σηµεία Β και Γ, έτσι ώστε ΑΒ = 3cm και ΑΓ = 3,8 cm. Επίσης στην ηµιευθεία Αx να πάρεις ένα σηµείο έτσι, ώστε Α = 3 cm. Να συγκρίνεις: α. τα ευθύγραµµα τµήµατα ΑΓ και Α β. τα ευθύγραµµα τµήµατα ΑΒ και Α. x x α. Είναι ΑΓ > Α β. Είναι ΑΒ = Α = 3 cm 10. Σε µία ευθεία ε, πάρε στη σειρά τα σηµεία Α, Β, Γ και έτσι ώστε να είναι: ΑΒ = 2,5cm, ΒΓ = 3cm και Γ = 2,5cm. Eξέτασε αν τα τµήµατα ΑΓ και Β είναι ίσα. Είναι ΑΓ = 2, = 5,5cm και Β = 3+ 2,5= 5,5cm Οπότε ΑΓ = Β 376
4 11. Το µέσο Ο ευθύγραµµου τµήµατος ΑΒ απέχει 4,2cm από το άκρο Α. Πόσο είναι το µήκος του ΑΒ; O Επειδή το Ο είναι µέσο ΑΒ τότε θα είναι ΑΟ= ΟΒ = 4,2cm. Οπότε το ΑΒ είναι ΑΒ = 2 4,2= 8,4cm 12. Σχεδίασε ένα ευθύγραµµο τµήµα ΑΒ. Να βρεις ένα σηµείο Μ, το οποίο να απέχει 3,3cm από το Α και να µη βρίσκεται στην ευθεία ΑΒ. Να φέρεις την ευθεία, η οποία να περνάει από το Μ και από το µέσο του ευθύγραµµου τµήµατος ΑΒ. Έστω Ο το µέσο του ΑΒ. Τότε η ζητούµενη ευθεία είναι η ευθεία ΟΜ O M 377
5 13. Να συµπληρωθούν τα κενά του πίνακα: mm cm dm 40 m Km mm cm dm 150 m 5 2 6,4 0,7 Km 4,27 0,2 2 mm cm dm 32,7 0,6 7,3 25, m 3,27 0,06 0,73 2, Km 0, , , , ,007 0,02 0,004 mm cm dm m ,4 0, Km 0,015 0,005 0,002 0,0064 0,0007 4,27 0,
6 14. Να συµπληρωθεί ο πίνακας: Συµµιγής 2m 7dm 3cm 5mm 4Km 350m 3dm 7cm 35m 6dm 8mm 12cm 11mm 7dm 3mm 1m 2cm 5dm 3mm 3m 4dm 5cm 6mm 3m 4dm 7cm 1m 37cm 8mm mm 2700 cm 270 dm 27 m 2,7 Συµµιγής 2m 7dm 3cm 5mm 4Km 350m 3dm 7cm 35m 6dm 8mm 12cm 11mm mm cm 270 3, ,8 13,1 dm 27 0, ,7 356,08 1,31 m 2,7 0, ,37 35,608 0,131 Συµµιγής 7dm 3mm 1m 2cm 5dm 3mm 3m 4dm 5cm 6mm 3m 4dm 7cm 1m 37cm 8mm mm cm 70, , , ,8 dm 7,03 10,2 5, ,56 34,7 13,78 m 0,703 1,02 0,503 3,4 0,056 3,47 1,
7 15. Να σηµειωθούν πάνω σε µία ευθεία ε δύο σηµεία Α και Β, έτσι ώστε ΑB = 2cm. Να βρεθεί στην ε ένα σηµείο Μ, τέτοιο ώστε MΑ = 4cm. Πόσα τέτοια σηµεία υπάρχουν; Τι παρατηρούµε για το σηµείο Β; M Υπάρχουν δύο σηµεία Μ και Μ πάνω στην ε που απέχουν από το Α 4cm. Παρατηρούµε ότι το Β είναι µέσο του τµήµατος ΑΜ. 16. Να πάρουµε ένα ευθύγραµµο τµήµα ΑΒ = 6cm. Να βρεθεί το µέσο του Ο και στη συνέχεια τα µέσα των ΑΟ και ΟΒ. Τι παρατηρούµε; M O Έστω Ο το µέσο του ΑΒ, Μ το µέσο του ΑΟ και Λ το µέσο του ΟΒ. Παρατηρούµε ότι το Ο είναι µέσο και του ευθύγραµµου τµήµατος ΜΛ. 17. Πάνω σε ευθύγραµµο τµήµα ΑΒ = 6cm, να πάρουµε σηµείο Κ, τέτοιο ώ- στε ΑΚ = 2cm και ένα σηµείο Λ τέτοιο, ώστε ΒΛ = 1,8cm. Αν Ο είναι το µέσο του τµήµατος ΒΛ, να συγκριθούν τα τµήµατα ΚΟ και ΟΛ. O Είναι KO = 3 2 = 1cm και OΛ = 3 1,8= 1,2cm Οπότε KO < ΟΛ. 380
8 18. Να συµπληρώσετε τα κενά του πίνακα: mm cm dm 43 m 4 Km 0,3 19. Να συµπληρώσετε τα κενά του πίνακα: Συµµιγής 3m 2dm 4cm 2mm 5dm 7cm 4m 2cm 7m 5mm 1m 47cm 8mm 5m 4dm 3cm 7m 8dm 9mm 12dm 9mm mm 3200 cm 320 dm 32 m 3,2 20. Οι αριθµοί που εµφανίζονται στον παρακάτω πίνακα είναι τα µήκη των πλευρών ενός τετράπλευρου ΑΒΓ, εκφρασµένα µε διαφορετική µονάδα. Να συµπληρώσετε τον πίνακα και να υπολογίσετε την περίµετρο του σε m, dm, cm και mm. ΑΒ ΒΓ Γ Α Περίµετρος m 0,5 dm 12 cm 105 mm
9 21. Να µετατρέψεις σε cm τα µήκη: i. 5m ii. 7dm iii. 13mm iv. 5m 9dm (Απ.: i. 500, ii. 70, iii. 1,3, iv. 590) 22. Να γράψετε τα παρακάτω µήκη από το µικρότερο στο µεγαλύτερο: α. 0,2m β. 3,4dm γ. 1,34cm δ. 34mm ε. 1.3m (Απ.: γ < δ < α < β < ε) 23. Από µία κορδέλα µήκους 100m, κόψαµε 4 κοµµατάκια µε µήκη 7,2m, 72cm, 49dm και 1250mm. (Απ.: 85,93m) 24. Να γράψετε σηµείο Α. Να βρείτε τρία άλλα σηµεία του που το καθένα να απέχει 3cm από το Α. 25. Να σχεδιάσετε ένα ευθύγραµµο τµήµα ΚΛ. Να βρείτε και να ονοµάσετε το µέσο Μ του ΚΛ. Να βρείτε ένα σηµείο Ρ που να απέχει 4cm από το Κ και να µη βρίσκεται πάνω στην ευθεία ΚΛ. Να σχεδιάσετε την ευθεία που περνά από τα σηµεία Μ και Ρ. 26. Το µέσο Μ ευθύγραµµου τµήµατος ΑΒ απέχει 3,6cm από το άκρο Α. Πόσο είναι το µήκος του ΑΒ; (Απ.: 7,2cm) 27. Πάρε ένα ευθύγραµµο τµήµα ΚΛ = 8cm. Να βρείτε το µέσο του Μ και στη συνέχεια να βρείτε τα µέσα των ΚΜ και ΜΛ. Τι παρατηρείτε; 28. Πάνω σε ευθύγραµµο τµήµα ΑΒ = 7cm, να πάρετε ένα σηµείο Γ τέτοιο ώστε ΑΓ = 1,5cm και ένα σηµείο τέτοιο ώστε Β = 2cm. Αν Μ είναι το µέσο του τµήµατος ΑΒ, να συγκρίνετε τα τµήµατα ΓΜ και Μ. (Απ.: ΜΓ > Μ ) 382
3. Μία τεθλασµένη γραµµή αποτελείται από πέντε διαφορετικά ευθύγραµµα
1. Να συγκρίνεις το µήκος της γραµµής ΑΒΓ Ε µε το µήκος του ευθύγραµµου τµήµατος ΖΗ, όπως φαίνονται στο διπλανό σχήµα. Μετρώντας µε το υποδεκάµετρο βρίσκουµε ΑΒ = 1,3cm, ΒΓ = 1,3cm, Γ = 1,4cm και Ε = 2,4cm
ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
Τι ονοµάζουµε γωνία σε ένα επίπεδο; Tι ονοµάζουµε κορυφή µιας γωνίας και τι πλευρά µιας γωνίας; Πότε δύο σχήµατα λέγονται ίσα; Τι ονοµάζουµε απόσταση δύο σηµείων; Τι ονοµάζουµε µέσο ενός ευθυγράµµου τµήµατος;
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ.1.1. Σημείο - Ευθύγραμμο τμήμα - Ευθεία - Ημιευθεία - Επίπεδο - Ημιεπίπεδο. ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / 1. Σχεδιάστε το ευθύγραμμο τμήμα Α και το ευθύγραμμο τμήμα ΓΔ A B Γ Δ 2.
6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ
6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ ΘΕΩΡΙΑ. Λόγος οµοειδών µεγεθών : Ονοµάζουµε λόγο δύο οµοιειδών µεγεθών, που εκφράζονται µε την ίδια µονάδα µέτρησης, το πηλίκο των µέτρων τους. 2. Αναλογία: Η ισότητα δύο
ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 Ο Βασικές Γεωμετρικές Έννοιες ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Μια τεντωμένη κλωστή με άκρα δύο σημεία Α και Β μας δίνει μια εικόνα της έννοιας του.. Τα σημεία Α και Β λέγονται.. 2. Τι ονομάζεται ευθεία;..
ΚΥΚΛΟ. κάθετη στη χορδή ΑΒ. τη χορδή. του κέντρου Κ από. (βλέπε σχήμα).
ΑΣΚΗΣΕΙΣ ΣΤΟΝ ΚΥΚΛΟ 1. Να κατασκευάσετε έναν κύκλο και να πάρετε μια χορδή του ΑΒ. Από το κέντρο Κ του κύκλου να φέρετε κάθετη στη χορδή ΑΒ η οποία τέμνει τη χορδή στο σημείο Μ. Να διαπιστώσετε με μέτρηση
1.2 ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ
1 1. ΛΟΟΣ ΥΘΥΡΜΜΩΝ ΤΜΗΜΤΩΝ ΘΩΡΙ 1. Παραλληλία και ισότητα ν τρεις τουλάχιστον παράλληλες ορίζουν ίσα ευθύγραµµα τµήµατα σε µία ευθεία τότε θα ορίζουν ίσα ευθύγραµµα τµήµατα και σε οποιαδήποτε άλλη ευθεία
Ερωτήσεις ανάπτυξης 1. ** 2. ** 3. ** 4. ** 5. ** 6. **
Ερωτήσεις ανάπτυξης 1. ** ίνονται επίπεδο p και τρία µη συνευθειακά σηµεία του Α, Β και Γ καθώς και ένα σηµείο Μ, που δεν συµπίπτει µε το Α. Αν η ευθεία ΑΜ τέµνει την ευθεία ΒΓ, να δείξετε ότι το Μ είναι
ΚΥΚΛΟΣ. Ερωτήσεις του τύπου «Σωστό-Λάθος»
ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό-Λάθος» Σωστό Λάθος 1. Αν α είναι η απόσταση ευθείας ε από το κέντρο του κύκλου (Ο, ρ) τότε: αν α > ρ η ε λέγεται εξωτερική του κύκλου αν α = ρ η ε λέγεται τέμνουσα του
Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία
Ασκήσεις Ευθεία 1. Να βρεθεί η εξίσωση της ευθείας η οποία διέρχεται από το σηµείο τοµής των ευθειών 3x + 4y 11 = 0 και 2x 3y + 21 = 0 και να γίνει η γραφική της παράσταση όταν είναι: i) παράλληλη στην
(ΤΑ ΑΓΑΘΑ ΚΟΠΟΙΣ ΚΤΩΝΤΑΙ)
(ΤΑ ΑΓΑΘΑ ΚΟΠΟΙΣ ΚΤΩΝΤΑΙ) 1. Να σχεδιάσετε ένα σκαληνό τρίγωνο με περίμετρο 10 cm. Περίμετρος ενός τριγώνου λέγεται το άθροισμα των μηκών των πλευρών του). Μια περίπτωση είναι οι πλευρές του να έχουν μήκος
2ηέκδοση 20Ιανουαρίου2015
ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην
ΓΕΩΜΕΤΡΙΑ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ. 1. Να σχεδιάσετε ένα σκαληνό τρίγωνο με περίμετρο 10 cm. Πόσες λύσεις έχει το πρόβλημα;
ΓΕΩΜΕΤΡΙΑ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ 1. Να σχεδιάσετε ένα σκαληνό τρίγωνο με περίμετρο 10 cm. Πόσες λύσεις έχει το πρόβλημα; Πρέπει να σχεδιάσουμε ένα τρίγωνο που τα μήκη των πλευρών του έχουν άθροισμα
ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.
ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα. ΓΕΝΙΚΑ: Οι γεωμετρικές κατασκευές εφαρμόζονται στην επίλυση σχεδιαστικών προβλημάτων
Ερωτήσεις: 1. Να αναγνωρίσετε και να ονομάσετε γεωμετρικά σχήματα στα παραπάνω στερεά.
1. ΑΝΑΓΝΩΡΙΣΗ, ΟΝΟΜΑΣΙΑ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΓΕΩΜΕΤΡΙΚΩΝ ΣΧΗΜΑΤΩΝ a. Αναγνώριση και ονομασία Δραστηριότητα 1 1. Ας κατασκευάσουμε όσο το δυνατόν περισσότερες γραμμές μπορούμε να σκεφτούμε. 2. Έχουμε ξανασυναντήσει
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο τέλος της πρότασης αν αυτή είναι Σωστή και Λ αν αυτή είναι Λάθος: ύο τρίγωνα είναι ίσα αν έχουν ίσες
ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ
ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ
Μαθηματικά Α Γυμνασίου. Επαναληπτικές Ασκήσεις
Μαθηματικά Α Γυμνασίου Επαναληπτικές Ασκήσεις.: Δυνάμεις φυσικών αριθμών.4: Ευκλείδεια διαίρεση - διαιρετότητα.: Χαρακτήρες διαιρετότητας - ΜΚΔ - ΕΚΠ - Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων Κεφάλαιο
Α Γυμνασίου, Μέρο Β, Γεωμετρία, Κεφάλαιο 2, Συμμετρία
Α Γυμνασίου, Μέρο Β, Γεωμετρία, Κεφάλαιο 2, Συμμετρία Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρο Β - Κεφάλαιο 2, Β. 2.2. Άξονα συμμετρία σχήματο ονομάζεται η ευθεία που χωρίζει
ÊåöÜëáéï 7 ï. âéâëéïììüèçìá 22: -ºóá ó Þìáôá -ºóá ôñßãùíá -ÊáôáóêåõÝò ìå êáíüíá êáé äéáâþôç -Åßäç ôåôñáðëåýñùí -Éäéüôçôåò ôïõ ðáñáëëçëïãñüììïõ
ÊåöÜëáéï 7 ï Åõèýãñáììá ó Þìáôá âéâëéïììüèçìá : -ºóá ó Þìáôá -ºóá ôñßãùíá -ÊáôáóêåõÝò ìå êáíüíá êáé äéáâþôç -Åßäç ôåôñáðëåýñùí -Éäéüôçôåò ôïõ ðáñáëëçëïãñüììïõ âéâëéïììüèçìá 3: -Åìâáäü ôñéãþíïõ -Åìâáäü
ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ ΕΠΑΝΑΛΗΨΗ Γεωμετρίας Β Λυκείου. // ) και BE
ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ 06-7 Επειδή το ζητήσατε κορίτσια μου: Α. ΘΕΩΡΙΑ Τα κεφάλαια: ΕΠΑΝΑΛΗΨΗ Γεωμετρίας Β Λυκείου 9 ο Μετρικές σχέσεις, 0 ο Εμβαδά, ο Μέτρηση Κύκλου, την διδαχθείσα ύλη Β.
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήµα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν Α ΒΓ, Ε ΑΒ τότε το τρίγωνο
Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις
Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση
Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç. Απάντηση Οι γωνίες που σχηµατίζονται είναι: Α. αµβλεία Β. ευθεία Γ. πλήρης. οξεία Ε. ορθή Ζ. αµβλεία Η. οξεία.
Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç Σε όλα τα παρακάτω αντικείµενα σχηµατίζονται διάφορες γωνίες ανάλογα µε τη σχετική θέση, κάθε φορά, δύο ηµιευθειών που έχουν ένα κοινό ση- µείο, όπως π.χ. είναι οι δείκτες του ρολογιού,
Διαίρεση ευθυγράμμου τμήματος σε ν ίσα τμήματα
ΜΕΡΟΣ Β. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ 7. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ Ίσα τμήματα μεταξύ παραλλήλων ευθειών Αν παράλληλες ευθείες ορίζουν ίσα τμήματα σε μια ευθεία, τότε θα ορίζουν ίσα τμήματα και σε οποιαδήποτε
3.1. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας
3. Ασκήσεις σχολικού βιβλίου σελίδας 87 89 Οµάδας. Να βρείτε την εξίσωση του κύκλου µε κέντρο την αρχή των αξόνων σε καθεµιά από τις παρακάτω περιπτώσεις : (i) Όταν διέρχεται από το σηµείο Α(, 3 ) (ii)
Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία. είναι «επί τα αυτά».
Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία Οι γωνίες που βρίσκονται ανάμεσα στις ευθείες ε 1 και ε ονομάζονται «εντός» (των ευθειών)και όλες οι άλλες «εκτός». Οι γωνίες B 4, B 3, 1, είναι εντός
ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )
ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε
Βασικές Γεωμετρικές έννοιες
Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 η ΕΚΑ Α
1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 η ΕΚΑ Α 31. Μία κυλινδρική δεξαµενή έχει µήκος βάσης 1,56 m. Η δεξαµενή είναι γεµάτη κατά τα 6 7 και περιέχει 75,36 m3 νερό. Να υπολογίσετε το βάθος της δεξαµενής. Να υπολογίσετε
Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Β. ΜΕΘΟ ΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ
Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Όµοια λέγονται δύο πολύγωνα που έχουν τις πλευρές τους ανάλογες και τις αντίστοιχες γωνίες τους ίσες. Λόγος οµοιότητας δύο όµοιων πολυγώνων λέγεται ο λόγος δύο
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 η ΕΚΑ Α
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ η ΕΚΑ Α. Πότε δύο γωνίες λέγονται εφεξής; Ποιο σχήµα ονοµάζουµε κύκλο µε κέντρο Ο και ακτίνα ρ ; Στον παρακάτω πίνακα να αντιστοιχίσετε κάθε αριθµό της πρώτης στήλης µε ένα γράµµα της
Ασκήσεις σχολικού βιβλίου σελίδας 245. Ερωτήσεις Κατανόησης. Αντιστοιχίστε κάθε µέγεθος της στήλης Α µε την τιµή του στην στήλη Β
.4.5 σκήσεις σχολικού βιβλίου σελίδας 45 Ερωτήσεις Κατανόησης. ντιστοιχίστε κάθε µέγεθος της στήλης µε την τιµή του στην στήλη Β Στήλη Μήκος κύκλου ακτίνας Μήκος τόξου µ ο σε κύκλο ακτίνα Μήκος τόξου α
ΒΕ Ζ είναι ισόπλευρο. ΔΕΡ.
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΩΕΚΑΝΗΣΟΥ ΘΕΜΑ 1 Θεωρούμε το ισόπλευρο τρίγωνο ΑΒΓ και έστω ένα σημείο της πλευράς ΑΓ. Κατασκευάζουμε το παραλληλόγραμμο ΒΓΕ και έστω Ζ η τομή της Ε με την ΑB. Ονομάζουμε
1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
1 1.4 ΠΥΘΑΟΡΕΙΟ ΘΕΩΡΗΜΑ ΘΕΩΡΙΑ 1. Πυθαγόρειο θεώρηµα : Σε κάθε ορθογώνιο τρίγωνο το τετράγωνο της υποτείνουσας είναι ίσο µε το άθροισµα των τετραγώνων των καθέτων πλευρών. γ α α = β + γ β. Αντίστροφο Πυθαγορείου
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ ΘΕΩΡΙΑ : Μήκος κύκλου: L = Εμβαδόν κύκλου: Ε = ( όπου π = 3,14) Γνωρίζοντας ότι σε γωνία 360 0 αντιστοιχεί κύκλος με μήκος L και εμβαδόν Ε έχουμε : α) ημικύκλιο
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ ΘΕΩΡΙΑ 1 (Μήκος κύκλου) Το μήκος του κύκλου (Ο, R) συμβολίζεται με L. Ο Ιπποκράτης ο Χίος απέδειξε ότι
4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ
1 4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ ΘΕΩΡΙΑ 1. Εξίσωση µε έναν άγνωστο: Ονοµάζουµε µία ισότητα η οποία περιέχει αριθµούς και ένα γράµµα που είναι ο άγνωστος της εξίσωσης.. Λύση ή ρίζα της εξίσωσης : Είναι ο αριθµός
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ
ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία
Απάντηση Το σχήµα που σχηµατίζει µία τεντωµένη κλωστή που κρατάµε µε τα δύο χέρια
Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç Πως µπορείς να ονοµάσεις το σχήµα µιας τεντωµένης κλωστής; Το σχήµα που φαίνεται πιο κάτω αποτελείται από µερικά σηµεία το ένα δίπλα στο άλλο. Μπορείς να το χαρακτηρίσεις µε τον ίδιο
Ερωτήσεις ανάπτυξης. 1. Τα σηµεία Β και Γ είναι σηµεία του επιπέδου p, η ΒΓ είναι ευθεία του p. Η ΒΓ τέµνει την ΑΜ στον
Ερωτήσεις ανάπτυξης 1. Τα σηµεία και είναι σηµεία του επιπέδου, η είναι ευθεία του. Η τέµνει την Μ στον Μ Ν Ν. Το Ν σαν σηµείο της ανήκει στο, άρα και το Μ σαν σηµείο της Ν ανήκει στο. B. Έστω ε µια ευθεία
ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα»
1 ΜΕΤΡΙΚΕ ΧΕΕΙ ΘΕΩΡΙΑ Μετρικές σχέσεις στο ορθογώνιο τρίγωνο το ορθογώνιο τρίγωνο το τετράγωνο κάθε κάθετης πλευράς είναι ίσο µε το γινόµενο της υποτείνουσας επί την προβολή της κάθετης στην υποτείνουσα.
ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ
ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε
2.4-2.5 ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΣΗΜΕΙΟ
1 4-5 ΣΥΜΜΤΡΙ ΩΣ ΠΡΣ ΣΗΜΙ ΚΝΤΡ ΣΥΜΜΤΡΙΣ ΘΩΡΙ Το συµµετρικό σηµείου ως προς κέντρο σηµείο νοµάζουµε συµµετρικό του ως προς κέντρο το σηµείο µε το οποίο συµπίπτει το περιστρεφόµενο περί το κατά γωνία 180
π (α,β). Έστω τα διανύσματα π (α,β) να βρεθούν:
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Β ΚΑΤΕΥΘΥΝΣΗΣ 1. Για τα διανύσματα α, β δίνεται ότι α =1, β = και u α β, v α - β.να υπολογίσετε: π (α,β). Έστω τα διανύσματα α. το εσωτερικό γινόμενο α β β. τα μέτρα u, v των διανυσμάτων
ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ
ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0. ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 0. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 0.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα
Ασκήσεις - Πυθαγόρειο Θεώρηµα
Ασκήσεις - Πυθαγόρειο Θεώρηµα. Έστω ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ) µε ΒΓ = 0 και ΑΓ =. Αν το µέσο της ΒΓ και Ε ΒΓ (Ε σηµείο της ΑΒ) τότε το µήκος της ΑΕ είναι: i) 3 3,5 i 4 iv) 4,5 v) 5. Έστω ορθογώνιο
1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ
. ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΙΑΝΥΣ ΘΕΩΡΙΑ. Ορισµός Γινόµενο πραγµατικού αριθµού λ µε διάνυσµα α 0 λέγεται νέο διάνυσµα λα, που έχει µέτρο λα = λ α και είναι οµόρροπο του α όταν λ > 0 αντίρροπο του α όταν
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2
ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΓΥΝΜΣΙΟΥ ΜΘΗΜΤΙΚ ΛΓΕΡ ΚΕΦΛΙΟ. Να διατυπώσετε τα κριτήρια διαιρετότητας. πό τους αριθμούς 675, 0, 4404, 7450 να γράψετε αυτούς που διαιρούνται με το, με το, με το 4, με το 9.. Ποια είναι
Φύλλο εργασίας Νο1. Ορθοκανονικό Σύστημα Ημιαξόνων, Συντεταγμένες Σημείου. Το ορθοκανονικό σύστημα αποτελείται από δύο ημιευθείεςοχ και Οy ώστε:
9 ο Γυμνάσιο Αθηνών ΜΑΘΗΜΑΤΙΚΑΑ ΓΥΜΝΑΣΙΟΥ Κεφάλαιο 6: ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤΟ ΕΠΙΠΕΔΟ Φύλλο εργασίας Νο1 1 Ονοματεπώνυμο μαθητή : Ημερομηνία :.../.../20... Μαθηματικές έννοιες: Ορθοκανονικό Σύστημα Ημιαξόνων,
ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ
ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Πρόλογος... 7 Περιεχόµενα... 9 Κεφάλαιο ο (του σχολικού βιβλίου) Μάθηµα 1 ο : Βασικά γεωµετρικά σχήµατα... 11 Μάθηµα ο : Γωνίες - κύκλος... 3 Κεφάλαιο 3 ο Μάθηµα 3
ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ
ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ 1 (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα
ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΚΕΦΑΛΑΙΟ:9 ο
14 1 ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ:9 ο _18997 ΘΕΜΑ Β Ένας άνθρωπος σπρώχνει ένα κουτί προς τα πάνω στη ράµπα του παρακάτω σχήµατος. α) Να αποδείξετε ότι για το ύψος y, που απέχει το κουτί από
3.3 ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟ ΟΡΘΟΓΩΝΙΟ
1 3 ΠΛΛΗΛΟΜΜΟ ΟΘΟΩΝΙΟ ΤΤΩΝΟ ΟΜΟΣ ΤΠΙΟ ΙΣΟΣΛΣ ΤΠΙΟ ΘΩΙ Παραλληλόγραµµο Λέγεται το τετράπλευρο που έχει τις απέναντι πλευρές παράλληλες. ( // και // ) άσεις και ύψη στο παραλληλόγραµµο άθε πλευρά του µπορεί
ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. Λυμένες Ασκήσεις
ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ Λυμένες Ασκήσεις 1. Στο παρακάτω σχήμα να βρείτε τις συντεταγμένες των σημείων Α, Β, Γ, Δ, Ε, Ζ, Η, Θ και Ι Οι συντεταγμένες των ζητούμενων σημείων είναι: Α(2,3),
και των πλευρών του,,, 1 αντίστοιχα τέτοια, ώστε. 3 Να αποδείξετε ότι: α) / / / /. (Μονάδες 10)
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 04 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΝΑ ΕΝΟΤΗΤΑ ΘΕΩΡΗΜΑ ΘΑΛΗ ΘΕΜΑ ο ΘΕΜΑ -8975 Δίνεται τρίγωνο ABΓ με AB=9, AΓ=5. Από το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά BΓ που τέμνει
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΠΑΡΑΓΡΑΦΟΣ Β.1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΣΚΗΣΕΙΣ
ΠΑΡΑΓΡΑΦΟΣ Β.1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΣΚΗΣΕΙΣ 1) Στον παρακάτω πίνακα τα ευθύγραμμα τμήματα ΑΒ, ΑΓ και ΒΓ είναι οι πλευρές ενός o ορθογωνίου τριγώνου ΑΒΓ με Â 90. Να συμπληρώσετε τον πίνακα αυτό. ΑΒ 6 3
Επαναληπτικές Ασκήσεις
Επαναληπτικές Ασκήσεις 1 Έστω Α, Β, Κ, Λ και Μ τυχαία σημεία του χώρου Α ισχύει η σχέση ΑΚ + ΜΑ = ΚΒ 2ΑΒ + ΒΛ, να αποδείξετε ότι: α) τα σημεία Κ, Λ και Μ είναι συνευθειακά, β) ΚΛ ΚΜ, γ) ΚΛ = ΚΜ 2 Έστω
(1) (2) A ΑE Α = AΒ (ΑΒΕ) (Α Ε)
9. Τα τρίγωνα και έχουν κοινή γωνία, άρα: () () A E AB A E A (1) Όµοια τα τρίγωνα και, άρα: () () A E AB A A () E Όµως από το θεώρηµα του Θαλή: A A () ( // ) () () πό (1), (), () έχουµε. () () Άρα () ()
1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ
Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:
ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ
ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ 1) Από εξωτερικό σημείο Ρ ενός κύκλου (Ο,ρ) φέρνουμε τα εφαπτόμενα τμήματα ΡΑ και ΡΒ. Αν Μ είναι ένα τυχαίο εσωτερικό σημείο του ευθύγραμμου τμήματος ΟΡ, να αποδείξετε ότι: α) τα
Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΛΛΕΙΨΗ
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΛΛΕΙΨΗ EΞΙΣΩΣΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΕΛΛΕΙΨΗΣ 1. Να βρείτε την εξίσωση της έλλειψης όταν: α) Έχει εστία Ε (-8,0) και μεγάλο άξονα 0 β) Έχει εστία Ε(0,3) και μεγάλο άξονα 8 γ) Έχει εστία Ε(4,0) και
ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία
β = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ...
Αµυραδάκη 0, Νίκαια (104903576) ΝΟΕΜΒΡΙΟΣ 01 ΘΕΜΑ 1 ο i) Αν Α( x 1, y 1 ) και Β(x, y ) δυο σηµεία του καρτεσιανού επιπέδου και (x, y) οι συντεταγµένες του µέσου Μ του ΑΒ, να αποδείξετε ότι : x 1 + x x
1.11 ΚΥΚΛΟΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΤΟΥ ΚΥΚΛΟΥ
1 11 ΥΣ Ι ΣΤΙΧΕΙ ΤΥ ΥΥ ΘΕΩΡΙ ύκλος µε κέντρο : νοµάζεται το σύνολο των σηµείων του επιπέδου που απέχουν από το την ίδια απόσταση. Το σηµείο το λέµε κέντρο του κύκλου και τη σταθερή απόσταση που συνήθως
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 50. Ύλη: Βασικές γεωμετρικές έννοιες Θέμα 1 ο : Α. Τι ονομάζουμε κυκλικό δίσκο; (5 μον.)
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 50 Ον/μο:.. Α Γυμνασίου Ύλη: Βασικές γεωμετρικές έννοιες 13-02-17 Θέμα 1 ο : Α. Τι ονομάζουμε κυκλικό δίσκο; (5 μον.) Β. Ποιες είναι οι σχετικές θέσεις μιας ευθείας κι ενός κύκλου;
4.2 Η ΣΥΝΑΡΤΗΣΗ y = αx 2 + βx + γ µε α 0
1. Η ΣΥΝΑΡΤΗΣΗ y = α + + γ µε α 0 ΘΕΩΡΙΑ 1. Τετραγωνική συνάρτηση : Ονοµάζεται κάθε συνάρτηση της µορφής y = α + + γ, α 0. Γραφική παράσταση της συνάρτησης y = α + + γ, α 0 Η γραφική παράσταση της συνάρτησης
6.1 ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤΟ ΕΠΙΠΕ Ο
6. ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤ ΕΠΙΠΕ ΘΕΩΡΙΑ. Σύστηµα καθέτων ηµιαξόνων: Είναι δύο κάθετες µεταξύ τους ηµιευθείες µία οριζόντια και µία κατακόρυφη. Την οριζόντια την ονοµάζουµε και την λέµε ηµιάξονα των ή ηµιάξονα
ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες
ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι
Ερωτήσεις αντιστοίχισης
Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =
ΘΕΜΑ ίνονται τα διανύσµαταα, β. α) Να υπολογίσετε τη γωνία. β) Να αποδείξετε ότι 2α+β= β) το συνηµίτονο της γωνίας των διανυσµάτων
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΣΕ ΟΛΗ ΤΗΝ ΥΛΗ! ΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΙΑΝΥΣΜΑ ΘΕΜΑ 005 Θεωρούµε τα σηµεία Ρ, Λ, Κ και Μ του επιπέδου για τα οποία ισχύει η σχέση 5ΡΛ
ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ
ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2013 2014 ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΓΙΩΝ ΑΝΑΡΓΥΡΩΝ ΤΑΞΗ Α ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ B Κ 1.1 ΕΝΟΤΗΤΑ : Βασικές Γεωμετρικές ένοιες Τάξη : A Γυμνασίου. Καθ. Χρήστος Μουρατίδης
ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ
ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ΠΟΛΥΕ ΡΑ 1. ΟΡΙΣΜΟΙ 2. ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕ Ο α = µήκος β = πλάτος γ = ύψος δ = διαγώνιος = α. β. γ = Ε β. υ Ε ολ = 2. (αβ + αγ + βγ) 3. ΚΥΒΟΣ = α 3 Ε ολ = 6α 2
ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές)
ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Κωνικές τοµ ές) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής
ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Ερωτήσεις πολλαπλής επιλογής. 4. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ είναι
ΓΕΩΜΕΤΡΙΑ 90 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Ερωτήσεις πολλαπλής επιλογής 1. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ έχει Α = 90, β = 9 cm, γ = 1 cm και την ΑΜ διάµεσο. Το µήκος του ΑΜ ισούται µε: Α. 9. 9 Ε. 1 15 Β. 6 Γ..
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )
Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Το σημείο το ονομάζουμε με ένα κεφαλαίο γράμμα. Λέμε: το σημείο Α.
ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΟΝΟΜΑΣΙΕΣ Σημείο Το σημείο το ονομάζουμε με ένα κεφαλαίο γράμμα. Λέμε: το σημείο Α. Ευθύγραμμο τμήμα Το ευθύγραμμο τμήμα, το ονομάζουμε με δύο κεφαλαία γράμματα (των σημείων που
Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ
Ασκήσεις για τις εξετάσεις Μάη Ιούνη 014 στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ Άσκηση 1 η Δίνεται παραλληλόγραμμο ΑΒΓΔ και. Με διάμετρο τη διαγώνιο ΑΓ γράφουμε κύκλο με κέντρο Ο που τέμνει τη ΓΔ στο
ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»
ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:
ΑΒ ίνεται τραπέζιο ΑΒΓ (ΑΒ//Γ ) και σηµείο Μ της πλευράς του Α ώστε =. Από το
1. ίνεται ισοσκελές τρίγωνο ΑΒΓ µε ΑΒ=ΑΓ, Â =36o και η διχοτόµος του Β. α) Να αποδείξετε ότι: i) Τα τρίγωνα Β Γ και ΑΒΓ είναι όµοια. ii) A 2 =ΑΓ Γ β) Αν θεωρήσουµε το ΑΓ ως µοναδιαίο τµήµα (ΑΓ=1), να υπολογίσετε
1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του.
Ερωτήσεις ανάπτυξης 1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του. 2. ** Υπάρχει κανονικό πολύγωνο εγγεγραµµένο σε κύκλο ακτίνας
ΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ;
ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: B ΘΕΩΡΙΑ ΘΕΜΑ 1 ο A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ; B. Να αντιγράψετε και να συμπληρώσετε τις παρακάτω σχέσεις: i. Αν α 0,
1 η δεκάδα θεµάτων επανάληψης
1 1 η δεκάδα θεµάτων επανάληψης 1. Α. Έστω α = (x 1, y 1 ) και β = (x, y ) δύο διανύσµατα Να γράψετε την αναλυτική έκφραση του εσωτερικού γινοµένου τους i Αν τα διανύσµατα δεν είναι παράλληλα προς τον
ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β
ΥΜΝΑΣΙΟ - 010 48 Α. Τι λέγεται τετραγωνική ρίζα ενός θετικού αριθμού α και πώς συμβολίζεται αυτή; Β. Ποιος αριθμός ονομάζεται άρρητος;. Πώς ορίζονται οι πραγματικοί αριθμοί; Α. Τι λέγεται ημίτονο μιας
Γ ΓΥΜΝΑΣΙΟΥ. Εισαγωγή : Λόγοι που επιβάλλουν τη διδασκαλία της ομοιοθεσίας
ΥΜΝΑΣΙΟΥ ΣΧΔΙΟ ΜΑΘΗΜΑΤΟΣ Κοντογιάννης Δημήτριος, Σύμβουλος του Π.Ι. & Αργυράκης Δ., Βουργάνας Π., Μεντής Κ., Τσικοπούλου Σ. & Χρυσοβέργης Μ. (Συγγραφική Ομάδα) ΔΙΔΑΚΤΙΚΗ ΝΟΤΗΤΑ: Ομοιοθεσία ισαγωγή : Λόγοι
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν
1.2 Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
1 1. Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ MΟΝΩΝΥΜΑ ΘΕΩΡΙΑ 1. Αριθµητική παράσταση : Είναι η παράσταση που περιέχει πράξεις µεταξύ αριθµών. Αλγεβρική παράσταση : Είναι η παράσταση που περιέχει πράξεις µεταξύ αριθµών
2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ
1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας
1.4 ΟΜΟΙΟΘΕΣΙΑ ΑΣΚΗΣΕΙΣ. 2. Το οµοιόθετο γωνίας : Είναι γωνία ίση µε την αρχική
1 1.4 ΜΙΘΣΙ ΘΩΡΙ 1. Το οµοιόθετο ευθυγράµµου τµήµατος ίναι ευθύγραµµο τµήµα // AB και τέτοιο ώστε = λ, όπου λ ο λόγος οµοιοθεσίας (το κέντρο οµοιοθεσίας να µην ανήκει στν ευθεία ). Το οµοιόθετο γωνίας
Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ
Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: 3 + 4 = 7 + 1 Άσκηση
ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ
ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Να επιλέξετε μια απάντηση για κάθε ερώτηση και να δικαιολογήσετε σύντομα την απάντησή σας. i. Αν η εξωτερική γωνία ενός κανονικού ν-γώνου ισούται με 0 ο, τότε το ν ισούται
ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων
ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Σελίδα 37 Στο παρακάτω σχήμα σχεδιάστε την διάμεσο ΑΜ, την διάμεσο ΒΛ και την διάμεσο ΓΝ. Τι παρατηρείτε; Να κατασκευάσετε
5 Γενική µορφή εξίσωσης ευθείας
5 Γενική µορφή εξίσωσης ευθείας Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Κάθε ευθεία έχει εξίσωση της µορφής: Ax + By +Γ= 0, µε Α 0 ηβ 0 () και αντιστρόφως κάθε εξίσωση της µορφής () παριστάνει ευθεία γραµµή.
Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 1999
Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 1999 Ζήτηµα 1ο Α. Έστω Α η διχοτόµος της γωνίας A ) ενός τριγώνου ΑΒΓ. Από το Β φέρνουµε την παράλληλη προς την Α και έστω Ε το σηµείο τοµής της µε την ευθεία
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α
1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ η ΕΚΑ Α 11. Στο λογαριασµό του ΟΤΕ πληρώνουµε πάγιο τέλος κάθε µήνα 1 και για κάθε µονάδα οµιλίας 0,09. Να βρείτε έναν τύπο που να µας δίνει το ποσό των χρηµάτων y που θα πληρώσουµε
1.5. Ασκήσεις σχολικού βιβλίου σελίδας A Oµάδας ( )
.5 Ασκήσεις σχολικού ιλίου σελίδας 47 50 A Oµάδας. Αν α (, 3) και (, 5), τότε Να ρείτε τα εσωτερικά γινόµενα α, (α ).(-3 ) και (α ). (3α + ) Να ρείτε τη σχέση που συνδέει τους κ, λ R, ώστε το εσωτερικό
Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος
Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι